Some Properties of Events Executed in Discrete-Event
Simulation Models

Philip A. Wilsey
Dept of EECS, PO Box 210030
University of Cincinnati
Cincinnati, OH 45221-0030
wilseypa@gmail.com

ABSTRACT

The field of computer architecture uses quantitative methods to
drive the computer system design process. By quantitatively profil-
ing the run time characteristics of computer programs, the princi-
pal processing needs of commonly used programs became well un-
derstood and computer architects can focus their design solutions
toward those needs. The DESMetrics project is established to fol-
low this quantitative model by profiling the execution of Discrete
Event Simulation (DES) models in order to focus optimization ef-
forts within DES execution frameworks (and especially parallel
DES engines). In particular, the DESMetrics project is designed
to capture the run time characteristics of event execution in DES
models. Because DES models tend to have fine grained computa-
tional processing requirements, the DESMetrics project focuses on
the event dependencies and their exchange between the objects in
the simulation. For now, we assume that optimization of the actual
event processing is well served by conventional compiler and archi-
tecture solutions. Although, as will become clear later in Section 6,
the possibility of identifying scheduling blocks of events that could
potentially be schedule together can be achieved — at least within
a single simulation object.

CCS Concepts

*Computing methodologies — Modeling and simulation; Discrete-

event simulation; Simulation tools;

Keywords

Discrete event simulation; Profiling simulation models; Parallel
discrete event simulation

1. INTRODUCTION

The field of computer architecture has been dramatically im-
pacted by the use of quantitative methods to drive the computer
system design process [12]. By quantitatively profiling the run
time characteristics of computer programs, the principal process-
ing needs of commonly used programs became well understood and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGSIM-PADS ’16, May 15-18, 2016, Banff, AB, Canada

© 2016 ACM. ISBN 978-1-4503-3742-7/16/05. .. $15.00

DOI: http://dx.doi.org/10.1145/2901378.2901400

computer architects can focus their design solutions toward those
needs. This has resulted in the widespread availability of high per-
formance computing in the commodity processor and optimizing
compiler markets.

This paper introduces a project to collect quantitative data from
Discrete Event Simulation (DES) models in order to better under-
stand their (primarily) computational needs. The primary motiva-
tion for this work is to better understand the properties of discrete
event simulation models in order to pursue a more focused effort to
build high-performance Time Warp [13, 11] synchronized parallel
simulation engines. The project, called DESMetrics, follows the
quantitative methods used by the architecture community. In par-
ticular, we instrument discrete event simulation engines to record
(to a file) information on the events processed. This file is then
analyzed to produce csv files that can be analyzed and displayed.
Because DES models tend to have fine grained computational pro-
cessing requirements, the DESMetrics project focuses on the event
dependencies and their exchange between the objects in the sim-
ulation. For now, we assume that optimization of the actual event
processing is well served by conventional compiler and architecture
solutions.

In this paper, we present the processes and tools used in the DES-
Metrics project to collect and display this information. Further-
more, the event properties from several discrete event simulation
models are captured and reported. In particular, two different dis-
crete event simulation engines are instrumented and data collected.
Two simulators are used in order to capture data from simulation
models written by different authors and processed by different sim-
ulators. The purpose is not to compare the different simulators or
to establish performance comparisons between the simulators. In-
stead the goal is to capture properties of various different simula-
tion models in order to extract common properties from the sim-
ulation models that could serve to direct a focused optimization
effort for some simulation engine. The chief contribution in this
manuscript is to outline a general framework for data capture, anal-
ysis, and visualization and to demonstrate that different simulation
models do in fact have common characteristics that can aid in opti-
mization studies.

The DESMetrics project focuses strictly on the relations between
events and the processes that process these events. By limiting the
focus in this way, we have found it fairly easy to instrument a dis-
crete event simulation engine to capture this data. Using this data,
a variety of different analysis steps can be pursued. Of particular
focus in this paper is: (i) the potential parallelism available, (ii) the
number of LPs that each LP receives events from, (iii) the unifor-
mity of events processed by the different objects of the simulation,

and, (iv) the length of events in input queues that can be scheduled
for execution from a fixed time point. This latter measure is called
an event chain and will be described more formally in Section 6.3.

The remainder of this paper is organized as follows. Section 2
presents some background information. Section 3 reviews some
previous work related to this paper. Section 4 gives a high level
overview of the DESMetrics process and tools. Section 5 presents
the simulation kernels and simulation models studied and reported
herein. Section 6 presents the quantitative data captured from these
simulation models. Readers are cautioned that several of the graphs
in this section have significant data points and may take a minute
or two to render, even on a higher performing desktop platform.
While it is possible to reduce the resolution of these graphs for
faster rendering, preserving the detail permits the interested reader
to zoom in and observe the detailed results. As a result, we have
preserved the detail. Finally, Section 7 contains some concluding
remarks.

2. BACKGROUND & MOTIVATION

Capturing and understanding the properties of DES models can
aid researchers in a variety of ways. The obvious aid is in pro-
viding guidance to areas to focus on performance improvement in
simulation kernels (parallel and otherwise). To a certain extent, the
focus of kernel optimization can be (and has been) by profiling the
simulation kernel with tools like valgrind. However, that will
only inform the developer of bottlenecks in an existing code base.
Using results from the quantitative properties of the application do-
main directs the optimization focus on algorithm development for
the key model specific properties and not (solely) toward improving
the implementation of the algorithm.

