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Abstract. Adaptive optics (AO) images from the W. M. Keck Observatory have delivered
numerous influential scientific results, including detection of multi-system asteroids, the super-
massive black hole at the center of the Milky Way, and directly imaged exoplanets. Specifically,
the precise and accurate astrometry these images yield was used to measure the mass of the
supermassive black hole using orbits of the surrounding star cluster. Despite these successes,
one of the major obstacles to improved astrometric measurements is the spatial and temporal
variability of the point-spread function delivered by the instruments. Anisoplanatic and Instru-
mental Reconstruction of Off-axis PSFs for AO (AIROPA) is a software package for the astro-
metric and photometric analysis of AO images using point-spread function fitting together with
the technique of point-spread function reconstruction. In AO point-spread function reconstruc-
tion, the knowledge of the instrument performance and of the atmospheric turbulence is used to
predict the long-exposure point-spread function of an observation. We present the results of our
tests using AIROPA on both simulated and on-sky images of the Galactic Center. We find that
our method is very reliable in accounting for the static aberrations internal to the instrument, but
it does not improve significantly the accuracy on sky, possibly due to uncalibrated telescope
aberrations. © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
JATIS.8.3.039002]
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1 Introduction

Adaptive optics (AO) is a technology used in ground-based optical and near-infrared (NIR)
astronomy to compensate for the blurring effects of the Earth’s atmosphere (see Ref. 1 for a
comprehensive review on the subject). Atmospheric turbulence deteriorates the flat incoming
wavefront of light and the corresponding diffraction-limited point-spread function (PSF) of a
telescope into a broad, seeing-limited PSF, with a width set by the amount of turbulence.
AO corrects the aberrations using wavefront sensing cameras and deformable mirrors operating
at milli-second timescales. By restoring the diffraction-limited full width at half maximum
(FWHM) of the PSF, AO achieves observations with a higher spatial resolution and signal-
to-noise ratio than seeing-limited observations.
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One of the most successful applications of AO in astronomy has been the study of the
Galactic Center (GC) at the W. M. Keck Observatory. The compact radio source Sgr A* at the
center of our Galaxy” has an NIR counterpart surrounded by a cluster of high proper motion,
orbiting stars.>> AO has been used to resolve this dense environment, and make precise astro-
metric, photometric, and spectroscopic measurements of individual stars for the past 20 years.
These measurements have been used to prove that a supermassive black hole (SMBH) resides at
the center with a mass of 4.02 X 10° M, at a distance of 8 kpc,®® surrounded by a young nuclear
star cluster whose formation is still not well understood, an old nuclear star cluster with an
unusual metallicity distribution, and short-period orbiting stars”'” that have been used to test
general relativity and other theories of gravity.'!

One of the primary limitations to studies with AO of crowded fields are the systematic errors
caused by the imperfect knowledge of the PSF. The accuracy achievable by AO instrumentation
in astrometry, photometry, and the measurement of spectra is degraded if the PSF model used for
fitting is not representative of the data.'>~'® One of the most difficult aspects of the PSF to model
is the spatial variability over the field of view (FOV). The main sources of field-dependent PSF
variation are uncorrected atmospheric turbulence'” and non-common path aberrations.'® In sin-
gle-conjugate AO systems, such as the one at Keck, the correction is optimized in the direction of
the guide star and deteriorates rapidly outside a radius of several arcseconds, an effect known as
angular anisoplanatism.'® This is caused by the loss of correlation between the wavefront mea-
sured in the direction of the guide stars and the wavefront corrected in a different direction. The
effect is the elongation of the PSF in the direction of the guide star. The magnitude of the angular
anisoplanatism depends on the distance from the guide star, on the vertical distribution of the
atmospheric turbulence, and on the elevation angle of the telescope.

One solution to model a field-dependent PSF is to use many bright and isolated stars to
measure it at different field positions.*! The more the PSF varies, the larger the required num-
ber of these “PSF stars.” In the GC FOV of NIRC2 (Near-InfraRed Camera) and OSIRIS (OH-
Suppressing InfraRed Imaging Spectrograph), two of the instruments served by the Keck AO
system, there are only a dozen of suitable PSF stars, not enough to characterize the observed
spatial variation. In addition, the extreme degree of crowding in the region does not allow a clear
measurement of the profile of most of them. With just a limited number of sources available,
so far only a constant PSF has been used for PSF fitting of the Keck observations.

