Event Pool Structures for PDES on Many-Core Beowulf
Clusters

Tom Dickman
School of Electronic and
Computing Systems
Cincinnati, OH 45221-0030
tdickman@gmail.com

ABSTRACT

Multi-core and many-core processing chips are becoming
widespread and are now being widely integrated into Be-
owulf clusters. This poses a challenging problem for dis-
tributed simulation as it now becomes necessary to extend
the algorithms to operate on a platform that includes both
shared memory and distributed memory hardware. Further-
more, as the number of on-chip cores grows, the challenges
for developing solutions without significant contention for
shared data structures grows. This is especially true for the
pending event list data structures where multiple execution
threads attempt to schedule the next event for execution.
This problem is especially aggravated in parallel simulation,
where event executions are generally fine-grained leading
quickly to non-trivial contention for the pending event list.

This manuscript explores the design of the software ar-
chitecture and several data structures to manage the pend-
ing event sets for execution in a Time Warp synchronized
parallel simulation engine. The experiments are especially
targeting multi-core and many-core Beowulf clusters con-
taining 8-core to 48-core processors. These studies include
a two-level structure for holding the pending event sets us-
ing three different data structures, namely: splay trees, the
STL multiset, and ladder queues. Performance comparisons
of the three data structures using two architectures for the
pending event sets are presented.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—

parallel programming, distributed programming
; 1.6.8 [Simulation and Modeling]: Types of Simulation—
parallel, distributed, discrete event

General Terms

Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSIM-PADS’13, May 19-22, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-1920-1/13/05 ...$15.00.

Sounak Gupta
School of Electronic and
Computing Systems
Cincinnati, OH 45221-0030
sounak.besu@gmail.com

Philip A. Wilsey
School of Electronic and
Computing Systems
Cincinnati, OH 45221-0030
wilseypa@gmail.com

Keywords

Time Warp, pending event lists, multi-core, threads, Be-
owulf clusters

1. INTRODUCTION

Trends in desktop microprocessors have shown that the
shift from multi-core to many-core is on the horizon. The
road maps of all the major processor providers (Intel, AMD,
and IBM) clearly show this progression. Both Intel and
AMD have commodity multi-core processors with hardware
support for up to 16 simultaneous threads. These can be
configured in multi-chip motherboards for a hardware SMP
configuration supporting as many as 64 simultaneous threads.
IBM’s Power7 product is expected to support up to 32 threads
per chip [9]. Intel has demonstrated a 48 core Single-Chip
Cloud computer (SCC) [8] and a 50-core Knights Corner
(both implementing x86 compatible cores). Following these
patterns, it is clear that desktop processors may soon con-
tain hardware support providing capabilities for hundreds of
simultaneously executing threads.

As the number of cores increases, it is increasingly chal-
lenging for application software to take advantage of the
additional parallel processing capabilities. The key to suc-
cessfully harnessing this power lies with new advances to
better introduce parallelism into the practice of computer
system and software development [6]. From the standpoint
of parallel discrete event driven simulation (PDES), one of
the key challenge areas lies in the need for solutions provid-
ing effective, contention-free pending event list management.
This is especially true since many discrete event simulation
models tend to have relatively fine-grained computational
requirements making frequent access to the pending event
set necessary.

In this manuscript, we examine the design of a software
architecture and data structures to hold the pending event
sets on each node of a many-core Beowulf cluster execut-
ing Time Warp synchronized parallel simulations. In par-
ticular, we examine a two-level structure to manage the
pending event sets and evaluate three different data struc-
tures (splay tree, STL multiset, and ladder queues) within
the two-level structure. The two-level structure explores
a multiple-worker-thread /multiple-event-pool model that is
ultimately designed for many-core processors with lightweight
on-chip load balancing. In this paper the preliminary im-
plementation using various configurations of the event-pool
model without dynamic load balancing is examined. Explo-
rations with the ladder queue are especially significant as we
have future plans to exploit its bucketing of events to build a

shared event pool that is fully managable with atomic move
instructions — implementing a wait-free pending event list.
This concept is more fully discussed in Section 6.

The remainder of this manuscript is organized as follows.
Section 2 reviews the previous literature on pending event
list management in Time Warp simulation. Section 3 pro-
vides a brief background review of the ladder queue data
structure. Section 4 reviews the software architecture of the
Time Warp simulation kernel (WARPED) that is used in this
work. Section 5 presents the results of our experimental
analysis. Section 6 contains a discussion on some possible
extensions of the event pool structures studied in this work.
Finally, Section 7 presents some concluding remarks.

2. RELATED WORK

Events in WARPED are organized into two event pools,
namely: Unprocessed and Processed [18]. The incoming
events, waiting to be executed, are stored in the Unpro-
cessed pool. To a certain degree, the WARPED design in-
herently incorporates tolerance towards the execution order
of events in their causal order. The existing Unprocessed
events are optimistically executed and since the processed
events may be required for later reexecution, they are moved
to a holding list called the Processed queue [12]. This model
is used elsewhere in other time warp synchronized simula-
tors. For example, Ronngren et al [18] discuss the use of
Linear List which is essentially a doubly linked list struc-
ture that can hold all events (processed and unprocessed)
along with information about the execution status of each
event. This design allows for simple implementation, quick
and efficient rollback as well as efficient fossil collection.
The effectiveness of this structure is questioned in [18] be-
cause of inefficient insertion into a significantly large Unpro-
cessed event pool. They suggest the use of an improved
skew heap as a possible data structure for storing the events
to be executed.

