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Abstract: A novel optimization algorithm for stable parameter estimation and forecasting from limited inci-
dence data for an emerging outbreak is proposed. The algorithm combines a compartmentalmodel of disease
progression with iteratively regularized predictor-corrector numerical scheme aimed at the reconstruction of
case reporting ratio, transmission rate, and effective reproduction number. The algorithm is illustrated with
real data on COVID-19 pandemic in the states of Georgia and New York, USA. The techniques of functional
data analysis are applied for uncertainty quantification in extracted parameters and in future projections of
new cases.
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1 Introduction

Emerging and re-emerging infectious diseases continue to generate significant morbidity and mortality
around the world [13]. Globally, as of December 6, 2021, the ongoing COVID-19 outbreak has brought about
265,194,191 confirmed cases, including 5,254,116 deaths [35, 36]. Although many people infected with
COVID-19 have mild or no symptoms, the virus can also cause severe, even fatal illness.

Since COVID-19 is a new virus, researchers around theworld learnmore about it every day. Despitemuch
success in the application of mathematical and statistical tools to our understanding of COVID-19 progres-
sion, the key challenge remains stable estimation of important disease parameters, such as reproductive
capacity of the virus and its underlying transmission rate [9, 20, 25]. Estimating these parameters early on
allows for the real-time analysis of the effectiveness of control and prevention and enables accurate forecast-
ing of future incidence cases [12]. Whereas other system parameters, i.e., incubation and recovery rates, are
less dependent on public health policies, the effective reproduction number and the transmission rate of the
disease (denoted byR(t) and β(t), respectively) are directly influenced bymitigationmeasures. Therefore, it is
critical to develop both suitable epidemicmodels and regularized computationalmethods to reliably quantify
disease-specific parameters, particularly in the face of noise-contaminated data and substantial uncertainty
in approximate solutions [28].
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In this study, we present a numerical algorithm for stable estimation of the effective reproduction number
R(t) and disease transmission rate β(t) from COVID-19 data (early pre-vaccination stage) on confirmed new
cases and deaths, using the following version of the SIRD model introduced in [2]:

dS
dt
= −β(t) S(t)

N − D(t)
I(t), (1.1)

dI
dt
= β(t) S(t)

N − D(t)
I(t) − γI(t), (1.2)

dR
dt
= (1 − ν)γI(t), (1.3)

dD
dt
= νγI(t). (1.4)

It is important tomention that our parameter estimation/forecasting algorithm is not limited to any particular
compartmental model and/or to any particular virus. In our study, we employ incidence data for the early
stage of COVID-19 pandemic to illustrate the efficiency of the proposed method. The regularized numerical
method that we develop can be used for a broad class of models and for various emerging outbreaks. At the
early stage, little is known about the virus and our understanding of the virus is changed every day. With
limited information about an emerging disease, it is advisable to use a relatively simple model that does not
incorporate too many assumptions that may or may not prove to be true.

Equations (1.1)–(1.4) follow the progression of individuals in a population of size N between four differ-
ent states: S, susceptible to the COVID-19 virus, I, infected with COVID-19 (both symptomatic and asymp-
tomatic), R, recovered and no longer contagious, and D, deceased. The parameter γ, called recovery rate,
governs the evolution of infected people from state I to states R or D. In line with [2], we assume that the
mean value of γ is 1/5, which corresponds to the infectious period of 5 days. To account for the possibility
of the infectious period to range between 3 to 20 days [30], we conduct a sensitivity analysis with randomly
selected values of γ from a normal distribution, N(0.20, 0.02).

The second parameter ν is the fatality rate of the virus. Estimating the fatality rate is extremely difficult
since COVID-19 cases are believed to be grossly underreported (in part, due to a large number of asymp-
tomatic cases, especially among children and young adults, and at a later stage among vaccinated individu-
als). While early measurements from limited data for an emerging COVID-19 outbreak suggested ν to be as
high as 1.2%, themore recent estimates based on antibody testing point towards amuch lower value of 0.2%
(though it does increase markedly with age and risk factors). In our numerical simulations, we assume the
mean value of ν to be 0.5% [2]. For the sensitivity analysis, we randomly sample the value of this parameter
from a normal distribution, N(0.005, 0.001), to account for variation within different risk groups.

The transmission rate β(t) is defined as probability of infection given a contact between an infectious and
susceptible individual multiplied by the average rate of contacts between these groups. It is the defining rate
in evolution of any disease and one of the two components in the effective reproduction number R(t), the rate
at which susceptible agents get infected divided by the recovery rate of infected individuals at time t (see [2]),
i.e.,

R(t) = β(t)
γ

S(t)
N − D(t)

. (1.5)

The effective reproduction number of a disease varies in time, and it is directly affected by social response
and public health guidelines, by which it eventually falls under 1 for a sustained period of time needed to
stop the chain of transmission.

The paper is organized as follows. In Section 2, the constrained nonlinear minimization problem aimed
at the estimation of COVID-19 transmission rate β(t) and effective reproduction numberR(t) is formulated. In
Section 3, a modified version of the iteratively regularized predictor-corrector algorithm [22] for solving the
constrained least squares problem (CLSP) is introduced, and some unique features of Jacobian and Hessian
approximations of the nonlinear operator Φ in the CLSP are studied in Section 4. Numerical simulations
on stable estimation of disease parameters from full data sets and forecasting of new incidence cases and
daily deaths from partial data are presented in Sections 6 and 7, respectively, with uncertainty quantification
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routine outlined in Section 5. All experiments are carried out with real data on the COVID-19 pandemic in
the states of Georgia and New York, USA. Conclusions and future plans are discussed in Section 8.

2 The constrained nonlinear minimization problem

Let d(1) and d(2) be incidence data on new COVID-19 confirmed cases and deaths, respectively. Naturally, we
assume that both data sets are noise contaminated and

max{‖d(1) − d(1)δ ‖, ‖d
(2) − d(2)δ ‖} ≤ δ,

where ‖ ⋅ ‖ is the Euclidian norm inℝn and n is the number of data points in each set. Note that, according to
(1.2), the daily number of new COVID-19 cases is (see [2])

β(t) S(t)
N − D(t)

I(t) = dI
dt
+ γI(t). (2.1)

Therefore, multiplying the right-hand side of (2.1) by ψ, the unknown reporting rate, we get the number of
cases that are actually reported. On the other hand, by (1.4), the daily number of new deaths is νγI(t), and
we suppose here that for COVID-19 related deaths the reporting rate is 100%. Assume that, in a particular
region, the first COVID-19 case is reported on day t1, while tn is the last day of the study period. Let the data
for new cases and deaths, d(1)δ and d(2)δ , be reported on days t1, t2, . . . , tn. Then our goal is to recover the
unknown time-dependent transmission rate while solving the following constrained minimization problem:

min
ψ,I

f (ψ, I), f (ψ, I) := λ12
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
ψ(dIdt
+ γI) − d(1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
+
λ2
2 ‖νγI − d

(2)‖2

=
λ1
2

n
∑
i=1
(ψ(dIdt

+ γI)(ti) − d(1)i )
2
+
λ2
2

n
∑
i=1
(νγI(ti) − d(2)i )

2 (2.2)

subject to (1.1)–(1.4). In (2.2), the role of λ1 and λ2 is to balance the two terms in the cost functional in order
to ensure that the two data sets d(1) and d(2) play an equal part in minimization. From (2.2), one obtains

f (ψ, I) = λ12 ψ
2󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(
dI
dt
+ γI)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
− ψλ1(

dI
dt
+ γI, d(1)) + λ12 ‖d

(1)‖2 +
λ2
2 ‖νγI − d

(2)‖2.