An alternative to the direct measurement of the PSF is to predict it by modeling the optical
system and the atmospheric turbulence using the technique of PSF-reconstruction.’*** While
this approach has been proved both in theory and on sky,>*’ it has not been used consistently
for scientific observations. Furthermore, the off-axis variations of the PSF are not predicted and
must be modeled.

Anisoplanatic and Instrumental Reconstruction of Off-axis PSFs for AO (AIROPA) is an
PSF-fitting software with field-dependent PSF-reconstruction, developed with the goal of im-
proving the accuracy of the GC astrometry and photometry with NIRC2, the Keck AO imager.
AIROPA models two components of the PSF variability—the instrumental aberrations and the
atmospheric aberrations—and can be used to analyze NIRC2 and OSIRIS images, which are the
two instruments fed by the Keck AO systems.

AIROPA is described in a series of papers: an overview,”® details of the instrumental mod-
eling,” and on-sky testing in a wide range of atmospheric conditions.*” In this paper, we discuss
the testing of AIROPA with simulated and on-sky NIRC2 images. In Sec. 2, we outline the
operating principles of AIROPA on NIRC2 images. The instrumental and astronomical data
used for this paper are introduced in Sec. 3. In Sec. 4, we present the astrometric and photometric
analysis with AIROPA of several simulated images, while in Sec. 6 we use our software on real
on-sky images of the GC taken with NIRC2. Section 7 discusses the results of our tests of
AIROPA’s performance.

2 AIROPA

AIROPA reconstructs the PSF for an image through a combination of (1) empirical extraction
from stars in the image and (2) model prediction from atmospheric turbulence profiles and
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Fig. 1 Diagram of AIROPA in variable-PSF mode. The elements represented by a parallelo-
gram are star catalogs. Blue items are produced by our modified version of StarFinder, green by
ARROYO, and red by the NIRC2 image reduction pipeline.

instrumental aberration maps. The AIROPA modules for star detection, empirical PSF extrac-
tion, and PSF fitting are built upon StarFinder,’' an IDL program that extracts stellar astrometry
and photometry from focal plane images using a single PSF over the whole image. AIROPA
improves on StarFinder by building and fitting a grid of reconstructed, spatially variable PSFs
defined across the FOV. It also uses an improved algorithm to smooth the PSF halo and to make
it converge to zero at the edges, by clipping the values that are below the noise level and that are
not contiguous to the rest of the PSF model.

AIROPA offers two alternative approaches to PSF modeling. The classical single-PSF
mode uses StarFinder to fit every star in an image using the same PSF model, empirically
extracted from the median of the normalized profiles of a user-selected set of PSF reference
stars. The variable-PSF algorithm (Fig. 1) uses instead a grid of different PSFs across the
FOV, built from a combination of the empirically extracted PSF and a field-dependent model of
anisoplanatic and instrumental aberrations.?®

The PSF of an exposure taken at the time #, and at the position r in the NIRC2 FOV, can be
described as the convolution of the on-axis (r = 0) PSF with an instrumental and atmospheric
component that characterize its spatial variability:

PSF(r, 1) = PSFy(t)  PSFypy (I, 1) % PSFqu (r. 1). )

For faster computation and easier manipulation of the terms, we use the convolution theorem
with the optical transfer function (OTF), defined as the Fourier transform of the PSF:

OTF(r, 1) = OTFy(f) - OTFyp(r. 1) - OTF,q (r. 7). )

The OTF;,,; and OTF,,,, are the ratios of the OTF at the position r respect to the one on-axis
OTF,, caused by instrumental aberrations and AO angular anisoplanatism, respectively. The
OTF is composed of a real part (called the modulation transfer function, or MTF) and an imagi-
nary part (called the phase transfer function).

The NIRC?2 contribution to the OTF can be considered constant with time during one year of
observations of the GC (see Sec. 5), except for the position angle of the telescope pupil as seen
by the instrument, which changes between exposures as the telescope tracks the target during
the night. OTF,,, is measured typically once a year at several positions in the NIRC2 FOV
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(see Sec. 3.2). The OTF ratio is then masked using the telescope pupil rotated by the position
angle it had at the time of the exposure,”’ recorded in the NIRC2 FITS image header.