Prasad et al [14] explored parallelized Calendar Queues
[3] for medium to coarse-grained optimistic simulators. Sep-
arate calender queues are allocated to each processor. They
observed from a comparative study between the global-queue-
based and local-queue-based simulators that both achieved
excellent load balancing with the former being faster with
fewer rollbacks. They also exploited the property of grain
packing in parallel heap for fine-grained simulation.

Santoro et al [20] explored a version of a Least-TimeStamp-
First (LTSF) Scheduler that is somewhat similar to the Cal-
endar Queue, except it is created using an array and a hierar-
chical bitmap. The main advantage that this data structure
provides versus the Calendar Queue is that access to it is in
constant-time, and it has low-overhead.

3. LADDER QUEUE

The ladder queue data structure [22] is a bucket based pri-
ority queue that shares many characteristics with calendar
queues [3]. The chief advantage of a ladder queue is that the
buckets (months) storing events are dynamically split when
the number of stored events exceed some threshold. Thus,
instead of resizing the entire data structure as is done in
calendar queues, ladder queues simply break the bucket in
question up into another collection of buckets. An illustra-
tion of the principle components of a ladder queue is shown

in Figure 1. A brief description of the operation of a ladder
queue is presented below.

Initially the ladder is empty and incoming events are linked
(unsorted) together in the Top component. As they arrive,
the minimum and maximum timestamps on the events in
Top are recorded. When the first “dequeue event” operation
occurs, all of the events in Top are transferred to the buckets
in Rung[1]. The number of buckets in Rung[1] is a dynam-
ically configurable parameter. Each bucket in Rung[1] is
defined to hold events for a time range that equally subdi-
vides the range between the minimum and maximum times-
tamps of all events that were originally in Top. The events
from Top are placed (unsorted) into the bucket in Rung[1]
corresponding to its timestamp.

The buckets in the ladder queue are defined to hold a
maximum number of events. Whenever the number of events
in a bucket exceed this maximum, a new lower Rung in the
ladder is defined and those events are redistributed into it,
and so on. An example of this redistribution is shown in
Figure 1. Note the redistribution of the events from the 5th
bucket in Rung[1] into Rung[2]).

To complete the dequeue event, all events from the left-
most non-empty time bucket (containing events with the
smallest timestamps) are sorted and placed in Bottom. The
dequeue operation then pulls the first event out of Bottom.
Successive dequeue event operations pull from Bottom until
it is empty which then triggers another pull of events from
the leftmost non-empty bucket in the ladder. Once all of
the buckets in the rungs of the ladder are empty, events are
once again pulled down into the rungs of the ladder from
Top.

After the initial ladder is constructed, incoming events are
distributed into the ladder according to their timestamp.
Those falling into the time window for the rungs in the
ladder are placed into the corresponding rung/bucket loca-
tion (including being sorted into Bottom if that is where it
falls). Incoming events with a timestamp greater than the
maximum timestamp used to create the ladder rungs are
placed in Top (where new minimum/maximum timestamps
are recorded).

Conceptually, the ladder queue is organized into epochs
where the Bottom and Rung elements hold events with times-
tamps between ¢t and ¢t + At while the Top element holds
events with timestamps above ¢ + At. Incoming events pop-
ulate the ladder queue elements accordingly and once the
dequeue operations empty the Bottom and Rung elements,
another ladder queue epoch occurs and the events in Top
repopulate the ladder Rungs and Bottom. Coincident with a
new epoch, the time range of the ladder (¢ to ¢+ At) is rede-
fined by the minimum and maximum timestamps of events
pulled from Top. There are a few additional special case
situations that are more fully described in [22].

4. WARPED: A TIME WARP SIMULATION
KERNEL

WARPED is a discrete event simulation kernel that imple-
ments the Time Warp synchronization protocol [10]. It was
originally designed and optimized for executing parallel sim-
ulations on a Beowulf Cluster containing single core proces-
sors. It is highly configurable and incorporates many dif-
ferent sub-algorithms (e.g., periodic checkpointing [5], and
lazy, aggressive, and dynamic cancellation [16]) of the Time

Top - ea) K g S N g
Rung[1]
| T~
Ladder \ \\‘~\\\‘
(unsorted) " ~~o .
- B Rung[2]
sorted) I N g

Figure 1: Illustration of the Ladder Queue Structure

Warp mechanism [5]. Structurally, the Logical Processes
(LPs) of a simulation are grouped together on each process-
ing node where the LPs are scheduled according to a Least-
Timestamp-First (LTSF) event scheduling policy. The node
architecture reduces the Time Warp housekeeping functions
such as GVT estimation, termination detection, and fossil
collection into a set of common services for the entire pop-
ulation of LPs on that node. This architecture is similar to
that reported in [1] and [15].

Most recently several attempts to build a threaded exten-
sion of WARPED have been pursued [11, 12]. These stud-
ies have produced a solution that works reasonably well
for smaller multi-core processors. The overall design struc-
ture depicting the main pending event pool and the execut-
ing threads is shown in Figure 2. A threaded instance of
WARPED contains a manager thread and one or more worker
threads. The manager thread (labeled M in Figure 2) pro-
cesses the Time Warp housekeeping functions and also pro-
cesses the receipt and transmission of event messages ex-
changed with remote nodes in the cluster (local event inser-
tion is performed by the worker threads). Additional details
on the operation of the manager thread are available in [12].
The worker threads (depicted as WO and Wn in Figure 2) are
responsible for dequeueing and executing pending events and
generating new events accordingly. The pending event sets
are organized into a two level structure as described below.

