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ABSTRACT

Transactional memory is a concurrency control mechanism
that dynamically determines when threads may safely exe-
cute critical sections of code. It provides the performance
of fine-grained locking mechanisms with the simplicity of
coarse-grained locking mechanisms. With hardware based
transactions, the protection of shared data accesses and up-
dates can be evaluated at runtime so that only true col-
lisions to shared data force serialization. This paper ex-
plores the use of transactional memory as an alternative
to conventional synchronization mechanisms for managing
the pending event set in a Time Warp synchronized par-
allel simulator. In particular, we explore the application
of Intel’s hardware-based transactional memory (TSX) to
manage shared access to the pending event set by the sim-
ulation threads. Comparison between conventional locking
mechanisms and transactional memory access is performed
to evaluate each within the WARPED Time Warp synchro-
nized parallel simulation kernel. In this testing, evaluation
of both forms of transactional memory found in the Intel
Haswell processor, Hardware Lock Elision (HLE) and Re-
stricted Transactional Memory (RTM), are evaluated. The
results show that RTM generally outperforms conventional
locking mechanisms and that HLE provides consistently bet-
ter performance than conventional locking mechanisms, in
some cases as much as 27%.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Programming—

parallel programming, distributed programming
; 1.6.8 [Simulation and Modeling]: Types of Simulation—
parallel, distributed, discrete event
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1. INTRODUCTION

Multi-core processors introduce an avenue for increased
software performance and scalability through multi-threaded
programming. However, this avenue comes with a toll: the
need for synchronization between multiple threads of execu-
tion, especially during the execution of critical sections. By
definition, a critical section is a segment of code accessing a
shared resource that can only be executed by one thread at
any given time [20]. For example, consider a multi-threaded
application that is designed to operate on a shared two-
dimensional array. For the sake of simplicity, the program-
mer uses coarse-grained locking mechanisms to control ac-
cess to the critical section, e.g., a single atomic lock for the
entire structure. The critical section reads a single element,
performs a calculation, and updates the element of the ar-
ray. Once a thread enters the critical section, it locks all
other threads out of the entire array until it has completed
its task, thus forcing the collection of threads to essentially
execute sequentially through the critical section even when
they are accessing completely independent parts of the array.
This results in lock contention, and consequently negatively
impacts performance, as threads must now wait for the cur-
rently executing thread to relinquish access to the shared
resource. Programmers can employ more fine-grained lock-
ing mechanisms to expose concurrency, such as locking indi-
vidual rows or even individual elements in the previous ex-
ample. However, this approach is vastly more complicated
and error prone [18]; this approach requires the program-
mer to define and maintain a separate lock for each row or
each element. Unfortunately, programmers are limited to
using static information to decide when threads must exe-
cute a critical section regardless of whether coarse-grained
or fine-grained locking is used.

Transactional memory (TM) is a concurrency control mech-
anism that attempts to eliminate the static sequential execu-
tion of a critical section by dynamically determining when
accesses to shared resources can be executed concurrently
[18]. In the above example, instead of using locks, the pro-
grammer identifies the critical section as a transactional re-
gion (hereafter, the terms critical region and transaction will
be used interchangeably). As the threads enter the transac-
tional region, they attempt to “atomically” execute the criti-
cal section. The TM system records memory accesses as the
transactions execute and finds that the transactions oper-
ate on independent regions of the data structure, i.e., there
are no conflicting memory accesses. Instead of being forced
to execute sequentially by the conventional locking mecha-
nisms, the threads are allowed to safely execute the critical



section concurrently. TM is analogous to traffic roundabouts
whereas conventional synchronization mechanisms are anal-
ogous to conventional traffic lights [16].

Transactional memory operates on the same principles as
database transactions [9]. The processor atomically com-
mits all memory operations of a successful transaction or
discards all memory operations if the transaction should fail
(a collision to the updates by the multiple threads occurs).
In order for a transaction to execute successfully, it must
be executed in isolation, i.e., without conflicting with other
transactions/threads memory operations. This is the key
principle that allows transactional memory to expose un-
tapped concurrency in multi-threaded applications.

One problem space that could benefit from transactional
memory is that of Parallel Discrete Event Simulation (PDES).
A key challenge area in PDES is the need for contention-free
pending event set management solutions [5]. Transactional
memory can help alleviate contention for this shared struc-
ture and potentially expose untapped concurrency in the
simulation’s execution.

This paper explores the use of transactional memory to
manage the pending event set schedule queue in the WARPED
parallel simulation kernel. In particular, we will integrate
the hardware-based transactional memory primitives from
the Intel Haswell platform to manage the pending event set
data structures of the WARPED parallel discrete event sim-
ulation engine. While WARPED has multiple shared data
structures in the kernel, the focus of this work is on the
pending event set. It is the primary bottleneck in PDES ap-
plications, and hence the primary motivation for this study.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a general overview of transactional memory.
It gives some examples of other TM implementations and
discusses why they do not work as well as TSX. It provides
examples of related studies. Finally, it provides an overview
of how TSX works and how it is implemented in software.
Section 3 provides some background of the PDES problem
space. It introduces WARPED and some of the implementa-
tion details relevant to this study. Previous studies with the
WARPED pending event set are also briefly discussed. Sec-
tion 4 discusses how TSX is incorporated into the WARPED
pending event set implementation. It also provides a brief
overview of the critical sections utilizing TSX and why TSX
will be beneficial. Section 5 presents the experimental re-
sults of this research for different simulation configurations.
Finally, Section 5.2 contains some concluding remarks.

2. BACKGROUND

This section provides a high level explanation of how trans-
actional memory operates. It then introduces other imple-
mentations, as well as reasons why they were not explored in
this study. Next, it provides some examples of related stud-
ies with transactional memory, specifically the implementa-
tion used in this study. Finally, it provides an overview of
Intel’s implementation, Transactional Synchronization Ex-
tensions (TSX) and how the programmer can develop TSX
enabled multi-threaded applications.