The atmospheric factor OTF,, is calculated on a grid within the FOV using the ARROYO
code,*”> which models the angular anisoplanatism produced by the Keck AO system. This pro-
gram requires knowledge of the position of the natural guide star (NGS) and laser guide star
(LGS) relative to the frame, as well as the turbulence profile measured at the time of the expo-
sure (Sec. 4.1).

Last, the spatially constant OTF,, of the exposure is extracted empirically from the PSF stars.
Each star’s individual, off-axis PSF is Fourier-transformed into OTF; = F{PSF,}. Following
Eq. (2), the on-axis OTF; of a star can be computed by removing the instrumental and atmos-
pheric components:

- OTF,(r, t)
~ OTFjp(r, t) X OTF (1, 1)

OTF,(1) 3

The OTF, of an image is the average of the OTF  from the set of selected PSF reference stars.

Once all three OTF components are in place, the OTF(r, ) for a position in an exposure is
obtained using Eq. (2), and the PSF(r, ¢) is calculated as its inverse Fourier transform. The final
PSF is cut to a diameter of 150 px (1.5"), since the reconstruction beyond this distance is impre-
cise, given the typical exposure time, brightness and number of PSF stars of our observations.

StarFinder cross-correlates the reconstructed PSF with the image to identify the stars in the
field. Some of them are spurious detections of speckles, and are removed from the list, based on
the magnitude difference and proximity to other stars. The catalog is then used to fit the recon-
structed PSF by minimizing the least-squares error between the data and the model. Objects with
poor fittings, such as galaxies or cosmic rays, are dismissed. The catalog so obtained can be used
to subtract from the image the sources close to the PSF stars, yielding a more accurate PSF and
detections. For our analysis, we repeat this iteration three times before reaching the final catalog
of sources.

3 Data to Validate AIROPA

3.1 Instrument Description

The Keck LGS AO System consists of a pair of similar single-conjugate AO instruments
mounted on a Nasmyth platform of both Keck I and II telescopes.** It employs both an artificial
LGS and a natural star for measuring the tip—tilt modes only (T/T star). Each system delivers a
correction in the NIR using a single deformable mirror and a tip—tilt mirror to correct the
aberrations. The two systems serve different scientific instruments. For this paper we concentrate
on the system on Keck II that serves the NIRC2 imager. Its 1024 x 1024 pixels cover a FOV
of 10.2” with a scale of 9.942 maspx~'.>* The detector is an Aladdin IIT InSb with a gain of
4 e~ ADU™! and a dark current of 0.1 e~ px~!' s7!. NIRC2’s read noise is 60 e~ when using a
Fowler sampling® of 8 (the setting typically used with NIRC2).

3.2 Phase Maps to Calibrate Instrumental Aberrations

The instrumental aberrations of the AO system and imager are characterized by phase maps
measured using out-of-focus images of a fiber source at 81 positions (on a 9 X 9 grid) in the
NIRC2 FOV.***37 The phase maps were recovered from the fiber images using the Gerchberg-
Saxton algorithm,™ the same method used for the image sharpening of the instrument.

In our tests, we have analyzed the composite images of the in focus calibration fiber taken
with NIRC2 in 2017 and 2018 (Fig. 2). For the latter, the fiber was positioned in a sparse con-
figuration and not on a grid. The most noticeable pattern of aberrations is the elongation of the
PSF similar to tangential astigmatism, along the direction of the center of the field (Fig. 3).