The pending event lists for each LP are maintained as in-
dependent sorted! lists that are independently locked. The
lowest timestamped event from each LP event list is placed
in a common LTSF pending event queue. The (locked) LTSF
queue is sorted and used by the worker threads to schedule
the next event for execution. After dequeuing and process-
ing an event from the LTSF, each worker thread will then
access the pending event set of the LP corresponding to the
event just executed and remove the next least-timestamped
event for insertion back into the LTSF queue. An abstract

!Although the prospect of using a partially sorted data
structure such as calendar queues [3], lazy queues [19], or
ladder queues [22] is possible.

representation of the general event processing algorithm per-
formed by the worker threads is shown in Figure 3.

While the above described design works well when the
system is configured with only a few worker threads, once
the number of worker threads exceeds 5-6, contention for
the LTSF queue begins to negatively impact performance.
Since the LP event pools are independently locked and since
only one worker thread and the manager thread will si-
multaneously access the same LP event pool, contention to
these structures is minimized. The principle point of con-
tention for pending events in this architecture are at the
LTSF queue. Thus, this study examines alternate designs
for organizing the pending event list and especially the LTSF
queue.

S. EXPERIMENTAL ANALYSIS

This study pursues two main issues with the pending event
lists in the above described implementation of threaded WARPED.
The first part of this study is to address the contention is-
sue to the LTSF queue. We address this problem by cre-
ating multiple instances of the LTSF queue and partition-
ing the worker threads and the LPs to one of the LTSF
queues. The second part of this study is the use of alternate
data structures underlying the implementation of the LTSF
queue. In particular, we study replacing the multiset from
the C++ standard template library (STL) with two alter-
nates, namely: (i) splay trees [21] and (ii) ladder queues [22].
These experiments are described in details below.

The following experiments are all performed on the same
machine to ease comparison between different simulation
configurations, and to keep results consistent. All simula-
tions were performed on a machine with 48 cores with dif-
ferent configurations for the number of executing threads.
The machine has four 12-core AMD Opteron 6168 proces-
sors, with each core running at a clock rate of 1.9GHz. The
machine is configured with 64 GB of RAM.

The following simulation models are used for the experi-
mental analysis:

RAID-5: This simulation model represents a Level 5 RAID
(Redundant Array of Inexpensive Disks) setup as seen in

LPO

LP2

HEEEEEEEEEE
HEEEEEEEREEE
HEEEEEEEEEE
HEEEEEEEEEE

LP3

LTSF Queue
(least timestamp first)

WO, Wn: worker threads
M: manager thread

Figure 2: The principle input queues in warped.

worker_thread()

lock LTSF queue

dequeue smallest event from LTSF

unlock LTSF queue

while !done loop
process event (assume from LPi)
lock LPi queue
dequeue smallest event from LPi

lock LTSF queue

insert event from LPi
dequeue smallest event from LTSF

unlock LTSF queue
unlock LPi queue
end loop

Figure 3: Generalized event execution loop for the worker
threads. Many details have been omitted for the sake of clar-

ity.

Figure 4. The simulation model is composed of 136 logi-
cal processes (LPs) that simulate 32 disks, 8 forks and 96
sources. The sources generate requests for data from the
array, and these requests pass through the respective forks,
which divide each request to the necessary disks. Each disk
then responds to this request for data after a predetermined
amount of time that simulates the access time to that sector
of the disk. This simulation is performed until the global
execution time reaches one hundred thousand seconds.

High-level ISCAS-85 benchmark circuits: The ISCAS-85 bench-

marks are comprised of several different combinational logic
circuits [7]. Our experiments are performed using two of
these circuits, namely: ¢2670 and ¢7552. The ¢2670 circuit
emulates a 12-bit ALU and controller. The circuit consists
of an ALU with a comparator, an equality checker and sev-
eral parity trees. The circuit has 157 input lines, 64 output
lines, 1193 logic gates and 7 major functional blocks. These
specifications translate to 1414 logical processes (LPs) for
the simulation model. The second circuit, ¢7552, emulates
a 32-bit adder/comparator. The circuit consists of a 32-bit
adder, a 32-bit magnitude comparator using another 32-bit
adder and a parity checker. The circuit has 207 input lines,
108 output lines, 3512 logic gates and 8 major functional
blocks. These specifications translate to 3827 LPs for the
simulation model.

5.1 Experiments with Multiple LTSF Queues

As previous mentioned, the shared LTSF queue in WARPED
(Figure 2) starts to become a bottleneck when the number of
worker threads is increased beyond approximately 5 or 6. To
address this contention, we have modified the WARPED kernel
to support multiple LTSF queues (Figure 5). In our prelim-
inary implementation of multiple LTSF queues, the worker
threads are divided into independent groups that are stati-
cally (and permanently) assigned to an LTSF queue (in Fig-
ure 5, the two groups of worker threads denoted WO- - - Wn,
represent independent sets). Likewise, the LPs are divided
and statically assigned to LTSF queues. The LTSF queues

Figure 4: RAID-5 Simulation Model

are then populated with events from their assigned LPs as
outlined above in the single LT'SF implementation.

In our preliminary studies with multiple LTSF queues, we
experienced wide variations in runtimes from run to run of
the same configuration of the RAID model. Due to this in-
stability, we started examining the partitioning of LPs to
LTSF queues. As a result, several different approaches were
explored for binding LPs to LTSF queues in an attempt to
stabilize the system. In particular, we attempted to follow
the source dependency chain of event flow between the LPs
of the simulation model to guide the partitioning. However,
this contributed no noticeable performance gain or stability
improvement and thus, none of these results are included in
this paper. For the results in this manuscript, the partition-
ing was a simple round robin assignment of LPs to LTSF
queues. Further analysis and discussion of this performance
variance issue is provided at the end of this section.

