
Dynamically Adjusting Core Frequencies to Accelerate Time Warp Simulations in

Many-Core Processors

Ryan Child and Philip Wilsey

School of Electronics and Computing Systems

University of Cincinnati

Cincinnati, OH

Email: ryan.child@gmail.com, wilseypa@gmail.com

Abstract—Time Warp synchronized parallel discrete event
simulators are organized to operate asynchronously and ag-
gressively without explicit synchronization between the concur-
rently executing simulators. In place of an explicit synchroniza-
tion mechanism, the concurrent simulators maintain a common
virtual clock model and implement a rollback/recovery mech-
anism to restore causal order when out-of-order events are
detected. When the critical path of execution of the simulation
is balanced across these parallel simulators, this can result
in a highly effective, lightweight synchronization mechanism.
However, imbalances in the workload across the parallel
simulators can result in excessive rollback at some nodes and
ultimately result in an overall slowing of the simulation as
prematurely computed and transmitted events are processed.
On small shared memory multi-core systems, a lowest time-
stamp first scheduling policy can effectively balance the work-
load. However, on larger many-core chips, conventional load
balancing and workload migration will once again become
necessary. Fortunately, emerging many-core chips contain some
interesting features that can potentially be exploited to improve
the performance of parallel simulations. For example, the Intel
Single-chip Cloud Computer (SCC) provides mechanisms that
a running application can use to adjust the frequency/voltage
of different regions (called islands) of the chip. These islands
are network and processing core centric and thus, in a Time
Warp simulation, one can increase the frequency of the cores
executing threads on the critical path (those experiencing
infrequent rollback) and decrease the frequency of the cores
executing threads off the critical path (those experiencing
excessive rollback). This paper investigates the run-time control
and adjustment of core frequency in an AMD Phenom II
X6 multi-core processor to explore and demonstrate that the
dynamic run-time control of core frequency can sometimes
improve the performance of a Time Warp synchronized parallel
simulation.

Keywords-parallel simulation; time warp synchronization;
many-core processors; run time tuning

I. INTRODUCTION

Recent trends have shown that parallel processing is

emerging as the new frontier for the mass computing mar-

ket [1], [2]. Trends in microprocessor development have

shown that the shift from multi-core to many-core is on

the horizon. The road maps of all the major processor

providers (Intel, AMD, Sun, and IBM) clearly show this

progression. The Intel i7 processor has hardware support for

up to 12 simultaneous threads. IBM announced their next

generation Power7 product that is expected to support up to

32 threads per chip [3]. Sun MicroSystems has single chip

processors providing hardware support for up to 64 threads.

Intel has their “single-chip cloud computer” research chip

that contains 48 x86 compatible cores [4], [5], [6] and they

have recently announced a planned release of a new 50

core chip to be called Knights Corner [7]. Following these

patterns, it is clear that commercial processors may soon

contain hardware support providing capabilities for hundreds

of simultaneously executing threads.

In addition to increases in the number of parallel cores,

these emerging many-core processors contain some interest-

ing features that can potentially be exploited to further im-

prove the performance of parallel applications. In particular,

the research many-core SCC processor released by Intel con-

tains (i) on-chip low-latency message passing hardware, (ii)

software managed cache coherence, and (iii) mechanisms for

the software regulation of frequency and voltage settings of

the on-chip processing cores, interconnection network, and

memory controllers [4], [5]. In the SCC chip, the frequency

and voltage can be independently controlled among various

sub-regions of the chip. Using the on-chip thermal sensors

to ensure safe setup, application programs can attempt to

dynamically adjust the operating frequency and voltage of

the chip components to optimize run-time performance.

This paper studies the use of run-time frequency adjust-

ment to overclock and underclock different cores across

a many-core chip in an attempt to accelerate the critical

path of execution. In one sense, this is taking the hardware

based turbo-boost concept and folding it into software to

dynamically control the CPUs clock rate. The idea is to

balance the frequency to accelerate the critical path and

preserve the processor’s power, current, and thermal limits

within safe operating limits. In this paper, we use an AMD

Phenom II X6 multi-core processor to demonstrate some of

the principles of run-time frequency control in many-core

processors. This paper presents the results of our preliminary

investigations to use dynamic frequency control to optimize

parallel simulations using the Time Warp synchronization

protocol [8], [9].



The remainder of this manuscript is organized as follows.

