Dynamically Adjusting Core Frequencies to Accelerate Time Warp Simulations in
Many-Core Processors

Ryan Child and Philip Wilsey
School of Electronics and Computing Systems
University of Cincinnati
Cincinnati, OH
Email: ryan.child@ gmail.com, wilseypa@ gmail.com

Abstract—Time Warp synchronized parallel discrete event
simulators are organized to operate asynchronously and ag-
gressively without explicit synchronization between the concur-
rently executing simulators. In place of an explicit synchroniza-
tion mechanism, the concurrent simulators maintain a common
virtual clock model and implement a rollback/recovery mech-
anism to restore causal order when out-of-order events are
detected. When the critical path of execution of the simulation
is balanced across these parallel simulators, this can result
in a highly effective, lightweight synchronization mechanism.
However, imbalances in the workload across the parallel
simulators can result in excessive rollback at some nodes and
ultimately result in an overall slowing of the simulation as
prematurely computed and transmitted events are processed.
On small shared memory multi-core systems, a lowest time-
stamp first scheduling policy can effectively balance the work-
load. However, on larger many-core chips, conventional load
balancing and workload migration will once again become
necessary. Fortunately, emerging many-core chips contain some
interesting features that can potentially be exploited to improve
the performance of parallel simulations. For example, the Intel
Single-chip Cloud Computer (SCC) provides mechanisms that
a running application can use to adjust the frequency/voltage
of different regions (called islands) of the chip. These islands
are network and processing core centric and thus, in a Time
Warp simulation, one can increase the frequency of the cores
executing threads on the critical path (those experiencing
infrequent rollback) and decrease the frequency of the cores
executing threads off the critical path (those experiencing
excessive rollback). This paper investigates the run-time control
and adjustment of core frequency in an AMD Phenom II
X6 multi-core processor to explore and demonstrate that the
dynamic run-time control of core frequency can sometimes
improve the performance of a Time Warp synchronized parallel
simulation.
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I. INTRODUCTION

Recent trends have shown that parallel processing is
emerging as the new frontier for the mass computing mar-
ket [1], [2]. Trends in microprocessor development have
shown that the shift from multi-core to many-core is on
the horizon. The road maps of all the major processor
providers (Intel, AMD, Sun, and IBM) clearly show this
progression. The Intel i7 processor has hardware support for

up to 12 simultaneous threads. IBM announced their next
generation Power7 product that is expected to support up to
32 threads per chip [3]. Sun MicroSystems has single chip
processors providing hardware support for up to 64 threads.
Intel has their “single-chip cloud computer” research chip
that contains 48 x86 compatible cores [4], [5], [6] and they
have recently announced a planned release of a new 50
core chip to be called Knights Corner [7]. Following these
patterns, it is clear that commercial processors may soon
contain hardware support providing capabilities for hundreds
of simultaneously executing threads.

In addition to increases in the number of parallel cores,
these emerging many-core processors contain some interest-
ing features that can potentially be exploited to further im-
prove the performance of parallel applications. In particular,
the research many-core SCC processor released by Intel con-
tains (i) on-chip low-latency message passing hardware, (ii)
software managed cache coherence, and (iii) mechanisms for
the software regulation of frequency and voltage settings of
the on-chip processing cores, interconnection network, and
memory controllers [4], [S]. In the SCC chip, the frequency
and voltage can be independently controlled among various
sub-regions of the chip. Using the on-chip thermal sensors
to ensure safe setup, application programs can attempt to
dynamically adjust the operating frequency and voltage of
the chip components to optimize run-time performance.

This paper studies the use of run-time frequency adjust-
ment to overclock and underclock different cores across
a many-core chip in an attempt to accelerate the critical
path of execution. In one sense, this is taking the hardware
based turbo-boost concept and folding it into software to
dynamically control the CPUs clock rate. The idea is to
balance the frequency to accelerate the critical path and
preserve the processor’s power, current, and thermal limits
within safe operating limits. In this paper, we use an AMD
Phenom II X6 multi-core processor to demonstrate some of
the principles of run-time frequency control in many-core
processors. This paper presents the results of our preliminary
investigations to use dynamic frequency control to optimize
parallel simulations using the Time Warp synchronization
protocol [8], [9].