2.1 Transactional Memory Overview

Transactional memory (TM) is a concurrency control mech-
anism that dynamically determines when two or more threads
can safely execute a critical section [18]. The program-
mer identifies a transactional region, typically a critical sec-

tion, for monitoring. When the transaction executes, the
TM system, whether it is implemented in hardware or soft-
ware, tracks memory operations performed within the trans-
actional region to determine whether or not two or more
transactions conflict with one another, i.e., if any memory
accesses conflict with one another. If the threads do not
conflict with one another, the transactions can be safely and
concurrently executed. If they do conflict, the process must
abort the transaction and execute the critical section non-
transactionally, i.e., by serializing execution of the critical
section with conventional synchronization mechanisms.

As a transaction is executed, the memory operations per-
formed within the transaction are buffered, specifically write
operations. Write operations will only be fully committed
when the transaction is complete and safe access has been
determined. Safe access is determined by comparing the set
of addresses each transaction reads from (called the read-set)
and the set of addresses each transaction writes to (called
the write-set). Each transaction builds its own read-set and
write-set as it executes. While a thread is executing trans-
actionally, any memory operation performed by any other
thread is checked against the read-set and write-set of the
transactionally executing thread to determine if any mem-
ory operations conflict. The other threads can be executing
either non-transactionally or transactionally. If the trans-
action completes execution and the TM system has not de-
tected any conflicting memory operations, the transaction
atomically commits all of the buffered memory operations,
henceforth referred to simply as a commit.

Whenever safe access does not occur, the transaction can-
not safely continue execution. This is referred to as a data
conflict and only occurs if: (i) one transaction attempts to
read a location that is part of another transaction’s write-
set, or (ii) a transaction attempts to write a location that is
part of another transaction’s read-set or write-set [11]. Once
a memory location is written to by a transaction, it cannot
be accessed in any way by any other transaction; any access
by any other transaction results in a race condition. If such a
situation arises, all concurrently executing transactions will
abort execution, henceforth referred to simply as an abort.

By definition, a transaction is a series of actions that ap-
pears instantaneous and indivisible possessing four key at-
tributes: (1) atomicity, (2) consistency, (3) isolation, and (4)
durability [9]. TM operates on the principles of database
transactions. The two key attributes for TM are atom-
icity and isolation; consistency and durability must hold
for all multi-threaded operations in multi-threaded appli-
cations. Atomicity is guaranteed if: (1) all memory opera-
tions performed within the transaction are completed suc-
cessfully, or (2) it appears as if the performed memory op-
erations were never attempted [9]. Isolation is guaranteed
by tracking memory operations as the transactions execute
and aborting if any memory operations conflict. If both
atomicity and isolation can be guaranteed for all memory
operations performed within a critical section, that “critical
section” can be executed concurrently [18].

In the case of a commit, the transaction has ensured that
its memory operations are executed in isolation from other
threads and that all of its memory operations are commit-
ted, thus satisfying the isolation and atomicity principles.
Note that only at this time will the memory operations
performed within the transaction become visible to other
threads, thus satisfying the appearance of instantaneous-



ness. In the case of an abort due to a data conflict, it is clear
that the isolation principle has been violated. It should be
noted that transactions can abort for a variety of reasons
depending on the implementation [12, 3], but the primary
cause is data conflicts. Upon abort, all memory operations
are discarded to maintain atomicity.

2.2 Related Studies

There have been many implementations of TM systems
since its conception, mostly in software [25, 2, 4, 3, 22, 7,
1]. As the name suggests, Software Transactional Memory
(STM) systems implement the memory tracking, conflict de-
tection, write buffering and so on in software. Most systems
are implementation specific, but memory tracking is typi-
cally done through some form of logging. While this al-
lows transactional memory enabled applications to be exe-
cuted on a variety of platforms, performance usually suffers.
Gajinov et al performed a study with STM by developing a
parallel version of the Quake multi-player game server from
the ground up using OpenMP parallelizations pragmas and
atomic blocks [7]. Their results showed that the logging
overhead required for STM resulted in execution times that
were 4 to 6 times longer than the sequential version of the
server. In general, STM has been found to result in signifi-
cant slowdown [1]. Although STM is more widely available
than HTM, its use in this this study was dismissed due to
the significant performance penalty.

Hardware Transactional Memory (HTM) provides the phys-
ical resources necessary to implement transactional memory
effectively. Many chip manufacturers have added, or at least
sought to add, support for HTM in recent years. IBM re-
leased one of the first commercially available HTM systems
in their Blue Gene/Q machine [22]. Even though they found
that this implementation was an improvement over STM, it
still incurred significant overhead. AMD’s Advanced Syn-
chronization Facility and Sun’s Rock processor included sup-
port for HTM [3, 4]. However, AMD has not released any
HTM enabled processors as of this study, and Sun’s Rock
processor was canceled after Sun was acquired by Oracle.

With the release of Intel’s Haswell generation processors,
Intel’s Transactional Synchronization Extensions (TSX) is
currently the only widely available commercial HTM-enabled
system. Numerous studies have already been performed
with TSX, primarily evaluating its performance capabilities.
Chitters et al modified Google’s write optimized persistent
key-value store, LevelDB, to use TSX based synchroniza-
tion instead of a global mutex. Their implementation shows
20-25% increased throughput for write-only workloads and
increased throughput for 50% read / 50% write workloads
[2]. Wang et al studied the performance scalability of a con-
current skip-list using TSX Restricted Transactional Mem-
ory (RTM). They compared the TSX implementation to a
fine-grain locking implementation and a lock-free implemen-
tation. They found that the performance was comparable
to the lock-free implementation without the added complex-
ity [24]. Yoo et al evaluated the performance of TSX using
high-performance computing (HPC) workloads, as well as
in a user-level TCP/IP stack. They measured an average
speed up of 1.41x and 1.31x respectively [25]. The decision
to use Intel’s TSX for this research was based on its wide
availability and the performance improvements observed in
other studies.