Section II presents the motivating factors for dynamic fre-

quency control including a description of how frequency

control can address optimizing Time Warp synchronized

parallel simulations. Section III provides a review of the

Intel SCC processor and its voltage and frequency adjust-

ment capabilities is presented. In addition, some background

information about Dynamic Voltage and Frequency Scaling

(DVFS) in x86 processors with a quick review of the

corresponding specifications in the ACPI standard to control

DVFS. Section IV briefly describes the framework and plans

we follow to use multi-core processors to demonstrate dy-

namic frequency control to optimize Time Warp simulations.

Section V describes the experimental platforms and software

codes and reviews the results of the experimental analysis.

Finally, Section VI contains some concluding remarks and

suggestions for future research.

II. MOTIVATION

A. Emerging Many-Core Chips

As vendors grow their multi-core chips to many-core, the

systems will increasingly take on a structure more akin to

distributed memory, message passing Beowulf clusters and

away from the global shared memory processing model.

Migrating parallel simulation kernels from multi-core to

many-core processors will require refactoring to alleviate

possible contention to shared resources and move the com-

munication events from shared memory to message passing

through the on-chip communication network. While the

onchip communication network will probably have much

higher performance capability than conventional Beowulf

clusters, load balancing and process migration on many-core

processors will remain costly and computationally expen-

sive; thread partitioning and core assignment will become

significant issues.

While many-core chips present a more distributed mem-

ory processing model, they also present new features not

generally available or exploited in contemporary Beowulf

clusters. For example, the Intel SCC platform exposes

control of the chip’s voltage and frequency settings to

the programmer [10], [11]. Much like contemporary multi-

core chips, these settings are semi-independent across the

cores. While contemporary systems primarily use frequency

control for lower power, the SCC platform presents a highly

flexible infrastructure for voltage and frequency control that

can both underclock and overclock the processing cores. For

example, on the Intel SCC processor, core frequencies can be

adjusted from 100MHz to 1.3GHz (this control is explained

more fully in Section III). This flexibility presents an oppor-

tunity for the system to dynamically adjust core frequency

to fine tune core frequency to accelerate threads on the

critical path and decelerate threads off the critical path. This

will not replace the need for effective partitioning and task

assignment/scheduling. Instead it is a potential refinement

to further improve total system throughput. Of course the

challenge is to build software control structures that properly

identify threads for acceleration and deceleration.

B. Time Warp

Time warp synchronized parallel simulators process

events optimistically and without strict adherence to the

causal orders of the events throughout the entire simulation

[8], [9]. While this may allow the parallel simulation to

run faster than the critical path of execution [12], it can

also result in premature computations that trigger rollbacks

and event reprocessing. On a shared memory platform, the

event queue can be managed so that the parallel threads

process events in a least time-stamp first policy and that

the parallel simulation more or less end up following the

critical path through the global event chain. However, when

migrating to a many-core solution, the global event list

becomes a point of contention and alternate organizations

with multiple event lists for distinct subsets of the LPs will

become necessary. In this case, the worker threads may be

processing events well off the critical path until, and if,

some load balancing mechanism redistributes the work in

a more even manner. While load balancing LPs among the

worker threads can help the threads track the critical path,

the possibility of binding threads to cores and independently

adjusting the operating frequency (up or down) of each core

to maximize its operating efficiency can also fine tune the

system performance to accelerate the critical path of the

simulation.

Run-time tuning to optimize performance has been suc-

cessfully applied to a number of subalgorithms of a Time

Warp synchronized parallel simulation [13]. Most signifi-

cantly it has been used for: (i) sizing the checkpoint interval

of an LP [14], [15], [16], (ii) selecting the cancellation strat-

egy for an LP [17], and (iii) for event scheduling [18], [19],

[20], [21]. Each of these mechanisms develop and use some

run-time measurements to assess performance and guide

the tuning algorithms (e.g., rollback frequency vs rollback

costs, effectiveness of premature computations to produce

useful work, and so on). The work most closely related

to this work is LP scheduling. Most of this previous work

focuses strictly on scheduling strategies to delay scheduling

the execution of events to reduce time warp overheads.

However, the work by Tay, Teo and Kong is especially

interesting in that a method for accelerating the critical path

is proposed [21]. Acceleration of the critical path is obtained

by dynamically adjusting the number of events executed in

each LP cycle. Although the experimental results presented

in this work are promising, the acceleration of LPs on the

critical path is constrained by the speed of the machine on

which the simulation is executing. We hope to show that

further acceleration is possible using DVFS.

From the perspective of dynamic control of core fre-

quency, it appears (from previous work) that the rollback



frequency is an indirect measure of an LP’s relation to

the critical path of execution. LPs with a higher rollback

frequency are processing events prematurely and are further

off the critical path than LPs with little or no rollback

activity. Thus, monitoring the rollback behavior of the LPs

provides an indication of how to adjust the local core’s clock

frequency. This measure will be discussed more fully in later

sections of this paper.