A second area where a deeper understanding of the properties
of DES models is in synthetic workload generation. A substantial
amount of work has been directed at generating synthetic simula-
tion models to exercise parallel simulation kernels [2, 7, 9, 18].
These synthetic models are commonly used by the research com-
munity to evaluate and report performance results. However, the
utility of the specific configurations used to derive these synthetic
workload generators is often not well established. Using profile
data from actual models could dramatically improve confidence in
the models generated for synthetic testing.

Related to algorithm optimization, simulation model profile data
can sometimes be used to enable model setup and configuration
for more optimal simulation. In fact, the trace data used from the
WARPED2 simulation kernel [21] and used in this study is actually
captured by translating information already captured by the kernel
to perform LP partitioning [1].

Finally, the use of profile data could potentially be used to aid
in the validation and verification of a simulation model (at a very
coarse level). For example, simulation models with a scale-free
network should have a specific communication profile between the
objects of the simulation. Visualizations of the event connectiv-
ity between LPs could help confirm that the network does indeed
follow the shape of communication expected.

3. RELATED WORK

Some of the earliest work analyzing the properties of discrete
event simulation address, for example, the amount of parallelism
available or the lookahead possible in simulation models. Early
studies to perform critical path analysis [4, 14, 17, 15] are an at-

Simulation
Model

Simulator
(instrumented)

™| desTraceFile.json desAnalysis.go

'

Multiple csv files

Output graphics ~——| desGraphics.py

Figure 1: The DESMetrics Tool Flow

tempt to locate the shortest path through the collection of events
in a discrete event simulation model. Two of these studies develop
various algorithms that can be embedded in sequential simulators
to locate the critical path [17, 15]. These studies can be used to
show the fastest path to completion through the event pool of a
simulation. Another common property of discrete event simula-
tion analysis is to evaluate the lookahead available in simulation
models [10]. Lookahead plays an important role in determining
if a simulation model is suitable for parallelization using conser-
vative synchronization techniques. This work extends those efforts
by studying multiple properties of discrete event simulation models
and working to understand how these properties could potentially
be exploited to improve the performance of discrete event simula-
tion engines — parallel and sequential.

4. THE DESMETRICS PROCESS

The approach in the DESMetrics project is to capture event in-
formation from existing simulation models by instrumenting DES
simulators to capture said information. The captured information
is then analyzed to produce summary data files that can then be vi-
sually displayed for inspection. This process is visualized in the
graphic of Figure 1. Currently we have instrumented two different
simulators (ROSS [5] and WARPED?2 [21]) to capture the event in-
formation (only the sequential versions of both kernels can be used
for this capture). These simulators are depicted by the red box in
Figure 1. Analysis on the captured event data is performed by a go
program named desAnalysis.go and depicted by the light blue
box in Figure 1. This analysis produces a number of csv files con-
taining the analysis results. Finally, a set of graphs are produced
by a python/matplotlib program named desGraphics.py and
depicted by the dark blue box in Figure 1. The next three subsec-
tions describe each of the main processing steps in the DESMetrics
project.

4.1 Recording the Event Data

Event data is captured by instrumenting existing simulators to
produce an event trace file. The capture process assumes that each
simulator maintains a simulation time value and that the simula-
tion is organized such that events are processed and exchanged by
named simulation objects. The naming of the simulation objects is
not critical and the names can be anonymously generated, however
to facilitate analysis, the tools assume that events are exchanged
by simulation objects and that the names are unique to the simula-
tion objects in the simulation model. In the remainder of this paper
we will use the term Logical Process or LP (from parallel simula-
tion [8]) to denote a simulation object that processes and exchanges
events.

[S O R S

{

"simulator_name" "name of the simulator",

"model_name" "name of the simulation model",
"capture_date" "date/time that the profile data
was captured",

// optional, but desirable;
"command_line_arguments"
line arguments",

include if possible
"significant command

// optional, include as needed
"configuration_information"
significant",

"anything

"events" : [
["source object", send_time,
object", receive_time],
// "....forall events processed...."

]

"destination

Figure 2: Format of JSON file holding simulation model trace
data

The event information is captured in a json file format. Since
even small simulation runs can easily produce gigabytes of event
data, the json file format is somewhat more compact than might
be expected. However, experience with more verbose formats re-
sulted in file sizes that were quite difficult to process and therefore
this compacted form is now used. The general format for captured
data is (with non-json compliant comments added) shown in Figure
2. The fields of this format are defined as: the send_time is the
simulation time when the event was generated and receive_time
is the simulation time when the event is to be executed; the source
object and destination object are the names of the LPs
that, respectively, generate and process the event. Note that events
sent by an object to itself are, if available, recorded as well as events
exchanged between objects. Additional information on the event
payload is not necessary and not captured.

4.2 The Analysis Phase

The analysis phase is performed by the desAnalysis.go pro-
gram. This program takes considerable time (for example analyz-
ing a 5GB file can take 10-15 hours on an 4-core/8-thread 17 x86
processor). It has been parallelized to optimize run time perfor-
mance on multi-core processors. The analysis phase creates a col-
lection of csv files that are then read by the tools in the visualiza-
tion phase to produce plots (pdf or eps) for viewing.

The analyses performed in this phase are organized into the fol-
lowing classes:

Events Available for Execution: assuming unit time execution of
each event, how many events are available at any given time
for execution? This analysis attempts to compute a conserva-
tive estimate of how much potential parallelism exists among
the events and as such, optimistic execution could easily un-
cover. The specific algorithm to compute events available is
given in Section 6.1.