2.3 Transactional Synchronization Extensions
(TSX)

Intel’s Transactional Synchronization Extensions (TSX)
is an extension to the x86 instruction set architecture that
adds support for HTM. TSX operates in the L1 cache using
the cache coherence protocol [12]. It is a best effort im-
plementation, meaning it does not guarantee transactions
will commit [11]. TSX has two interfaces: (1) Hardware
Lock Elision (HLE), and (2) Restricted Transactional Mem-
ory (RTM). While both operate on the same principles of
transactional memory, they have subtle differences. This
section discusses some of the implementation details of TSX
as well as how the programmer utilizes TSX.

The Hardware Lock Elision (HLE) interface is a legacy-
compatible interface introducing two instruction prefixes,
namely: XACQUIRE and XRELEASE.

The XACQUIRE prefix is placed before a locking instruction
to mark the beginning of a transaction. XRELEASE is placed
before an unlocking instruction to mark the end of a transac-
tion. These prefixes tell the processor to elide the write op-
eration to the lock variable during lock acquisition/release.
When the processor encounters an XACQUIRE prefixed lock
instruction, it transitions to transactional execution. Specif-
ically, it adds the lock variable to the transaction’s read-set
instead of issuing any write requests to the lock [11]. To
other threads, the lock will appear to be free, thus allow-
ing those threads to enter the critical section and execute
concurrently. All transactions can execute concurrently as
long as no transactions abort and explicitly write to the lock
variable. If that were to happen, a data conflict technically
occurs — one transaction writes to a memory location (the
lock) that is part of another transaction’s read-set.

The XRELEASE prefix is placed before the instruction used
to release the lock. It also attempts to elide the write asso-
ciated with the lock release instruction. If the lock release
instruction attempts to restore the lock to the value it had
prior to the XACQUIRE prefixed locking instruction, the write
operation on the lock is elided [11]. It is at this time that
the processor attempts to commit the transaction.

However, if the transaction aborts for any reason, the re-
gion will be re-executed non-transactionally. If the proces-
sor encounters an abort condition, it will discard all memory
operations performed within the transaction, return to the
locking instruction, and resume execution without lock eli-
sion, i.e., the write operation will be performed on the lock
variable. If another thread is executing the same transac-
tional region, those transactions will also abort. The aborted
transaction thread performs an explicit write on the lock,
resulting in a data conflict for any other transaction as the
lock variable is part of the other transaction’s read-set. The
re-execution of the critical section using conventional syn-
chronization is necessary to guarantee forward progress [11].

To enable HLE synchronization, the programmer merely
adds the HLE memory models to the existing locking intrin-
sics (Figure 1). The _ATOMIC_HLE_ACQUIRE tells the
thread to execute an XACQUIRE prefixed lock acquire instruc-
tion when another thread releases the lock. The combination

of memory models, __ATOMIC_HLE_ACQUIRE|__ATOMIC_ACQUIRE)

allows for the locking instructions to be executed with or
without elision. The local thread can be synchronized to a
XRELEASE prefixed lock release instruction or a standard lock
release instruction.

HLE is legacy compatible. Code utilizing the HLE inter-



/* Acquire lock with lock elision if possible */
/* Loop until the returned value
indicates the lock was free */
while(__atomic_exchange_n(&lock, 1,
__ATOMIC_HLE_ACQUIRE|__ATOMIC_ACQUIRE)):

/* Begin executing critical section/
transactional region */

/* End critical section/transactional region */

/* Free lock with lock elision if possible */
__atomic_store_n(&lock, O,
__ATOMIC_HLE_RELEASE|__ATOMIC_RELEASE) ;

Figure 1: Generic HLE Software Implementation

face can be executed on legacy hardware, but the HLE pre-
fixes will be ignored [11] and the processor will perform the
write operation on the locking variable and execute the crit-
ical section non-transactionally. While this interface does
nothing for multi-threaded applications on legacy hardware,
it does allow for easier cross-platform code deployment.

The Restricted Transactional Memory (RTM) inter-
face for HTM introduces four new instructions, namely: XBE-
GIN, XEND, XABORT, and XTEST.

The XBEGIN instruction marks the start of a transaction,
while the XEND instruction makes the end of a transaction.
The XABORT instruction is used by the programmer to man-
ually abort a transaction. Finally, the XTEST instruction can
be used to test if the processor is executing transactionally
or non-transactionally.

The XBEGIN instruction transitions the processor into trans-
actional execution [11]. Note that the XBEGIN instruction
does not elide the locking variable as HLE does. Therefore,
the programmer should manually add the locking variable
to the transaction’s read-set by checking if the lock is free at
the start of the transaction. If it is free, the transaction can
execute safely. Once execution reaches the XEND instruction,
the processor will attempt to commit the transaction.

As previously mentioned, the transaction can abort for
many reasons. One case specific to RTM occurs when the
lock is not free upon entering the transaction. In this case,
the programmer uses the XABORT instruction to abort the
transaction. But no matter the reason for the abort, exe-
cution jumps to the fallback instruction address [11]. This
address is specified as an operand of the XBEGIN instruction.

It is this fallback path that makes RTM a much more flex-
ible interface than HLE because it is entirely at the discre-
tion of the programmer to determine precisely what happens
on failure of a transaction. Even so, the programmer must
still provide an abort path that guarantees forward progress
[11]. Therefore, the abort path should use explicit synchro-
nization, e.g., acquire a lock, to ensure forward progress.
However, the programmer can use this abort path to tune
the performance of RTM enabled applications. For instance,
a retry routine can be used to specify how many times the
processor should attempt to enter transactional execution
before using explicit synchronization. Furthermore, the EAX
register reports information about the condition of an abort
[11], such as whether or not the abort was caused by the
XABORT instruction, a data conflict, so on. The programmer

if (_xbegin() == _XBEGIN_STARTED) {
/* Add lock to read-set */
if (lock is not free) {
/* Abort if lock is already acquired */
_xabort (_ABORT_LOCK_BUSY) ;
}
} else { /* Abort path */
acquire lock

}
/* Begin critical section/transactional region */
/* End critical section/transactional region */

if (lock is free) {
/* End transaction and commit results*/
_xend () ;

} else {
release lock

}

Figure 2: Generic RTM Software Implementation

can use this information to make more informed decisions
regarding reattempting transactional execution.