This manuscript presents some preliminary results for

dynamically adjusting core frequencies to optimize time

warp synchronized parallel simulation. Lacking access to an

SCC chip, this demonstration is achieved using an existing

multi-core platform with frequency control that is far more

granular and limiting than that provided by the Intel SCC

platform. Complicating this study is the fact that not all con-

temporary multi-core platforms support full and independent

control of each core’s frequency setting. In fact, all of the

Intel chips and most of the AMD chips to not strictly follow

the software settings. Only the AMD Phenom II X6 platform

supports the full range of independence in core frequency

that is required to complete this experiments.

III. BACKGROUND

A. Frequency and Voltage Adjustment in the Intel SCC Chip

The Intel SCC platform is an experimental many-core

processor developed and distributed to support research into

many-core processing [4], [5], [6]. SCC is the first Intel

many-core chip with x86 compliant cores on a single die.

The die has 48 cores organized into 24 Tiles with 2 x86 cores

per Tile (Fig. 1). Each of the 24 tiles contains a dual-core

processor, L1 and L2 caches, and a router for 2-D message

passing over the mesh network connecting the tiles. There

are four memory controllers on the board, supporting a total

of 64GB of addressable DDR3 memory. One very interesting

feature of the SCC platform is a fine grained, software

controllable, dynamic power and frequency management

capability.

The Intel SCC platform offers an interesting set of

features. Of relevance to this study are the voltage and

frequency throttling features [10], [11], [22]. The chip is

divided into 7 voltage domains (called voltage islands); 6

for each 2x2 block of tiles, and 1 for the onchip network.

There are 28 frequency domains (called frequency islands);

24 for each dual-core tile, one for the onchip network, one

for the system interface, one for the memory controllers, and

one for the voltage regulator controller.

As shown in Fig. 1, each dual core tile is an indepen-

dently controllable frequency island. The range of operating

frequencies of each tile scales from 300 MHz at 700 mV

to 1.3 GHz at 1.3 V [10]. The chip is designed to target

a normal operating frequency of 1 GHz. Voltage changes

have relatively high latencies (on the order of milliseconds)

whereas frequency changes are much faster (on the order of

20 cycles). Of course the actual operating frequencies are

a function of both voltage and frequency and therefore the

full range of operating frequencies are not always achievable

with low latency. Furthermore, since each voltage island

covers 4 tiles, the range of selectable frequencies in the

frequency islands within a voltage island is limited.

B. DVFS in Multi-Core x86 Chips

DVFS is a computer architecture techniques where the

processor voltage and/or frequency can by adjusted to better

compensate for the processing needs of the system. Typ-

ically these techniques are used for reducing the power

consumption of the system. Both voltage and frequency

adjustment can reduce the dynamic power, or switching

power, consumed by a CMOS gate.

The Advanced Configuration and Power Interface (or

ACPI) specification [23] provides industry-standard inter-

faces for Operating System directed configuration and Power

Management of devices. ACPI compliant processors and

devices have well-defined power states, C-states and D-

states, respectively. The C0 and D0 states correspond to ac-

tive/operating states. ACPI also defines Performance States,

or P-states. These states are power consumption or capability

states available while the processor is in state C0, and

devices are in state D0. In terms of a processor, the P-

states define the different frequency/voltage states it can be

in. The number of P-states is variable, and dependent upon

the component in question. P0 is the highest performance

state, where a component consumes the most energy and

has the highest frequency; and Pn is the lowest performance

state. The DFS technologies above control the P-states. The

key advantage of P-states is that switching between states

is low latency. The ACPI standard also defines Throttling

States, or T-states that control processor frequency throttling.

However, because these states do not generally reduce

power consumption, they are not generally used by modern

Operating Systems.

The Operating System is usually in control of speci-

fying the system P-state, and may allow some level of

control to the user. The Linux 2.6 kernel [24] provides

access to devices, device drivers, and device configurations

through the sysfs virtual file system. In sysfs there is

a subsystem called CPUfreq [25], [26], [27] that provides

access to the processor configurations of the current system.

This subsystem relies on governors to set the processor

frequency to specific levels based on certain criteria. As

mentioned, the governor only sets the desired frequency

of the processor, it is left to the hardware to select the

nearest P-state to the desired frequency. There are sev-

eral governors available with the Linux kernel, namely:

Performance, Powersave, Userspace, Ondemand,

and Conservative. The Ondemand governor is usually

the default governor, and will dynamically adjust the fre-

quency of the processor based on processor load. Of interest



Figure 1. The Intel SCC chip architecture

to us is the Userspace governor which gives the user the

ability to manually select the processor frequency.