In the above, ( ⋅ , ⋅ ) is the scalar product in the Euclidian spaceℝn. By the first-order necessary condition, one
concludes

1
λ1

∂f
∂ψ
= ψ
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(
dI
dt
+ γI)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
− (

dI
dt
+ γI, d(1)) = 0,

which implies

ψ =
( dIdt + γI, d

(1))
󵄩󵄩󵄩󵄩(
dI
dt + γI)
󵄩󵄩󵄩󵄩
2 . (2.3)

Substituting (2.3) into (2.2), one arrives at the following least squares problem:

min
I
{
λ1
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

( dIdt + γI, d
(1))

󵄩󵄩󵄩󵄩(
dI
dt + γI)
󵄩󵄩󵄩󵄩
2 (

dI
dt
+ γI) − d(1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
+
λ2
2 ‖νγI − d

(2)‖2} (2.4)

subject to (1.1)–(1.4). Suppose that t = a is one day before the first case is reported, that is,

a < t1 < t2 < ⋅ ⋅ ⋅ < tn < b and I󸀠(a) = I(a) = 0.

DenoteW(t) := I󸀠(t), and discretizeW(t) by using the Fourier approximation

W(t) = A0 +
N
∑
j=1
{Aj cos(2πj

t − a
b − a)
+ Bj sin(2πj

t − a
b − a)}

.
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To ensure thatW(a) = W(b) = 0, we set A0 = −∑Nj=1 Aj. This yields

W(t) =
N
∑
j=1
{Aj[cos(2πj

t − a
b − a)
− 1] + Bj sin(2πj

t − a
b − a)}

. (2.5)

For I(t), (2.5) implies

I(t) =
t

∫
a

W(s) ds =
N
∑
j=1
{Aj[

b − a
2πj sin(2πj t − ab − a)

− (t − a)]

− Bj
b − a
2πj [cos(2πj

t − a
b − a)
− 1]}, (2.6)

and from (2.6), it follows that

U(t) :=
t

∫
a

I(s) ds =
N
∑
j=1
{Aj[−
(b − a)2

(2πj)2
{cos(2πj t − ab − a)

− 1} − (t − a)
2

2 ]

− Bj
b − a
2πj [

b − a
2πj sin(2πj t − ab − a)

− (t − a)]}. (2.7)

Furthermore, to recover the shape of β(t) in (1.1)–(1.2), we project the transmission rate onto a finite subset
spanned by shifted Legendre polynomials of degree 0, 1, . . . ,m − 1, which are orthogonal on the interval
[a, b] with respect to the L2 inner product, defined recursively as follows:

x = 2t − a − b
b − a

, P0(x) = 1, P1(x) = x, t ∈ [a, b],

(j + 1)Pj+1(x) = (2j + 1)xPj(x) − jPj−1(x), j = 1, 2, . . . ,m − 2.

This gives rise to the following finite-dimensional approximation of the transmission rate:

β(t) =
m−1
∑
j=0

θj+1Pj(t). (2.8)

Define the vector of unknown state variables as

u := [A1, . . . , AN , B1, . . . , BN]T ,

and introduce the following operators:

Bi(u) := W[u](ti) + γI[u](ti), ψ(u) := (B(u), d
(1))

‖(B(u))‖2
, Φi(u) := ψ(u)Bi(u),

Ωi(u) := νγI[u](ti), i = 1, 2, . . . , n. (2.9)

According to (1.1)–(1.4),
β(t) S(t)

N − D(t)
I(t) = β(t)N − I(t) − γU(t)

N − νγU(t)
I(t). (2.10)

Thus, if one sets

Gi(θ, u) := Bi(u) − β[θ](ti)
N − I[u](ti) − γU[u](ti)

N − νγU[u](ti)
I[u](ti) g := 0, i = 1, 2, . . . , n, (2.11)

then one arrives at the following constrained minimization problem:

min
u∈ℝ2N
{
λ1
2 ‖Φ(u) − d

(1)‖2 +
λ2
2 ‖Ω(u) − d

(2)‖2} (2.12)

subject to G(θ, u) = g, G : ℝm ×ℝ2N → ℝn . (2.13)
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3 Iteratively regularized predictor-corrector algorithm

Fitting model predictions to aggregated time series of case incidence and deaths yields an ill-posed prob-
lem due to excessive noise propagation coupled with substantial underreporting of epidemic data (due to
a large number of asymptomatic and mild cases). In order to solve this ill-posed problem in a stable manner,
regularized optimization algorithms [3, 8, 10, 11, 24, 26, 27] are commonly used to minimize the cost func-
tional. Oftentimes, practical implementation of these algorithms consists in reducing (2.4), constrained by
(1.1)–(1.4), to the least squares problem over the parameter space only,

min
β
{
λ1
2 ‖J1(β) − d

(1)‖2 +
λ2
2 ‖J2(β) − d

(2)‖2}. (3.1)

To arrive at (3.1), one solves the system of differential equations (1.1)–(1.4) for the parameter-to-state
map [S, I, R, D] = [S[β](t), I[β](t), R[β](t), D[β](t)] and then substitutes I = I[β](t) into (2.4). Once (3.1) has
been derived and discretized, the unknown parameter β(t) is computed by a regularized Gauss–Newton,
Levenberg–Marquardt, or a gradient-type algorithm. Thus, in (3.1), J1 and J2 are compositions of I = I[β](t),
satisfying (1.1)–(1.4), and the observation operators

( dIdt + γI, d
(1))

󵄩󵄩󵄩󵄩(
dI
dt + γI)
󵄩󵄩󵄩󵄩
2 (

dI
dt
+ γI) and νγI,

respectively. The ODE system (1.1)–(1.4) is nonlinear. Therefore, at every step of the iterative process, the
state variable Ik = I[βk](t)needs to be calculated numerically for each current value of βk. This can noticeably
increase the computational complexity of parameter estimation, while at the same time making it even more
sensitive to the presence of noise in the input data.