The RTM implementation is more involved because it uses
entirely new instructions. The general algorithm for the
RTM software interface is shown in Figure 2. The program-
mer moves the existing locking mechanism inside an else
clause of the XBEGIN if statement, which will determine if
the processor transitions to transactional execution or takes
the abort path. As previously mentioned, the processor will
also return to this point should the transaction abort in
the middle of execution. Moving the locking mechanism
into the RTM abort path ensures that the abort path ulti-
mately uses explicit synchronization and guarantees forward
progress. GCC 4.8 and above includes support for the _xbe-
gin, _xabort, and _xend intrinsics [21].

While RTM is a more flexible interface than HLE, it can
only be used on supported Haswell platforms. If a legacy de-
vice attempts to execute one of the RTM instructions, it will
throw a General Protection Fault. It should be noted that
execution of the XEND instruction outside of a transaction
will result in a General Protection Fault as well [12].

3. PDES AND WARPED

Discrete Event Simulation (DES) models a system’s state
changes at discrete points in time. In a DES model, phys-
ical processes are represented by Logical Processes (LPs)
[14]. For example, in an example epidemic simulation (an
example of which is used in this study), LPs can represent
geographical locations containing a subset of the total popu-
lation. The LP’s state represents the diffusion of the disease
within the location and the status of the occupants at that
location. Executed Events in this simulation represent the
arrival or departure of individuals to or from that location,
the progression of a disease within an individual at that lo-
cation, the diffusion of a disease throughout that location,
etc [17]. To effectively model epidemics, a significant popu-
lation size and number of locations needs to be simulated.

WARPED is a publicly available Discrete Event Simula-
tion (DES) kernel implementing the Time Warp protocol
[13, 6]. It was recently redesigned for parallel execution on
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Figure 3: Pending Event Set Scheduling

multi-core processing nodes [15]. It has many configuration
options and utilizes many different algorithms of the Time
Warp protocol [6].

The pending event set is maintained as a two-level struc-
ture in WARPED (Figure3) [5]. Each LP maintains its own
event set as a time-stamp ordered queue. As previously men-
tioned, each LP maintains an unprocessed queue for sched-
uled events yet to be executed and a processed queue to
store previously executed events. A common Least Time-
Stamped First (LTSF) queue is populated with the least
time stamped event from each LP’s unprocessed queue. As
the name suggests, the LTSF queue is automatically sorted
in increasing time-stamp order so that worker threads can
simply retrieve an event from the head of the queue. This
guarantees the worker thread retrieves the least time-stamped
event without having to search through the queue. The
LTSF queue is also referred to as the schedule queue in
WARPED; these terms will be used interchangeably.

3.1 Pending Event Set Data Structures

The implementation of the pending event set is a key fac-
tor in the performance of the simulation [19]. The WARPED
simulation kernel has two functional implementations: (1)
the C++ Standard Template Library (STL) multi-set data
structure, and (2) the splay tree data structure. The way
that these data structures are accessed and, more impor-
tantly, self-adjust will be relevant to how effectively TSX
can be used to access these structures. Due to space consid-
erations, only performance results with the multi-set data
structure are shown. Results with splay trees are consistent
with those described in this manuscript. Interested readers
can find those details in [10].

The sorted STL multi-set data structure is an abstract
data structure implemented as a self-balancing, red-black
binary search tree [8]. Look-up, insertion, and deletion oper-
ations performed in a red-black tree with n elements are per-
formed in average O(log n) time. When insertion or deletion
operations are performed, the tree is rebalanced by a tree
rearrangement algorithm and a “painting” algorithm taking
average O(1) and O(log n) time respectively.

In the STL multi-set, the lowest value element will always
be the left most child node of the tree. To access the least
time-stamped event at the head of the LTSF queue, multi-
set red-black tree must be traversed to the left most child
node. Any insertion or removal of events requires that the
red-black tree rebalance itself.

One concern with these data structures in relation to TSX

is self-adjustment. When these data structures have to self-
adjust, the read-set and write-set of the transaction can grow
significantly; all transactions operating on that data struc-
ture may then need to abort. However, the self-adjustment
is a necessary evil. Events need to retrieved from the pend-
ing event set and executed in least time-stamped order. If a
thread had to search for the least time-stamped event every
time it retrieved an event, execution of the simulation would
be cripplingly slow. Instead, the pending event set is sorted
in order of increasing time-stamp, and the thread can simply
fetch the top event in the queue [15]. That being said, there
are still opportunities where these data structures may try
to self-adjust, but not actually need to write any changes
to the structure, i.e., the multi-set queue may already be
sorted after insertion. In these situations, only the read-set
of the transaction in question will grow, and all concurrently
executing transactions may proceed.

We conducted some preliminary studies using TSX with

simple data structures such as std:1list and std:forward_list

for the pending event set. However, the performance results
were much worse due to sorting overheads. Perhaps there
are alternate simple data structures or queue organizations
that may uncover improved results with TSX, but as of yet
we have not uncovered any. Therefore, the experiments re-
ported in this manuscript are restricted to the more complex
multi-set and splay tree data structures.

3.2 Worker Thread Event Execution

Within a WARPED simulation, a manager thread on each
processing node initiates n worker threads at the begin-
ning of the simulation. It can also suspend inactive worker
threads if they run out of useful work (events in the pending
event set). When a worker thread is created, or resumes
execution after being suspended by the manager thread, it
attempts to lock the LTSF queue and dequeue the least time-
stamped event. If the worker thread successfully retrieved
an event, it executes that event as specified by the simula-
tion model. It then attempts to lock the unprocessed queue
for the LP associated with the executed event, and dequeue
the next least time-stamped event. The dequeued event is
inserted into the LTSF queue, which resorts itself based on
the event time-stamps. An abstract event processing algo-
rithm is shown in Figure 4 [5]. Note that the worker threads
perform many other functions as well.