IV. DVFS AND TIME WARP

In this study, we investigate DVFS using a multi-core

platform. While not a perfect match to the Intel SCC many-

core platform, we believe that the hardware and software

systems can be configured to permit us to draw reasonable

inferences from the study. In particular, the system is setup

as follows:

1) The simulation LPs are grouped together into N

heavyweight threads that are each bound to a specific

core on the many core platform. Each thread has a

global event queue for the LPs assigned to it and a

least timestamp first scheduling policy is followed.

In the remainder of this paper, we will use the term

LP to denote these collections of LPs on each core.

Furthermore, we will refer to “over(under)clocking an

LP” as shorthand for “over(under)clocking the core to

which an LP is bound.”

2) Event information is communicated, using MPI calls,

between the threads and event information within a

thread is inserted directly into the event queue.

Given the above characterized configuration, we propose that

it is possible to achieve shorter simulation run-times by over-

clocking those LPs on the critical path and underclocking

those off the critical path. However in order for this to occur,

the following basic conditions must be met:

1) It must be possible to implement software control of

the clock frequency of each core (and furthermore, the

hardware must adhere to the software settings),

2) The processor must allow frequencies to be set (by

software) above the standard operating maximum (the

processor cores may be overclocked),

3) The steps between the available clock frequencies

must be small enough to accelerate LPs on the critical

path without immediately driving them off the critical

path, and

4) The critical path must be sufficiently biased; that is,

on average throughout the simulation the critical path

will lie more on some LPs than others.

The first condition is already met by certain multi-core

processors currently on the market; however, the second

is not (except for the Intel SCC platform). To satisfy the

second condition, we will conduct experiments with a test

platform that is initially configured below its normal operat-

ing frequency and use the next higher and lower frequencies

as, respectively, overclock and underclock states. The third

condition is out of our control and it does cause some

complications for this study. In particular, the Intel SCC has

15 frequency settings at each of the 8 voltage settings [11].

An example of these settings and their percent differences



are shown in Table I (the default system operating frequency

setting is 4). By contrast, the AMD Phenom II X6 platform

frequency settings are shown in Fig. II. The X6 clock

frequencies are more coarsely grained and can (and do)

present some complications for our experiments. Fortunately

this condition is related to the fourth condition and we

will exploit that relationship to mitigate the complication

of coarse frequency control in the experimental platform.

In particular, we will modify the LP partitioning to more

heavily skew the load among the executing threads. By

starting with a simulation model with a large amount of

parallelism and then skewing the partitioning of objects to

LPs such that the critical path is sufficiently biased, we

can fabricate an environment in which even large frequency

steps can accelerate the critical path without introducing

instability. Speedups obtained in this environment should

then in theory be realizable with smaller critical path bias

given sufficiently small frequency steps.

Since run-time tuning of Time Warp has been successfully

used to dynamically discover optimal settings for simulation

parameters such as the checkpointing interval, selection

of cancellation strategy, and event scheduling parameters,

it is natural to apply run-time tuning of the core clock

frequencies. Furthermore, as mentioned in previous sections,

rollback behavior can be used as an indirect measure for

Table I
EXAMPLE FREQUENCY SETTINGS IN THE INTEL SCC

Setting Frequency (MHz) % change

2 800

3 533 33.33%

4 400 25.00%

5 320 20.00%

6 267 16.67%

7 229 14.29%

8 200 12.50%

9 178 11.11%

10 160 10.00%

11 145 9.09%

12 133 8.33%

13 123 7.69%

14 114 7.14%

15 107 6.67%

16 100 6.25%

Table II
EXAMPLE FREQUENCY SETTINGS IN THE AMD PHENOM II X6

Setting Frequency (MHz) % change

P0 2,800

P1 2,200 21.43%

P2 1,500 31.82%

P3 800 46.67%

estimating the critical path of execution in a Time Warp

simulation. A rollback counter can be easily maintained by

each LP and made available for the purposes of critical path

estimation. The current state of the rollback counter can then

be passed to the control mechanism at any given time with

very little overhead.

The frequency control model used in this study is a

centralized model that (i) measures the number of rollbacks

in each LP and (ii) determines and assigns clock frequencies

to each core. Both of these tasks are performed every

measurement cycle, which is defined as M iterations through

the simulation loop. The model is centralized in that only

a single “master” LP performs these tasks. The other LPs

are responsible only for providing their rollback numbers.