Events Executed by LP: how many events does each LP execute?
Are the events self-generated (called local events) or remotely
generated from some other LP (called remote events)?

Event Chains: are chains/blocks of events that could potentially
be executed as a group from a fixed simulation time. That
is, at a specific simulation time, how many events stored at
that time would be available for immediate execution without
the LP receiving any additional information? The algorithm
computes the number of chains of various lengths. The de-
tails of this computation are given in Section 6.3.

Event Exchanges between LPs: for each LP, from how many dif-
ferent LPs does it receive events for execution? This analysis
attempts to illustrate the degree of connectivity of events ex-
changed by the LPs in the simulation.

Lookahead data: for each LP, the analysis captures the delta of
the send and receive timestamp of events exchanged between
two LPs. The minimum, maximum, and average of this delta
is captured. This data is captured separate for local and re-
mote events as the lookahead information is critical only for
event information exchanged between LPs on different com-
pute nodes.

A detailed description of the analysis for above classes is described
in the subsections of the results section (Section 6) below.

4.3 Visualizing the Analysis Results

The visualization phase is performed by the desGraphics.py
program. This is a python program that uses matplotlib and
pylab to produce pdf or eps files for visualization of the results.

5. SIMULATION MODELS STUDIED

The two simulators studied are ROSS [5] and WARPED2 [21].
A fork of the instrumented ROSS code base is available in the git
repository https://github.com/wilseypa/ROSS. The WARPED?2 code
base (available at https://github.com/wilseypa/warped2) already cap-
tures the necessary event traces so only a short translation script is
needed to convert the data into the desired format (available in the
desMetrics code base). All of the tools for the DESMetrics project
are release with open source licensing and available from the git
repository https://github.com/wilseypa/desMetrics. The data files
are available but their size (several GB each) prevent their online
distribution.

In this paper, we report results from 4 simulation models, two
from ROSS and two from WARPED2. All of the simulation models
studied were taken from the standard code base of these tools. No
modifications were made to the simulation models. The models
used are:

traffic: a2-d model of automobile traffic simulation model (ROSS).

pes: wireless network model(s). The PCS model from ROSS is
described in [6] and the PCS model from WARPED?2 is based
on the model described in [16]. The ROSS model uses a
exponential distribution for event distribution; the WARPED2
model uses a Poisson distribution.

epidemic: an disease propagation model in WARPED?2 derived from
[3,19].

In general the default configuration parameters for these models
were used. However, in all cases, a shorter simulation time than the
default (if one existed) was required. The command line used to
capture these instrumented data for each simulation models is:

ROSS:
./pcs ——-synch=1 --end=10000
./Intersection --synch=1 --end=25
WARPED2:

./pcs_sim --statistics-type csv
——statistics—-file desMetrics.csv
——max—-sim-time 500

./epidemic_sim —-statistics-type csv
——statistics—-file desMetrics.csv
——max—-sim-time 1000000

Algorithm 1: Compute the number of events available at each
simulation cycle.

Input : LP[] array of all LPs, where LP[i].event_queue
denotes the queue of events destined for LP[i]

Output: events_available[], counts of events available at each
simulation cycle i

begin
total_schedule_cycles < 0
forall the i in 1:N do

‘ events_available[i] <+ 0
end

while (at least one LP[i].event_queue.empty() != NULL)

do
Set schedule_time to the lowest receive_time in the LP

array.
schedule_time <
minimum(LP[i].event_queue.front().receive_time)
Count the number of LPs with events that were sent
before schedule_time
for each i such that
(LP[i].event_queue.front().send_time < schedule_time)
do
events_available[schedule_time]++
LP[i].event_queue.pop()
end

total_schedule_cycles++
end

for i in range (1:schedule_time) do
plot i,events_available[i]
end

end

6. RESULTS

The results are presented in five separate subsections. The first
discusses results from the “events available for execution” portion
of the analysis phase. This analysis orders the events by receiv-
ing LP and performs a simulated walk through an execution of the

events. The second subsection discusses the nature of events exe-
cuted by the LPs in the running simulation. The primary objectives
here are to show how many events are executed by the LPs and to
classify events that are generated locally (by the executing LP) or
remotely (by some other LP). Note that not all simulators will have
locally generated events (e.g., MiniSSF [20]), but in this study, both
kernels do have local events. The third subsection studies event
chains. Event chains are blocks of events in the pending event set
that can potentially be scheduled as a block chain of events. Such
chains are important to a parallel simulation engine on an SMP plat-
form. More specifically if block chains of lengths greater than 1 are
commonly present in simulation models, then a block scheduling
of events can help reduce contention for the shared data structures
maintaining the pending event set. The fourth subsection contains a
review of our findings on the number of LPs that each LP receives
remote events from. Finally, the fifth subsection contains a brief
review of results regarding lookahead results.

6.1 Events Available for Execution

The computation of events available is developed to better un-
derstand the maximum potential parallelism in the simulation that
guarantees safe execution of all events. The computation basically
runs a simulated event execution engine to evaluate the number
of events available at every simulation cycle (for simplicity, we
assume that events available for execution are simulated instanta-
neously). While this sets an upper bound for parallelism in conser-
vatively synchronized parallel simulation, it does not necessary find
all of the parallelism that might be uncovered in an optimistically
synchronized parallel simulation. The remainder of this section is
subdivided into two parts. The first part presents the algorithm used
to compute events available. The second part presents the principal
findings with the simulation models studied.