Instrumental OTFs (Fig. 4) are calculated from the 2017 grid of phase maps decomposed
using principal component analysis and then projected on a 33 X 33 grid by cubic convolution
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Fig. 2 Composite images of the AO System calibration fiber in focus, taken by NIRC2 in different

years: (a) 2017 and (b) 2018. The fiber light is only impacted by the optics in the AO system and the
NIRC2 instrument.
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Fig. 3 Zoomed-in views of the left panel of Fig. 2 with logarithmic color scale, showing images of
the calibration fiber at the top-left (a), top-right (b), bottom-left (c), and bottom-right (d) corners. All
four PSFs are a result of the AO+NIRC2 optical system, and are clearly elongated in the direction
of the center of the FOV.

a) Instrumental b) Atmospheric

Fig. 4 Instrumental (a) and atmospheric (b) MTF sampled at different field positions across the
10” x 10” FOV of NIRC2. The color scale is linear, normalized between 0 (blue) and 1 (red). The
range of angular frequencies of each MTF is +70 arcsec™'. The instrumental MTF was taken in
2017. The atmospheric MTF is calculated for a turbulence profile with 0.65” seeing.

interpolation. The grid is upsampled from the original 9 X 9 to provide a smoother transition
between reconstructed PSFs. The MTFs shown in Fig. 4 show the ability of the optical system
to reproduce the contrast of two-dimensional spatial frequencies. The highest frequencies are at
the edge of each panel. The wider the MTF, the smaller the PSF associated to it, resulting in
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Fig. 5 MTF at three field positions of the NIRC2 FOV: center (a), corner (c), and halfway between
the two (b). The Instrumental and atmospheric MTF are compared to the diffraction limit of a cir-
cular aperture with the diameter of the Keck telescope.

NIRC2 exposures with higher resolution. As shown in Fig. 5, the NIRC2 MTF is close to the
diffraction limit in most of the FOV, with considerable deviations only in the corners of the field.

In Sec. 5, we use Fig. 2 also to test the two AIROPA modes, by fitting the in-focus fiber
images with the instrumentation-only PSF.

3.3 On-sky Images for Testing AIROPA

For the tests with on-sky data, we have used AIROPA on 116 NIRC2 images of the GC taken
with NIRC2,%*” each image made of 10 exposures of 2.8 s coadded. All images have been taken
with the Kp filter (4, = 2.1245 ym) and an example exposure is shown in Fig. 6. This is the
principal band used for astrometry of the GC at Keck because, compared to shorter wavelengths,
the PSF has a higher Strehl ratio (SR), producing a higher signal-to-noise ratio for the stars. We
have chosen to analyze the night between August 22, 2017, and August 23, 2017, HST, because
of the low median seeing of 0.69” during the observation of the GC, despite it being at the
beginning of the night, when the seeing is typically stronger (Fig. 7). Since a strong atmospheric
turbulence has the effect of smoothing the PSF of a long exposure, the good seeing allows us to
evaluate how well the instrumental aberrations are corrected. The GC dataset was reduced using
our standard NIRC2 pipeline to remove instrumental signatures, such as flat fielding, bad pixel
masking,” and correction for geometric distortions.>**!

3.4 Star Catalog for Simulated Images

In addition to the observed images, we have created a simulated NIRC2 image of the GC using
the most recent catalog of known stellar sources derived from observations with Keck.*’ Of these

-40 -2.0 0.0 20 4.0
X (II)

Fig. 6 A NIRC2 exposure of the GC taken on August 22, 2017 with the K p filter (FWHM =71 mas,
SR = 0.25).
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Fig. 7 Seeing measured by the DIMM instrument (see Sec. 4.1) during the night of the GC
observation.
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Fig. 8 Luminosity function of the stars used to simulate the GC. Magnitudes are in the Kp filter.

stars, 1652 have their profile completely or partially within the FOV, with the luminosity func-
tion shown in Fig. 8.

4 Simulations to Validate AIROPA

For our initial tests of AIROPA, we have generated NIRC2 images of point sources. The use of
simulated images allows for an accurate measurement of the performance of AIROPA in con-
trolled conditions, where the known input position and luminosity of the sources are compared to
the values extracted by AIROPA. All images have been simulated at A = 2.1245 um, the central
wavelength of the NIRC2 Kp filter. All reported magnitude measurements are instrumental, not
calibrated to a standard photometric system. The grid of input PSFs has been calculated from the
instrumental phase maps, atmospheric turbulence profile and reference PSF described in
Secs. 3.2, 4.1, and 4.2, respectively.

Synthetic images have been produced with the python package MAOSI (Make Adaptive
Optics Simulated Images) (github.com/jluastro/maosi), which uses as inputs a catalog of star
positions and intensities, an PSF grid, and relevant parameters of the imaging system (read noise,
background flux, gain, detector size, and pixel scale), together with the exposure time. Saturation
of the detector and non-linearity response are not simulated.