The master LP measures rollbacks by initiating a round of

messages between all LPs. It begins by sending a “rollback

vector” message to the next LP. The next LP adds the value

of its rollback counter to the rollback vector message and

passes it on to the next LP. This process is repeated until

all of the LPs have added their rollback counters to the

rollback vector and the message is sent back to the master

LP. At the end of the process, the master LP has a vector

with the number of rollbacks of each LP for the current

measurement cycle. Using this data, we develop algorithms

(described next) to calculate and assign a new distribution

of clock frequencies for the LPs.

To map rollback behaviors onto core frequencies, we

have experimentally developed and tested several algorithms.

The two most successful of these are shown in Figs. 2

and 3. The first algorithm guarantees an even distribution

of underclocked and overclocked frequencies. In practice,

this should result in a fairly safe thermal profile across the

processor, so we call this the “safe algorithm.” The safe

algorithm falls short in that it does not consider the relation

of each individual LP to the overall average. For example,

if during a given measurement cycle LP0, LP1, and LP2

roll back 10 times and LP3 rolls back 100 times, one of

LP0, LP1 or LP2 will actually be underclocked instead of

overclocked.

To obtain a more useful distribution of clock frequen-

cies, the safe algorithm was modified to adjust the clock

frequency of LPs based on each LPs distance to the average

rollbacks for each measurement cycle. Fig. 3 illustrates the

greedy algorithm. In this algorithm, each LP that signifi-

cantly deviates from the average rollbacks will be adjusted in

the correct direction, without regard to the clock frequencies

of the other LPs, hence the name “greedy.” Unlike the

safe algorithm, there is no guarantee that cores will be

equally over/underclocked, which may lead to dangerous

thermal profiles. Before being used in an environment with

actual overclocking, it is likely that another layer would be

needed in hardware or software that could map the desired

clock frequencies determined by this algorithm onto a more

thermally safe distribution.



1. Collect rollback counts of each LP.

2. Sort LPs in order of increasing

rollbacks.

3. Set the frequencies of the cores

containing the first n/2 LPs to

the overclocked frequency.

4. Set the frequencies of the cores

containing the last n/2 LPs to

the underclocked frequency.

Figure 2. Safe algorithm

1. Collect rollback counts of each LP.

2. Set each core frequency using

equation (1).

Figure 3. Greedy algorithm

For the greedy algorithm, we use the following equation

to assign clock frequencies to the LPs:

fi =











foverclock, ri < ravg −
h
2

funderclock, ri > ravg +
h
2

fi, ravg −
h
2
≤ ri ≤ ravg +

h
2

(1)

where the variable f is clock frequency, r is the number

of rollbacks for the current measurement cycle (ri denotes a

single LP and ravg denotes the average of all the LPs), and h

is the size of the hysteresis zone that dampens the response

rate of the control algorithm to help prevent instability of

the frequency settings. This is discussed more fully in the

next section.

Stability

Instability can occur wherever there is a feedback loop

and it is a concern in the design of any closed-loop systems

feedback control system [28]. With the introduction of a

DVFS control mechanism in a Time Warp simulation, a

feedback path exists in every LP. For example, let LP0 and

LP1 be two LPs in a simulation. At some point during the

simulation, LP0 may go off the critical path and roll back

many times in a short period of time. The DVFS control

mechanism will detect this and underclock LP0. If the

underclocked frequency is too low, it may overcompensate

for the increase in rollbacks and actually cause the rollbacks

to drop to virtually zero. This will be detected by the DVFS

control mechanism which will set the clock frequency to

overclocked, which will again result in increased rollbacks.

Feedback loops with paths through multiple LPs may

also exist. Tay, Teo and Kong showed that unrestrained

acceleration of the critical path can lead to a racing effect

in which recursive rollback occurs due to LPs constantly

surpassing each other [21]. To mitigate this racing effect,

Tay et al defined a hysteresis zone in which LPs are not

accelerated, even if they are behind relative to the global

progress of the simulation. Defining a hysteresis zone based

on LP rollbacks for a measurement cycle between the

minimum and maximum should be able to reduce instability

by not overclocking or underclocking LPs whose rollbacks

for the current measurement cycle are close to the average.

The stability or instability of a Time Warp simulator

equipped with a DVFS control mechanism is a function of

many parameters. Some of these parameters are currently

controllable and some are not. The frequency steps, for

example, on the AMD Phenom II X6 are limited to only four

frequencies. The range of frequency steps available for a set

of cores together with the load distribution may cause a sim-

ulation under DVFS to become unstable. As will be shown in

the following section, a large frequency step combined with

a mostly even load distribution results in extreme oscillation.

