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ABSTRACT10

Understanding the genetic basis responding to nitrogen (N) fertilization in crop production is a long-standing research topic
in plant breeding and genetics. Albeit years of continuous efforts, the genetic architecture parameters, such as heritability,
polygenicity, and mode of selection, underlying the N responses in maize remain largely unclear. In this study, about n = 230
maize inbred lines were phenotyped under high N (HN) and low N (LN) conditions for two consecutive years to obtain
six yield-related traits. Heritability analyses suggested that traits highly responsive to N treatments were less heritable.
Using publicly available SNP genotypes, the genome-wide association study (GWAS) was conducted to identify n = 231 and
n = 139 trait-associated loci (TALs) under HN and LN conditions, respectively, and n = 162 TALs for N-responsive (NR) traits.
Furthermore, genome-wide complex trait Bayesian (GCTB) analysis, a method complementary to GWAS, was performed
to estimate genetic parameters, including genetic polygenicity and the mode of selection (S). GCTB results suggested that
the NR value of a yield component trait was highly polygenic and that four NR traits exhibited negative correlations between
SNP effects and their minor allele frequencies (or the S value < 0) — a pattern consistent with negative selection to purge
deleterious alleles. This study reveals the complex genetic architecture underlying N responses for yield-related traits and
provides insights into the future direction for N resilient maize development.

11

Introduction12

Nitrogen (N), as a fundamental macronutrient, is a major constituent of proteins, nucleic acid, and metabolites and is critical for13

the high yielding of crops (1). Since the 1960s, subsequent to the Green Revolution, due to the Haber-Bosch process, inorganic14

N fertilizers became increasingly available for crop production, especially in maize, where about 20% of the N fertilizers was15

applied for maize production (2; 3). However, inefficient N usage causes ammonia emission to the environment, accounting16

for a considerable proportion of fine particulate matter pollution (i.e., PM2.5) and reducing human population life span (4).17

Meanwhile, N runoff imposes substantial adverse effects on natural ecosystems, such as reduced water quality and impaired18

soil health. Therefore, understanding the plant response to N in crop production is crucial for human health, food security, and19

environmental sustainability and is a long-standing research topic in plant breeding and genetics.20

To identify N-responsive genetic loci, many QTL studies were performed, resulting in a number of trait-associated QTLs21

under different N conditions (5; 6) or QTLs for different N-related traits, i.e., grain N yield, N remobilization, and post-silking22

N uptake (7; 8). Recently, as the technical advances, genetic studies for N-related traits shifted from QTL mapping to GWAS23

(9; 10), leading to high-resolution mapping results. For example, a recent GWAS using 411 maize inbred lines under optimum24

and low N conditions detected about 80 significant SNPs and 136 putative candidate genes (11). These N-related QTLs and25

trait-associated SNPs provide opportunities to investigate the fate of the deleterious alleles — the alleles can potentially affect26

fitness under different N conditions. During the recent maize improvement process, an excess of the mutational load was27

enriched in even elite maize inbred lines (12). However, it is largely unclear how many alleles contribute to NR traits and what28

is the mode of selection on these alleles, including potentially deleterious alleles, in affecting N responses.29

In the current study, by employing two complementary approaches — GWAS and GCTB (Genome-wide Complex Trait30

Bayesian analysis), we analyzed yield-related traits collected under low N (LN) and high N (HN) conditions (i.e., trait per se)31

as well as the transformed N-responsive (NR) traits. We found higher heritability for most traits per se under HN than LN and32

identified 1,292 trait-associated SNPs in total that locate in 481 genomic regions. Inferring from genome-wide non-zero effects33

SNPs, including not only significant GWAS SNPs but also SNPs with minor effects, GCTB results suggested the yield-related34

NR traits were highly polygenic and that NR traits were more likely under negative selection (13). The complex genetic35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.502993doi: bioRxiv preprint 

jinliang.yang@unl.edu
https://doi.org/10.1101/2022.08.05.502993
http://creativecommons.org/licenses/by-nc-nd/4.0/


architecture revealed from this study, especially for the NR traits, provides guidelines for further genome-enabled selection36

modeling and N resilient maize development.37

Materials and Methods38

Plant materials and field experimental design39

In this experiment, a subset (n = 226 genotypes) of the maize diversity panel (14) was planted in a rain-fed experimental field40

followed commerical maize. For the N treated plots, urea (dry fertilizer) as a source of N was applied at the rate of 120 lbs/acre41

before planting. The field experiment was conducted using an incompletely randomized block design in two consecutive field42

seasons (2018-2019). For each replication of a treatment, the field was split into four blocks by plant height and maturity (i.e.,43

tall/early, tall/late, short/early, short/late). Each block was further subdivided into three sub-blocks. Within each sub-blocks,44

two hybrid varieties B73×Mo17 and B37×Mo17 were planted randomly as check plants (see also (15; 16)).45