The remainder of this manuscript is organized as follows.
Section II presents the motivating factors for dynamic fre-
quency control including a description of how frequency
control can address optimizing Time Warp synchronized
parallel simulations. Section III provides a review of the
Intel SCC processor and its voltage and frequency adjust-
ment capabilities is presented. In addition, some background
information about Dynamic Voltage and Frequency Scaling
(DVES) in x86 processors with a quick review of the
corresponding specifications in the ACPI standard to control
DVES. Section IV briefly describes the framework and plans
we follow to use multi-core processors to demonstrate dy-
namic frequency control to optimize Time Warp simulations.
Section V describes the experimental platforms and software
codes and reviews the results of the experimental analysis.
Finally, Section VI contains some concluding remarks and
suggestions for future research.

II. MOTIVATION
A. Emerging Many-Core Chips

As vendors grow their multi-core chips to many-core, the
systems will increasingly take on a structure more akin to
distributed memory, message passing Beowulf clusters and
away from the global shared memory processing model.
Migrating parallel simulation kernels from multi-core to
many-core processors will require refactoring to alleviate
possible contention to shared resources and move the com-
munication events from shared memory to message passing
through the on-chip communication network. While the
onchip communication network will probably have much
higher performance capability than conventional Beowulf
clusters, load balancing and process migration on many-core
processors will remain costly and computationally expen-
sive; thread partitioning and core assignment will become
significant issues.

While many-core chips present a more distributed mem-
ory processing model, they also present new features not
generally available or exploited in contemporary Beowulf
clusters. For example, the Intel SCC platform exposes
control of the chip’s voltage and frequency settings to
the programmer [10], [11]. Much like contemporary multi-
core chips, these settings are semi-independent across the
cores. While contemporary systems primarily use frequency
control for lower power, the SCC platform presents a highly
flexible infrastructure for voltage and frequency control that
can both underclock and overclock the processing cores. For
example, on the Intel SCC processor, core frequencies can be
adjusted from 100MHz to 1.3GHz (this control is explained
more fully in Section III). This flexibility presents an oppor-
tunity for the system to dynamically adjust core frequency
to fine tune core frequency to accelerate threads on the
critical path and decelerate threads off the critical path. This
will not replace the need for effective partitioning and task
assignment/scheduling. Instead it is a potential refinement

to further improve total system throughput. Of course the
challenge is to build software control structures that properly
identify threads for acceleration and deceleration.

B. Time Warp

Time warp synchronized parallel simulators process
events optimistically and without strict adherence to the
causal orders of the events throughout the entire simulation
[8], [9]. While this may allow the parallel simulation to
run faster than the critical path of execution [12], it can
also result in premature computations that trigger rollbacks
and event reprocessing. On a shared memory platform, the
event queue can be managed so that the parallel threads
process events in a least time-stamp first policy and that
the parallel simulation more or less end up following the
critical path through the global event chain. However, when
migrating to a many-core solution, the global event list
becomes a point of contention and alternate organizations
with multiple event lists for distinct subsets of the LPs will
become necessary. In this case, the worker threads may be
processing events well off the critical path until, and if,
some load balancing mechanism redistributes the work in
a more even manner. While load balancing LPs among the
worker threads can help the threads track the critical path,
the possibility of binding threads to cores and independently
adjusting the operating frequency (up or down) of each core
to maximize its operating efficiency can also fine tune the
system performance to accelerate the critical path of the
simulation.

Run-time tuning to optimize performance has been suc-
cessfully applied to a number of subalgorithms of a Time
Warp synchronized parallel simulation [13]. Most signifi-
cantly it has been used for: (i) sizing the checkpoint interval
of an LP [14], [15], [16], (ii) selecting the cancellation strat-
egy for an LP [17], and (iii) for event scheduling [18], [19],
[20], [21]. Each of these mechanisms develop and use some
run-time measurements to assess performance and guide
the tuning algorithms (e.g., rollback frequency vs rollback
costs, effectiveness of premature computations to produce
useful work, and so on). The work most closely related
to this work is LP scheduling. Most of this previous work
focuses strictly on scheduling strategies to delay scheduling
the execution of events to reduce time warp overheads.
However, the work by Tay, Teo and Kong is especially
interesting in that a method for accelerating the critical path
is proposed [21]. Acceleration of the critical path is obtained
by dynamically adjusting the number of events executed in
each LP cycle. Although the experimental results presented
in this work are promising, the acceleration of LPs on the
critical path is constrained by the speed of the machine on
which the simulation is executing. We hope to show that
further acceleration is possible using DVFS.