Computing Events Available for Execution

The computation of events available performs a conservative esti-
mate of what LPs have events that can be guaranteed to be safe for
parallel execution. Essentially the computation orders the LP event
queues by their receive_time and moves to the first event at
each LP, called the head event. The head event with the lowest
timestamp defines the evaluation time. The algorithm then counts
as available every LP whose head event has a send_t ime before
the evaluation time and a receive_time at or after the evalua-
tion time. The head event for all counted LPs is advanced to the
next event and the process is repeated until no more events exist in
the set of LPs. For each LP report the number of local events exe-
cuted and the total (local plus remote) number of events executed.
The pseudo code of the algorithm used do perform this analysis is
given in Algorithm 1.

The events available data computed by Algorithm 1 has several
more steps and records several other data points of interest. At
completion of this analysis phase, the results are dumped into sev-
eral csv files that can then be processed for visualization or other
analysis steps.

Results from Events Available Study

The plots in Figure 3 show the number of events available by sim-
ulation cycle. The label on the top of the graph shows the total
number of LPs in the simulation, the bottom x-axis shows the num-
ber of simulated simulation cycles and their total. The left y-axis
shows the raw number of events available at each simulation cycle

1200000 Total LPs: 1,048,576. Total Sim Cycles: 86,949. 1144819

1000000 95.367%

0.431%)

800000 76.294%

4517.68)

600000 57.220%

400000 38.147%

Number of Events (Ave:
Percent of Total LPs (Ave:

200000 19.073%

0 0.000%
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Simulation Cycle (Total=86,950)

ROSS Traffic Model

Total LPs: 10,000. Total Sim Cycles: 54,011

10000 100.000%

8000 80.000%

-4700.81)
47.008%)

6000 60.000%

4000 40.000%

Number of Events (Ave:
Percent of Total LPs (Ave

2000 20.000%

0.000%
0 10000 20000 30000 40000 50000 60000

Simulation Cycle (Total=54,012)

WARPED?2 Epidemic Model

1200000 Total LPs: 1,048,576. Total Sim Cycles: 6,020,259. 144419

1000000 95.367%

53.18)
0.005%)

800000 76.294%

600000 57.220%

400000 38.147%

Number of Events (Ave
Percent of Total LPs (Ave:

200000 19.073%

0.000%
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Simulation Cycle (Total=6,020,260)

ROSS PCS Model

o Total LPs: 10,000. Total Sim Cycles: 854,886. 100.000%

8000 80.000%

158.76)
1.588%

6000 60.000%

4000 40.000%

Number of Events (Ave-
Percent of Total LPs (Ave=1.

2000 20.000%

0 0.000%
0 100000 200000 300000 400000 500000 600000 700000 800000 900000
Simulation Cycle (Total=854,887)

WARPED2 PCS Model

Figure 3: Events available for execution at each simulation cycle.

and the average over all of the cycles. The right axis is a scale of
the events available as a percentage of the total LPs (and the aver-
age). That is, what percentage of LPs had an event available at that
simulation cycle.

Unfortunately for the two ROSS models, there are an unusually
large number of events available at simulation startup and teardown
(not visible in the graphs); To a lesser extent, this also occurs in the
WARPED2 PCS model. Since we are really trying to discover the
“common case” of processing requirements, a more instructive vi-
sual might be to examine the data with outliers removed. Initially
we developed plotting scripts that removed all data points that were
greater than 2 standard deviations from the mean (Figure 4). This
worked reasonably well, however, we found that trimming the first
and last 1% of the evaluation cycles also achieved the desired ef-
fect. The advantage of this approach is that it attacks startup and
teardown costs without discarding any wild variations that might
exist during the main portions of the simulation. These results are
shown in Figure 5.

Examining the results in Figure 5, we note that there is wide
swings in the number of events available (e.g., ROSS Traffic swings
roughly between 2,000 and 8,000 events per simulation cycle). In
terms of raw averages, we note that a only moderate percentage
of LPs in the simulation have events available for concurrent exe-
cution (0.005%—47.0%). However, for any reasonably large sim-
ulation there are more than sufficient events available (52—4,700)
for concurrent execution for a moderately sized parallel processing
platform.

Figure 6 contains a histogram of the number of events available
in the simulation. The x-axis is the number of events available, the
left y-axis shows the number of simulation cycles, and the right
axis shows the scale of percentage of the total simulation cycles. It

is interesting to note that both PCS models have a large number of
simulation cycles with only a very few events available (indicating
arelatively low degree of parallelism). In contrast, both Traffic and
Epidemic have histogram maximums where the number of events
available are in the thousands.

6.2 Profile of Events Executed by the LPs

During the events available analysis step, the DESMetrics tools
also separates and records the events executed by each LP into two
classes that we call Local and Remote. Local events are events that
were generated and processed by the same LP. Remote events are
generated by one LP and processed by another LP. As previously
noted, not all simulation engines will send local events. However,
both ROSS and WARPED?2 do generate local events and the result of
this analysis may be helpful for designing and optimizing pending
event scheduling algorithms.

Figure 7 contains the results of events executed by LP. In this
case, the LPs are sorted by the total number of events processed
by it in the entire simulation (the blue line). The red line in these
graphs shows the raw number of events that are locally generated.
The green line shows the percentage of events that are locally gen-
erated. Except for ROSS Traffic, the percentage of events that are
locally generated is quite high (averaging well over 50%). In the
context of optimizing a parallel simulator, one could potentially
create algorithms that short circuits the placement of a newly gen-
erated event into the input queue and, in some cases, simply directly
executes it. This would bypass the locking overheads of accessing
shared data structures of the pending event set and potentially have
significant positive performance implications. This concept will be
re-examined in the event chains discussion of the next section.