Simulations were performed with several different config-
urations that varied the numbers of worker threads. In par-
ticular, configurations of 4, 8, 16, 32, and 48 worker threads
were studied. We also explored several different configura-
tions of LTSF queues. Specifically we ran experiments with
1, 2, 4, and 8 LTSF queues. The number of LTSF queues
was increased by a power of two so the number of threads
was evenly divisible by the LTSF queues in an attempt to
keep the simulations balanced. All results were obtained
by taking the median of ten simulation runs. These results
from these LTSF queue experiments are described below.

5.1.1 RAID-5

As shown in Figure 6, increasing the number of LTSF
queues causes a decrease in execution time. In all cases,
going from one LTSF queue to two queues causes a sub-
stantial decrease in the execution time. This occurs due to
the decrease in contention as the number of LTSF queues
increases. This decrease in simulation time continues for all
thread configurations up to 4 LTSF queues. The simulation
results in Figure 6 show a slight decrease in simulation time
when moving from 4 to 8 LT'SF queues for the 48 threaded
version. This decrease can likely be attributed to the fur-
ther decrease in contention when moving from 12 threads
per LTSF queue to 6 threads per LTSF queue. All other

simulations see an increase in simulation time when moving
to 8 LTSF queues, due to the low number of threads bound
to each LTSF queue.

5.1.2 ISCAS-85

As shown in Figure 7, all configurations show a decrease in
simulation time when going from one to two LTSF queues.
The simulations with a larger number of threads continue to
show a decrease in simulation time as the number of LTSF
queues is increased. All simulations have the minimum sim-
ulation time when the number of threads assigned to each
LTSF queue is between four and eight. As shown in Fig-
ure 8, the c¢7552 simulation shows similar results, except the
simulation time decreases in a more linear manner as the
number of threads is increased. It also shows that the opti-
mal number of threads per LTSF queue is between four and
eight.

In previous studies with a single LTSF queue, Muthalagu
[12] reports that simulation times start to increase when
more than 6 threads are used in a simulation model. We
arrived at a similar ratio (between four and eight threads per
LTSF queue) when using the ISCAS-85 benchmark circuits
as explained in the section above. By using multiple LTSF
queues, we are able to reduce this contention by assigning
fewer threads to each LTSF queue.

When more than eight LTSF queues are used, the sim-
ulation time is highly variant. This variance can likely be
linked to the increase in the number of rollbacks that oc-
cur due to the unbalanced nature of having a large number
of LTSF queues. For example, when using a single LTSF
queue, the number of rollbacks was very low, almost zero.
When multiple LTSF queues were used, the number of roll-
backs increased significantly. An increase was expected, but
this is likely due to an instability caused by the large num-
ber of LTSF queues. For example, if the LPs assigned to
one LTSF queue contain fewer events, this may result in a
large number of rollbacks when the LPs in one LTSF queue
get too far ahead of the events in the other LTSF queue.
One potential solution for this is some sort of load balanc-
ing algorithm to reassign LPs to keep any one LTSF queue
from containing events with timestamps too different from
the other LTSF queue.

5.2 Experiments with Ladder Queues

In this section, we present a comparative study of perfor-
mance of threaded WARPED based on manipulation of the
underlying data structure of LTSF queue. Prior to this
study, the LTSF queues in threaded WARPED were based
on the multiset object from the C++ Standard Template
Library (STL). The STL multiset is an implementation of
red-black tree, a type of balanced binary search tree. The
asymptotic run time for insertion, deletion and lookup in a
red-black tree is O(log n) [2]. We replaced the STL multiset
data structure used for the LTSF queue with the Splay tree
data structure. Splay tree is a self-adjusting binary search
tree where recently accessed elements can be accessed again
quickly. Insertion, look-up and deletion can be performed in
O(log n) amortized [23] time. The splay tree library used in
threaded WARPED is a faithful implementation of the splay
tree algorithm [21].

The ladder queue data structure has already been intro-
duced in Section 3 with a brief discussion about the potential
benefits of its use as the underlying data structure for the

LTSF Queue
o) () 111
@ LTSF Queue
LT

Figure 5: The principle input queues in warped.

350 . . . : . .
4 threads ——
300 8 threads E
v 16 threads - -
m %
5 2907 32 threads =" |
o 50 48 threads -
= 200 } |
C "
S |
§ 150 b | _
E 100 |\) e
50 - é‘%».b‘“”.”,-'” e
g
0 1 1 N . , .

1 2 3 4 5 6 7 8
Number of LTSF queues

Figure 6: Performance of Multiple LTSF Queues using STL
Multiset on RAID-5

50 | I I ! T T T
o] 4threads T

45 + 8 threads |
—~ 40 f 16 threads x|
2 32 threads N
2 35 48 threads _
.g ol |
5 51
@ 15 b o e - -

10 1 #\;f/g_, -

5 1 . . . | | |

0 2 4 6 8 10 12 14 16
Number of LTSF queues

Figure 7: Performance of Multiple LTSF Queues using STL
Multiset on ISCAS c2670

1o | | " 4 threads ——

oo | 8 threads i
— 100 f 16 threads -
2 9ot 32threads & |
o 48 threads)
E 80} B
5 70} s
g 60 ! | ',,’("(" - . -
£ 50 x ©. P i
n 40 F < o -

30 i \)f——_i ,,,,,,,,,,,,,,, x]

20 A : . . . | |

0 2 4 6 8 10 12 14 1s
Number of LTSF queues

Figure 8: Performance of Multiple LTSF Queues using STL
Multiset on ISCAS c7552

LTSF queues. The empirical evidence presented by Tang et
al [22] illustrates that Ladder queue exhibits O(1) amortized
[23] complexity.