When the simulated image has a spatially variable PSF, the profile of a star at a position in the
FOV is computed using a bilinear interpolation of the PSF grid. Then, the sub-pixel positioning
of the PSF onto the detector pixel grid is calculated using a bilinear spline interpolation. For all
simulated images, we have used 200 coadds of 2.8 s exposures.
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4.1 Turbulence

To model the atmospheric PSF, AIROPA uses information on the seeing and the altitude profile of
the turbulence layers C2** taken simultaneously to the science data, or within a few minutes.>
These parameters are provided, respectively, by the DIMM (differential image motion moni-
tor)** and MASS (multi aperture scintillation sensor)**° instruments of the Mauna Kea
Atmospheric Monitor at the Canada-France-Hawaii Telescope. We have also employed a single
DIMM and MASS measurement from the same night to generate synthetic images for testing, with
a seeing of 0.65”. The corresponding atmospheric OTF grid simulated by AIROPA is shown in the
right panel of Fig. 4. These MTFs are considerably smaller than the instrumental ones in the left
panel-as can be seen in Fig. 5—indicating that the atmosphere is the limiting factor to the spatial
resolution of our observations.

4.2 Reference PSF

To generate a synthetic PSF and simulate a NIRC2 frame, we need to provide AIROPA with a
reasonable model of the PSF containing the aberrations common to all stars in the FOV (see
Sec. 2). We have extracted one from a stack of 72 LGS NIRC2 images of a bright star in a binary
system with 20” of separation. The companion star was used as the NGS, with its magnitude
and distance from the science field comparable to the star USNO-A2.0 0600.28577051
(17"45™408.72, -29°0"11".2) (mg = 13.8 mag), which is typically employed in GC observa-
tions to measure tip—tilt on the Keck AO System.’

4.3 PSF Fitting

First, the baseline astrometric and photometric performance of AIROPA was determined using
simulations of bright sources in a sparse field with an PSF that does not change across the FOV.
The same PSF grids used to simulate the images are then employed for the PSF-fitting. Because
of the optimal PSF-fitting conditions (high signal-to-noise ratio of ~1000, no crowding, uniform
PSF, no PSF extraction), the residuals in position and brightness are interpreted as systematic
errors from the underlying StarFinder code and the approximations that it uses.

The center of the instrumental PSF grid is used as the uniform PSF. We have produced an
image with an irregular 7 X 7 grid of point sources (Fig. 9). The x and y coordinates of the stars
have been substantially deviated from a perfect grid by adding a random value with uniform
distribution of +£0.5”. Tt was done to avoid a regular pattern of stars that could be mistaken
for a feature of the PSF. If most stars have the halo of other stars in the same relative position,
the algorithm extracting the PSF will mistake this additional light as part of the model.

The image was then analyzed using the single-PSF mode of AIROPA, using all 49
sources as PSF stars. The astrometric residuals are defined as the difference between the input
and output positions in two directions: Ax, Ay. The average astrometric residuals, when injecting

-40 -20 00 20 4.0
X(II)

Fig. 9 Simulation of a NIRC2 image of bright sources with uniform and instrumentation-only PSF.
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Fig. 10 Quiver plot (a) and position dispersion (b) of the astrometric residuals of simulated bright
sources created with a uniform PSF and extracted with AIROPA in single-PSF mode. The input
PSF is from an observed on-axis fiber source image.

with a single PSF and recovering with a single PSF, are Ar = 1/Ax? + Ay? is 6.2 x 1073 mas.
Differences between the input and output positions are shown in Fig. 10. The extracted pho-
tometry too is extremely consistent with the input values, with the average of the absolute photo-
metric residuals [Amy | at 2 x 10~* mag. Ar and Amy p have very small values because we have
removed almost completely random noises and systematic errors from the measurements, leav-
ing only the pixel sampling error. They represent therefore the best astrometric and photometric
precision possible in ideal conditions with AIROPA.