12000 1.144%
10000 0.954%
= &
2 8000 0.763% &
3 i
i g
4 <
< -
£ 6000 0572% &
2 =
g g
° 5
8 4000 0381% &
5 8
z &
2000 0.191%
0.000%
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Simulation Cycle (Total=85,212)
ROSS Traffic Model
: ; i les: 54,011.
10000 Total LPs: 10,000; Total Sim Cycles: 54,011 100.000%
8000 80.000% .
= 2
& 8
s 8
8 =
5 b
$ 6000 60.000% £
2 <
-
2 &
2 5
H i
P 5
5 4000 40.000%
5 2
23 g
5 g
2 5
&
2000 20.000%
0 0.000%
0 10000 20000 30000 40000 50000 60000
Simulation Cycle (Total=52,932)
WARPED2 Epidemic Model
10000 Total LPs: 1,048,576; Total Sim Cycles: 85,212. 0.954%
| —— Events Available: Runtime order|
5000 —— Evens Available: Sorted order | (o
8000 jl AII|I .|IA .IH | I '] '™ | 1 0.763%
s 2
g &
] 8
& 7000 WWMWH |m“d||”u“ lluhhllllllll“l‘ﬂlhl 0.668% &
3 i
i $
4 <
Z 6000 0572%
&
2 2
% 8
i 5000 0477% §
° k]
2 4000 0381% &
g I
2 5
3000 0.286% &
2000 i Rk it it ‘ 0.191%
1000 0.095%
Simulation Cycle (Total=85,212)
ROSS Traffic Model
10000 Total LPs: 10,000; Total Sim Cycles: 52,932. 100.000%
Events Available: Runtime order
Events Available: Sorted order
8000 80.000% _
s g
2 3
S 8
8 IS
5 b
o 6000 60.000% £
£ <
Py &
z 5
2 El
b s
5 4000 40.000% 2
3 2
:
z DE.'
2000 20.000%
0 0.000%

Total LPs: 1,048,576; Total Sim Cycles: 86,939.

33.75)

Number of Events (Ave:

Number of Events (Ave=52.54)

1400 Total LPs: 1,048,576; Total Sim Cycles: 6,020,140. 0.134%

1200 0.114%

1000 0.095%

800 0.076%

600 0.057%

0.038%

Percent of Total LPs (Ave=0.005%)

0.019%
0.000%
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Simulation Cycle (Total=5,899,856)
ROSS PCS Model
1600 Total LPs: 10,000; Total Sim Cycles: 816,405. 16.000%
1400 14.000%
1200 12.000%

1000 10.000%
8.000%

6.000%

Percent of Total LPs (Ave=0.337%)

4.000%

2.000%

0 0.000%
0 100000 200000 300000 400000 500000 600000 700000 800000 900000
Simulation Cycle (Total=837,791)

WARPED2 PCS Model

Figure 4: Events available for execution at each simulation cycle (outliers of o > 2 removed).

Simulation Cycle (Total=52,932)

WARPED?2 Epidemic Model

Number of Events (Ave=52.31)

157.76)

Number of Events (Ave:

Total LPs: 1,048,576; Total Sim Cycles: 5,899,856.

IS
&
3

0.043%
—— Events Available: Runtime order

— Availabl
| Events Available: Sorted order | oo

IS
8
38

@
8
3

0.033%

i “ n I TR T [

0.024%

0.005%)

0.019%

0.014%

Percent of Total LPs (Ave:

0.010%

0.005%

0.000%

Simulation Cycle (Total=5,899,856)

ROSS PCS Model

8000 Total LPs: 10,000; Total Sim Cycles: 837,791. £0.000%

—— Events Available: Runtime order
—— Events Available: Sorted order

7000 l 70.000%
6000 i 60.000% X
&
2
I 5
5000 50.000% &
<
o
4000 40.000% &
T
k]
I
3000 30.000% 5
€
g
14
2000 20.000% &

1000 10.000%

0 0.000%

Simulation Cycle (Total=837,791)

WARPED2 PCS Model

Figure 5: Events available for execution at each simulation cycle (First and Last 1% of simulation cycles removed).

Number of Simulation Cycles

Number of Events Executed

Number of Events Executed

Number of Simulation Cycles
@
5

Total LPs: 1,048,576; Total Sim Cycles: 85,212.

60

0.1%

0.1%

0.0%

0.0%

0.0%

Percent of Simulation Cycles

0.0%

0.0%
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Events (Ave=4492.10)

ROSS Traffic Model

Total LPs: 10,000; Total Sim Cycles: 52,932.

20000 37.0%

15000 27.8%
2
8
S
o
<
S
k]

10000 18.5% 2
@
5
‘E
§
I
s
I

5000 9.3%
0 0.0%
0 2000 4000 6000 8000 10000

Number of Events (Ave=4700.43)

WARPED?2 Epidemic Model

Figure 6: Histogram of events available for execution at each simulation cycle (First and Last 1% of simulation cycles removed).