3.3 Contention

Only one worker thread can access the LTSF queue at a



worker_thread()

lock LTSF queue

dequeue smallest event from LTSF

unlock LTSF queue

while !done loop
process event (assume from LPi)
lock LPi queue
dequeue smallest event from LPi
unlock LPi queue

lock LTSF queue

insert event from LPi
dequeue smallest event from LTSF

unlock LTSF queue
end loop

Figure 4: Generalized event execution loop for the worker
threads. Many details have been omitted for clarity.

Simulation Time (s)

Number of Worker Threads

Figure 5: warped Simulation Time versus Worker Thread
Count for Epidemic Model

time. This creates a clear point of contention during event
scheduling as each thread must first retrieve an event from
the LTSF queue. The LTSF queue must also be updated
when events are inserted into any of the LP pending event
sets. This occurs when new events are generated or the
simulation encounters a causality error and must rollback.

The initial WARPED implementation execution time was
measured and analyzed using 1 to 7 worker threads on an In-
tel i7-4770 with 2-way hyperthreading on 4 processing cores.
These results can be seen in Figure 5. It is evident that sim-
ulation time becomes less and less affected by increasing
the worker thread count, especially when the worker thread
count surpasses 4. This is attributed to the increased con-
tention for the LTSF queue; with more threads, each thread
has to wait longer for access to the LTSF queue. The multi-
core processor trend will continue to increase the number of
simultaneous execution threads available, consequently in-
creasing the contention problem.
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Figure 6: Pending Event Set Scheduling with Multiple LTSF
Queues

3.4 Previous Solutions to Contention

Dickman et al explored the use of various data structures
in the WARPED pending event set implementation, specifi-
cally, the STL multi-set, splay tree, and ladder queue data
structures [5]. A secondary focus of this study will expand
upon the use of splay tree versus STL multi-set data struc-
tures; at the time of this work, the ladder queue implemen-
tation was being heavily modified and could not be included
in this study.

Another focus of the Dickman et al study was the utiliza-
tion of multiple LTSF queues [5]. Multiple LTSF queues are
created at the beginning of the simulation. Each LP is as-
signed to a specific LTSF queue as shown in Figure 6. In a
simulation configured with four LPs, two worker threads,
and two LTSF queues, two LPs and one thread are as-
signed to each queue. This significantly reduced contention
as each thread could access separate LTSF queues concur-
rently. The initial implementation statically assigned LPs
to LTSF queues. This resulted in an unbalanced load dis-
tribution, leading to an increased number of rollbacks and
reduced simulation performance. This was corrected using
a load balancing algorithm to dynamically reassign LPs to
LTSF queues [5]. This study expands upon the previous
multiple LTSF queue study to evaluate if contention can be
reduced even further with TSX.

3.5 Thread Migration

Another potential solution to contention is to distribute
worker threads that migrate events from the LPs to sub-
sequent LTSF queues. That is, in the original schedul-
ing scheme, worker threads are assigned to a specific LT'SF
queue. The worker thread would insert the next event into
the same LTSF it had just scheduled from as seen in Fig-
ure 4. In this implementation, the worker thread inserts the
next event into a different LTSF queue, based on a circularly
incremented counter. This approach dynamically reassigns
worker threads LTSF queues by migrating the threads to
new LTSF queues. It also implicitly balances the load be-
tween the all the LTSF queues. The number of LTSF queues
is specified in a configuration file, and has no restrictions as
in the static assignment.

In a separate (unpublished) study, UC researchers dis-
covered that this implementation resulted in poor perfor-
mance on Non-uniform Memory Access (NUMA) architec-
tures. Jingjing Wang et al also noticed similar performance
degradation, which they attributed to poor memory local-
ity due to the movement of LPs to different threads [23].
To offset these performance hits, a migration count was im-



worker_thread()

i = fetch-and-add LTSF queue index
lock LTSF[i]

dequeue smallest event from LTSF[i]
unlock LTSF[il

while !'done loop
process event (assume from LPi)

lock LPi queue
dequeue smallest event from LPi
unlock LPi queue

i = fetch-and-add LTSF queue index
lock LTSF[il]

insert event from LPi into LTSF[i]
dequeue smallest event from LTSF[i]

unlock LTSF queue
end loop

Figure 7: Generalized event execution loop for migrating
worker threads. Many details have been omitted for clarity.

plemented in this scheme. Instead of continuous migration,
threads are reassigned to their original LTSF queue after
executing a certain number of events. The threads will con-
tinue to schedule events from their original LTSF queue for
the remainder of the simulation.

4. WARPED WITH TSX

This section discusses the various critical sections of WARPED
that use the TSX mechanism for this study. As previously
mentioned, the primary focus of this study is the shared
LTSF queue. The LP event queues also modified to use the
TSX mechanism. In this study, experiments with both the
RTM and HLE mechanisms are explored.

The following functions require synchronization to access
the LTSF queue:

e insert(): copy the least time-stamped event from a
specific LP’s unprocessed queue into the LTSF queue.

e updatedScheduleQueueAfterExecute(): find the source
LP of the previously executed event, and copy the
least time-stamped event from that LP’s unprocessed
queue into the LTSF queue using the insert() func-
tion above.

e nextEventToBeScheduledTime(): return the time of
the event at the beginning of the LTSF queue.

e clearScheduleQueue(): clear the LTSF queue.

e setLowestObjectPosition(): update the lowest ob-
ject position array.

e peek(): dequeues the next event for execution from
the head of the LTSF queue.

e peekEvent (): if a simulation object is not specified,
call peek().