In this paper, for the recovery of β(t), we implement a regularized predictor-corrector algorithm, similar
to the one developed in [22], which avoids solving (1.1)–(1.4) at every step of the iterative process, and by
doing so, it incorporates an extra layer of stability in the inversionprocedure. In this algorithm, onediscretizes
both the unknown parameter and the state variable as proposed in the previous section. In order to solve the
resulting finite-dimensional problem (2.12)–(2.13), one updates θ while freezing u, and then u is modified
while θ is kept unchanged. More specifically, given (θkuk), one transitions from θk to θk+1 by applying one step
of the preconditioned iteratively regularized Gauss–Newton (PIRGN) scheme [3, 11, 21, 24]

θk+1 = θk − [G󸀠∗θ (θk , uk)G
󸀠
θ(θk , uk) + αkT

∗T]−1{G󸀠∗θ (θk , uk)(G(θk , uk) − g) + αkT
∗T(θk − θ̄)}. (3.2)

Then, given (θk+1uk ), one uses the classical Gauss–Newton procedure [15, 16] to update uk,

uk+1 = uk − [G󸀠∗u (θk+1, uk)G󸀠u(θk+1, uk) + λ1Φ󸀠∗2 (uk)Φ󸀠2(uk) + λ2Ω󸀠∗(uk)Ω󸀠2(uk)]−1

× {G󸀠∗u (θk+1, uk)(G(θk+1, uk) − g) + λ1Φ󸀠∗2 (uk)(Φ(uk) − d
(1)
δ ) + λ2Ω

󸀠∗(uk)(Ω(uk) − d(2)δ )}. (3.3)

Note that PIRGN scheme (3.2) originates from variational regularization [26, 29] in the form

min
θ∈ℝm
{
1
2 ‖G(θ, uk) − g‖

2 +
αk
2 ‖T(θ −

̄θ)‖2},

where αk
2 ‖T(θ − ̄θ)‖

2 is a stabilizing penalty term and {αk} is a regularization sequence that tends to zero as k
approaches infinity. In practice, we terminate iterations (3.2)–(3.3) at an appropriate stopping time k = K(δ)
to ensure convergence. For iteration (3.2) to be well-defined, we assume that T is a surjective linear operator
between two Hilbert spacesℝm and X satisfying the following condition [24]: for any h ∈ ℝm,

(T∗Th, h) ≥ ζ‖h‖2, ζ > 0.

In the above, X is either finite or infinite-dimensional. As an example, T can be the operator mapping
[θ1, θ2, . . . , θm]T to β[θ](t) = ∑m−1j=0 θj+1Pj(t), where {Pj(t)} is the set of Legendre polynomials of degree
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0, 1, . . . ,m − 1. The operator T can also be used to scale selected components of the unknown vector θ if
they are expected to be of different orders of magnitude [24].

Method (3.3), on the other hand, is the classical Gauss–Newton algorithm applied to the nonlinear min-
imization problem

min
u∈ℝ2N
{
1
2 ‖G(θk+1, u) − g‖

2 +
λ1
2 ‖Φ(u) − d

(1)‖2 +
λ2
2 ‖Ω(u) − d

(2)‖2},

max{‖d(1) − d(1)δ ‖, ‖d
(2) − d(2)δ ‖} ≤ δ, (3.4)

with one exception: in (3.3), the operator Φ󸀠(uk) is replaced with Φ󸀠2(uk). The definition of Φ󸀠2(uk) and the
rationale for the replacement will be given in Section 4 below. Note that Gauss–Newton procedure (3.3) does
not need to be regularized sinceminimizing the functional ‖G(θk+1, u) − g‖2 with respect to u ∈ ℝ2N is not an
ill-posed problem: it is a forward problem in ordinary differential equations. The reader may consult [22] for
the detailed convergence analysis of a predictor-corrector algorithm, which is a slightly simplified version of
iterative scheme (3.2)–(3.3) used here.

4 Jacobian and Hessian approximation for Φ(u)
In order to enhance stability of our optimization algorithm, in this section,we take a close look at the gradient
of the functional h(u) := 1

2 ‖Φ(u) − d
(1)‖2. According to (2.9),

∇h(u) = Φ󸀠∗(u)(Φ(u) − d(1)) = Φ󸀠∗(u)(ψ(u)B(u) − d(1)). (4.1)

The Jacobian Φ󸀠(u) can be expressed as the sum of two matrices Φ󸀠1(u) + Φ󸀠2(u) in the following manner:

Φ󸀠(q) = [ ∂ψ∂u1
B(u) ⋅ ⋅ ⋅ ∂ψ

∂u2N
B(u)] + ψ(u)[ ∂B∂u1

⋅ ⋅ ⋅
∂B
∂u2N
] := Φ󸀠1(u) + Φ󸀠2(u). (4.2)

Since ψ(u) := (B(u),d
(1))

‖(B(u))‖2 , one has

∂ψ
∂uj
=
( ∂B∂uj , d

(1))‖B(u)‖2 − 2( ∂B∂uj , B(u))(B(u), d
(1))

‖B(u)‖4

=
( ∂B∂uj , d

(1)) − 2ψ(u)( ∂B∂uj , B(u))
‖B(u)‖2

, j = 1, 2, . . . , 2N.

It follows from (4.1) and (4.2) that

∇h(u) = Φ󸀠∗(u)(Φ(u) − d(1)) = (Φ󸀠1(u) + Φ󸀠2(u))∗(Φ(u) − d(1)).

Identity (4.2) implies that, for every j = 1, 2, . . . , 2N,

[Φ󸀠∗1 (u)(Φ(u) − d(1))]j = (
∂ψ
∂uj

B(u), ψ(u)B(u) − d(1)) = ∂ψ∂uj
{ψ(u)‖B(u)‖2 − (B(u), d(1))}

=
∂ψ
∂uj
{
(B(u), d(1))
‖(B(u))‖2

‖B(u)‖2 − (B(u), d(1))} = 0.

Hence, the residual Φ(u) − d(1) is in the kernel of matrix Φ󸀠1(u). This yields a simplified expression for the
gradient

∇h(u) = Φ󸀠∗2 (u)(Φ(u) − d(1))

with a reduced number of operations and, therefore, a reduced noise propagation due to unnecessary round-
ing. In consequence, we arrive at the following Hessian for the functional h(u) (see [23]):

H(u) = Φ󸀠∗2 (u)Φ󸀠(u) + (Φ󸀠󸀠2 (u) ⋅ )∗(Φ(u) − d(1)) = Φ󸀠∗2 (u)(Φ󸀠1(u) + Φ󸀠2(u)) + (Φ󸀠󸀠2 (u) ⋅ )∗(Φ(u) − d(1)).
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Assuming a reasonably small residual and to ensure that the Hessian approximation is symmetric and non-
negative definite, in our predictor-corrector algorithm (3.2)–(3.3), we approximate H(u) by

H(u) ≈ Φ󸀠∗2 (u)Φ󸀠2(u).