Total Events processed by each LP (sorted)

900 100.0%
— Local
00— LocalsRemote (Total)
—— % Local (scale right)
200 00%
&
&
%
600 i
60.0%
500
400

40.0%

Percent of Local Events (Ave:

20.0%
0.0%
LPs (sorted by total events executed)
ROSS Traffic Model
20000 Total Events processed by each LP (sorted) 100.0%
28000
80.0%

27000

60.0%
26000
25000 bood L sl |, o,

24000

Percent of Local Events (Ave=90.84%)

| | il

20.0%
23000

22000 0.0%

LPs (sorted by total events executed)

WARPED2 Epidemic Model

500000

400000

300000

200000

Number of Simulation Cycles

100000

300000

250000

200000

150000

100000

Number of Simulation Cycles

50000

550

500

Total LPs: 1,048,576; Total Sim Cycles: 5,899,856

4 50 100 150 200 250 300 350 400
Number of Events (Ave=52.31)
ROSS PCS Model
Total LPs: 10,000; Total Sim Cycles: 837,791.
4 1000 2000 3000 4000 5000 6000 7000

Number of Events (Ave=157.76)

WARPED2 PCS Model

Total Events processed by each LP (sorted)

—— Local+Remote (Total)

—— % Local (scale right)

450

400

350

300

250

Number of Events Executed

200

150

100

15000

14000

LPs (sorted by total events executed)

ROSS PCS Model

Total Events processed by each LP (sorted)

— Local
—— Local+Remote (Total)
—— % Local (scale right)

13000 K/

8.3%

6.6%

5.0%

33%

1.7%

0.0%
450

35.1%
29.2%
23.4%
17.5%
1.7%
5.8%

0.0%
8000

100.0%

80.0%

60.0%

40.0%

20.0%

0.0%

100.0%

80.0%

12000

11000

10000

Number of Events Executed

9000

8000

7000

LPs (sorted by total events executed)

WARPED2 PCS Model

Figure 7: Total events executed by each LP (for all simulation cycles.

60.0%

40.0%

20.0%

0.0%

Percent of Simulation Cycles

Percent of Simulation Cycles

97.92%)

Percent of Local Events (Ave

64.06%)

Percent of Local Events (Ave:

300000 Local and Remote Events Executed by the LPs

Il Local
Il Remote

250000

200000

1,048,576)

150000

100000

Number of LPs (Total

50000

. ,_‘.IlIII.II“-n.-

0 100 200 300 400 500 600 700 800
Number of Events

ROSS Traffic Model

2500 Local and Remote Events Executed by the LPs

B Local

EEE Remote
2000
1500
1000
500 ‘
o

0 5000 10000 15000 20000 25000
Number of Events

10,000)

Number of LPs (Total:

WARPED?2 Epidemic Model

700000 Local and Remote Events Executed by the LPs

B Local
Il Remote
600000

500000

1,048,576)

400000

300000

Number of LPs (Total:

200000

100000 |||
M Q| 1]/ —
0

100 200 300 400 500
Number of Events

ROSS PCS Model

2000 Local and Remote Events Executed by the LPs
B Local

EEE Remote

1500

1000
500 ‘

4000 5000 6000 7000 8000 9000 10000
Number of Events

WARPED2 PCS Model

10,000)

Number of LPs (Total:

Figure 8: Histogram of events executed by each LP by event class (Local or Remote).

Figure 8 presents the data on local/remote events executed by
LPs using the stacked histogram plotting capabilities of matplotlib.
This graph summarizes the number of local/remote events executed
by the LPs. In this graph, the x-axis shows the number of events
executed (red — local, blue — remote) and the y-axis shows the
number of LPs that have said number of events.

6.3 Event Chains

Event chains are blocks of events in the pending event set of an
LP that could potentially be executed together. This computation
is established independently of the events available execution loop
shown in Algorithm 1. Instead, we examine the events processed
by each LP independently. At each step, a chain is constructed and
its maximum length counted. All of the events in the chain are
treated as one and the algorithm then advances to the next event
following the last in the chain to determine the length of the next
chain. Formally, we define event chains from the receive_time
timestamp of the head event in the chain. Thus, let eq denote the
head event and e; denote the event being considered for inclusion
in the chain. Chain membership is established if

eq.recetve_time > e;.send_time.

Event chains are further classified into three types, namely: local,
linked, and global. To be members of local or linked chains, events
must be locally generated events (generated by the executing LP).
Membership in global chains places no constraint on which LP gen-
erates the event.

A linked chain is similar to the local chain except that the con-
straint on the send_time is relaxed so that any event with a
send_time less than an event executed in the chain is also de-
termined to be a member of the chain. Thus, any event generated
by the chain is also potentially a member of the chain. That is,
the linked chain begins with the list of events in the local chain and
then includes any event with a send time that is less than the receive
time of the last event in the chain. Events added to the chain can
thus trigger the addition of yet more events into the chain.

In the DESMetrics implementation of event chain analysis, only
chains up to a maximum length of 4. All chains longer than this
limit are counted together and labeled > 5.

Figure 9 shows the number of chains on the y-axis given their
length shown on the x-axis. Note that the y-axis labels are in mil-
lions. Results for local (red), linked (blue), and global (green) are
shown. Note that these counts are of the chains found correspond-
ing to that length and the counts are not inclusive. To expand on
this, Figure 10 shows the counts as a cumulative total of all chains
at or greater than this length. What is interesting in these graphs is
that sizable number of chains of length greater than one present in
some of these simulation model. This suggests that block schedul-
ing of events may be an effective optimization strategy for an Time
Warp synchronized parallel simulation kernel.