From the perspective of dynamic control of core fre-
quency, it appears (from previous work) that the rollback



frequency is an indirect measure of an LP’s relation to
the critical path of execution. LPs with a higher rollback
frequency are processing events prematurely and are further
off the critical path than LPs with little or no rollback
activity. Thus, monitoring the rollback behavior of the LPs
provides an indication of how to adjust the local core’s clock
frequency. This measure will be discussed more fully in later
sections of this paper.

This manuscript presents some preliminary results for
dynamically adjusting core frequencies to optimize time
warp synchronized parallel simulation. Lacking access to an
SCC chip, this demonstration is achieved using an existing
multi-core platform with frequency control that is far more
granular and limiting than that provided by the Intel SCC
platform. Complicating this study is the fact that not all con-
temporary multi-core platforms support full and independent
control of each core’s frequency setting. In fact, all of the
Intel chips and most of the AMD chips to not strictly follow
the software settings. Only the AMD Phenom II X6 platform
supports the full range of independence in core frequency
that is required to complete this experiments.

III. BACKGROUND
A. Frequency and Voltage Adjustment in the Intel SCC Chip

The Intel SCC platform is an experimental many-core
processor developed and distributed to support research into
many-core processing [4], [5], [6]. SCC is the first Intel
many-core chip with x86 compliant cores on a single die.
The die has 48 cores organized into 24 Tiles with 2 x86 cores
per Tile (Fig. 1). Each of the 24 tiles contains a dual-core
processor, L1 and L2 caches, and a router for 2-D message
passing over the mesh network connecting the tiles. There
are four memory controllers on the board, supporting a total
of 64GB of addressable DDR3 memory. One very interesting
feature of the SCC platform is a fine grained, software
controllable, dynamic power and frequency management
capability.

The Intel SCC platform offers an interesting set of
features. Of relevance to this study are the voltage and
frequency throttling features [10], [11], [22]. The chip is
divided into 7 voltage domains (called voltage islands); 6
for each 2x2 block of tiles, and 1 for the onchip network.
There are 28 frequency domains (called frequency islands);
24 for each dual-core tile, one for the onchip network, one
for the system interface, one for the memory controllers, and
one for the voltage regulator controller.

As shown in Fig. 1, each dual core tile is an indepen-
dently controllable frequency island. The range of operating
frequencies of each tile scales from 300 MHz at 700 mV
to 1.3 GHz at 1.3 V [10]. The chip is designed to target
a normal operating frequency of 1 GHz. Voltage changes
have relatively high latencies (on the order of milliseconds)
whereas frequency changes are much faster (on the order of
20 cycles). Of course the actual operating frequencies are

a function of both voltage and frequency and therefore the
full range of operating frequencies are not always achievable
with low latency. Furthermore, since each voltage island
covers 4 tiles, the range of selectable frequencies in the
frequency islands within a voltage island is limited.

B. DVFS in Multi-Core x86 Chips

DVES is a computer architecture techniques where the
processor voltage and/or frequency can by adjusted to better
compensate for the processing needs of the system. Typ-
ically these techniques are used for reducing the power
consumption of the system. Both voltage and frequency
adjustment can reduce the dynamic power, or switching
power, consumed by a CMOS gate.

The Advanced Configuration and Power Interface (or
ACPI) specification [23] provides industry-standard inter-
faces for Operating System directed configuration and Power
Management of devices. ACPI compliant processors and
devices have well-defined power states, C-states and D-
states, respectively. The CO and DO states correspond to ac-
tive/operating states. ACPI also defines Performance States,
or P-states. These states are power consumption or capability
states available while the processor is in state CO, and
devices are in state DO. In terms of a processor, the P-
states define the different frequency/voltage states it can be
in. The number of P-states is variable, and dependent upon
the component in question. PO is the highest performance
state, where a component consumes the most energy and
has the highest frequency; and Pn is the lowest performance
state. The DFS technologies above control the P-states. The
key advantage of P-states is that switching between states
is low latency. The ACPI standard also defines Throttling
States, or T-states that control processor frequency throttling.
However, because these states do not generally reduce
power consumption, they are not generally used by modern
Operating Systems.