Phenotypic data collection46

From each two-row plot, three mature ears were harvested from the representative plants. These harvested ears were dried47

in the oven at 37◦C for three days to decrease the moisture content. Harvested ears were hand-shelled to prevent kernel loss.48

After shelling, the kernels and cobs were kept separately with proper barcoded labels. From the cobs, cob diameter (CD), cob49

length (CL), and cob weight (CW) were manually measured. The total kernel weight (TKW) of each ear was measured from50

the collected kernels. And then, 20 representative kernels were selected to measure 20 kernel weight (20KW). Finally, the51

kernel count (KC) was computed using TKW divided by average kernel weight.52

Best linear unbiased prediction (BLUP) and N-responsive trait calculation53

To obtain the best linear unbiased prediction (BLUP) values of each genotype, we fitted a linear mixed model by treating the54

genotype, year, replication, block, sub-block, and genotype by year interaction as random effects. For each N treatment, the55

BLUP values were calculated separately using an R package “lme4” (17).56

In the model,
yi jkrl = µ +gi + tl +gi ∗ tl +b jrl + s jkrl +qrl + ε

where yi jkrl is the phenotypic value of the ith genotype evaluated in the kth sub-block of the jth block of rth replicate nested57

within the lth year; µ is the overall mean; gi is the random effect of the ith genotype; tl is the random effect of the lth year; gi ∗ tl58

is the random effect of the ith genotype with the lth year interaction; b jrl is the random effect of the jth block of the rth replicate59

within the lth year; s jkrl is the random effect of the kth sub-block of the jth block of the rth replicate within the lth year; qrl is60

the random effect of the rth replicate nested within the lth year; ε is the random residual error.61

The N-responsive (NR) traits were calculated from the BLUP values using the equation (18):62

NR =
THN −TLN

TLN

where THN and TLN are the BLUP values for a given trait measured from HN and LN field conditions.63

Broad sense heritability calculation64

The broad-sense heritability (H2) of yield-related traits was calculated using the equation as:65

H2 =
VG

VG +
VG×E

i + VE
i× j

where VG is the genotypic variance; VE is the environmental variance of different years; and VG×E is the variance of genotype66

by year interaction; i = 2 is the number of years and j = 2 is the number of replications per year.67

Genome-wide Association Study (GWAS)68

The SNP genotype of the maize diversity panel was downloaded from maize HapMap3 (19) with AGPv4 coordinates. After69

filtering out SNPs with minor allele frequency (MAF) < 0.05 and missing rate < 0.3 among the 226 lines phenotyped in this70

study, approximately 21 million SNPs were retained.71

In GWAS, we employed the QK model that considers both population structure (Q) and kinship relatedness (K) to control72

for multiple levels of confounding effects (20; 21). In the model,73

y = Qv+wimi +Zu+ e
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where y is a vector of BLUP value for a given trait (or the NR trait); Q is the design matrix of the population structure (i.e., the74

principle components); v is the vector of the fixed subpopulation effect; wi is a vector of the ith SNP genotype; mi is the fixed75

SNP effect to be estimated by an iterative procedure; Z is the covariance matrix or the kinship matrix of inbred lines; u is the76

vector of breeding values to be predicted (random effect); e is the vector of the random residual error.77

In the analysis, the Q matrix was the first three principal components calculated from genome-wide SNPs using PLINK 1.978

software (22). And the Z matrix was computed using GEMMA (v 0.98.3) software with option "4" (23). The above model79

was then implemented to estimate significant SNP effects for each trait using GEMMA (23). The threshold for the significant80

association SNPs was set to 1.2×10−6 (1/n, n = 769,690 is the number of independent SNPs with MAF ≥ 5%) according to81

the method developed previously (15). From the GWAS results, significant genomic loci were determined by considering a82

100 kb window upstream and downstream of the significant SNPs. Overlapping regions were merged, and these regions were83

defined as trait-associated loci (TAL).84

Genome-wide Complex Trait Bayesian (GCTB) analysis85

Genome-wide Complex Trait Bayesian (GCTB-BayesS) approach, which is based on Bayesian multiple regression mixed86

linear models (24), was performed to estimate genetic architecture parameters of yield-related traits, including polygenicity87