4.4 PSF Spatial Variability

Accurate PSF-fitting of images with an AO-corrected extended FOVs requires the correct map-
ping of the spatial variations of the PSF. To characterize the ability of AIROPA to reconstruct and
fit variable PSFs, we have generated two images similarly to the one in Fig. 9, except for the use
of a variable PSF. In the PSF-reconstruction algorithm of AIROPA, the instrumental and atmos-
pheric OTF ratio grids are calculated independently and then are combined. The first of the
synthetic frames is built from the instrumental OTF only, while the other simulates also atmos-
pheric aberrations. The atmospheric parameters used were derived from the data described in
Sec. 4.1. The LGS is simulated at the center of the frame and the T/T star is on the pixel position
(=391, 2463). The zenith angle is 45 deg. This configuration reproduces typical NIRC2 obser-
vations of the GC, with the star USNO-A2.0 0600.28577051 for tip-tilt sensing.

When using AIROPA in variable-PSF mode with the instrumentation-only image, the
average astrometric and photometric residuals are 1.9 X 10~! mas and 5.5 x 10~ mag, respec-
tively. When the atmospheric OTF is also included, the two values are Ar = 1.9 x 10~! mas and
|Amg,| = 6.1 X 10~% mag. The residuals are comparable between the two tests (left and central
columns of Fig. 11), but are significantly larger than with a constant-PSF image in Sec. 4.3.

To understand the deterioration of the results when dealing with a variable PSF, we have to
consider how the PSF model is used differently for simulating the image and fitting it. While
MAOSI smooths the PSF between positions of the grid to reproduce its gradual variation as in
real instruments (see Sec. 4), StarFinder and several other PSF-fitting software programs use the
nearest neighbor approach. The discrepancy between the PSF used to generate a star and to fit it,
causes a loss in accuracy of more than an order of magnitude in both astrometry and photometry.
This effect can be better appreciated by looking at the increment in residuals as a function of the
distance between a star and the center of the grid cell of its PSF (Fig. 12). While a finer grid
would reduce these errors, the maximum practical grid resolution is determined by the density of
the instrumental phase map (Sec. 3.2).

We then run AIROPA in single-PSF mode on the variable-PSF simulated images to
replicate the current on-sky analysis. This allows us to evaluate how large of an error is produced
by ignoring the PSF spatial variability. The results can be seen in the right column of plots in
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Fig. 11 Astrometric (first and second row) and photometric (third row) residuals in Kp of simulated
bright sources with non-uniform PSF. The use of a spatially variable PSF (first and second column)
produces better residuals than a uniform one (right column).
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Fig. 12 Astrometric (a) and photometric (b) residuals of simulated bright sources with non-
uniform, instrumental and atmospheric PSF, after using variable-PSF mode, as a function
of their distance from the center of the corresponding PSF grid cell. Magnitude errors are in the
Kp filter.
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Fig. 13 Astrometric (top row) and photometric (bottom row) residuals in Kp of a grid of stars
with instrumental and atmospheric variable PSF, as function of distance from the center of the
image.

Fig. 11. The astrometric and photometric residuals increase to 1.2 mas and 3.9 x 1072 mag,
respectively. The quiver plot for the single-PSF mode in Fig. 11 shows a dominant radial
pattern for the astrometric residuals. The correlation between the single-PSF residuals and
the distance of the stars from the center of the FOV is more obvious from the left column of
panels in Fig. 13). AIROPA’s variable-PSF mode ability of making residuals more uniform
is shown on the right column.

4.5 GC Simulations

A more faithful simulation of the systematic errors that AIROPA could face with on-sky images
requires sources with a realistic luminosity function and density. We have chosen to use the GC
as a representative target for observations with NIRC2 because of its crowding and the wide
range of magnitudes. The purpose of this test is to assess the combined accuracy of PSF recon-
struction and PSF fitting algorithms in AIROPA. The simulation of the central 10” of the
Galactic SMBH (Fig. 14) uses the same conditions (zenith angle, DIMM and MASS profile
data, and LGS and T/T star positions) of the tests in Sec. 4.4.

As in the previous section, the variable-PSF mode provides a clear improvement on the
astrometry and photometry over the single-PSF mode. The image after subtracting the stars
with a variable PSF (right panel of Fig. 14) has much cleaner residuals than the one using a
constant PSF (central panel of Fig. 14), both in the core and in the halo of the PSF, as can
be observed in the close-ups in Fig. 15.