The Operating System is usually in control of speci-
fying the system P-state, and may allow some level of
control to the user. The Linux 2.6 kernel [24] provides
access to devices, device drivers, and device configurations
through the sysfs virtual file system. In sysfs there is
a subsystem called CPUfreq [25], [26], [27] that provides
access to the processor configurations of the current system.
This subsystem relies on governors to set the processor
frequency to specific levels based on certain criteria. As
mentioned, the governor only sets the desired frequency
of the processor, it is left to the hardware to select the
nearest P-state to the desired frequency. There are sev-
eral governors available with the Linux kernel, namely:
Performance, Powersave, Userspace, Ondemand,
and Conservative. The Ondemand governor is usually
the default governor, and will dynamically adjust the fre-
quency of the processor based on processor load. Of interest



Figure 1.

to us is the Userspace governor which gives the user the
ability to manually select the processor frequency.

IV. DVFS AND TIME WARP

In this study, we investigate DVFS using a multi-core
platform. While not a perfect match to the Intel SCC many-
core platform, we believe that the hardware and software
systems can be configured to permit us to draw reasonable
inferences from the study. In particular, the system is setup
as follows:

1) The simulation LPs are grouped together into N
heavyweight threads that are each bound to a specific
core on the many core platform. Each thread has a
global event queue for the LPs assigned to it and a
least timestamp first scheduling policy is followed.
In the remainder of this paper, we will use the term
LP to denote these collections of LPs on each core.
Furthermore, we will refer to “over(under)clocking an
LP” as shorthand for “over(under)clocking the core to
which an LP is bound.”

2) Event information is communicated, using MPI calls,
between the threads and event information within a
thread is inserted directly into the event queue.

Given the above characterized configuration, we propose that
it is possible to achieve shorter simulation run-times by over-
clocking those LPs on the critical path and underclocking
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those off the critical path. However in order for this to occur,
the following basic conditions must be met:

1) It must be possible to implement software control of
the clock frequency of each core (and furthermore, the
hardware must adhere to the software settings),

2) The processor must allow frequencies to be set (by
software) above the standard operating maximum (the
processor cores may be overclocked),

3) The steps between the available clock frequencies
must be small enough to accelerate LPs on the critical
path without immediately driving them off the critical
path, and

4) The critical path must be sufficiently biased; that is,
on average throughout the simulation the critical path
will lie more on some LPs than others.

The first condition is already met by certain multi-core
processors currently on the market; however, the second
is not (except for the Intel SCC platform). To satisfy the
second condition, we will conduct experiments with a test
platform that is initially configured below its normal operat-
ing frequency and use the next higher and lower frequencies
as, respectively, overclock and underclock states. The third
condition is out of our control and it does cause some
complications for this study. In particular, the Intel SCC has
15 frequency settings at each of the 8 voltage settings [11].
An example of these settings and their percent differences



are shown in Table I (the default system operating frequency
setting is 4). By contrast, the AMD Phenom II X6 platform
frequency settings are shown in Fig. II. The X6 clock
frequencies are more coarsely grained and can (and do)
present some complications for our experiments. Fortunately
this condition is related to the fourth condition and we
will exploit that relationship to mitigate the complication
of coarse frequency control in the experimental platform.
In particular, we will modify the LP partitioning to more
heavily skew the load among the executing threads. By
starting with a simulation model with a large amount of
parallelism and then skewing the partitioning of objects to
LPs such that the critical path is sufficiently biased, we
can fabricate an environment in which even large frequency
steps can accelerate the critical path without introducing
instability. Speedups obtained in this environment should
then in theory be realizable with smaller critical path bias
given sufficiently small frequency steps.

