
Some Properties of Events Executed in Discrete-Event
Simulation Models

Philip A. Wilsey
Dept of EECS, PO Box 210030

University of Cincinnati
Cincinnati, OH 45221–0030
wilseypa@gmail.com

ABSTRACT

The field of computer architecture uses quantitative methods to

drive the computer system design process. By quantitatively profil-

ing the run time characteristics of computer programs, the princi-

pal processing needs of commonly used programs became well un-

derstood and computer architects can focus their design solutions

toward those needs. The DESMetrics project is established to fol-

low this quantitative model by profiling the execution of Discrete

Event Simulation (DES) models in order to focus optimization ef-

forts within DES execution frameworks (and especially parallel

DES engines). In particular, the DESMetrics project is designed

to capture the run time characteristics of event execution in DES

models. Because DES models tend to have fine grained computa-

tional processing requirements, the DESMetrics project focuses on

the event dependencies and their exchange between the objects in

the simulation. For now, we assume that optimization of the actual

event processing is well served by conventional compiler and archi-

tecture solutions. Although, as will become clear later in Section 6,

the possibility of identifying scheduling blocks of events that could

potentially be schedule together can be achieved — at least within

a single simulation object.
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•Computing methodologies→Modeling and simulation; Discrete-

event simulation; Simulation tools;

Keywords
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1. INTRODUCTION

The field of computer architecture has been dramatically im-

pacted by the use of quantitative methods to drive the computer

system design process [12]. By quantitatively profiling the run

time characteristics of computer programs, the principal process-

ing needs of commonly used programs became well understood and
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computer architects can focus their design solutions toward those

needs. This has resulted in the widespread availability of high per-

formance computing in the commodity processor and optimizing

compiler markets.

This paper introduces a project to collect quantitative data from

Discrete Event Simulation (DES) models in order to better under-

stand their (primarily) computational needs. The primary motiva-

tion for this work is to better understand the properties of discrete

event simulation models in order to pursue a more focused effort to

build high-performance Time Warp [13, 11] synchronized parallel

simulation engines. The project, called DESMetrics, follows the

quantitative methods used by the architecture community. In par-

ticular, we instrument discrete event simulation engines to record

(to a file) information on the events processed. This file is then

analyzed to produce csv files that can be analyzed and displayed.

Because DES models tend to have fine grained computational pro-

cessing requirements, the DESMetrics project focuses on the event

dependencies and their exchange between the objects in the sim-

ulation. For now, we assume that optimization of the actual event

processing is well served by conventional compiler and architecture

solutions.

In this paper, we present the processes and tools used in the DES-

Metrics project to collect and display this information. Further-

more, the event properties from several discrete event simulation

models are captured and reported. In particular, two different dis-

crete event simulation engines are instrumented and data collected.

Two simulators are used in order to capture data from simulation

models written by different authors and processed by different sim-

ulators. The purpose is not to compare the different simulators or

to establish performance comparisons between the simulators. In-

stead the goal is to capture properties of various different simula-

tion models in order to extract common properties from the sim-

ulation models that could serve to direct a focused optimization

effort for some simulation engine. The chief contribution in this

manuscript is to outline a general framework for data capture, anal-

ysis, and visualization and to demonstrate that different simulation

models do in fact have common characteristics that can aid in opti-

mization studies.

The DESMetrics project focuses strictly on the relations between

events and the processes that process these events. By limiting the

focus in this way, we have found it fairly easy to instrument a dis-

crete event simulation engine to capture this data. Using this data,

a variety of different analysis steps can be pursued. Of particular

focus in this paper is: (i) the potential parallelism available, (ii) the

number of LPs that each LP receives events from, (iii) the unifor-

mity of events processed by the different objects of the simulation,



and, (iv) the length of events in input queues that can be scheduled

for execution from a fixed time point. This latter measure is called

an event chain and will be described more formally in Section 6.3.