While implementing and testing the ladder queue data
structure, an issue with the original algorithm [22] arose. In
particular, a problem arises when, during a redistribution
event, the time window of the bucket is smaller than the
number of buckets in a new lower rung. More precisely, re-
call that a redistribution of events in a bucket occurs when
the number of events in that bucket exceeds some (config-
urable, but static) threshold. The events are redistributed
into a new lower rung that has a number of buckets equal to
the threshold. Thus, let ¢ to ¢ + At be the size of the time
window for event timestamps stored in a bucket in Rung]i].
If At is less than threshold, then a new rung cannot be de-
fined (the time cannot be decomposed into threshold sub-
parts). In this case, if the bucket in question is not the first
non-empty bucket of the last rung, our algorithm simply al-
lows the bucket size to grow beyond the threshold and a
redistribution event does not occur.

When the number of events in the first non-empty bucket
of the last rung exceeds the threshold, we allow the events
of that bucket to be moved to the Bottom structure of the
ladder queue. Figure 9 provides the pseudo-code for our
implementation of the Ladder Queue.

This deviation from the original ladder design calls for
handling of the situation where the number of events in Bot-
tom exceeds a certain threshold. Under this circumstance,

as a design compromise, we allow the algorithm to ignore
the specified threshold for number of events in Bottom.

The results from the tests we performed in threaded WARPED

using Ladder Queue, STL Multiset and Splay Tree on a sin-
gle LTSF queue respectively are presented in Figures 10, 15
and 20. Figures 10 and 15 clearly point towards superior
performance of Ladder Queue for most configurations of the
simulation. However, Figure 20 does not point in the same
direction as the other two figures. Here the Ladder Queue
seems to perform on par with Splay Tree and STL multiset
until the number of worker threads reaches 32, after which its
performance degrades. The degradation in Ladder Queue’s
performance on transition of the number of worker threads
from 32 to 48 is likely due to thread swapping on one or more
of the processor cores. The threaded WARPED kernel requires
a manager thread in addition to the configured number of
worker threads(here 48). The hardware platform in use has
48-cores only. The ISCAS-85 benchmark circuits are a re-
cent addition to our inventory of simulation models. We are
still in the process of understanding the nature of event sets
that are being generated by these circuits. We suspect that
Ladder queue’s performance might be getting affected by
improper distribution of events in the rung structure. Lock-
ing individual rungs, rather than the entire Ladder Queue
data structure, is one promising approach for performance
enhancement we plan to incorporate in our future work.

5.3 Experiments Combining Ladder and Multi-

LTSF Queues

This section combines the work from the previous two sec-
tions and explores various configurations using the different
data structures underlying the LTSF queue with multiple
instances of the LTSF queue. Throughout the remainder
of this section, each performance plot shows the simulation
time for a fixed number of LTSF queues, and varies the
number of threads to show the performance as the number
of threads is increased. The number of LTSF queues used is
given in the figure caption.

Figures 10, 11 and 15 show that the ladder queue is faster
under most circumstances. This can likely be attributed to
the proper distribution of events in the rung structure and
O(1) complexity of the ladder queue.

Figures 12, 16, 17, 20 and 21 show the ladder queue as
being only slightly faster or similar in performance. This is
likely due to thread-level contention or uneven distribution
of events in the rung structure during one or more epochs.
We suspect that migrating the locking mechanism in Lad-
der Queue to the individual rungs would lead to superior
performance of Ladder queue for these simulations. This is
one avenue we plan to explore further.

Figure 22 shows the Splay tree outperforming Ladder Queue

when the number of worker threads is set to 16. This sud-
den poor performance of the Ladder Queue might well be
another example of contention issues.

Figures 13, 14, 18, 19, 23 and 24 display somewhat er-
ratic performance for 8 and 16 LTSF queues. This is likely
due to the upper limit for the ideal number of LTSF queues.
Dynamic load balancing between the LTSF queues, as ex-
plained in sections 5.1 and 6, could partially reduce the
effects of this. Further analysis will be necessary to fully
understand what is occurring.

Many plots show an interesting simulation time conver-

gence at 32 threads and subsequent divergence for 48 threads.

As explained at the end of section 5.2, it is likely due to
thread swapping on one or more of the processor cores.

6. DISCUSSION

This study pursues two main issues with the pending event

lists in the above described implementation of threaded WARPED.

The first part of this study is to address the contention when
accessing the LT'SF queue. We address this problem by repli-
cating the LTSF queue and partitioning the worker threads
and the LPs to one of the LTSF queues (Figure 5). This
proposed design solution is setup so that the pending event
lists for each LP are maintained as independent lists with in-
dividual locks. The lowest timestamped event from each LP
event list is placed in one of multiple LTSF pending event
queues. The (locked) LTSF queues are sorted and used by
the worker threads to schedule the next event for execu-
tion. The worker threads are assigned to a specific LTSF
queue and only retrieve work from that LTSF queue. Af-
ter dequeuing and processing an event from the LTSF, each
worker thread then accesses the pending event set of the
LP corresponding to the event just executed and removes
the next least-timestamped event for insertion back into the
LTSF queue. While this approach helps the problem, the
challenge of partitioning the work so that the entire system
stays in balance and processes events along the critical path
of time becomes more problematic. Fortunately, the soft-
ware architecture used in this study should setup a stream-
lined mechanism to implement a lightweight load balancing
algorithm as described below.