With a more unbalanced load, however, a larger frequency

step adequately balances the simulation without becoming

unstable. Given a choice of frequency steps, a DVFS control

mechanism might be able to analyze the load distribution

across all LPs and choose an appropriate frequency step. The

length of the measurement cycle is also related to stability:

If oscillation occurs, a larger measurement cycle length will

result in oscillations of greater magnitude, while a smaller

measurement cycle will result in smaller oscillations and

more overhead in computation and communication.

V. EXPERIMENTAL RESULTS

Experiments were performed on a PC workstation with an

AMD Phenom II X6 and 4GB RAM, running Linux kernel

3.0.0. The WARPED [29] parallel simulation kernel, was

extended to include two different DVFS control mechanisms

and additional parameters for selecting and configuring the

mechanism. Fujimoto’s parallel hold, or PHold [30] model

was used as the simulation model. In all experiments, four

LPs were used, each of which were bound to one of the

cores of the X6.

Rollback measurements were filtered with a Finite Im-

pulse Response (FIR) filter for smoothing before sending

to the control mechanism [28]. Experimental data suggested

that varying the FIR filter size did not have a significant

effect on the overall simulation time. The measurement cycle

for all experiments was chosen to be 1000, based on the

length of the simulations. Finally, a hysteresis zone of 10%

of the distance between minimum and maximum rollbacks,

centered on the average, was used.

Our initial attempts at dynamic frequency control resulted

in extreme swings in rollbacks and wide oscillations as

discussed in the previous section. This was due to the X6

having frequency steps much too large (± ∼600MHz) for a

load that was already fairly balanced. The extreme rollback

swings can be seen in the trace of a simulation run, as in

Fig. 4. Measurement cycles are shown along the x-axis and

the y-axis shows the number of rollbacks in the current



Figure 4. Rollback Histories.

Table III
RESULTS WITH A PHOLD SIMULATION MODEL

Runtime (s) Rollbacks

N With DVFS Without DVFS Speedup With DVFS Without DVFS Decrease

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

∞ 19.848 0.165 18.293 0.065 -7.83% 1797.6 129.382 968.1 71.346 -46.14%

16 19.634 0.092 17.685 0.077 -9.93% 1638.6 63.861 1109.1 49.979 -32.31%

8 18.497 0.146 18.501 0.082 0.02% 1451.3 126.314 1760.4 94.394 21.30%

4 19.748 0.061 20.453 0.045 3.57% 2716.1 236.710 3833.8 84.315 41.15%

2 23.547 0.071 24.828 0.080 5.44% 7510.9 96.225 9036.1 122.477 20.31%

measurement cycle in dark blue, the output of the FIR in

light blue, and the assigned clock frequencies in red. The

measurement cycle for this particular trace was 5000. It

can clearly be seen from the figure that over(under)clocking

causes an immediate and extreme decrease(increase) in

rollbacks, which triggers wide oscillation. Obviously, the

frequency steps available on our experimental platform are

simply too large.

As mentioned in the previous section, we cannot control

the clock frequency steps, but we can control the critical

path bias. WARPED creates a SimulationObject for

each physical process being modeled and partitions them

among each LP. To artificially bias the critical path towards

a particular LP, we experimented with skewing the static

partitioning of SimulationObjects to LPs. Every N

rounds, two simulation objects were assigned to LP0 and

LP1 was skipped. We refer to partitionings with small

N as “heavily skewed” and partitionings with large N as

“lightly skewed.” N = ∞ indicates no skew. Table III shows

simulation run-times and rollback numbers for the PHold

model with various degrees of skew. For each amount of

skew tested, data was taken from 10 different simulations,



and the FIR filter size was 128. The PHold model parameters

were 200 processes, a message density of 20, a state size of

1024, and a grain of 100 [30].

Experimental data shows that speedup generally increased

with the skew of the load, as expected. The number of

rollbacks also generally decreased as the simulation times

increased, which suggests that the number of rollbacks is

indeed related to simulation efficiency. Because speedup is

possible with large frequency steps for heavily skewed loads,

we infer that speedup of more normally loaded simulations

might be attainable given smaller frequency steps. The 5%

speedup observed in the most imbalanced case was not

as dramatic as the authors had expected. In that regard,

we faced many unexpected challenges during this study.

First, the number of rollbacks sometimes varied significantly

between measurement cycles. This may possibly be offset

by running extremely lengthy simulations, decreasing the

measurement cycle, and using a larger FIR filter size.