The remainder of this paper is organized as follows. Section 2

presents some background information. Section 3 reviews some

previous work related to this paper. Section 4 gives a high level

overview of the DESMetrics process and tools. Section 5 presents

the simulation kernels and simulation models studied and reported

herein. Section 6 presents the quantitative data captured from these

simulation models. Readers are cautioned that several of the graphs

in this section have significant data points and may take a minute

or two to render, even on a higher performing desktop platform.

While it is possible to reduce the resolution of these graphs for

faster rendering, preserving the detail permits the interested reader

to zoom in and observe the detailed results. As a result, we have

preserved the detail. Finally, Section 7 contains some concluding

remarks.

2. BACKGROUND & MOTIVATION

Capturing and understanding the properties of DES models can

aid researchers in a variety of ways. The obvious aid is in pro-

viding guidance to areas to focus on performance improvement in

simulation kernels (parallel and otherwise). To a certain extent, the

focus of kernel optimization can be (and has been) by profiling the

simulation kernel with tools like valgrind. However, that will

only inform the developer of bottlenecks in an existing code base.

Using results from the quantitative properties of the application do-

main directs the optimization focus on algorithm development for

the key model specific properties and not (solely) toward improving

the implementation of the algorithm.

A second area where a deeper understanding of the properties

of DES models is in synthetic workload generation. A substantial

amount of work has been directed at generating synthetic simula-

tion models to exercise parallel simulation kernels [2, 7, 9, 18].

These synthetic models are commonly used by the research com-

munity to evaluate and report performance results. However, the

utility of the specific configurations used to derive these synthetic

workload generators is often not well established. Using profile

data from actual models could dramatically improve confidence in

the models generated for synthetic testing.

Related to algorithm optimization, simulation model profile data

can sometimes be used to enable model setup and configuration

for more optimal simulation. In fact, the trace data used from the

WARPED2 simulation kernel [21] and used in this study is actually

captured by translating information already captured by the kernel

to perform LP partitioning [1].

Finally, the use of profile data could potentially be used to aid

in the validation and verification of a simulation model (at a very

coarse level). For example, simulation models with a scale-free

network should have a specific communication profile between the

objects of the simulation. Visualizations of the event connectiv-

ity between LPs could help confirm that the network does indeed

follow the shape of communication expected.

3. RELATED WORK

Some of the earliest work analyzing the properties of discrete

event simulation address, for example, the amount of parallelism

available or the lookahead possible in simulation models. Early

studies to perform critical path analysis [4, 14, 17, 15] are an at-
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Figure 1: The DESMetrics Tool Flow

tempt to locate the shortest path through the collection of events

in a discrete event simulation model. Two of these studies develop

various algorithms that can be embedded in sequential simulators

to locate the critical path [17, 15]. These studies can be used to

show the fastest path to completion through the event pool of a

simulation. Another common property of discrete event simula-

tion analysis is to evaluate the lookahead available in simulation

models [10]. Lookahead plays an important role in determining

if a simulation model is suitable for parallelization using conser-

vative synchronization techniques. This work extends those efforts

by studying multiple properties of discrete event simulation models

and working to understand how these properties could potentially

be exploited to improve the performance of discrete event simula-

tion engines — parallel and sequential.

4. THE DESMETRICS PROCESS

The approach in the DESMetrics project is to capture event in-

formation from existing simulation models by instrumenting DES

simulators to capture said information. The captured information

is then analyzed to produce summary data files that can then be vi-

sually displayed for inspection. This process is visualized in the

graphic of Figure 1. Currently we have instrumented two different

simulators (ROSS [5] and WARPED2 [21]) to capture the event in-

formation (only the sequential versions of both kernels can be used

for this capture). These simulators are depicted by the red box in

Figure 1. Analysis on the captured event data is performed by a go

program named desAnalysis.go and depicted by the light blue

box in Figure 1. This analysis produces a number of csv files con-

taining the analysis results. Finally, a set of graphs are produced

by a python/matplotlib program named desGraphics.py and

depicted by the dark blue box in Figure 1. The next three subsec-

tions describe each of the main processing steps in the DESMetrics

project.