Since run-time tuning of Time Warp has been successfully
used to dynamically discover optimal settings for simulation
parameters such as the checkpointing interval, selection
of cancellation strategy, and event scheduling parameters,
it is natural to apply run-time tuning of the core clock
frequencies. Furthermore, as mentioned in previous sections,
rollback behavior can be used as an indirect measure for

Table T
EXAMPLE FREQUENCY SETTINGS IN THE INTEL SCC

Setting | Frequency (MHz) | % change
2 800
3 533 33.33%
4 400 25.00%
5 320 20.00%
6 267 16.67%
7 229 14.29%
8 200 12.50%
9 178 11.11%
10 160 10.00%
11 145 9.09%
12 133 8.33%
13 123 7.69%
14 114 7.14%
15 107 6.67%
16 100 6.25%

Table II

EXAMPLE FREQUENCY SETTINGS IN THE AMD PHENOM II X6

Setting | Frequency (MHz) | % change
PO 2,800
P1 2,200 21.43%
P2 1,500 31.82%
P3 800 46.67%

estimating the critical path of execution in a Time Warp
simulation. A rollback counter can be easily maintained by
each LP and made available for the purposes of critical path
estimation. The current state of the rollback counter can then
be passed to the control mechanism at any given time with
very little overhead.

The frequency control model used in this study is a
centralized model that (i) measures the number of rollbacks
in each LP and (ii) determines and assigns clock frequencies
to each core. Both of these tasks are performed every
measurement cycle, which is defined as M iterations through
the simulation loop. The model is centralized in that only
a single “master” LP performs these tasks. The other LPs
are responsible only for providing their rollback numbers.
The master LP measures rollbacks by initiating a round of
messages between all LPs. It begins by sending a “rollback
vector” message to the next LP. The next LP adds the value
of its rollback counter to the rollback vector message and
passes it on to the next LP. This process is repeated until
all of the LPs have added their rollback counters to the
rollback vector and the message is sent back to the master
LP. At the end of the process, the master LP has a vector
with the number of rollbacks of each LP for the current
measurement cycle. Using this data, we develop algorithms
(described next) to calculate and assign a new distribution
of clock frequencies for the LPs.

To map rollback behaviors onto core frequencies, we
have experimentally developed and tested several algorithms.
The two most successful of these are shown in Figs. 2
and 3. The first algorithm guarantees an even distribution
of underclocked and overclocked frequencies. In practice,
this should result in a fairly safe thermal profile across the
processor, so we call this the “safe algorithm.” The safe
algorithm falls short in that it does not consider the relation
of each individual LP to the overall average. For example,
if during a given measurement cycle LFP,, LP;, and LP;
roll back 10 times and LP;5 rolls back 100 times, one of
LPy, LP, or LP, will actually be underclocked instead of
overclocked.

To obtain a more useful distribution of clock frequen-
cies, the safe algorithm was modified to adjust the clock
frequency of LPs based on each LPs distance to the average
rollbacks for each measurement cycle. Fig. 3 illustrates the
greedy algorithm. In this algorithm, each LP that signifi-
cantly deviates from the average rollbacks will be adjusted in
the correct direction, without regard to the clock frequencies
of the other LPs, hence the name “greedy.” Unlike the
safe algorithm, there is no guarantee that cores will be
equally over/underclocked, which may lead to dangerous
thermal profiles. Before being used in an environment with
actual overclocking, it is likely that another layer would be
needed in hardware or software that could map the desired
clock frequencies determined by this algorithm onto a more
thermally safe distribution.



1. Collect rollback counts of each LP.

2. Sort LPs in order of increasing
rollbacks.

3. Set the frequencies of the cores
containing the first n/2 LPs to
the overclocked frequency.

4. Set the frequencies of the cores
containing the last n/2 LPs to
the underclocked frequency.

Figure 2. Safe algorithm

1. Collect rollback counts of each LP.
2. Set each core frequency using
equation (1).

Figure 3. Greedy algorithm

For the greedy algorithm, we use the following equation
to assign clock frequencies to the LPs:

h
foverclocka T < Tavg — 3
. h
fi = funderclodw Ty > Tavg + 2 (l)
h h
fi Tavg — 5 <r < Tavg + bl

where the variable f is clock frequency, r is the number
of rollbacks for the current measurement cycle (r; denotes a
single LP and 7,4 denotes the average of all the LPs), and h
is the size of the hysteresis zone that dampens the response
rate of the control algorithm to help prevent instability of
the frequency settings. This is discussed more fully in the
next section.