(number of non-zero SNPs) and selection coefficient (the joint distribution between the variance of SNP effects and minor88

allele frequencies). Default options were selected with the following MCMC settings: "–chain-length = 1,010,000, –burn-in =89

10,000". In the analysis, n = 834,975 independent SNPs (MAF ≥ 1%) were used (25), which was determined by using PLINK90

1.9 (22) with the "indep-pairwise" option (window size 100 kb, step size 100, r2 ≥ 0.1).91

Results92

Phenotypic evaluation of diverse maize lines under different N conditions93
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Figure 1. Cob- and kernel-related traits under different N conditions. (A) Density plots of the phenotypic traits in low N
(LN) and high N (HN) fields. The red and green vertical dashed lines indicate the mean values of each trait. The blue asterisks
indicate the traits show significant differences between HN and LN conditions (Paired t-test, P-value < 0.01). (B) The
distributions of N-responsive (NR) traits. Orange dashed lines denote the mean values.

A subset of the maize diversity panel (n = 226 lines) was planted in a replicated field trial under high N (HN) and low N94

(LN) conditions according to an incomplete block design in 2018 and 2019 (see Materials and Methods). From the harvested95

mature ears, six yield-related traits were manually measured, including three cob-related traits (cob diameter, CD; cob length,96

CL; and cob weight, CW) and three kernel-related traits (20 kernel weight, 20KW; kernel count, KC; and total kernel weight,97

TKW). For these traits, the best linear unbiased prediction (BLUP) values were calculated separately for each N condition.98

Besides traits per se, we also calculated N-responsive (NR) traits from the BLUP values following a previous method (26) (see99

Materials and Methods and Table S1).100

As expected, most of these yield-related traits exhibited significantly larger BLUP values in HN than LN conditions, except101

for CD (Figure 1A). TKW, a trait most closely related to yield (12), showed the most striking differences from 39.9 g in LN to102

46.9 in HN (Paired t-test, P-value = 1.9×10−69) and 97.8% of the lines exhibited positive N responses (Figure 1B). Similarly,103

the BLUP values for the other two kernel-related traits were also significantly improved from LN to HN, i.e., from 4.6 g to 4.8104

g for 20KW (Paired t-test, P-value = 4×10−4) and from 174 to 196 for KC (Paired t-test, P-value = 3.9×10−32). And 63.3%105

and 88.6% of the inbred lines positively responded to the elevated N levels for 20KW and KC, respectively (Figure 1B). For106
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cob-related traits, the phenotypic differences between HN and LN were relatively minor; for example, there were no significant107

differences for CD between LN and HN (Paired t-test, P-value = 0.75).108

Strong N-responsive traits are less heritable109
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Figure 2. Heritability estimation and correlation analysis with N-response. (A) Heritabilities of yield-related traits under
different N conditions. (B) Correlation analysis between heritability and N-responsive value. Solid blue line indicates the linear
regression and the grey shaded area denotes the 95% confidence interval.

The broad-sense heritability (H2) of these yield-related traits was estimated separately for each N condition (see Materials110

and Methods). Generally, we found these traits showed higher levels of heritability in HN than LN fields (Figure 2A), except111

for TKW (H2 = 0.38 in HN and H2 = 0.42 in LN), suggesting the environmental effects were less dominant or the data were112

more repeatable under HN conditions. For cob-related traits, CD (H2 = 0.81 in HN and H2 = 0.74 in LN) was more heritable113

than CL (H2 = 0.69 in HN and H2 = 0.53 in LN) and CW (H2 = 0.54 in HN and H2 = 0.37 in LN); while for kernel-related114

traits, 20KW (H2 = 0.73 in HN and H2 = 0.53 in LN) exhibited the highest heritability compared to KC (H2 = 0.47 in HN and115

H2 = 0.33 in LN) and TKW. Additionally, we found the cob-related traits, on average, were more heritable than kernel-related116

traits, regardless of the N conditions (Figure 2A). Interestingly, the levels of heritability negatively correlated with proportions117

of inbreds with NR values > 0 (Figure 1B), or ratios of inbreds positively responding to N treatments, under both N conditions118