To quantify the performance of the two modes, we have considered the average residuals of
only the brightest stars that have instrumental magnitude mg, < 14. Up to this magnitude, PSF-
fitting residuals are mostly affected by systematic errors in the model of the PSF rather than by
noise (Fig. 16).

For bright stars, astrometric residuals are greatly reduced from 8.3 x 10! to 1.7 x 10~ mas,
and the same is true for photometric residuals, lowered from 3.7 X 1072 to 0.6 X 1072 mag
(Fig. 17). The values for the variable-PSF mode are in line with those in the test with the
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Fig. 14 Simulated (a) and residual images in single (b) and variable (c) mode of the GC. The same
color scale is used for the single-PSF and variable-PSF subtracted images.
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Fig. 15 Simulated and residual images of several stars in the GC. The single-PSF and var-
iable-PSF subtracted images have the same color scale. The green dots show the location
where stars were planted.

sparse field (Sec. 4.4), indicating that a level of crowding like the one in the GC is efficiently
managed by the PSF-fitting algorithm.

A test image crowded with stars with a wide range of magnitudes is useful also to investigate
the ability of AIROPA to find all and only the stars inserted in the simulation. Fewer input stars
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Fig. 16 Astrometric (first row) and photometric (second row) residuals in Kp with AIROPA on a
simulated GC image, as a function of magnitude.

should be missed (false negatives) and fewer fake stars should be detected (false positives) with
the variable-PSF mode if it is as accurate as expected. The single-PSF and variable-
PSF modes in AIROPA miss a similar number of sources, 251 versus 222, respectively (Fig. 18),
with a slight improvement when using the reconstructed PSF. The detection threshold in
Starfinder is the minimum correlation between the image of a star and the PSF fitted to it.*!
For both modes in AIROPA, we have used a threshold of 0.8.

A random peak in the noise or a speckle of a bright source can be interpreted incorrectly as a
real star by the PSF-fitting software. Using variable-PSF greatly reduces the number of
erroneous detection, from 197 to 13 (Fig. 19). This improvement is caused by the ability of
the reconstructed PSF to reproduce better the images of stars, resulting in less features of their
profiles left unfitted and misinterpreted as separate sources. The small number of wrong detec-
tions in the variable-PSF case are mostly noise spikes of the background, unaffected by the
choice of PSF-reconstruction algorithm.

A useful metric to measure the residuals of the PSF-fitting is the fraction of variance unex-
plained (FVU),**" defined as the ratio between the variance of the residuals and the variance of
the image itself:

2

FVU = Ze )
Uimg

The fitting errors of bright stars are impacted minimally by noise, and are mostly caused by
systematic errors of the PSF. Therefore, the FVU of bright stars is a better indicator of the ability
to reconstruct the PSF than in faint stars. Smaller FVU values indicate a better fit. Using the
single-PSF mode on the GC simulation, we measure a median FVU of 5.7 x 10~* (Fig. 20).
By fitting the same stars with the reconstructed PSF, the median value decreases by an order of
magnitude, 6.2 x 107.

The relation between FVU and astrometric or photometric errors is complex, depending on
multiple factors such as the specific shape of the PSF, or the crowding level. Nevertheless, for
NIRC2 observations of the GC, we can estimate it from Fig. 21. A clear positive correlation can
be observed in both panels, with the brightest stars having the smallest errors and FVU.
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Fig. 17 Astrometric (first and second row) and photometric (third row) residuals in Kp with
AIROPA on a simulated GC image. The quiver plots show only bright stars (my, < 14).
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Fig. 18 Kp luminosity function of the stars planted, but not detected by PSF-fitting in the simulated
image of the GC.

5 Calibration Fiber

In transitioning from simulations to on-sky observations, we can first assess the ability of
AIROPA to reconstruct the instrumental component of the PSF for the internal source described
039002-14
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Fig. 19 Kp luminosity function of the stars detected, but not planted, in the GC simulation.
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Fig. 20 FVU of the stars in the GC simulation using the single (a) and variable (b) modes.
Magnitudes are in the Kp filter.
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Fig. 21 FVU of the stars in the GC simulation, as a function of astrometric and photometric errors.
Data points are coloured by instrumental magnitudes in the Kp filter.

in Sec. 3.2. Here, we present a summary of the analysis of the in-focus images of the calibration
fiber, with the details reported in Ref. 29. Since the positioning of the mechanical arm holding
the fiber and the light intensity are not very stable or repeatable, we do not know the intrinsic
astrometry or photometry of the sources with a precision better than the measurements that we
found in the previous sections. We have instead relied on the study of the residuals, with the
lower residuals indicating a more successful PSF-fitting.