4.1 Recording the Event Data

Event data is captured by instrumenting existing simulators to

produce an event trace file. The capture process assumes that each

simulator maintains a simulation time value and that the simula-

tion is organized such that events are processed and exchanged by

named simulation objects. The naming of the simulation objects is

not critical and the names can be anonymously generated, however

to facilitate analysis, the tools assume that events are exchanged

by simulation objects and that the names are unique to the simula-

tion objects in the simulation model. In the remainder of this paper

we will use the term Logical Process or LP (from parallel simula-

tion [8]) to denote a simulation object that processes and exchanges

events.



1 {

2 "simulator_name" : "name of the simulator",

3

4 "model_name" : "name of the simulation model",

5

6 "capture_date" : "date/time that the profile data

was captured",

7

8 // optional, but desirable; include if possible

9 "command_line_arguments" : "significant command

line arguments",

10

11 // optional, include as needed

12 "configuration_information" : "anything

significant",

13

14 "events" : [

15 ["source object", send_time, "destination

object", receive_time ],

16 // "....forall events processed...."

17 ]

18 }

Figure 2: Format of JSON file holding simulation model trace

data

The event information is captured in a json file format. Since

even small simulation runs can easily produce gigabytes of event

data, the json file format is somewhat more compact than might

be expected. However, experience with more verbose formats re-

sulted in file sizes that were quite difficult to process and therefore

this compacted form is now used. The general format for captured

data is (with non-json compliant comments added) shown in Figure

2. The fields of this format are defined as: the send_time is the

simulation time when the event was generated and receive_time

is the simulation time when the event is to be executed; the source

object and destination object are the names of the LPs

that, respectively, generate and process the event. Note that events

sent by an object to itself are, if available, recorded as well as events

exchanged between objects. Additional information on the event

payload is not necessary and not captured.

4.2 The Analysis Phase

The analysis phase is performed by the desAnalysis.go pro-

gram. This program takes considerable time (for example analyz-

ing a 5GB file can take 10-15 hours on an 4-core/8-thread i7 x86

processor). It has been parallelized to optimize run time perfor-

mance on multi-core processors. The analysis phase creates a col-

lection of csv files that are then read by the tools in the visualiza-

tion phase to produce plots (pdf or eps) for viewing.

The analyses performed in this phase are organized into the fol-

lowing classes:

Events Available for Execution: assuming unit time execution of

each event, how many events are available at any given time

for execution? This analysis attempts to compute a conserva-

tive estimate of how much potential parallelism exists among

the events and as such, optimistic execution could easily un-

cover. The specific algorithm to compute events available is

given in Section 6.1.

Events Executed by LP: how many events does each LP execute?

Are the events self-generated (called local events) or remotely

generated from some other LP (called remote events)?

Event Chains: are chains/blocks of events that could potentially

be executed as a group from a fixed simulation time. That

is, at a specific simulation time, how many events stored at

that time would be available for immediate execution without

the LP receiving any additional information? The algorithm

computes the number of chains of various lengths. The de-

tails of this computation are given in Section 6.3.

Event Exchanges between LPs: for each LP, from how many dif-

ferent LPs does it receive events for execution? This analysis

attempts to illustrate the degree of connectivity of events ex-

changed by the LPs in the simulation.

Lookahead data: for each LP, the analysis captures the delta of

the send and receive timestamp of events exchanged between

two LPs. The minimum, maximum, and average of this delta

is captured. This data is captured separate for local and re-

mote events as the lookahead information is critical only for

event information exchanged between LPs on different com-

pute nodes.

A detailed description of the analysis for above classes is described

in the subsections of the results section (Section 6) below.

4.3 Visualizing the Analysis Results

The visualization phase is performed by the desGraphics.py

program. This is a python program that uses matplotlib and

pylab to produce pdf or eps files for visualization of the results.

5. SIMULATION MODELS STUDIED

The two simulators studied are ROSS [5] and WARPED2 [21].