Block scheduling of events by a simulator means that the event
processing loop would dequeue and process multiple events from a
single LP as a group. This could be especially beneficial for a ker-
nel executing multiple event processing thread on an SMP machine.
The key benefit to block scheduling is reduced time in the critical

40 €7 Number of Event Chains of length X
. Local
B Linked

35 @ Global

Total Chains of Length X Found
S
o

i ‘ J J —J
0.0
1 2 3 4 >=5

Chain Length

ROSS Traffic Model
1e8 Number of Event Chains of length X

B Local
B Linked
B Global

Total Chains of Length X Found

04

02

00 —— | .
1 2 3

4 >=5
Chain Length

WARPED?2 Epidemic Model

a5 167 Number of Event Chains of length X

. Local
B Linked
30 EEE Global

ulllil}

1

- ~ S
o o &

Total Chains of Length X Found

o

3
Chain Length

ROSS PCS Model

167 Number of Event Chains of length X

bl

3
Chain Length

WARPED2 PCS Model

12

B Local
B Linked
B Global

Total Chains of Length X Found

Figure 9: Number of event chains of length n.

region of the pending event set. Of course block scheduling might
also lead to premature computation and thereby necessitate roll-
back. However, block scheduling of local event chains could po-
tentially reduce the premature computation prospect. In any case,
the data suggests it may be worth examining as a potential strategy
for optimizing an SMP based platform simulation kernel.

6.4 Event Exchanges between LPs

In this analysis, we are attempting to discover how many LPs
each LP sends events to. In order to better understand the connec-
tivity of event exchanges among the LPs, this analysis counts the
number of LPs that send an event to each LP. Basically this counts
the number of LPs that send remote events to an LP. In addition
to counting the total number of LPs that send a remote event, the
analysis also computes how many events sends 95%, 90%, 80%,
and 75% of the remote events. This allows us to better understand
high connectivity and low connectivity of event exchanges among
the LPs.

The results of this analysis are shown in Figure 11. In these
graphs, the number of LPs that an LP receives remote events from is
plotted on the y-axis. The data for each percentage shown is sorted
(independently of the others) and then plotted on the same graph.
For all of the simulation models, the number of sending LPs is a
very small fraction (less than 1%) of the total LPs. While this does
not show who is sending and therefore allows for the possibility
that a small set of LPs communicate with all other LPs, our studies
with partitioning of simulation models for parallel execution show
that communication is distributed throughout the simulation model
and that partitioning can largely localize communication between
LPs [1]. As yet we have not discovered a better way to show this

result from the analysis performed here, we strongly believe that ef-
fective partitioning can significantly improve performance of a par-
allel simulator. In fact, the WARPED2 simulator has profile driven
partitioning which shows significant performance implications for
all of these simulation models.

6.5 Lookahead

In the final step of the analysis reported in this paper, we exam-
ine information related to lookahead. Specifically we plot results
showing the minimum and average timestamp delta (receive_time—
send_time) of remote events sent by each LP (Figure 12). The
minimum timestamp is effectively the guaranteed safe lookahead
on the channel of events sent between two LPs. The data shows
that for the models studied, only the WARPED2 epidemic model
has any significant lookahead.

7. CONCLUSIONS

This paper presented an approach for capturing simulation time
properties of events exchanged and executed in a discrete event
simulation model. The approach is to instrument a discrete event
simulation engine to capture profile data. The profile data is then
analyzed to produce various relations between the events and the
LPs processing events in the simulation. The principal goal for this
work is to help direct the algorithm development for investigations
into solutions with parallel simulation. We believe that these results
can directly impact the research directions of research in parallel
simulation.

In summary, the data collected shows that ample parallelism ex-
ists in discrete event simulation models for parallelism to be suc-
cessful. Furthermore, we find that simulation events are often lo-

X Found

Total Chains of Length >:

Total Chains of Length >= X Found

Number of Sending LPs

Number of Sending LPs

25

2.0

o

B

0.0

80

70

60

50

40

30

20

1 >=2 >=4

Chain Length Chain Length

WARPED?2 Epidemic Model WARPED?2 PCS Model

>=4

Figure 10: Cumulative number of event chains of with length > n.

Number of LPs Sending Remote Events (sorted) Number of LPs Sending Remote Events (sorted)

7
—— 100% of total remote events —— 100% of total remote events
—— 95% of total remote events. —— 95% of total remote events
—— 75% of total remote events. —— 75% of total remote events
6

o

167 Cumulative Number Event Chains of length X 5 167 Cumulative Number Event Chains of length X
. Local B Local
I Linked B Linked
B Global 7 B Global
2e
5
3
i
x
5
A
=
H
g4
k)
@
2
g3
£
5}
k|
; u
|
0
1 >=2 >=3 =4 ><5 1 >=2 >3 >=4 ><5
Chain Length Chain Length
ROSS Traffic Model ROSS PCS Model
1e8 Cumulative Number Event Chains of length X 40 197 Cumulative Number Event Chains of length X
= Local ' - Local
B Linked B Linked
[Global [Global
°
g
5
s
i
x
N
A
£
2
3
5
@
£
g
S
g
5
| J
>=2 >=3

>=5

Number of Sending LPs
IS

w

2
. 1
Receiving LP (Total=1,048,576) Receiving LP (Total=1,048,576)
ROSS Traffic Model ROSS PCS Model
Number of LPs Sending Remote Events (sorted) s Number of LPs Sending Remote Events (sorted)

—— 100% of total remote events ’ —— 100% of total remote events

—— 95% of total remote events —— 95% of total remote events

—— 75% of total remote events = 75% of total remote events
4.0

Number of Sending LPs
w
>

Receiving LP (Total=10,000) Receiving LP (Total=10,000)

