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ABSTRACT The filamentous mycoparasitic fungus Trichoderma asperelloides (Hypocreales,
Ascomycota, Dikarya) strain T 203 was isolated from soil in Israel by the Ilan Chet group in
the 1980s. As it has been the subject of laboratory, greenhouse, and field experiments and
has been incorporated into commercial agricultural preparations, its genome has been
sequenced and analyzed.

The mycoparasitic strain Trichoderma asperelloides T 203 (=TH 203), formerly identi-
fied as Trichoderma asperellum and prior to that Trichoderma harzianum, is a cryptic

sister species to T. asperellum (1). Its fungal host range, host recognition traits, and
mechanistic aspects of the mycoparasite interactions have been extensively studied
(2–4). The strain has also been shown to confer transient repression of the plant
immune response, followed by enhanced root colonization and eventual stimulation
of plant growth and resistance to a wide range of adverse environmental conditions,
including salt stress (5–8). The potential to use this strain as a biocontrol agent has
been repeatedly examined under greenhouse and field conditions (9).

DNA was extracted from a freeze-dried, powdered culture of T. asperelloides T 203
(Fig. 1) grown in potato dextrose broth for 1 week, using a modified cetyltrimethylam-
monium bromide (CTAB)-based method, followed by chlorophorm:octanol extraction
and isopropanol precipitation steps (10–12). The DNA yield and quality were assessed
using the Synergy HTX multimode reader (Biotek, VT, USA) and verified by DNA elec-
trophoresis. The sequencing library was built using the IDT Lotus DNA library prep kit
(part number 10001074), full-length dual barcode adapters were ligated, and the qual-
ity of the fragments was checked using the high-sensitivity D5000 tapes (part number
5067-5592) on the Agilent TapeStation 4200 system and the KAPA library quantifica-
tion kit (catalog number 07960298001), respectively. Genome sequencing was carried
out on the Illumina NovaSeq S4 platform with 2 � 151-bp reads. A total of 52 million
raw reads were produced for the T. asperelloides samples. The raw reads (read length,
2 � 150 bp) were processed using Trim Galore v0.6.6 (https://github.com/FelixKrueger/
TrimGalore). An enriched set of mitochondrial reads was then extracted from the origi-
nal input fastq reads by kmer matching using BBDuk in BBTools v38.44, using defaults,
against the Trichoderma organelle contigs available at GenBank/NCBI. The matching
reads were used to assemble the mitochondrial genome using SPAdes v3.15.2 (13). A
similar methodology employing the UNITE ribosomal DNA (rDNA) database (14) was used
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to reassemble the rDNA from the filtered reads. Finally, an assembly of the target genome
was generated using the resulting nonmitochondrial reads with SPAdes (13) using the fol-
lowing parameters: --phred-offset 33 --cov-cutoff auto -t 12 -m 32 --careful. The assembly
size was 36,270,279 bp, with 100� coverage. The assembly comprised 354 genomic scaf-
folds; the L50 value was 0.29 Mbp, the N50 value was 35 bp, and the GC content was
47.98%. The genome assembly was annotated using the JGI Annotation Pipeline (15),
which combines several gene predictions and annotation methods with transcriptomics
data and integrates the annotated genomes into MycoCosm (https://mycocosm.jgi.doe
.gov), a Web-based fungal resource for comparative analysis (15). The completeness of the
genome annotation was assessed using BUSCO v4.0.6 (16) using the hypocreales_odb10
database, resulting in 97.5% (single copy, 97.2%; duplicate, 0.3%) completeness.

The genome of T. asperelloides T 203 will contribute to the understanding of genome
evolution within the genus Trichoderma as well as to the understanding of the comparative
genome organization and diversity among strains of T. asperelloides, a species under con-
tinuous study for both fundamental science as well as commercial domestication.

Data availability. This whole-genome shotgun sequence of T. asperelloides T 203 has
been deposited at DDBJ/ENA/GenBank under BioProject accession number PRJNA772304
with BioSample accession number JAJKFY000000000. The raw reads can be found under
SRA accession number SRR17157108.
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