In the next sections, we present the results of our numerical simulations (with quantified uncertainty) from
full data sets for COVID-19 incidence cases and deaths in the states of Georgia and New York, USA.

5 Uncertainty quantification

The goal of our experiments is to estimate the disease transmission rate β(t) by solving the discretized mini-
mization problem (2.12)–(2.13) with predictor-corrector algorithm (3.2)–(3.3) over the interval [t1, tn], and
then to use the reconstructed function β(t) to calculate R(t) by formulas (1.5), (2.10), (2.8), (2.6), and (2.7).

To quantify uncertainty in the extracted reproduction numbers, we refit themodel toM = 100 additional
data sets for incidence cases and deaths (assuming Poisson error structure) [4, 6, 7], while sampling γ and ν
from normal distributions, N(0.20, 0.02) and N(0.005, 0.001), respectively, and using uniform distribution
on [0.1, 1] for β0(t). This results in M approximate reproduction curves Ri(t), i = 1, 2, . . . ,M. We treat each
reproduction curve as its own observation, and we use the technique of functional data analysis [17, 18]
to compute 95% pointwise confidence intervals for the mean function R(t) at every moment of time within
[t1, tn], i.e., such confidence intervals that the true reproduction numberR(t) falls within the interval 95%of
time for any tj, j = 1, . . . , n. Let yij denote the observation from the reproduction curveRi(t) at the time t = tj.
Consider the model

yij = R(tj) + ϵi(tj), i = 1, . . . ,M, j = 1, . . . , n,

whereR(t) is themean function and the errors ϵi(t) are independent for different i and can have within curve
correlation, that is, the correlation between ϵi(t) and ϵ(t󸀠) for any t and t󸀠 in the domain. Introduce the basis
expansion of R(t) in the following form:

R(t) =
K
∑
k=1

ckϕk(t) = c󸀠ϕ,

where ϕ = (ϕ1(t), . . . , ϕK(t))󸀠 denotes the vector of cubic spline basis functions and K = n + 2. Using the
second-order derivatives tomeasure smoothness,we estimate the coefficient vector c by solving the penalized
least square problem

min
c

M
∑
i=1

n
∑
j=1
{yij − c󸀠ϕ(tj)}2 + κ

tn

∫
t1

{D2c󸀠ϕ(t)}2 dt,

where∑Mi=1∑
n
j=1{yij − c󸀠ϕ(tj)}2 is the sumof squared residuals, κ ∫tnt1 {D

2c󸀠ϕ(t)}2 dt is the smoothness penalty,
andD2c󸀠ϕ denotes the second derivative of c󸀠ϕ. The estimate ̂c of the coefficient vector c is given by

̂c = (F󸀠F + κP)−1F󸀠 ̄y,

and the mean function is estimated as
R̂(t) = ̂c󸀠ϕ(t),

where F denotes the n × K matrix of the values of basis functions with the (i, j) element ϕi(tj), P denotes the
K × K matrix with the (i, j) element ∫D2ϕi(t)D2ϕj(t)dt, and ̄y = ( ̄y(t1), . . . , ̄y(tn))󸀠, ̄y(tj) = ∑Mi=1 yij/M. The
covariance matrix of ̂c is

Var( ̂c) = (F󸀠F + κP)−1FΣeF(F󸀠F + κP)−1/M

where Σe is the population variance-covariancematrix of the residual vector ϵ and is estimated by the covari-
ance matrix E of residuals by

Σ̂e = (M − 1)−1E󸀠E
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Then the variance of the reproduction number is

var(R̂(t)) = ϕ(t)󸀠 Var( ̂c)ϕ(t).

Based on the Central Limit Theorem,withM = 100, we assume that the estimatedmean function at each time
point approximately has normal distribution. Therefore, we calculate 95%pointwise confidence intervals for
the mean function by adding and subtracting 2 standard errors from the mean function. In other words, our
95% pointwise confidence intervals for each fixed time point are calculated by

(R̂(t) − 2√var(R̂(t)), R̂(t) + 2√var(R̂(t))).

The algorithm is implemented in the R package fda, and the default value for κ, κ = 3 ⋅ 10−8/(tn − t1), which
depends on the range of argument for the functions, is used.

6 Estimation of β(t) andR(t) from full data sets

For successful implementation of algorithm (3.2)–(3.3), one needs to find initial approximations for the Leg-
endre coefficients θ and for the Fourier coefficients u, used to discretize the unknown transmission rate β(t)
and the unknown state variable I󸀠(t), respectively. To ensure an unbiased choice of the initial guess for β(t),
we randomly select a constant θ01 from the uniform distribution on [0.1, 1] and take θ0 = [θ01, 0, 0, . . . , 0]T
to serve as initial approximation for the transmission rate expansion coefficients at every bootstrap iteration.
Note that this choice of θ0 yields β0(t) = θ01.

To find an initial guess for u, we over-fit the death wave by comprising u0 of coefficients A0j and B
0
j ,

j = 1, 2, . . . , N, that satisfy

D(t) =
N
∑
j=1
{A0j [

b − a
2πj sin(2πj t − ab − a)

− (t − a)] − B0j
b − a
2πj [cos(2πj

t − a
b − a)
− 1]}.

Here D(t) is a cubic spline interpolation of the vector d(2)δ /(γν) on the interval [a, b]. With this approach,
both θ0 and u0 will change with each additional data set used for uncertainty quantification. If one denotes
v = 2π(t − a)/(b − a) and multiplies both sides of the above identity by cos(mv), m = 1, 2, . . . , N, then one
obtains

2π

∫
0

D(a + b − a2π v) cos(mv) dv =
N
∑
j=1
{A0j

b − a
2π

2π

∫
0

(sin(jv)/j − v) cos(mv) dv

− B0j
b − a
2πj

2π

∫
0

(cos(jv) − 1) cos(mv) dv}.

This yields the following equation for B0m:
2π

∫
0

D(a + b − a2π v) cos(mv) dv = −B0m
b − a
2πm

2π

∫
0

cos2(mv) dv.

Thus, for m = 1, 2, . . . , N, one gets

B0m = −
4πm
(b − a)2

Vm , Vm :=
b

∫
a

D(t) cos(2πm(t − a)b − a )
dt.