Stability

Instability can occur wherever there is a feedback loop
and it is a concern in the design of any closed-loop systems
feedback control system [28]. With the introduction of a
DVFS control mechanism in a Time Warp simulation, a
feedback path exists in every LP. For example, let LF, and
LP; be two LPs in a simulation. At some point during the
simulation, L P, may go off the critical path and roll back
many times in a short period of time. The DVFS control
mechanism will detect this and underclock LP,. If the
underclocked frequency is too low, it may overcompensate
for the increase in rollbacks and actually cause the rollbacks
to drop to virtually zero. This will be detected by the DVFS
control mechanism which will set the clock frequency to
overclocked, which will again result in increased rollbacks.

Feedback loops with paths through multiple LPs may
also exist. Tay, Teo and Kong showed that unrestrained
acceleration of the critical path can lead to a racing effect
in which recursive rollback occurs due to LPs constantly
surpassing each other [21]. To mitigate this racing effect,
Tay et al defined a hysteresis zone in which LPs are not

accelerated, even if they are behind relative to the global
progress of the simulation. Defining a hysteresis zone based
on LP rollbacks for a measurement cycle between the
minimum and maximum should be able to reduce instability
by not overclocking or underclocking LPs whose rollbacks
for the current measurement cycle are close to the average.

The stability or instability of a Time Warp simulator
equipped with a DVES control mechanism is a function of
many parameters. Some of these parameters are currently
controllable and some are not. The frequency steps, for
example, on the AMD Phenom II X6 are limited to only four
frequencies. The range of frequency steps available for a set
of cores together with the load distribution may cause a sim-
ulation under DVES to become unstable. As will be shown in
the following section, a large frequency step combined with
a mostly even load distribution results in extreme oscillation.
With a more unbalanced load, however, a larger frequency
step adequately balances the simulation without becoming
unstable. Given a choice of frequency steps, a DVFES control
mechanism might be able to analyze the load distribution
across all LPs and choose an appropriate frequency step. The
length of the measurement cycle is also related to stability:
If oscillation occurs, a larger measurement cycle length will
result in oscillations of greater magnitude, while a smaller
measurement cycle will result in smaller oscillations and
more overhead in computation and communication.

V. EXPERIMENTAL RESULTS

Experiments were performed on a PC workstation with an
AMD Phenom II X6 and 4GB RAM, running Linux kernel
3.0.0. The WARPED [29] parallel simulation kernel, was
extended to include two different DVES control mechanisms
and additional parameters for selecting and configuring the
mechanism. Fujimoto’s parallel hold, or PHold [30] model
was used as the simulation model. In all experiments, four
LPs were used, each of which were bound to one of the
cores of the X6.

Rollback measurements were filtered with a Finite Im-
pulse Response (FIR) filter for smoothing before sending
to the control mechanism [28]. Experimental data suggested
that varying the FIR filter size did not have a significant
effect on the overall simulation time. The measurement cycle
for all experiments was chosen to be 1000, based on the
length of the simulations. Finally, a hysteresis zone of 10%
of the distance between minimum and maximum rollbacks,
centered on the average, was used.

Our initial attempts at dynamic frequency control resulted
in extreme swings in rollbacks and wide oscillations as
discussed in the previous section. This was due to the X6
having frequency steps much too large (& ~600MHz) for a
load that was already fairly balanced. The extreme rollback
swings can be seen in the trace of a simulation run, as in
Fig. 4. Measurement cycles are shown along the x-axis and
the y-axis shows the number of rollbacks in the current
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Figure 4. Rollback Histories.
Table III
RESULTS WITH A PHOLD SIMULATION MODEL
Runtime (s) Rollbacks
N With DVFS Without DVFS | Speedup With DVES Without DVFES Decrease
Mean Stdev Mean Stdev Mean Stdev Mean Stdev
oo | 19.848 | 0.165 | 18.293 | 0.065 -7.83% 1797.6 | 129.382 968.1 71.346 -46.14%
16 | 19.634 | 0.092 | 17.685 | 0.077 -9.93% 1638.6 63.861 1109.1 49.979 -32.31%
8 18.497 | 0.146 | 18.501 | 0.082 0.02% 1451.3 | 126.314 | 1760.4 94.394 21.30%
19.748 | 0.061 | 20.453 | 0.045 3.57% 2716.1 | 236.710 | 3833.8 84.315 41.15%
2 23.547 | 0.071 | 24.828 | 0.080 5.44% 7510.9 96.225 9036.1 | 122.477 20.31%

measurement cycle in dark blue, the output of the FIR in
light blue, and the assigned clock frequencies in red. The
measurement cycle for this particular trace was 5000. It
can clearly be seen from the figure that over(under)clocking
causes an immediate and extreme decrease(increase) in
rollbacks, which triggers wide oscillation. Obviously, the
frequency steps available on our experimental platform are
simply too large.