Difficulty in avoiding oscillation even for relatively heavily

skewed loads also leads us to suspect that controlling the

clock frequency of one LP in the simulation has a greater

effect on the rollback behavior of the other LPs than we

originally believed. The benefits of balancing the rollbacks

across all LPs is also easily overstated. We assume an LP

with few rollbacks is spending more time on the critical path

than the others. Accelerating it quickly leads to an increase

in rollbacks which pushes it more off the critical path. The

greatest gains in speedup resulted from simulations in which

overclocking the LP with the least rollbacks had the least

effect on the rollback behavior of that LP. In other words,

DVFS control is most effective when it can accelerate the

LP on the critical path without moving the critical path.

These findings present many opportunities for future

work. We have presented data for a fixed set of simulation

parameters, however the effects of individual parameters

(specifically the DVFS control parameters we have proposed

in this study, namely the measurement cycle, FIR filter size,

and hysteresis zone) on simulation run-time have yet to

be examined in depth. Certain configurations of the PHold

model, or any other simulation model, may lend additional

insight on the viability of DVFS control in Time Warp

simulations. The parameters we chose for our experiments

are highly dependent on the simulation length and amount

of parallelism in the simulation model. Adaptive techniques

may be used to dynamically select optimal DVFS control

parameters for any simulation model. Finally, these ex-

periments could be repeated on a platform with smaller

frequency steps such as the Intel SCC to verify that faster

simulation times are possible for more balanced loads.

VI. CONCLUSION

We have given an overview of DVFS features available

in modern multi-core and many-core processors. We have

developed an algorithm to measure the rollback behavior

of all LPs and set core frequencies such that the critical

path is accelerated and other paths are decelerated. While

demonstrated on an AMD Phenom II X6 at less-than-

maximum clock frequencies, the proposed DVFS control

method would be most promising given a platform that

allows overclocking. Such a platform would not necessarily

suffer from overheating effects as our DVFS control algo-

rithm guarantees that some cores are underclocked whenever

others are overclocked. Our experimental data shows that

the frequency steps available on the X6 are too coarse to be

applied directly to existing Time Warp simulators without

skewing the partitioning of simulation objects. However,

data also shows that speedup is possible using coarse-grain

frequency steps for more imbalanced loads. This suggests

that speedup may be possible with a more normal partition-

ing if only fine-grain frequency steps such as those on the

Intel SCC were available.

ACKNOWLEDGMENT

Support for this work was provided in part by the National

Science Foundation under grant CNS–0915337.

REFERENCES

[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen,
J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the
parallel computing landscape,” Communications of the ACM,
vol. 52, no. 10, pp. 56–67, Oct. 2009.

[2] A. Ghuloum, “Face the inevitable, embrace parallelism,”
Communications of the ACM, vol. 52, no. 9, pp. 36–38, Sep.
2009.

[3] R. Kalla, “Power7: Ibm’s next generation power micropro-
cessor,” in Hot Chips 21, Aug. 2009.

[4] J. Howard et al., “A 48-core IA-32 message-passing pro-
cessor with DVFS in 45nm CMOS,” in Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International, 2010, pp. 108–109.

[5] Intel Press Release, Intel Corporation, “Futuristic intel
chip could reshape how computers are built, consumers
interact with their pcs and personal devices,” Intel
Press Release, Intel Corporation, Tech. Rep., Dec. 2009.
[Online]. Available: http://www.intel.com/pressroom/archive/
releases/20091202comp sm.htm

[6] I. Labs, “The SCC platform,” Intel Corporation, Tech. Rep.,
May 2010. [Online]. Available: http://techresearch.intel.com/
spaw2/uploads/files/SCC Platform Overview.pdf

[7] ——, “Intel insights at SC11,” Intel Corporation,
Tech. Rep., Nov. 2011. [Online]. Available:
http://newsroom.intel.com/community/intel newsroom/
blog/2011/11/15/intel-reveals-details-of-next-generation-
high-performance-computing-platforms

[8] R. M. Fujimoto, “Parallel discrete event simulation,” Com-
mun. ACM, vol. 33, pp. 30–53, Oct. 1990.



[9] D. Jefferson, “Virtual time,” ACM Transactions on Program-
ming Languages and Systems, vol. 7, no. 3, pp. 405–425, Jul.
1985.

[10] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege,
T. Lund-Larsen, S. Steibl, S. Borkar, V. K. De, and R. Van
Der Wijngaart, “A 48-core ia-32 processor in 45 nm cmos
using on-die message-passing and dvfs for performance and
power scaling,” IEEE Journal of Solid-State Circuits, vol. 46,
no. 1, pp. 173–183, Jan. 2011.

[11] I. Labs, “The SCC programmer’s guide,” Intel Corporation,
Tech. Rep., May 2010.