6.1 Load Balancing between LTSF Queues

Conceptually, the manager thread will monitor the sys-
tem progress and balance to determine if and when a load
balance event occurs. The Time Warp mechanism is unique
in that events are aggressively processed which complicates
the issue of determining which processes are working effec-
tively and which are not. Fortunately the problem of iden-
tifying a “useful work” metric for the LPs of a Time Warp
simulation has been previously studied [4] [13] [17]. We an-
ticipate exploring these and other metrics to determine the
effective work being done from a load balancing perspective.
The worker threads can then be triggered by the manager
to move LPs from one LTSF queue to another as shown in
Figure 25. This mechanism of load balancing is somewhat
similar to the top/bottom-halves based kernel-level synchro-
nization discussed in [24]. In addition to these ideas with
LTSF queues, we also believe that the ladder queue data
structure presents some key opportunities. This is outlined
below.

6.2 Ladder Queue Possibilities

Much like lazy queues [19], ladder queues [22] are re-
lated to the calendar queue data structure [3]. While the
ladder queue presents some interesting properties that can
be readily exploited for further optimizing parallel simu-
lation (described below), all of the calendar queue mech-
anisms present an opportunity for implementing a finer-
grained locking mechanism that is suitable for use on many-
core processing systems. In particular, all of these mecha-
nism present a hierarchical structure of buckets that can be
independently locked for the insertion and deletion of events.
The key advantage of ladder queues are the dynamic sizing
of the time windows for the buckets used to hold events.

if (new event insertion location is first non-empty bucket of last rung) then
if (first non-empty bucket of last rung exceeds threshold) then
/* trigger for new rung creation */
if (bucket width of last rung equals 1) then
transfer events from that bucket to bottom
insert the new event directly into bottom
else
/* calculate bucket width of new rung */
bucket width of new rung =
bucket width of previous rung / max bucket length

transfer events from that bucket to the new rung

/* new rung now becomes the last rung */
insert the new event in the appropriate bucket of new rung

end if

else /* first non-empty bucket of last rung does not exceed threshold */
insert new event into the bucket

end if

else /* new event insertion location somewhere else */
continue with faithful implementation

end if

Figure 9: Ladder Queue with the modifications introduced for threaded warped. Many details have been omitted for sake of
clarity.

220 T T T T T T T 100 T T T T T T T
“ LadderQ —— LadderQ ——
200 S Multiset : 90 * S Multiset k
layTree - layTree -
«w 180 | pay : w 80 Pay k
£ 160} 1 g 70} '
5 140 5% ' 5 60}
S 120} S s50f
S S
» 100 f [75) 40
80 30
60 1 1 1 1 1 1 1 1 1 20 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of threads Number of threads
Figure 10: Performance of Different LTSF Data Structures Figure 11: Performance of Different LTSF Data Structures

using 1 LTSF Queue with RAID-5 using 2 LTSF Queues with RAID-5

Figure 12: Performance of Different LTSF Data Structures

Number of threads

using 4 LTSF Queues with RAID-5

Number of threads

Figure 15: Performance of Different LTSF Data Structures

140 T T IX T T T T T 50 T T T T T T T T T
LadderQ —— LadderQ ——
120 } Multiset i 45 r Multiset]
— i~ SplayTreg - — 40 } SplayTree % |
~ 100 f . - . *
o o 35 .
E gl ..] E
S R = 30 -
T 60f 5 25]
> >
E 40t g 2 |
n » 15 .
20 1 10]
O 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Number of threads

using 1 LTSF Queue with ¢2670

450 T T IL ddl QI T 28 T T T L dd IQ
adderQ —— adderQ ——
400 Multiset 1 26 1 Multiset >
- 350 | SplayTree /- . 24t SplayTree ¥ A
R 2
o 300 o 227 T
£ E 20t 1
s 250 s
18 :
2 200 | 2
s 8 16} -
> B >
g 190 E 14} .
® 100 | O 4ot]
i\
50 | 10 } .
O 1 1 1 1 1 1 1 1 8 \kl\(1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Number of threads

Figure 13: Performance of Different LTSF Data Structures
using 8 LTSF Queues with RAID-5

Figure 16: Performance of Different LTSF Data Structures
using 2 LTSF Queues with ¢2670

Figure 14: Performance of Different LTSF Data Structures

Number of threads

using 16 LTSF Queues with RAID-5

Figure 17: Performance of Different LTSF Data Structures

280 T T T 1 I T 22 T T T T T T T
LadderQ —— LadderQ ——
270 Multiset 20 f Multiset]
— SplayTree %" — SplayTree -
w 260 T T 2 418} J
() ()
250 7
£ £ 16t
§ 240 - 5 .,
S 230 1 S
S S 5
B 220F] & 2
210 b] 10r
200 1 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1
32 34 36 38 40 42 44 46 48 0 5 10 15 20 25 30 35 40 45 50