Most of these critical sections involve write operations,
typically through queuing and dequeuing events. Queuing
and dequeuing requires the multi-set and splay tree data
structures to readjust themselves thus adding more memory
locations to the transaction’s read-set and write-set. nex-
tEventToBeScheduleTime () is the only critical section that
performs strictly read operations. Furthermore, many of
these critical sections overlap with critical sections from the
unprocessed and processed queues, which are described be-
low.

The functions described above perform a variety of mem-
ory operations and any thread can execute any critical sec-
tion at any time. Based on static analysis, there’s no way of
knowing which threads will access what structure in what
way, hence the need for synchronization. However with TSX,
functions that do not interfere can execute concurrently.
TSX tracks read and write memory operations separately in
the transaction’s read-set and write-set respectively. Trans-
actions only interfere if a data conflict occurs, i.e., a thread
attempts to write to a memory location in another trans-
action’s read-set, or a thread attempts to read a memory
location in another transaction’s write-set.

For example, one worker thread calls nextEventToBeSched-
uleTime to get the time-stamp of the event at the head of the
LTSF queue. There is a possibility that a different worker
thread is currently updating the LTSF queue or will attempt
to update the LTSF queue while the first worker thread is in
the middle of executing nextEventToBeScheduleTime. This
scenario necessitates synchronization. However, in a differ-
ent scenario, instead of the second worker thread writing
to the LTSF queue, it also calls nextEventToBeSchedule-
Time. Both are read operations and do not interfere with
each other. TSX recognizes this scenario and allows the
worker threads to execute concurrently, whereas locks force
one worker thread to wait until the other is done with the
LTSF queue.

Several similar scenarios can arise during simulation exe-
cution. While there are too many possible scenarios to iden-
tify specifically where T'SX can be beneficial, the potential
to expose concurrency through dynamic synchronization is
too great to be dismissed. Note, there is also no guarantee
that TSX will work 100% of the time; there are several run-
time events that can cause transactions to abort, as well as
physical limitations.

4.1 TSX Implementation

This section discusses how both TSX interfaces were im-
plemented in WARPED.

4.1.1 Hardware Lock Elision (HLE)

The generic algorithm presented in Figure 1 only works
for locks with a binary value, i.e., the lock is free or it is not
free. The WARPED locking mechanism assigns the thread
number to the lock value to indicate which thread currently
holds the lock. To comply with this implementation, cus-
tom HLE lock acquire and lock release functions were im-
plemented. GCC inline assembly functions were developed
appending the appropriate HLE prefixes to the CMPXCHG
lock instruction.

These functions are shown in Figures 8 and 9. The _xac-
quire() function loads the value OxFFFF (the value indi-



static inline int _xacquire(int *lockOwner,
const unsigned int *threadNumber)

{
unsigned char ret;
asm volatile("mov $0xFFFF, Y%Jj%eax\n"
_XACQUIRE_PREFIX "lock cmpxchg %2, %1\n"
"sete %0"
"=q"(ret), "=m"(*lockOwner)
"r" (*threadNumber)
nmemoryn, "%eax");
return (int) ret;
}

Figure 8: HLE _xacquire Inline Assembly Function

static inline int _xrelease(int *lockOwner,
const unsigned int *threadNumber)

{
unsigned char ret;
asm volatile("mov %2, %%eax\n"
_XRELEASE_PREFIX "lock cmpxchg %3, %1\n"
"sete %0"
"=q"(ret), "=m"(*lockOwner)
"r" (xthreadNumber), "r" (OxFFFF)
nmemoryn’ "%eax");
return (int) ret;
}

Figure 9: HLE _xrelease Inline Assembly Function

cating the lock is free) into a specific register, then compares
the lockOwner variable with the the previously loaded value
to determine if the lock is free. If the values are the same, the
CMPXCHG instruction will write the value of the thread-
Number variable into the lockOwner variable and return the
result. The _xrelease() function loads the value of the
lockOwner variable into a specific register, then compares
the threadNumber variable with the previously loaded value.
If the lockOwner value is the same as the thread number,
the cmpxchg writes the value OxFFFF into the lockOwner
variable to indicate the lock is free. Of course, if the proces-
sor successfully transitions into transactional execution with
the HLE prefixes, the write operations technically never oc-
cur. They only appear to occur to the local thread. Any
other thread still sees the lock as free.

4.1.2 Restricted Transactional Memory (RTM)

RTM allows the programmer to specify an abort path to
be executed upon a transactional abort. This allows bet-
ter tuning of RTM performance. The RTM algorithm im-
plemented in WARPED includes a retry algorithm described
below in Figure 10. Instead of immediately retrying trans-
actional execution, the algorithm decides when and if the
transaction should be retried based on the condition of the
abort. If the transaction was explicitly aborted for rea-
sons other than another thread owning the lock, do not
retry transactional execution. The programmer used the
_xabort () function to explicitly abort the transaction. If
the lock was not free upon entering the transaction, wait
until it is free to retry transactional execution. If a data con-
flict occurred, wait before retrying by using the _mm_pause
busy-wait loop to try and offset the execution of the con-
flicting threads. This is done in hopes that the conflicting

while retry count is less than retry limit
status = _xbegin()

if status == XBEGIN
if lock is free
execute transactional region
else
_xabort

update abort stats

if transaction will not succeed on retry or
_xabort was called due to reasons other
than the lock not being free

break

else if _xabort was used because the lock
was not free

wait until the lock becomes free to retry
else if a data conflict occurred

wait before retry using _mm_pause busy-
wait loop

increment retry count
end loop

acquire lock

execute critical section

Figure 10: RTM Retry Algorithm

memory operations will be performed at different times on
the next retry.

The RTM retry limit is specified at compile time. Each
data structure maintains its own retry limit initially set to
the global limit. A back-off algorithm is used to reduce
the retry limit for a specific data structure. If the transac-
tions for this data structure abort more often than not, the
retry limit is reduced. This ideally reduces the number of
transaction attempts for an extended period of time. If the
transaction commit rate increases, the retry limit increases
up to the initial limit specified at compile time. The retry
limit increases if the commit rate passes the abort to commit
rate ratio threshold.