[12] D. Jefferson and P. L. Reiher, “Supercritical speedup,” in
Proceedings of the 24th Annual Simulation Symposium, A. H.
Rutan, Ed. IEEE Computer Society Press, Apr. 1991, pp.
159–168.

[13] A. Palaniswamy and P. A. Wilsey, “Parameterized Time
Warp: An integrated adaptive solution to optimistic pdes,”
Journal of Parallel and Distributed Computing, vol. 37, no. 2,
pp. 134–145, Sep. 1996.

[14] L. Auriche, F. Quaglia, and B. Ciciani, “Run-time selection
of the checkpoint interval in time warp based simulations,”
Simulation Practice and Theory, vol. 6, no. 5, pp. 461–478,
1998.

[15] J. Fleischmann and P. A. Wilsey, “Comparative analysis of
periodic state saving techniques in Time Warp simulators,”
in Proc. of the 9th Workshop on Parallel and Distributed
Simulation (PADS 95), Jun. 1995, pp. 50–58.

[16] R. Rönngren and R. Ayani, “Adaptive checkpointing in
Time Warp,” in Proc. of the 8th Workshop on Parallel and
Distributed Simulation (PADS 94). Society for Computer
Simulation, Jul. 1994, pp. 110–117.

[17] R. Rajan, R. Radhakrishnan, and P. A. Wilsey, “Dynamic
cancellation: Selecting Time Warp cancellation strategies at
runtime,” VLSI Design, vol. 9, no. 3, pp. 237–251, 1999.

[18] A. Palaniswamy and P. A. Wilsey, “Scheduling Time Warp
processes using adaptive control techniques,” in Proceedings
of the 1994 Winter Simulation Conference, J. D. Tew, S. Mani-
vannan, D. A. Sadowski, and A. F. Seila, Eds., Dec. 1994,
pp. 731–738.

[19] F. Quaglia and V. Cortellessa, “Grain sensitive event schedul-
ing in time warp parallel discrete event simulation,” in Proc.
of 14th Workshop on Parallel and Distributed Simulation
(PADS 00), May 2000.

[20] T. Som and R. Sargent, “A probabilistic event scheduling
policy for optimistic parallel discrete event simulation,” in
Proc. of 12th Workshop on Parallel and Distributed Simula-
tion (PADS98), May 1998, pp. 56–63.

[21] S. Tay, Y. Teo, and S. Kong, “Speculative parallel simulation
with an adaptive throttle scheme,” in Proc. of 11th Workshop
on Parallel and Distributed Simulation (PADS97), Jun. 1997,
pp. 116–123.

[22] I. Labs, “How to read the voltage and frequency on SCC,”
Intel Corporation, Tech. Rep., Jun. 2010.

[23] Advanced Configuration and Power Interface Specification,
4th ed., Hewlett-Packard Corporation, Intel Corporation,
Microsoft Corporation, Phoenix Technologies Ltd., Toshiba
Corporation, 2010. [Online]. Available: http://www.acpi.info/
DOWNLOADS/ACPIspec40a.pdf

[24] L. K. O. Inc, “The linux kernel archives,” Linux Kernel
Organization Inc, Tech. Rep., 2011. [Online]. Available:
http://www.kernel.org

[25] D. Brodowski and N. Golde, “Linux CPUFreq –
CPUFreq governors,” Linux Kernel, Tech. Rep. [Online].
Available: http://www.mjmwired.net/kernel/Documentation/
cpu-freq/governors.txt

[26] J. Hopper, “Reduce Linux power consumption, part 1:
The CPUfreq Subsystem,” IBM, Tech. Rep. [Online].
Available: http://www.ibm.com/developerworks/linux/library/
l-cpufreq-1/index.html

[27] V. Pallipadi and A. Starikovskiy, “The Ondemand
Governor: Past, present, and future,” in Proceedings
of the Linux Symposium, 2006, pp. 223–238.
[Online]. Available: http://www.linuxinsight.com/ols2006
the ondemand governor.html

[28] R. C. Dorf, Modern Control Systems, 6th ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1991.

[29] D. E. Martin, P. A. Wilsey, R. J. Hoekstra, E. R. Keiter,
S. A. Hutchinson, T. V. Russo, and L. J. Waters, “Redesigning
the warped simulation kernel for analysis and application
development,” in Proceedings of the 36th annual symposium
on Simulation, ser. ANSS ’03, 2003, pp. 216–223.

[30] R. M. Fujimoto, “Performance of time warp under synthetic
workloads,” in Proceedings of the SCS Multiconference on
Distributed Simulation, vol. 22. Society for Computer
Simulation, Jan. 1990, pp. 23–28.