Number of threads

using 4 LTSF Queues with ¢2670

20 T T T T T T T T 75 T T T T T T T
1 LadderQ —— 70 + LadderQ ——" |
or ~Multiset I Multiset
__ 18} SplayTree x4 _ 65t SplayTree -~ 1
2 L2 60} b
o 177 " i @
E 16} g
5 15} 5 i
= i = 35
2t ? 30
1t 25 | Hrer
10 1 1 1 1 1 1 1 1 20 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of threads Number of threads
Figure 18: Performance of Different LTSF Data Structures Figure 21: Performance of Different LTSF Data Structures
using 8 LTSF Queues with ¢2670 using 2 LTSF Queues with c7552
24 T T T T T 55 T T T T T T T
LadderQ —— LadderQ ——
oo | Multiset i 50 | Multiset
. e SplayTree - R SplayTree -
o 20 | g o 45} i
g g ® .
5 18 1 5 40t e
ks s
=] =]
E 16 : E 35 k
w w
14 : 30 | E
12 1 1 1 1 1 1 25 xl 1|) 1 1 1 1 1 1
15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of threads Number of threads
Figure 19: Performance of Different LTSF Data Structures Figure 22: Performance of Different LTSF Data Structures
using 16 LTSF Queues with c2670 using 4 LTSF Queues with ¢7552
300 T T T T T T T T 55 T T T T T T
LadderQ —— LadderQ ——
Multiset Multiset
0 F SplayTree - x' _ S0r SplayTree -]
n g n
aé 200 : aé 45 .
_5 150 . _5 40
kS kS
E’ 100 - E 35 |
w w
50 . 30 |
O 1 1 1 1 1 1 1 1 1 25 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Number of threads Number of threads
Figure 20: Performance of Different LTSF Data Structures Figure 23: Performance of Different LTSF Data Structures

using 1 LTSF Queue with c7552 using 8 LTSF Queues with c7552

90 T T T T T
LadderQ ——
80 + Multiset i
— SplayTree -
n
g '
s 60} .
S :
2 50 / 1
o .
40 .
30 1 1 1 1 1 1 *

15 20 25 30 35 40 45 50
Number of threads

Figure 24: Performance of Different LTSF Data Structures
using 16 LTSF Queues with c7552

worker_thread_at_LTSFi()

lock LTSFi queue

dequeue smallest event from LTSFi

unlock LTSFi queue

while !'done loop

process event (assume from LPk)

lock LPk queue

dequeue smallest event from LPk

if loadBalanceRequested then
lock LTSFj (new target) queue
insert event from LPk
unlock LTSFj queue
unlock LPk queue
lock LTSFi queue (get next event)
dequeue smallest event from LTSFi
unlock LTSFi queue

else
lock LTSFi queue
insert event from LPk
dequeue smallest event from LTSFi
unlock LTSFi queue

end if

end loop

Figure 25: The addition of load balancing/sharing into the
worker threads.

While these bucket queue data structures have an O(1)
average access time and have been proposed for use in man-
aging the pending event lists in discrete event simulation,
the ladder queue has some interesting advantages that we
propose are highly desirable for implementing the pending
event lists in Time Warp synchronized parallel simulation.
In both calendar queues and lazy queues, the bucket size is
set to a specific size that may occasional require a resizing
operation to manage the time windows sizes. In contrast, the
ladder queue has a builtin structure to manage the bucket
sizes as per the time density of the incoming events.

We believe that we can further relax the definition of
the Bottom component of the ladder queue so that it be-
comes an unsorted list of elements that are accessed using
a fully wait-free mechanism achieved through atomic move
instructions. Briefly elements are appended and removed in
a queue structure without regard to a strict enforcement of
time order. The principle idea is that the events in any one
bucket are causally independent and therefore a full sorting
of these events is unnecessary. Furthermore, because Time
Warp maintains the ability to rollback and recover whenever
a causal violation occurs, the assumption of causal indepen-
dence is not catastrophic to the simulation when it fails to
hold. The system would simply rollback and reprocess the
event after the causally dependent parent event is processed.
Of course this solution may not work for simulation models
with tight causal relations. That said, this failure will occur
only for simulation models where the Time Warp mecha-
nism would not generally succeed anyway and thus, no loss
of generality in the use of a Time Warp synchronized parallel
simulation solution occurs.

The key advantage of the ladder queue is that the struc-
ture is relatively independent on the time granularity of the
simulation model operating on top of the simulation ker-
nel. Ideally, the dynamic range of event timestamps for the
limited range of local events that define each epoch of the
ladder should help ensure that the events within any bucket
of the ladder queue are causally independent. This idea is
related to the lookahead property of conservatively synchro-
nized parallel simulation [5]. The lookahead concept results
from a static analysis of the simulation model that guaran-
tees a time window ahead of any source timestamp in which
no additional events will be generated (effectively a mini-
mum time delay guarantee on the event processing latency).
While not as strong as lookahead, a key hypothesis for our
work is that the bucket size for the ladder queue will typically
encompass a range of event timestamps that are causally in-
dependent. This hypothesis falls from the observation that
time ladder queue is reasonably stationary in the time win-
dow, t to t+At, for incoming events that arrive in the epochs
when events are pulled from Top into the ladder (Rungs and
Bottom) of the ladder queue. This causal independence is
the principle rationale for the proposed unsorted, wait-free,
generalization of the ladder queue proposed herein.

7. CONCLUSIONS

The work described in this paper introduces the abil-
ity to use multiple LTSF queues in an attempt to reduce
the contention when large numbers of threads are used for
the threaded WARPED simulation kernel. Preliminary re-
sults show definite improvements for all numbers of threads
when moving from one to two LTSF queues, and slight im-
provements as the number of queues is increased up to some

maximum depending on the number of threads used. The
ISCAS-85 simulation results show that the optimal configu-
ration contains between four and eight threads assigned to
each LTSF queue, which confirms the value found by Mutha-
lagu [12].

The use of Ladder Queues for the LTSF queues shows an
increase in simulation performance for most configurations,
performing at least as well, and even significantly better
in some circumstances. Splay trees show performance that
closely matches that of multiset, and even performs slightly
worse in some situations. Based on the results from these
simulations, Ladder Queues are an interesting option, espe-
cially if we take advantage of the ability to relax the defini-
tion of the BOTTOM data structure to make it unsorted.