A fork of the instrumented ROSS code base is available in the git

repository https://github.com/wilseypa/ROSS. The WARPED2 code

base (available at https://github.com/wilseypa/warped2) already cap-

tures the necessary event traces so only a short translation script is

needed to convert the data into the desired format (available in the

desMetrics code base). All of the tools for the DESMetrics project

are release with open source licensing and available from the git

repository https://github.com/wilseypa/desMetrics. The data files

are available but their size (several GB each) prevent their online

distribution.

In this paper, we report results from 4 simulation models, two

from ROSS and two from WARPED2. All of the simulation models

studied were taken from the standard code base of these tools. No

modifications were made to the simulation models. The models

used are:

traffic: a 2-d model of automobile traffic simulation model (ROSS).

pcs: wireless network model(s). The PCS model from ROSS is

described in [6] and the PCS model from WARPED2 is based

on the model described in [16]. The ROSS model uses a

exponential distribution for event distribution; the WARPED2

model uses a Poisson distribution.

epidemic: an disease propagation model in WARPED2 derived from

[3, 19].



In general the default configuration parameters for these models

were used. However, in all cases, a shorter simulation time than the

default (if one existed) was required. The command line used to

capture these instrumented data for each simulation models is:

ROSS:

./pcs --synch=1 --end=10000

./Intersection --synch=1 --end=25

WARPED2:

./pcs_sim --statistics-type csv

--statistics-file desMetrics.csv

--max-sim-time 500

./epidemic_sim --statistics-type csv

--statistics-file desMetrics.csv

--max-sim-time 1000000

Algorithm 1: Compute the number of events available at each

simulation cycle.

Input : LP[] array of all LPs, where LP[i].event_queue

denotes the queue of events destined for LP[i]

Output: events_available[], counts of events available at each

simulation cycle i

begin

total_schedule_cycles← 0

forall the i in 1:N do

events_available[i]← 0

end

while (at least one LP[i].event_queue.empty() != NULL)

do
Set schedule_time to the lowest receive_time in the LP

array.

schedule_time←

minimum(LP[i].event_queue.front().receive_time)

Count the number of LPs with events that were sent

before schedule_time

for each i such that

(LP[i].event_queue.front().send_time < schedule_time)

do

events_available[schedule_time]++

LP[i].event_queue.pop()

end

total_schedule_cycles++

end

for i in range (1:schedule_time) do

plot i,events_available[i]

end

end

6. RESULTS

The results are presented in five separate subsections. The first

discusses results from the “events available for execution” portion

of the analysis phase. This analysis orders the events by receiv-

ing LP and performs a simulated walk through an execution of the

events. The second subsection discusses the nature of events exe-

cuted by the LPs in the running simulation. The primary objectives

here are to show how many events are executed by the LPs and to

classify events that are generated locally (by the executing LP) or

remotely (by some other LP). Note that not all simulators will have

locally generated events (e.g., MiniSSF [20]), but in this study, both

kernels do have local events. The third subsection studies event

chains. Event chains are blocks of events in the pending event set

that can potentially be scheduled as a block chain of events. Such

chains are important to a parallel simulation engine on an SMP plat-

form. More specifically if block chains of lengths greater than 1 are

commonly present in simulation models, then a block scheduling

of events can help reduce contention for the shared data structures

maintaining the pending event set. The fourth subsection contains a

review of our findings on the number of LPs that each LP receives

remote events from. Finally, the fifth subsection contains a brief

review of results regarding lookahead results.

6.1 Events Available for Execution

The computation of events available is developed to better un-

derstand the maximum potential parallelism in the simulation that

guarantees safe execution of all events. The computation basically

runs a simulated event execution engine to evaluate the number

of events available at every simulation cycle (for simplicity, we

assume that events available for execution are simulated instanta-

neously). While this sets an upper bound for parallelism in conser-

vatively synchronized parallel simulation, it does not necessary find

all of the parallelism that might be uncovered in an optimistically

synchronized parallel simulation. The remainder of this section is

subdivided into two parts. The first part presents the algorithm used

to compute events available. The second part presents the principal

findings with the simulation models studied.