Furthermore, if transactions for the data structure consis-
tently abort for an extended period of time with no success-
ful commits, transactional execution is not attempted for
the remainder of the simulation.

S. EXPERIMENTAL ANALYSIS

This study compares the performance of the WARPED sim-
ulation kernel using conventional synchronization mecha-
nisms, Hardware Lock Elision (HLE), and Restricted Trans-
actional Memory (RTM). All simulations were performed
on a system with an Intel i7-4770 running at 3.4 GHz with
32GB of RAM. The average execution time and standard
deviation were calculated from a set of 10 trials for each
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Figure 11: Performance of a Single Multi-set LTSF Queue

simulation configuration. When comparing synchronization
mechanisms, the simulation execution times are compared
for the same LTSF queue and worker thread configurations.
When comparing the LTSF queue configurations, the mul-
tiple LT'SF queue configuration execution time is compared
with the execution time of the same configuration with 1
LTSF queue.

The simulation model used to obtain the following results
is an epidemic model. It consists of 110998 geographically
distributed people in 119 separate locations requiring a total
of 119 LPs. The epidemic is modeled by reaction processes
to model progression of the disease within an individual en-
tity, and diffusion processes to model transmission of the
disease among individual entities.

5.1 The Default Multi-set Schedule Queue

The default implementation of the LTSF queue is the STL
multi-set data structure. It is a self-adjusting binary search
tree which keeps the least time-stamped event in the left
most leaf node of the tree.

5.1.1 Static Thread Assignment

In the original WARPED thread scheduling scheme, threads
are statically assigned to an LTSF queue. Contention will
clearly be a problem if the simulation only schedules from
one LTSF queue as every worker thread is assigned to that
queue.

The first part of this study compares the performance of
the WARPED pending event set static thread scheduling im-
plementation using one LTSF queue synchronized with:

atomic locks,

HLE,

RTM with 1 retry,
RTM with 9 retries, and
RTM with 19 retries.

MR

These results are shown in Figure 11. It is clear that using
HLE improves simulation performance, but still suffers from
the same rise in contention as the number of worker threads
is increased. The performance using RTM for any retry
count used is worse than the standard locking mechanism
initially. As the number of worker threads is increased, the
performance using RTM is slightly better than the standard
locking mechanism, but only by about 2 or 3%.

It is evident from Figure 11 that contention is increas-
ing as the number of worker threads increases, regardless of
the synchronization mechanism used. This is somewhat ex-
pected as contention is still high for the single LTSF queue.
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Figure 12: Performance of Multiple Worker Threads, 2 LTSF
Queues

Transactional memory exposes concurrency where it can,
but some critical sections simply cannot be executed con-
currently. It should be noted that the performance of HLE
does not flatten quite as much as the other synchronization
mechanisms.

The initial solution to alleviate contention for the LTSF
queue is the utilization of multiple LTSF queues. The data
for different numbers of schedule queues is limited by the
necessity to have a number of LTSF queues evenly divisible
by the number of worker threads. This is because of the
way threads are assigned to LTSF queues; if the numbers
are not evenly divisible, the simulation becomes unbalanced.
LPs assigned to a certain LTSF queue can get far ahead or
behind of other LPs on different LTSF queues resulting in
significant rollbacks and thus performance degradation.

Figure 12 shows the simulation results for varying worker
thread configurations using 2 LTSF queues. The load bal-
ancing restrictions discussed above restrict the available data
for these results. Each synchronization configuration yields
roughly the same increasing performance trend. RTM per-
formance seems to be worse with more retries with a lower
worker thread count, but eventually converges with the sin-
gle retry scheme. On the other hand, HLE synchronized
simulations consistently outperform simulations using the
standard synchronization.

The LTSF queue count configuration per worker thread
configuration results are shown Figure 13. Using 2 LTSF
queues with 2 statically assigned worker threads appears
to alleviate contention. Using HLE, simulation execution
time was reduced by 13-14% regardless of the number of
LTSF queues used. RTM improved performance using only
1 retry, but only by about 1-3%. Using any more retries
resulted in worse performance. Using the standard locking
mechanisms, simulation execution time reduced by about
2.5% increasing the LTSF queue count from 1 to 2. With
TSX, simulation execution time reduced by about 4% when
increasing the LTSF queue count from 1 to 2. While only
a small difference, TSX managed to reduce contention a bit
more in conjunction with multiple LTSF queues.

While TSX, specifically HLE, substantially improved sim-
ulation performance, as much 22%, simulation execution
time increased as the number of LTSF queues used was in-
creased in other configurations. It was noted that these sim-
ulations resulted in significantly higher rollbacks, the most
likely cause of the increased execution time. These poor per-
formance results could be attributed to the lack of a proper
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load balancing procedure, which is addressed with dynamic
thread assignment.

5.1.2  Dynamic Thread Assignment

Another solution to contention is to distribute worker threads

that try to simultaneously access the same LTSF queue to
different LTSF queues. Worker threads are dynamically as-
signed to LTSF queues rather than statically.

The first solution continuously migrates the worker threads
to the next LTSF. That is, the worker thread processes an
event from LT SF; and then LTSF (i 1)modn Where n is the
number of LTSF queues. As the worker thread moves among
the LTSF queues, the worker thread also moves the next
event from the just processed LP to the next LTSF queue.
This also helps distribute the critical path of events in the
LPs around the LTSF queues. This solution implicitly bal-
ances the work load between LTSF queues. Therefore, any
number of LTSF queues can be used with any number of
worker threads.

Figure 14 shows the simulation results for 2 LTSF queues
using the continuous migration scheme as the number of
worker threads is varied. Similarly to the static scheduling
scheme, the simulations for each synchronization mechanism
seem to follow almost the same trends. The more retries the
RTM algorithm attempted, the worse performance was for
2 and 3 worker threads. However, the number of retries
did not affect the RTM performance for 4 or more worker
threads.