Once this kernel is further stabilized, we hope to run fur-
ther experiments using other simulation models to see the
effects of these new data structures, and the introduction of
multiple LTSF queues. These results show that both Ladder
Queues and multiple LTSF queues have performance bene-
fits, but further research needs to be performed into how
best to exploit these benefits.

8. ACKNOWLEDGMENTS

Support for this work was provided in part by the Na-
tional Science Foundation under grant CNS-0915337. We
also extend our thanks to Xinyu Guo for implementing the
ISCAS-85 benchmark circuit simulation models.

9. REFERENCES

[1] H. Avril and C. Tropper. Clustered time warp and
logic simulation. In Proceedings of the Ninth Workshop
on Parallel and Distributed Simulation (PADS’95),
pages 112-119, June 1995.

[2] P. D. R. Bayer. Symmetric binary b-trees: Data
structure and maintenance algorithms. Acta
Informatica, 1(4):290-306, Dec. 1972.

[3] R. Brown. Calendar queues: A fast O(1) priority
queue implementation for the simulation event set
problem. Communications of the ACM,
31(10):1220-1227, Oct. 1988.

[4] R. Child and P. A. Wilsey. Using DVF'S to optimize
time warp simulations. In Proceedings of the 2012
Winter Simulation Conference, July 2012.

[5] R. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30-53, Oct. 1990.

[6] A. Ghuloum. Face the inevitable, embrace parallelism.
Communications of the ACM, 52(9):36-38, Sept. 2009.

[7] M. Hansen, H. Yalcin, and J. P. Hayes. Unveiling the
iscas-85 benchmarks: A case study in reverse
engineering. IEEE Design and Test, 16(3):72-80,
July-Sept 1999. (benchmarks available online at:
http:

//web.eecs.umich.edu/~ jhayes/iscas.restore/).

[8] Intel Press Release, Intel Corporation. Futuristic intel
chip could reshape how computers are built,
consumers interact with their pcs and personal
devices. Technical report, Intel Press Release, Intel
Corporation, Dec. 2009.

[9] R. Kalla. Power7: Ibm’s next generation power
microprocessor. In Hot Chips 21, Aug. 2009.

[10] D. E. Martin, T. J. McBrayer, and P. A. Wilsey.
WARPED: A Time Warp simulation kernel for analysis

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

and application development. In H. El-Rewini and

B. D. Shriver, editors, 29th Hawaii International
Conference on System Sciences (HICSS-29), volume
Volume I, pages 383386, Jan. 1996.

R. Miller. Optimistic parallel discrete event simulation
on a beowulf cluster of multi-core machines. Master’s
thesis, University of Cincinnati, 2010.

K. Muthalagu. Threaded warped: An optimistic
parallel discrete event simulator for clusters fo
multi-core machines. Master’s thesis, School of
Electronic and Computing Systems, University of
Cincinnati, Cincinnati, OH, Nov. 2012.

A. Palaniswamy and P. A. Wilsey. Parameterized
Time Warp: An integrated adaptive solution to
optimistic pdes. Journal of Parallel and Distributed
Computing, 37(2):134-145, Sept. 1996.

S. K. Prasad, S. I. Sawant, and B. Naqib. Using
parallel data structures in optimistic discrete event
simulation of varying granularity on shared-memory
computers. In IEEE First International Conference on
Algorithms and Architectures for Parallel Processing,
pages 365—374, Apr. 1995.

R. Radhakrishnan, L. Moore, and P. A. Wilsey.
External adjustment of runtime parameters in Time
Warp synchronized parallel simulators. In 11th
International Parallel Processing Symposium,
(IPPS’97). IEEE Computer Society Press, Apr. 1997.
R. Rajan and P. A. Wilsey. Dynamically switching
between lazy and aggressive cancellation in a Time
Warp parallel simulator. In Proc. of the 28th Annual
Simulation Symposium, pages 22-30. IEEE Computer
Society Press, Apr. 1995.

P. L. Reiher and D. Jefferson. Dynamic load
management in the time warp operating system.
Transactions of the Society for Computer Simulation,
7(2):91-120, 1990.

R. Ronngren, R. Ayani, R. M. Fujimoto, and S. R.
Das. Efficient implementation of event sets in time
warp. In Proceedings of the 19938 workshop on Parallel
and distributed simulation, pages 101-108, May 1993.
R. Ronngren, J. Riboe, and R. Ayani. Lazy queue: An
efficient implementation of the pending-event set. In
Proc. of the 24th Annual Simulation Symposium,
pages 194204, Apr. 1991.

T. Santoro and F. Quaglia. A low-overhead
constant-time Itf scheduler for optimistic simulation
systems. In Proceedings of the The IEEE symposium
on Computers and Communications, pages 948-953,
June 2010.

D. Sleator and R. Tarjan. Self adjusting binary search
trees. Journal of the ACM, 32(3):652-686, July 1985.
W. T. Tang, R. S. M. Goh, and I. L.-J. Thng. Ladder
queue: An o(1) priority queue structure for large-scale
discrete event simulation. ACM Transactions on
Modeling and Computer Simulation, 15(3):175-204,
July 2005.

R. E. Tarjan. Amortized computational complexity.
SIAM J. Alg. Disc. Meth., 6(2):306-318, Apr. 1985.
R. Vitali, A. Pellegrini, and F. Quaglia. Towards
symmetric multi-threaded optimistic simulation
kernels. In Proceedings of the 2012 ACM/IEEE/SCS

26th Workshop on Principles of Advanced and
Distributed Simulation, pages 211-220, July 2012.