Furthermore, if one uses the same substitution, v = 2π(t − a)/(b − a), and multiplies the expression forD(t)
by sin(mv), m = 1, 2, . . . , N, then one concludes

2π

∫
0

D(a + b − a2π v) sin(mv) dv =
N
∑
j=1
{A0j

b − a
2π

2π

∫
0

(sin(jv)/j − v) sin(mv) dv

− B0j
b − a
2πj

2π

∫
0

(cos(jv) − 1) sin(mv) dv}. (6.1)
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Identity (6.1) implies the following equation for A0j , j = 1, 2, . . . , N:

2π

∫
0

D(a + b − a2π v) sin(mv) dv = b − a2π (
A0m
m

2π

∫
0

sin2(mv) dv −
N
∑
j=1
A0j

2π

∫
0

v sin(mv) dv)

=
b − a
m [

A0m
2 +

N
∑
j=1
A0j ].

Introduce the notation Ym := ∫2π0 D(a + b−a2π v) sin(mv) dv. Then

mYm
b − a
=
A0m
2 +

N
∑
j=1
A0j and 1

b − a

N
∑
m=1

mYm = (
1
2 + N)

N
∑
j=1
A0j , (6.2)

and therefore,∑Nj=1 A0j =
2

(b−a)(1+2N) ∑
N
j=1 jYj. If oneplugs the expression for∑

N
j=1 A0j into thefirst identity (6.2),

then one has
mYm
b − a
=
A0m
2 +

2
(b − a)(1 + 2N)

N
∑
j=1
jYj . (6.3)

From (6.3), one concludes

A0m =
2

b − a[
mYm −

2
1 + 2N

N
∑
j=1
jYj].

Going back to the variable t, one arrives at

A0m =
4π
(b − a)2

[mZm −
2

1 + 2N

N
∑
j=1
jZj], Zm :=

b

∫
a

D(t) sin(2πm(t − a)b − a )
dt.

Next, given (2.9) and (2.11), we calculate Fréchet derivatives ofΦ(u), Ω(u), and G(θ, u)with respect to u and
the derivative of G(θ, u) with respect to θ. As justified in Section 4, we then replace Φ󸀠(u) in (3.3) with its
truncated version Φ󸀠2(u), given unique properties of the nonlinear operator Φ(u).

For our first numerical experiment, we take data on incidence cases and deaths for COVID-19 virus in
the state of Georgia, USA, over the period of 256 days, from February 29, 2020, when the first two cases
were reported, to November 10, 2020 (see Figures 1 and 2 for the data used and for the major public health
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Figure 1: The state of Georgia, USA, COVID-19 incidence wave, 2020
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Figure 2: The state of Georgia, USA, COVID-19 death wave, 2020

Figure 3: Georgia, USA: effective reproduction number
as functional data

Figure 4: Georgia, USA: 95% PCB for mean reproduction
number curve

decisions during this period of time) [31]. In Figure 3, a bundle of reconstructed values of the effective repro-
duction number R(t) is illustrated. It starts off with a rather high level at the onset of the outbreak. Then,
about 50 days into the process (around the timewhen some businesses are allowed to reopen), its value drops
under 1, generating a steady flow of cases in the subsequent months. Then (seemingly right after Memorial
Day weekend)R(t) becomes greater than 1, causing an alarming wave of cases, which starts two weeks later.
At the end of the study period, incidence cases are slightly on the rise yet again, and that is consistent with
the reconstructed values of the reproduction number that are just slightly greater than 1. The behavior of the
reconstructed transmission rate β(t) mimics the behavior of the reproduction number R(t) to a large extent
(Figure 5, left).

The calculated 95% pointwise confidence bands (PCB) for the effective reproduction number R(t) (Fig-
ure 4) show extremely narrow confidence intervals for the most part of the study period, which indicate that
the algorithm we used to extract the parameters from full data sets produced highly consistent results. As
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Figure 5: Reconstructed transmission rate: Georgia (left) and simulated values of γ, ν, and β0 (right)

expected, the bands are wider in the beginning of the outbreak, but they narrow down as time goes on.
This provides convincing evidence that the forecasting methods applied to this model have the potential
to generate accurate predictions. The reconstructed value of the reporting rate ψ for the state of Georgia is
0.23 (95% CI: [0.22, 0.24]), which does not come as a surprise considering a large number of mild and
asymptomatic cases.

In our experiments for the state of Georgia, for every bootstrap iteration, we take α0 = 10−3 in (3.2), but
a wide range of values from α0 = 10−1 to α0 = 10−8 can be used to get the results that are almost identical.
The convergence rate for {αk} is chosen to be αk = α0/k, the rate that gives rise to the most stable iterative
process. Iterations are terminated after 10 predictor-corrector steps. Due to very sporadic nature of reported
data on COVID-19 incidence cases and deaths, we discretize dI

dt (t) and β(t) with 30 and 8 base functions,
respectively (that is, N = 15 andm = 8). The population of the state of Georgia was reported at 10.62 million
in 2019 [33].

For the second numerical experiment, we take data on incidence cases and deaths for the COVID-19 virus
in the state of New York, USA, over the period of 255 days, from March 1, 2020, to November 10, 2020 (see
Figures 6 and 7 for the data used and for the major public health decisions during this period of time) [32].
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Figure 6: The state of New York, USA, COVID-19 incidence wave, 2020
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Figure 7: The state of New York, USA, COVID-19 death wave, 2020

Figure 8: New York, USA: effective reproduction number
as functional data

Figure 9: New York, USA: 95% PCB for mean reproduction
number curve

In Figure 8, a bundle of reconstructed values of the effective reproduction number R(t) for New York
is shown. From the graph of the bundle, we can see that the behavior of the reproduction curves varies
greatly from those in Georgia. The dramatic increase in incidence cases in the state of New York at the onset
of the virus justifies high values of the reproduction number in the beginning of the study window, result-
ing in wider confidence bands at this time, as illustrated in Figure 9. After the initial spike, 95% pointwise
confidence bands become rather narrow (but not quite as narrow as in the case of Georgia) indicating that
our algorithm produces consistent and reliable results. The bands widen yet again near the 120 day mark
(and until day 175). Evidently, this is the result of the corresponding COVID-19 data being rather chaotic.
After this period of time, we see the bands narrow for the next 50 days showing consistent confidence in the
reproduction mean value.

Overall, it appears that, with strict social distancing measures, the effective reproduction number R(t)
drops under 1 after about 45 days into the outbreak, producing the inflection point in the incidence curve
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Figure 10: Reconstructed transmission rate: New York (left) and simulated values of γ, ν, and β0 (right)

about two weeks later followed by a steady (and relatively low) flow of cases up until the end of the interval.
There is, however, a disturbing uphill trend in the incidence curve towards the end of the study period, which
causes uncertain behavior in the reconstructed reproduction number. For the reconstructed transmission rate
in the state of New York, the uphill trend over the last 100 days of the study period is even more pronounced
(Figure 10, left).