As mentioned in the previous section, we cannot control
the clock frequency steps, but we can control the critical
path bias. WARPED creates a SimulationObject for

each physical process being modeled and partitions them
among each LP. To artificially bias the critical path towards
a particular LP, we experimented with skewing the static
partitioning of SimulationObjects to LPs. Every NV
rounds, two simulation objects were assigned to LF, and
LP; was skipped. We refer to partitionings with small
N as “heavily skewed” and partitionings with large N as
“lightly skewed.” N = oo indicates no skew. Table III shows
simulation run-times and rollback numbers for the PHold
model with various degrees of skew. For each amount of
skew tested, data was taken from 10 different simulations,



and the FIR filter size was 128. The PHold model parameters
were 200 processes, a message density of 20, a state size of
1024, and a grain of 100 [30].

Experimental data shows that speedup generally increased
with the skew of the load, as expected. The number of
rollbacks also generally decreased as the simulation times
increased, which suggests that the number of rollbacks is
indeed related to simulation efficiency. Because speedup is
possible with large frequency steps for heavily skewed loads,
we infer that speedup of more normally loaded simulations
might be attainable given smaller frequency steps. The 5%
speedup observed in the most imbalanced case was not
as dramatic as the authors had expected. In that regard,
we faced many unexpected challenges during this study.
First, the number of rollbacks sometimes varied significantly
between measurement cycles. This may possibly be offset
by running extremely lengthy simulations, decreasing the
measurement cycle, and using a larger FIR filter size.
Difficulty in avoiding oscillation even for relatively heavily
skewed loads also leads us to suspect that controlling the
clock frequency of one LP in the simulation has a greater
effect on the rollback behavior of the other LPs than we
originally believed. The benefits of balancing the rollbacks
across all LPs is also easily overstated. We assume an LP
with few rollbacks is spending more time on the critical path
than the others. Accelerating it quickly leads to an increase
in rollbacks which pushes it more off the critical path. The
greatest gains in speedup resulted from simulations in which
overclocking the LP with the least rollbacks had the least
effect on the rollback behavior of that LP. In other words,
DVFS control is most effective when it can accelerate the
LP on the critical path without moving the critical path.

These findings present many opportunities for future
work. We have presented data for a fixed set of simulation
parameters, however the effects of individual parameters
(specifically the DVFS control parameters we have proposed
in this study, namely the measurement cycle, FIR filter size,
and hysteresis zone) on simulation run-time have yet to
be examined in depth. Certain configurations of the PHold
model, or any other simulation model, may lend additional
insight on the viability of DVEFS control in Time Warp
simulations. The parameters we chose for our experiments
are highly dependent on the simulation length and amount
of parallelism in the simulation model. Adaptive techniques
may be used to dynamically select optimal DVFS control
parameters for any simulation model. Finally, these ex-
periments could be repeated on a platform with smaller
frequency steps such as the Intel SCC to verify that faster
simulation times are possible for more balanced loads.

VI. CONCLUSION

We have given an overview of DVFS features available
in modern multi-core and many-core processors. We have
developed an algorithm to measure the rollback behavior

of all LPs and set core frequencies such that the critical
path is accelerated and other paths are decelerated. While
demonstrated on an AMD Phenom II X6 at less-than-
maximum clock frequencies, the proposed DVFS control
method would be most promising given a platform that
allows overclocking. Such a platform would not necessarily
suffer from overheating effects as our DVFS control algo-
rithm guarantees that some cores are underclocked whenever
others are overclocked. Our experimental data shows that
the frequency steps available on the X6 are too coarse to be
applied directly to existing Time Warp simulators without
skewing the partitioning of simulation objects. However,
data also shows that speedup is possible using coarse-grain
frequency steps for more imbalanced loads. This suggests
that speedup may be possible with a more normal partition-
ing if only fine-grain frequency steps such as those on the
Intel SCC were available.
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