WARPED?2 Epidemic Model WARPED?2 PCS Model

Figure 11: Number of LPs sending various percentages of remote events

Timestamp Deltas of Remote Events

—&— Minimum

—< Average
15

Timestamp Delta (ReceiveTime - SendTime)

ROSS Traffic Model

Timestamp Deltas of Remote Events

—@— Minimum
— Average

Timestamp Delta (ReceiveTime - SendTime)

WARPED?2 Epidemic Model

Timestamp Deltas of Remote Events

—&— Minimum
—< Average

© 4000

3000

2000

1000

Timestamp Delta (ReceiveTime - SendTime,

ROSS PCS Model

Timestamp Deltas of Remote Events

—8— Minimum
—< Average

Timestamp Delta (ReceiveTime - SendTime)

WARPED2 PCS Model

Figure 12: The Delta of the Send and Receive time of Remote Events (Lookahead).

cal within an LP and that “gang” scheduling of events in an LP
should be a highly effective technique to dramatically improve per-
formance on a shared memory platform. Finally, the impact of ef-
fective partitioning of the simulation model cannot be sufficiently
emphasized. To fully unlock the potential of parallel simulation,
the PDES field must embrace static analysis techniques to help or-
ganize the simulation model for high performance. With the proper
application of static analysis techniques, we believe that parallel
simulation can have significant performance impact on the execu-
tion efficiency of large simulation models.

8. ACKNOWLEDGMENTS

Support for this work was provided in part by the National Sci-
ence Foundation under award CNS-0915337 and this material is
based upon work supported by the AFOSR under award No FA9550—
15-1-0384.

9. REFERENCES

[1] A.J. Alt and P. A. Wilsey. Profile driven partitioning of
parallel simulation models. In Proceedings of the 2014
Winter Simulation Conference, Dec. 2014.

[2] V. Balakrishnan, R. Radhakrishnan, D. M. Rao, N. B.
Abu-Ghazaleh, and P. A. Wilsey. A Performance and
Scalability Analysis Framework for Parallel Discrete Event
Simulators. Simulation Practice and Theory, 8:529-553,
2001.

[3] C.L.Barrett, K. R. Bisset, S. G. Eubank, X. Feng, , and
M. V. Marathe. Episimdemics: an efficient algorithm for

[4

[5

[6

[7

[8

[9

—

1

1

—

—_—

—

simulating the spread of infectious disease over large
realistic social networks. In Proceedings of the 2008
ACMV/IEEE conference on Supercomputing, SC *08,
Piscataway, NJ, USA, 2008. IEEE Press.

O. Berry and D. Jefferson. Critical path analysis of
distributed simulation. In Distributed Simulation, pages
57-60. Society for Computer Simulation, 1985.

C. D. Carothers, D. Bauer, and S. Pearce. ROSS: A
high-performance, low memory, modular time warp system.
In Proceedings of the Fourteenth Workshop on Parallel and
Distributed Simulation, PADS 00, pages 5360,
Washington, DC, USA, 2000. IEEE Computer Society.

C. D. Carothers, R. M. Fujimoto, Y.-B. Lin, and P. England.
Distributed simulation of large-scale PCS networks. In
Proceedings of the Second International Workshop on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS '94), pages 2—6,
Jan. 1994.

A. Ferscha and J. Johnson. A testbed for parallel simulation
performance predictions. In 1996 Winter Simulation
Conference Proceedings, December 1996.

R. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30-53, Oct. 1990.

R. Fujimoto. Performance of Time Warp under synthetic
workloads. Proceedings of the SCS Multiconference on
Distributed Simulation, 22(1):23-28, Jan. 1990.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

R. M. Fujimoto. Performance measurements of distributed
simulation strategies. Transactions of the Society for
Computer Simulation, 6(2):89—132, Apr. 1989.

R. M. Fujimoto. Parallel and Distributed Simulation
Systems. Wiley Interscience, Jan. 2000.

J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th edition, 2012.

D. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3):405-425, July
1985.

D. Jefferson and P. L. Reiher. Supercritical speedup. In A. H.
Rutan, editor, Proceedings of the 24" Annual Simulation
Symposium, pages 159-168. IEEE Computer Society Press,
Apr. 1991.

Y.-B. Lin. Parallelism analyzer for parallel discrete event
simulation. ACM Transactions on Modeling and Computer
Simulation, 2(3):239-264, July 1992.

Y.-B. Lin and P. A. Fishwick. Asynchronous parallel discrete
event simulation. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 26(4):397-412,
July 1996.

(171

(18]

(19]

[20]

[21]

M. Livny. A study of parallelism in distributed simulation. In
Proceedings 1985 SCS Multiconference on Distributed
Simulation, pages 94-98, Jan. 1985.

E. J. Park, S. Eidenbenz, N. Santhi, G. Chapuis, and

B. Settlemyer. Parameterized benchmarking of parallel
discrete event simulation systems: Communication,
computation, and memory. In Proceedings of the 2015
Winter Simulation Conference (WSC ’15), 2015.

K. S. Perumalla and S. K. Seal. Discrete event modeling and
massively parallel execution of epidemic outbreak
phenomena. Simulation, 88(7):768-783, July 2012.

R. Rong, J. Hao, and J. Liu. Performance study of a
minimalistic simulator on XSEDE massively parallel
systems. In Proceedings of the 2014 Annual Conference on
Extreme Science and Engineering Discovery Environment.
ACM, 2014.

D. Weber. Time warp simulation on multi-core processors
and clusters. Master’s thesis, University of Cincinnati,
Cincinnati, OH, 2016.