The good news is that this trend is not observed in the reported data on new deaths, indicating that,
unlike our assumption in (1.1)–(1.4), the death rate does not actually remain a constant: it goes down.While
experimentingwith NewYork data sets, for every bootstrap iteration, we take α0 = 10−2, though awide range
of values from α0 = 10−1 to α0 = 10−5 can be used to get very similar results. The convergence rate for {αk} is
chosen to be αk = α0/k, the rate that gives rise to the most rapid (yet stable) iterative process. Since the New
York data is extremely spread out, we discretize dI

dt (t) and β(t) with 16 and 12 base functions, respectively
(that is, N = 8 and m = 12). The population of the state of New York was reported at 19.45 million as of
July 2019 [34].

To address the problem of semi-convergence of computational algorithms in the ill-posed case [1, 3, 14,
26], the iterative process has been terminated after 15 predictor-corrector steps to avoid over-fitting. Accord-
ing to our model, the recovered value of the reporting rate ψ for New York is 0.063 (95% CI: [0.058, 0.067]),
which is much less and much more uncertain as compared to Georgia.

Upon comparing different choices of the penalty operator T in (3.2), it has been concluded that T∗T = I,
the identity operator in ℝm, gives rise to the most stable reconstruction of the unknown parameter θ and
the unknown state variable u. To ensure that the cost functional (3.4) is equally sensitive to d(1)δ and d(2)δ ,
we take λ1 = 1 and λ2 = 500, and λ1 = 1 and λ2 = 150 in iterative scheme (3.3) for Georgia and New York,
respectively.

Figures 5 (Georgia) and 10 (NewYork) illustrate reconstructed transmission rates β(t) (left) and the simu-
lated values of the recovery rate γ, fatality rate ν, and initial approximation for the transmission rate β0 (right).
To study the sensitivity of our model to inevitable variations in γ and ν, within each of the 100 bootstrap
iterations, we sample γ and ν from normal distributions, N(0.20, 0.02) and N(0.005, 0.001), respectively,
while using uniform distribution on [0.1, 1] for β0. We let γ follow the normal distribution, N(0.20, 0.02), to
reflect an average infectious period between 3 and 20 days. We assume the mean value of the fatality rate ν
to be 0.5% [2]. The fatality rate ν follows the normal distribution N(0.005, 0.001) to account for variation
of this parameter within different risk groups. The reconstructed values of β(t) with normally distributed γ
and ν are virtually identical to those reconstructed with constant (mean) values of γ and ν, which highlights
a very low sensitivity of β(t) to variations in COVID-19 infectious periods and fatality rates in individuals con-
tracting this disease. The reconstructed values of β(t) are also quite immune to variations of β0 ∈ [0.1, 1],
which shows that all these values of β0 are within the radius of convergence of our parameter estimation
algorithm.
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As emphasized above, the upward trend in the New York transmission rate over the last three months of
the study period is concerning. And for both states, even though the values of the transmission rate are much
lower towards the end of the interval (as opposed to what we see at the start of the pandemic), the estimated
transmission rates clearly indicate that the outbreak is far from over at this time.

7 Forecasting strategy and results

When epidemiological parameters in a mathematical model of an infectious disease are assumed to be con-
stant, the forecasting strategy of future incidence cases and/or new daily deaths is straightforward: one
substitutes the values of the parameters, recovered during the calibration period, into the differential equa-
tion (or the system of differential equations) and solves this equation/system for future values of time [22].
However, it has been established inmultiple studies [5, 19] that a transmission rate of a virus (and the result-
ing value of the effective reproduction number) is directly impacted by intervention and control (as well as
numerous other factors) and, as such, it is time dependent.

The expansion coefficients for its Legendre (or other) approximation are only accurate over the interval
of time where the epidemiological data is available. Moving forward, the Legendre approximation of the dis-
ease transmission rate β(t) is completely random and cannot be used to generate future projections of new
incidence cases. The same is true for Fourier expansions of the state variables in our disease model. Hence,
for future values of time, one needs to evaluate some parametric representation of epidemiological parame-
ters that would, in ameaningful way, extrapolate the behavior observed during the calibration period. In this
section, to forecast future COVID-19 cases, we propose parametric extrapolation of R(t) based on Weibull
functions [2].

Assume that we have complete data on incidence cases and daily deaths, d(1) and d(2), available for some
region fromdays t1 to T, where t1 is the daywhen the first COVID-19 case is reported and T represents the cur-
rent time. To forecast future incidence cases (for t > T), we propose the following strategy. First, for t ∈ [t1, T],
we use predictor-corrector algorithm (3.2)–(3.3), along with Fourier approximation for the unknown state
variables and the approximation by Legendre polynomials for the unknown transmission rate, in order to
estimate β(t), constrained by (1.1)–(1.4), and then R(t), defined in (1.5). Second, on the interval [T − τ, T],
τ < T − t1, we approximate the effective reproduction numberR(t) by a parametric function R̃(t) that is based
on Weibull specification with one regime as suggested in [2],

R̃(t) = 1 + 1
γ [

B − 1
t − t1 − C

−
B

A
(
t − t1 − C

A
)
B−1
], (7.1)

whereA > 0 is the scale parameter,B > 0 is the slope parameter, and C is the location parameter of Weibull
density. Among various other parametric representations tried by the authors, Weibull specification (7.1)
proved to be the most efficient. It allows to accurately capture the dynamic of the estimated reproduction
numberR(t) during the calibration (training) period [T − τ, T] and to extrapolate it to the forecasting period
[T, T + ε]. Parametrization (7.1) does not oversimplify the effective reproduction number R(t). Yet, it does
not add any extra features to the extrapolated values ofR(t), which may cause the change in behavior that is
not justified and that can potentially result in inaccurate forecasting.