Simulation execution time decreased slightly by increas-
ing the number of LTSF queue with 4 worker threads (Fig-
ure 15). Each multiple LTSF configuration reduced simula-
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Figure 15: Performance of Multiple Multi-set LTSF Queues,
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tion execution time by 2-3% when compared to the single
LTSF queue configuration. The only exception to this trend
is the 4 LTSF queue configuration with HLE; it reduced sim-
ulation execution time slightly less than standard locking
mechanisms, but the difference seems trivial. While RTM
performed well for lower LTSF queue counts, the increased
retry counts resulted in worse performance for greater LTSF
queue counts. In any configuration, HLE still reduces exe-
cution time by about 18%, while RTM generally generally
reduces execution time by about 3-4% when comparing the
two to standard locking mechanisms.

The final simulation configuration uses 7 worker threads
with 1 to 7 LTSF queues (Figure 16). Using standard locking
mechanisms with multiple LTSF queues reduces execution
time by 6% to 9% as the number of LTSF queues is increased.
Surprisingly, HLE only reduces execution time by 3% to 5%.
But again, HLE still well outperforms the standard locking
mechanisms by as much as 27%. RTM only outperforms
standard locking mechanisms by about 5%. However, it be-
comes much more effective with more LTSF queues. Execu-
tion time improvements increased from 9% to almost 14%
when using RTM with increasing LTSF queues counts.

As previously discussed, the continuous thread migration
approach does not work well for NUMA architectures due to
memory locality issues. The thread migration scheme was
modified to migrate threads between LTSF queues for the
first 50 events a thread executes. In the first implementation
of this scheme, after a thread executes 50 events, it is no
longer reassigned to a different LTSF queue. It continues to
schedule from the same LTSF queue as it did for the 50th
event for the remainder of the simulation.
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While the continuous migration scheme is not problem-
atic for the system under test, the comparison was made to
thoroughly evaluate T'SX using this scheme as a viable solu-
tion to contention. TSX may also one day become available
on NUMA architectures. Further testing would need to be
performed, but at least it will be known if this solution has
any significant impact on contention.

These results are shown in Figure 17. It is evident that
any static thread to LTSF queue assignment suffers from
the same problems. Except for the 2 worker thread, 2 LTSF
queue and 3 worker thread, 3 LTSF queue configurations,
performance suffers as the number of LTSF queues is in-
creased. Load balancing becomes an issue with this migra-
tion scheme because worker threads can become unevenly
divided among the LTSF queues leading.

The second implementation attempts to address the load
balancing issue by reassigning worker threads to their orig-
inal LTSF queues after successfully executing the specified
number of events. After a thread is reassigned to its original
LTSF queue, it continues to schedule events from that queue
for the remainder of the simulation.

Unfortunately, the simulation results were incredibly in-
consistent using this scheduling scheme. A significant por-
tion of the simulations did not complete execution in the
allotted time. The longer running simulations experienced
significantly higher rollbacks. When the simulation does ap-
pear to run normally, it executes slightly faster than the
strictly static thread assignment scheme. However, the in-
stability of this migration scheme made it infeasible to ob-
tain data.

The migration scheme makes a significant difference in
contention and load balancing. Figures 18 and 19 show the
comparison of the migration schemes used. The first imple-
mentation of the event limited migration scheme is shown
below since the second implementation performance could
not be adequately measured.

5.2 Conclusions

This paper explored the use of Intel’s transactional mem-
ory implementation, Transactional Synchronization Exten-
sions (TSX) in the multi-threaded WARPED PDES kernel to
alleviate contention for the pending event set. The WARPED
pending event set consists of a global Least Time-Stamped
First (LTSF) queue and local event set queues for each LP.

Based on the results, it clear that TSX improved the per-
formance of WARPED. HLE consistently shows speedup over
conventional synchronization mechanisms. It even slightly
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reduces execution time when the simulation only uses one
LTSF queue. In other configurations, HLE reduces execu-
tion time by as much as 27% and consistently reduces exe-
cution time by 20%.

While HLE is the superior synchronization mechanism,
RTM still showed increases in performance, generally by
about 5%. It also works with multiple LTSF queues better
than HLE. This is most likely attributed to the retry algo-
rithm. HLE transactions only have one chance to execute a
transaction. If contention is high at certain times, the trans-
action will most likely abort. The RTM retry algorithm uses
abort information to decide when to retry transactional ex-
ecution, rather than immediately aborting the transaction
or using conventional synchronization mechanisms. RTM
might not perform as well as HLE due to the overhead asso-
ciated with RTM. The retry algorithm requires abort statis-
tics to be calculated and maintained which adds a bit more
overhead to RTM.

TSX is not likely to allow simultaneous access to the same
LTSF queue when the structure is being written. TSX syn-
chronization mechanisms also appear to be more expensive.
The performance increases seen with TSX are most likely
result from the concurrent execution of critical sections in-
volving only read operations. Furthermore, some critical
sections bypassed their write operations under certain con-
ditions. For example, a check was performed within a criti-
cal section to ensure the LTSF queue was not empty. If the
queue was empty, the critical section ended without perform-
ing any operations. With standard synchronization, this
critical section would still suffer from the locking overhead,
even though it wasn’t necessary. With TSX synchroniza-



tion, the check could potentially execute concurrently with
another thread. The same scenarios apply to each LP’s pro-
cessed and unprocessed queue. Overall, TSX reduced un-
necessary contention.

In conclusion, TSX significantly improves simulation per-
formance for the WARPED PDES kernel. While other solu-
tions to contention showed improvements in performance,
they were not nearly as significant as TSX, especially HLE.
TSX only showed slight improvements in its own perfor-
mance when combined with these other solutions. Regard-
less, TSX is powerful solution to contention.
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