Computing Events Available for Execution

The computation of events available performs a conservative esti-

mate of what LPs have events that can be guaranteed to be safe for

parallel execution. Essentially the computation orders the LP event

queues by their receive_time and moves to the first event at

each LP, called the head event. The head event with the lowest

timestamp defines the evaluation time. The algorithm then counts

as available every LP whose head event has a send_time before

the evaluation time and a receive_time at or after the evalua-

tion time. The head event for all counted LPs is advanced to the

next event and the process is repeated until no more events exist in

the set of LPs. For each LP report the number of local events exe-

cuted and the total (local plus remote) number of events executed.

The pseudo code of the algorithm used do perform this analysis is

given in Algorithm 1.

The events available data computed by Algorithm 1 has several

more steps and records several other data points of interest. At

completion of this analysis phase, the results are dumped into sev-

eral csv files that can then be processed for visualization or other

analysis steps.

Results from Events Available Study

The plots in Figure 3 show the number of events available by sim-

ulation cycle. The label on the top of the graph shows the total

number of LPs in the simulation, the bottom x-axis shows the num-

ber of simulated simulation cycles and their total. The left y-axis

shows the raw number of events available at each simulation cycle
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Figure 3: Events available for execution at each simulation cycle.

and the average over all of the cycles. The right axis is a scale of

the events available as a percentage of the total LPs (and the aver-

age). That is, what percentage of LPs had an event available at that

simulation cycle.

Unfortunately for the two ROSS models, there are an unusually

large number of events available at simulation startup and teardown

(not visible in the graphs); To a lesser extent, this also occurs in the

WARPED2 PCS model. Since we are really trying to discover the

“common case” of processing requirements, a more instructive vi-

sual might be to examine the data with outliers removed. Initially

we developed plotting scripts that removed all data points that were

greater than 2 standard deviations from the mean (Figure 4). This

worked reasonably well, however, we found that trimming the first

and last 1% of the evaluation cycles also achieved the desired ef-

fect. The advantage of this approach is that it attacks startup and

teardown costs without discarding any wild variations that might

exist during the main portions of the simulation. These results are

shown in Figure 5.

Examining the results in Figure 5, we note that there is wide

swings in the number of events available (e.g., ROSS Traffic swings

roughly between 2,000 and 8,000 events per simulation cycle). In

terms of raw averages, we note that a only moderate percentage

of LPs in the simulation have events available for concurrent exe-

cution (0.005%–47.0%). However, for any reasonably large sim-

ulation there are more than sufficient events available (52–4,700)

for concurrent execution for a moderately sized parallel processing

platform.

Figure 6 contains a histogram of the number of events available

in the simulation. The x-axis is the number of events available, the

left y-axis shows the number of simulation cycles, and the right

axis shows the scale of percentage of the total simulation cycles. It

is interesting to note that both PCS models have a large number of

simulation cycles with only a very few events available (indicating

a relatively low degree of parallelism). In contrast, both Traffic and

Epidemic have histogram maximums where the number of events

available are in the thousands.

6.2 Profile of Events Executed by the LPs

During the events available analysis step, the DESMetrics tools

also separates and records the events executed by each LP into two

classes that we call Local and Remote. Local events are events that

were generated and processed by the same LP. Remote events are

generated by one LP and processed by another LP. As previously

noted, not all simulation engines will send local events. However,

both ROSS and WARPED2 do generate local events and the result of

this analysis may be helpful for designing and optimizing pending

event scheduling algorithms.

Figure 7 contains the results of events executed by LP. In this

case, the LPs are sorted by the total number of events processed

by it in the entire simulation (the blue line). The red line in these

graphs shows the raw number of events that are locally generated.