In order to fit the function R̃(t), defined in (7.1), to the estimated values of the effective reproductionnum-
ber R(t), we use the Matlab built-in solver lsqcurvefit that implements a regularized Levenberg–Marquardt
algorithm for nonlinear optimization [15]. To enforce stability, we introduce the following notations:

ξ := t1 + C, ζ := B

AB
and η := B − 1,

which yield the modified identity
R̃(t) = 1 + 1

γ [
η
t − ξ
− ζ(t − ξ )η]. (7.2)

According to (1.2) and (1.5), one has
dI
dt
= (R(t) − 1)γI(t).
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Let I1 = I1(t) be our estimation of I = I(t) by predictor-corrector algorithm (3.2)–(3.3) on the interval [t1, T],
and let I2 = I2(t) be the projected values of I = I(t) on the interval [T, T + ε]. To find I2 = I2(t), once param-
eters ξ , ζ , and η in (7.2) have been calculated from the function R(t), one solves the differential equation
dI
dt = (R̃(t) − 1)γI(t). Thus,

I2(t) = I1(T)[
t − ξ
T − ξ ]

η
exp[− ζ

η + 1 {(t − ξ )
η+1 − (T − ξ )η+1}], t ∈ [T, T + ε]. (7.3)

This analytic solution agrees with the numerical solution, obtained by the built-in solver ode23s of Matlab.
Given (7.3), one can project future incidence cases and daily deaths using the expressions

new incidence cases ≈ ψ(dI2dt + γI2) ≈
( dI1dt + γI1, d

(1))
󵄩󵄩󵄩󵄩(
dI1
dt + γI1)

󵄩󵄩󵄩󵄩
2 R̃ γ ̃I2,

daily deaths ≈ νγ ̃I2,

respectively. In the above, the scalar product, ( ⋅ , ⋅ ), and the Euclidian norm, ‖ ⋅ ‖, are for the partition of the
interval [t1, T], and ψ is the reporting rate for new incidence cases, estimated on the interval [t1, T], where
the data d(1) is available.

In our first forecasting experiment, we use 60 days of data on new incidence cases and daily deaths in
the state of Georgia, USA, in order to forecast 30 days forward. The unknown parameters ζ , η, and ξ in the
expression for R̃(t) are estimated over a 1-week training period (from day 53 to day 60), while the unknown
reporting rate ψ is estimated based on all available data from day 1 to day 60. The reconstructed values of ζ ,
η, ξ , and ψ are illustrated in Table 1.

For every bootstrap iteration, we take α0 = 10−3, but a wide range of values from α0 = 10−1 to α0 = 10−9
can be used to get the results that are almost indistinguishable. The convergence rate for {αk} is chosen to be
αk = α0/k, the most aggressive convergence rate that maintains stability until the iterative process is termi-

N = 5, m = 6, λ1 = 1, λ2 = 1, αk = α0/k, and α0 = 10−3

ζ = −0.098 (95% CI: [−0.12, 0.00023]) η = −0.44 (95% CI: [−0.57, 0.0036])
ξ = 45 (95% CI: [35, 52]) ψ = 0.14 (95% CI: [0.088, 0.26])

Table 1: Georgia, USA: 95% confidence intervals for reconstructed parameters with 1-week training period for R(t)
(from day 53 to day 60)

Figure 11: Georgia, USA: R(t) projected 30 days forward with 1-week training period from day 53 to day 60 as functional data
(left) and 95% PCB (right)
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Figure 12: Georgia, USA: incidence cases (left) and daily deaths (right) projected 30 days forward with 1-week training period
for R(t) (from day 53 to day 60)

N = 4, m = 10, λ1 = 1, λ2 = 1, αk = α0/k, and α0 = 10−3

ζ = 0.00088 (95% CI: [1.7e − 05, 0.0048]) η = 1.1 (95% CI: [0.43, 1.9])
ξ = 1.1e + 02 (95% CI: [92, 1.3e + 02]) ψ = 0.28 (95% CI: [0.24, 0.32])

Table 2: Georgia, USA: 95% confidence intervals for reconstructed parameters with 1-week training period for R(t)
(from day 143 to day 150)

nated. The number of predictor-corrector steps in each bootstrapping loop is equal to 10. We discretize dI1
dt (t)

and β(t) with 10 and 6 base functions, respectively (that is, N = 5 and m = 6).
As evident from Figure 11, the extrapolated values of the effective reproduction number R(t) suggest

that the reproduction number will be on the rise for the duration of the forecasting period (between days 60
and 90), which is consistent with the upward trend seen in Figure 4, where R(t) is estimated from full data.
However, the actual mean values of R̃(t) are higher as compared to the corresponding values ofR(t) between
days 60 and 90, presented in Figure 4. Still, the forecasting bundle for projected new incidence cases and
daily deaths covers the reported data quite well as shown in Figure 12.

In our second forecasting experiment, we use 150 days of Georgia data in order to generate a 30-day
forecast. The unknown parameters ζ , η, and ξ in the expression for R̃(t) are estimated over a 1-week training
period (from day 143 to day 150), and the unknown reporting rate for new incidence cases ψ is estimated
based on all available data from day 1 to day 150. The reconstructed values of ζ , η, ξ , and ψ for the second
data set are illustrated in Table 2.

For every bootstrap iteration, we take α0 = 10−3. As in the case of the previous experiment, values from
α0 = 10−1 to α0 = 10−9 can also be used. The regularization sequence {αk} converges at the rate αk = α0/k,
and the number of predictor-corrector steps in each bootstrapping loop is equal to 10. We discretize dI1

dt (t)
and β(t)with 8 and 10 base functions, respectively (that is, N = 4 andm = 10), andwe take λ1 = λ2 = 1. Note
that the range of acceptable parameters is sufficiently broad, and simulations with, for example, N = 6 and
m = 12, λ1 = 1, and λ2 = 2 generate forecasting bundles that are virtually identical. From Table 2, one can
see that, as we use more data, the value of ψ, the reporting rate for new incidence cases, is getting closer to
the reporting rate recovered from full Georgia data set (and the confidence interval is getting narrower). As
stated in Section 6, for the full data set, ψ = 0.23 (95% CI: [0.22, 0.24]).

As shown in Figure 13, at the end of the calibration period, new incidence cases and daily deaths begin
to slide down. This trend is adequately captured and carried into the forecasting interval (from day 150 to
day 180), with both forecasting bundles decreasing at the rate that is consistent with reported data. As com-
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Figure 13: Georgia, USA: incidence cases (left) and daily deaths (right) projected 30 days forward with 1-week training period
for R(t) (from day 143 to day 150)

Figure 14: Georgia, USA: R(t) projected 30 days forward with 1-week training period from day 143 to day 150 as functional data
(left) and 95% PCB (right)

pared to the reporteddata, the estimatedmeanvalues for newcases anddeaths are accurate,withnarrowcon-
fidence intervals. The corresponding values of the projected reproduction number are presented in Figure 14.

Next, we conduct numerical simulations with partial data for the state of New York, USA. Initially, we use
only 20 days of data in order to forecast 30 days forward. To capture the most recent trend in the behavior of
the reproduction number and to extrapolate it further, the unknown parameters ζ , η, and ξ in (7.2) are esti-
mated over a 1-week training period from day 23 to 30, while the unknown reporting rate for new incidence
cases ψ is estimated based on all available data from day 1 to day 20. The reconstructed values of ζ , η, ξ , and
ψ for this data set are illustrated in Table 3.