(Figure 2B). These results are consistent with the view that more fitness-related traits, i.e., traits strongly responsive to N119

treatments, are less heritable (27).120

Comparing GWAS signals under different N conditions121

We then conducted GWAS for the six yield-related traits per se as well as the transformed NR traits by fitting a linear mixed122

model using 21 million SNPs (see Materials and Methods). In the GWAS model, the first three principal components were123

fitted as the fixed effects and the genetic relatedness computed from genome-wide SNPs as the random effects. To control for124

the false discovery rate (FDR), the modified Bonferroni-adjusted threshold was determined as 1.2×10−6 based on n = 769,690125

independent SNPs (28; 29). As a result (see Figure S1, S2 for the quantile-quantile (Q-Q) plots), a total of 1,292 SNPs hitting126

481 unique genomic regions were identified as the trait-associated loci (TALs, see Table S2 - S3 for GWAS results).127

We compared the shared TALs by different traits and treatments. For HN traits, in total, we identified 231 TALs (Figure 3A),128

n = 25 of which were detected for at least two yield-related traits (Figure 3B) — more than expected by chance (permutation129

4/15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.05.502993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.05.502993
http://creativecommons.org/licenses/by-nc-nd/4.0/


0
20
40
60
80

TKW
CW
 KC

20KW
CL
CD

050100
Set Size

CW
 20KW

CL
TKW
KC
CD

20KW

KC

TKW

CL

CW

CD

050100
Set Size

050100
Set Size

HN LN NR

In
te

rs
ec

tio
n 

Si
ze 72

52

3026
1511

19
2 1 1 1 1

39 32
23 17 14 11

2 1

43 36
27 24 19

7 4 1 10
20
40
60
80

0
20
40
60
80

A

B C D

Figure 3. GWAS results for cob- and kernel-related traits under different nitrogen conditions. (A) Stacking Manhattan
plot of cob- and kernel-related traits under HN conditions. The black horizontal dashed line indicates the GWAS threshold.
Each red dot above the threshold represents the SNP significantly associated with a trait. The vertical orange lines indicate the
overlapped trait-associated loci (TALs). (B-D) Overlapping results of TALs for HN (B), LN (C), and NR traits (D). Numbers
on top of the barplots indicate the number of unique (only dots) and shared (dots and lines) TALs.

test, P-value = 0.001). Such a large number of overlapping signals were not found for LN (n = 3 shared TALs, Figure S4) and130

NR (n = 6 shared TALs, Figure S5) traits (Figure 3C-D). Note that many shared TALs were between KC and TKW, likely131

because KC was not a directly measured trait but calculated from TKW and 20KW. Comparatively, very few overlapped TALs132

were identified for the same trait under different N conditions (Figure S3).133
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Estimating genetic architecture parameters for traits per se and N-responsive traits134

In addition to GWAS, we fitted the per se and NR traits to a Bayesian-based model implemented in GCTB (24). This method135

allows the simultaneous estimation of the genetic architecture parameters, such as polygenicity (π , the percentage of non-zero136

effect SNPs), variance of BLUP values due to SNPs (h2
SNP, SNP-based heritability), and the mode of selection (S, a proxy using137

the relationship between variance of SNP effect and MAF). Using relatively independent SNPs with MAF > 1%, we estimated138

genetic parameters to compare the genetic architecture for the cob and kernel-related traits as well as for per se and NR traits139

(see Materials and Methods).140

For trait per se under HN and LN conditions, we observed no significant differences in the polygenicity (Figure 4A),141

with an average of n = 906 SNPs (or π =0.1%) exhibiting non-zero effects; but the polygenicity among traits showed a large142

variation, ranging from n = 66 SNPs for CW in HN to n = 1,885 SNPs for CD in LN. In particular, for the NR trait of TKW,143

the number of non-zero effect SNPs elevated to n = 40,145 (or π =4.8%), suggesting TKW — a key yield component trait144

— was under complex genetic control in responding to changed N conditions. The h2
SNP values for HN and LN traits were145

largely in line with the broad sense heritabilities estimated previously with the field data (Figure 4B). However, some abnormal146

values were detected, such as a small h2
SNP value for CL trait in LN, which was likely due to dominance or epistasis mode of147

inheritance playing an important role as our model considered only additive effect. Or simply because of imperfect model148

convergence. We also estimated the h2
SNP for NR traits and found, in general, kernel-related NR traits (h2

SNP ranging from149

0.55±0.15 to 0.73±0.1) were more heritable than cob-related NR traits (h2
SNP ranging from 0.3±0.23 to 0.73±0.13). Finally,150

these estimated SNP effects and their allele frequencies in the population allowed us to infer the mode of selection. As pointed151

out by Zeng et. al., (24), S = 0 indicates selective neutral, while S > 0 and S < 0 suggest the positive and negative selection.152