The green line shows the percentage of events that are locally gen-

erated. Except for ROSS Traffic, the percentage of events that are

locally generated is quite high (averaging well over 50%). In the

context of optimizing a parallel simulator, one could potentially

create algorithms that short circuits the placement of a newly gen-

erated event into the input queue and, in some cases, simply directly

executes it. This would bypass the locking overheads of accessing

shared data structures of the pending event set and potentially have

significant positive performance implications. This concept will be

re-examined in the event chains discussion of the next section.
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Figure 4: Events available for execution at each simulation cycle (outliers of σ ≥ 2 removed).
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Figure 5: Events available for execution at each simulation cycle (First and Last 1% of simulation cycles removed).
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Figure 6: Histogram of events available for execution at each simulation cycle (First and Last 1% of simulation cycles removed).
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Figure 7: Total events executed by each LP (for all simulation cycles.
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Figure 8: Histogram of events executed by each LP by event class (Local or Remote).

Figure 8 presents the data on local/remote events executed by

LPs using the stacked histogram plotting capabilities of matplotlib.

This graph summarizes the number of local/remote events executed

by the LPs. In this graph, the x-axis shows the number of events

executed (red — local, blue — remote) and the y-axis shows the

number of LPs that have said number of events.

6.3 Event Chains

Event chains are blocks of events in the pending event set of an

LP that could potentially be executed together. This computation

is established independently of the events available execution loop

shown in Algorithm 1. Instead, we examine the events processed

by each LP independently. At each step, a chain is constructed and

its maximum length counted. All of the events in the chain are

treated as one and the algorithm then advances to the next event

following the last in the chain to determine the length of the next

chain. Formally, we define event chains from the receive_time

timestamp of the head event in the chain. Thus, let e0 denote the

head event and ei denote the event being considered for inclusion

in the chain. Chain membership is established if

e0.receive_time > ei.send_time.

Event chains are further classified into three types, namely: local,

linked, and global. To be members of local or linked chains, events

must be locally generated events (generated by the executing LP).

Membership in global chains places no constraint on which LP gen-

erates the event.

A linked chain is similar to the local chain except that the con-

straint on the send_time is relaxed so that any event with a

send_time less than an event executed in the chain is also de-

termined to be a member of the chain. Thus, any event generated

by the chain is also potentially a member of the chain. That is,

the linked chain begins with the list of events in the local chain and

then includes any event with a send time that is less than the receive

time of the last event in the chain. Events added to the chain can

thus trigger the addition of yet more events into the chain.

In the DESMetrics implementation of event chain analysis, only

chains up to a maximum length of 4. All chains longer than this

limit are counted together and labeled ≥ 5.

Figure 9 shows the number of chains on the y-axis given their

length shown on the x-axis. Note that the y-axis labels are in mil-

lions. Results for local (red), linked (blue), and global (green) are

shown. Note that these counts are of the chains found correspond-

ing to that length and the counts are not inclusive. To expand on

this, Figure 10 shows the counts as a cumulative total of all chains

at or greater than this length. What is interesting in these graphs is

that sizable number of chains of length greater than one present in

some of these simulation model. This suggests that block schedul-

ing of events may be an effective optimization strategy for an Time

Warp synchronized parallel simulation kernel.

Block scheduling of events by a simulator means that the event

processing loop would dequeue and process multiple events from a

single LP as a group. This could be especially beneficial for a ker-

nel executing multiple event processing thread on an SMP machine.

The key benefit to block scheduling is reduced time in the critical
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Figure 9: Number of event chains of length n.

region of the pending event set. Of course block scheduling might

also lead to premature computation and thereby necessitate roll-

back. However, block scheduling of local event chains could po-

tentially reduce the premature computation prospect. In any case,

the data suggests it may be worth examining as a potential strategy

for optimizing an SMP based platform simulation kernel.

6.4 Event Exchanges between LPs

In this analysis, we are attempting to discover how many LPs

each LP sends events to. In order to better understand the connec-

tivity of event exchanges among the LPs, this analysis counts the

number of LPs that send an event to each LP. Basically this counts

the number of LPs that send remote events to an LP. In addition

to counting the total number of LPs that send a remote event, the

analysis also computes how many events sends 95%, 90%, 80%,

and 75% of the remote events. This allows us to better understand

high connectivity and low connectivity of event exchanges among

the LPs.