For all 100 bootstrap iterations, we take α0 = 10−5. The sequence {αk} goes to zero at the rate α0/k, and
each predictor-corrector step is terminated after 10 iterations. To reduce noise propagation, we discretize
dI1
dt (t)with 6 Fourier functions (i.e., N = 3), while β(t) is approximated by a linear combination of 8 Legendre
polynomials (m = 8). Given small values of d(2) during the calibration period, we put a little more weight on
the third term in the cost functional (3.4) by setting λ2 = 2 and λ1 = 1.
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N = 3, m = 8, λ1 = 1, λ2 = 2, αk = α0/k, and α0 = 10−5

ζ = −0.17 (95% CI: [−0.19, −0.16]) η = −0.023 (95% CI: [−0.034, −0.017])
ξ = 17 (95% CI: [17, 17]) ψ = 0.9 (95% CI: [0.54, 1.3])

Table 3: New York, USA: 95% confidence intervals for reconstructed parameters with 1-week training period for R(t)
(from day 13 to day 20)

Figure 15: New York, USA: incidence cases (left) and daily deaths (right) projected 30 days forward with 7-day training period for
R(t) (from day 13 to day 20)

With very few new deaths reported daily between day 1 and day 20, the algorithm fails to accurately
estimate the reporting rate for incidence cases ψ. While full data for the state of New York suggest that, on
average, only 6.3% of new COVID-19 cases get reported (that is, ψ = 0.063 (95% CI: [0.058, 0.067]), the
approximate value of ψ, calculated from 20 data points, is 0.9 (95% CI: [0.54, 1.3]). This results in substan-
tial overestimation of new incidence cases during the second half of the forecasting period (Figure 15). Yet, in
the first 15 days, the projected values for new incidence cases are accurate. For daily deaths, the forecasting
curves underestimate the data for the entire 30 day interval. They do not capture a spike that occurs between
35 and 40 days, nor do they follow a huge jump that happens on day 46. On the bright side, the mean value
for daily deaths does predict the uphill trend towards the end of the study period, even though the projected
values are slightly lower than the actual data.

Another reason for inaccurate incidence forecasting (apart from the overestimated value ofψ) is a consid-
erable variation in the behavior of the reproduction number during the training time as shown in Figure 16.
That makes it difficult to predict how the behavior will change in the upcoming 30 days. And, of course, the
currentmodel does not allow to account for any changes in control policies after the calibration period. So, in
a way, the forecasting mean only predicts what will happen under current mitigation measures. If, however,
thesemeasures becomemore efficient, then the actual number of new cases is lower than its projected value.
Hence, the best forecasting strategy is to recalculate projected values every week (or 10 days) as new data
become available.

In our last experiment, for the sake of forecasting 1 month forward, we use 130 days of data on new
incidence cases and daily deaths in the state of New York, USA. The unknown parameters ζ , η, and ξ for the
projected reproduction number R̃(t) are estimated over a 1-week training period (from day 123 to day 130),
while the unknown reporting rate ψ is estimated based on all available data for 130 days. The reconstructed
values of ζ , η, ξ , and ψ are given in Table 4.
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Figure 16: New York, USA: R(t) projected 30 days forward with 7-day training period from day 13 to day 20 as functional data
(left) and 95% SCB (right)

For every bootstrap iteration, we take α0 = 10−5 with αk = α0/k in order to carry out 10 predictor-
corrector steps. We discretize dI1

dt (t) and β(t) with 8 and 9 base functions, respectively (that is, N = 4 and
m = 9). As one can see in Figure 17, during the forecasting period, the effective reproduction number is
projected to remain nearly flat with its values close to the critical threshold level R̃(t) = 1. Given this pattern,
R̃(t) is expected to generate a steady flow of new incidence cases and daily deaths, which is fully consistent
with the reported data. Figure 18 (left) shows that the forecasting bundle covers most of new incidence data

N = 4, m = 9, λ1 = 1, λ2 = 1, αk = α0/k, and α0 = 10−5

ζ = −0.12 (95% CI: [−0.13, −0.089]) η = −0.55 (95% CI: [−0.63, −0.52])
ξ = 1.2e + 02 (95% CI: [1.1e + 02, 1.2e + 02]) ψ = 0.19 (95% CI: [0.16, 0.23])

Table 4: New York, USA: 95% confidence intervals for reconstructed parameters with 1-week training period for R(t)
(from day 123 to day 130)

Figure 17: New York, USA: R(t) projected 30 days forward with 7-day training period from day 123 to day 130 as functional data
(left) and 95% PfCB (right)
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Figure 18: New York, USA: incidence cases (left) and daily deaths (right) projected 30 days forward with 7-day training period for
R(t) (from day 123 to day 130)

points between days 130 and 160, and Figure 17 (right) illustrates a rather good match of the corresponding
projection curves to the daily deaths data. The reporting rate ψ, calculated from 130 data points, is getting
closer to the one estimated from the full data set (0.063 (95% CI: [0.058, 0.067]).

8 Conclusions and future plans

In this paper, we introduce a novel optimization algorithm for stable parameter estimation and forecasting
of future incidence cases for COVID-19 outbreak in the states of Georgia and New York, USA. All experi-
ments are carried out with real data on the COVID-19 pandemic in the USA. The algorithm combines a ver-
sion of the SIRD compartmental model of disease progression, proposed in [2], with iteratively regularized
predictor-corrector numerical scheme [22], aimed at the reconstruction of COVID-19 reporting ratio ψ, trans-
mission rate β(t), and effective reproduction numberR(t). Our creative forecasting approach uses the idea of
Weibull functions [2] in order to approximate R(t), which allows to closely follow the dynamic of the com-
puted reproduction number during the calibration time [T − τ, T] and then to extrapolate it to the forecasting
period [T, T + ε].

It is evident that our ability to quantify the reporting rate for COVID-19 daily incidence cases and deaths
hasmade it possible to improve the accuracy of future projections and to better assess the efficiency of govern-
ment interventionmeasures during various phases of the ongoing pandemic. At the same time, our numerical
simulations have shown that a constant death rate ν is an oversimplification, which, at times, resulted in
a mismatch between predicted values of future new incidence cases and daily deaths. Moving forward, apart
from the terms accounting for the availability of the vaccine, a more realistic parametric representation for
COVID-19 death rate needs to be incorporated in the SIRD model. For uncertainty quantification, we plan to
explore the possibility of using the functional data analysis to compute 95% simultaneous (uniform) confi-
dence bands for the mean value of R(t), i.e., such confidence bands that the true curve falls entirely within
the band 95% of the time (as opposed to pointwise confidence intervals that have been constructed in this
paper).
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