Our results revealed that S values of four NR traits (CD, CL, CW, and 20KW), two HN traits (CW and TKW), and one LN trait153

(CW) were significantly smaller than zero (Figure 4C), indicating negative selection may be taken into effect to maintain the154

large effect deleterious SNPs in low frequencies, especially in responding to changed N conditions.155
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Discussion156

In this study, we characterized six yield-related traits under high and low N conditions for two consecutive years and analyzed157

the data with two complementary approaches — GWAS (to estimate significant effect SNPs) and GCTB (to detect non-zero158

effect SNPs and infer other genetic parameters). We identified 1,292 GWAS signals located within n = 481 genomic regions159

or TALs. Many of these TALs were repeatedly detected for different traits under the same N conditions, but very few TALs160

were shared for the same trait under different N conditions, likely because genotype by N interaction plays an important role in161

controlling phenotypic variation. In addition to the GWAS SNPs, non-zero effect SNPs estimated from GCTB provided a proxy162

for evaluating genetic polygenicity. Results suggested that most of these yield-related traits are highly polygenic. In particular,163

we found the N-responsive trait of TKW was controlled by the highest number of non-zero SNPs (i.e., more than n = 4×104
164

SNPs across the genome), consistent with the view that genetic basis for N responses in crop yield is highly complex (30).165

Heritability estimation from the field data suggested that traits highly responsive to N treatment tend to be less heritable, further166

confirming the genetic complexity of N responses for yield-related traits.167

In the GCTB result, we detected most of the NR traits exhibiting negative S values, suggesting large effect SNPs for NR168

traits tend to be rare in the population. It is likely because these rare SNPs were deleterious and, therefore, were maintained in169

low frequencies to increase the plant fitness in responding to changed N conditions. N, as one of the significant macronutrients170

for crop development, its composition in the soil varies spatially and temporally (31; 32). Therefore, it is not surprising to171

expect plant breeding over the past 60 years since the Green Revolution or natural selection on a longer time scale has affected172

the patterns of deleterious alleles in responding to the N availability. However, the limitations of the current statistical methods173

(i.e., high false discovery rates and imperfect model convergence) prevent us from pinning down the individual deleterious174

locus accurately. Note that these genetic parameters were rough estimations derived from the posterior distributions. The point175

estimations were associated with large standard errors. To get more accurate results, a larger population or more sophisticated176

statistical approaches are warranted.177

Data and code availability178

The code used for the analyses can be accessed through the GitHub repository179

(https://github.com/jyanglab/Genetics-parameters-for-N-related-traits).180
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Supplemental Material262

Supporting Tables263

Table S1. The best linear unbiased prediction (BLUP) values of yield-related traits.
(https://github.com/jyanglab/Genetics-parameters-for-N-related-traits/blob/main/
supp%20tables/Stable1_phenotype.xlsx)

Table S2. GWAS SNPs for cob- and kernel-related traits under different N conditions.
(https://github.com/jyanglab/Genetics-parameters-for-N-related-traits/blob/main/
supp%20tables/Stable2_Significant_SNPs_from_GWAS.xlsx)

Table S3. Trait-associated loci for cob- and kernel-related traits under different N conditions.
(https://github.com/jyanglab/Genetics-parameters-for-N-related-traits/blob/main/
supp%20tables/Stable3_GWAS_Loci.xlsx)
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Supporting Figures264

Figure S1. Quantile-quantile (Q-Q) plots for cob-related traits. Red diagonal line indicates the expected values and the
blue dots represent the observations.
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Figure S2. Quantile-quantile (Q-Q) plots for kernel-related traits. Red diagonal line indicates the expected values and the
blue dots represent the observations.
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Figure S3. Overlapping results of trait-associated loci (TALs) for each trait under three different N conditions.
Numbers on top of the barplots indicate the number of unique (only dots) and shared (dots and lines) TALs.
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Figure S4. Stacking Manhattan plot of cob- and kernel-related traits under LN conditions. The black horizontal dashed
line indicates the GWAS threshold. Each red dot above the threshold represents the SNP significantly associated with a trait.
The vertical orange lines indicate the overlapped trait-associated loci (TALs).
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Figure S5. Stacking Manhattan plot for N-responsive (NR) traits. The black horizontal dashed line indicates the GWAS
threshold. Each red dot above the threshold represents the SNP significantly associated with a trait. The vertical orange lines
indicate the overlapped trait-associated loci (TALs).
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