The results of this analysis are shown in Figure 11. In these

graphs, the number of LPs that an LP receives remote events from is

plotted on the y-axis. The data for each percentage shown is sorted

(independently of the others) and then plotted on the same graph.

For all of the simulation models, the number of sending LPs is a

very small fraction (less than 1%) of the total LPs. While this does

not show who is sending and therefore allows for the possibility

that a small set of LPs communicate with all other LPs, our studies

with partitioning of simulation models for parallel execution show

that communication is distributed throughout the simulation model

and that partitioning can largely localize communication between

LPs [1]. As yet we have not discovered a better way to show this

result from the analysis performed here, we strongly believe that ef-

fective partitioning can significantly improve performance of a par-

allel simulator. In fact, the WARPED2 simulator has profile driven

partitioning which shows significant performance implications for

all of these simulation models.

6.5 Lookahead

In the final step of the analysis reported in this paper, we exam-

ine information related to lookahead. Specifically we plot results

showing the minimum and average timestamp delta (receive_time−

send_time) of remote events sent by each LP (Figure 12). The

minimum timestamp is effectively the guaranteed safe lookahead

on the channel of events sent between two LPs. The data shows

that for the models studied, only the WARPED2 epidemic model

has any significant lookahead.

7. CONCLUSIONS

This paper presented an approach for capturing simulation time

properties of events exchanged and executed in a discrete event

simulation model. The approach is to instrument a discrete event

simulation engine to capture profile data. The profile data is then

analyzed to produce various relations between the events and the

LPs processing events in the simulation. The principal goal for this

work is to help direct the algorithm development for investigations

into solutions with parallel simulation. We believe that these results

can directly impact the research directions of research in parallel

simulation.

In summary, the data collected shows that ample parallelism ex-

ists in discrete event simulation models for parallelism to be suc-

cessful. Furthermore, we find that simulation events are often lo-
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Figure 10: Cumulative number of event chains of with length ≥ n.

Receiving LP (Total=1,048,576)
0

10

20

30

40

50

60

70

80

N
u
m

b
e
r 

o
f 
S

e
n
d
in

g
 L

P
s

Number of LPs Sending Remote Events (sorted)

100% of total remote events

95% of total remote events

75% of total remote events

ROSS Traffic Model

Receiving LP (Total=1,048,576)
1

2

3

4

5

6

7

N
u

m
b

e
r 

o
f 

S
e

n
d

in
g

 L
P

s

Number of LPs Sending Remote Events (sorted)

100% of total remote events

95% of total remote events

75% of total remote events

ROSS PCS Model

Receiving LP (Total=10,000)
2

3

4

5

6

7

8

N
u

m
b

e
r 

o
f 

S
e

n
d

in
g

 L
P

s

Number of LPs Sending Remote Events (sorted)

100% of total remote events

95% of total remote events

75% of total remote events

WARPED2 Epidemic Model

Receiving LP (Total=10,000)
3.0

3.2

3.4

3.6

3.8

4.0

4.2

N
u
m

b
e
r 

o
f 
S

e
n
d
in

g
 L

P
s

Number of LPs Sending Remote Events (sorted)

100% of total remote events

95% of total remote events

75% of total remote events

WARPED2 PCS Model

Figure 11: Number of LPs sending various percentages of remote events
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Figure 12: The Delta of the Send and Receive time of Remote Events (Lookahead).

cal within an LP and that “gang” scheduling of events in an LP

should be a highly effective technique to dramatically improve per-

formance on a shared memory platform. Finally, the impact of ef-

fective partitioning of the simulation model cannot be sufficiently

emphasized. To fully unlock the potential of parallel simulation,

the PDES field must embrace static analysis techniques to help or-

ganize the simulation model for high performance. With the proper

application of static analysis techniques, we believe that parallel

simulation can have significant performance impact on the execu-

tion efficiency of large simulation models.
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