The variable-PSF mode reduces the median FVU of the fiber images from 5.8 x 1073 to
2.4 x 1073, indicating a more accurate PSF than the single-PSF. The number of speckles
mistaken for real sources are also reduces by two thirds.
039002-15
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The instrumental phase maps measured in 2017 have also been tested with images of the fiber
taken in 2018. The use of the variable PSF yields the same improvement respect to the constant
one as for the 2017 images, indicating a substantial stability with time of the instrumental
aberrations.

6 On Sky

Analyzing the residual images of bright stars (Fig. 22), we notice that the variable-PSF is
not performing distinctly better than with a homogeneous PSF. A marginal reduction in the
residual intensity can be observed, but not as clear as in simulations (Fig. 15).

As with the calibration fiber images, we use the FVU to measure the the ability of AIROPA
to reconstruct the PSF on GC images taken with NIRC2. The average FVU was calculated for
the stars that are identified in at least five of the 116 exposures of the GC field (Sec. 3.3). The
average FVU of stars brighter than mg, = 14 mag does not improve using the variable-
PSF mode, changing to 3.6 x 1073 from 3.3 x 1073 of the single-PSF mode (Fig. 23).

We can also measure the accuracy of the astrometry and photometry against the temporal
variation of the PSF between images. The smaller the standard deviation of the stars’ positions
and magnitudes, the better the ability of the reconstructed PSF to follow the change in PSF.
Average astrometric residuals of stars mg, < 14 have similar values between the single-PSF

Subtracted with Subtracted with
Observed single-PSF variable-PSF

y ()

0.4 0.6 0.8 1.0 1.2
x (")

y ("

y ("

-22 -20 -18 -16 -14 -22 =20 -l -1.4 -22 -20 -18 -16
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Fig. 22 Observed and residual images of several stars in the GC, from a NIRC2 exposure. The
single-PSF and variable-PSF subtracted images have the same color scale. The green dots
show the location where stars were detected.
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Fig. 23 FVU of the on-sky observations of the GC as a function of Kp instrumental magnitude.
The FVU of a star is its average on all exposures. (a) Single PSF; (b) variable PSF.
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Fig. 24 Astrometric (first row) and photometric (second row) standard deviations with AIROPA on-
sky GC images, as a function of Kp magnitude.

mode (6, = 1.29 mas) to the variable-PSF mode (o, = 1.31 mas) (top row of Fig. 24).
A small improvement of 10% is achieved with the average photometric residuals of bright stars,
from 6, =3.4-107* mag to 6,, = 3.1-107* mag (bottom row of Fig. 24).

mgp

7 Discussion and Summary

We have tested the performance of AIROPA first with simulated NIRC2 images. We have deter-
mined the baseline astrometric and photometric capabilities of the underlying fitting algorithm
by analyzing a sparse fields of bright sources, to reduce the uncertainty caused by the shot noise,
generated using a constant PSF.

To understand the effects of a PSF changing with direction, we have simulated another field
of bright sources, but using a variable PSF with characteristics typical of NIRC2 observations of
the GC. Instrumental aberrations dominate over atmospheric angular anisoplanatism as cause in

J. Astron. Telesc. Instrum. Syst. 039002-17 Jul-Sep 2022 « Vol. 8(3)



Turri et al.: AIROPA llI: testing simulated and on-sky data

the spatial variation of the OTF and PSF (Fig. 4). Using a sparse field, the systematic errors
of PSF-fitting are caused only by the spatial variability and not by crowding. We have demon-
strated that the variable-PSF mode of AIROPA can reduce astrometric and photometric
residuals on average by 80%, respectively from 1.2 to 1.9 X 10~! mas, and from 3.9 x 1072
to 6.1 X 1073 mag.

We have then replicated the effect of crowding on the measurements by simulating an image
of the sources included in our catalog of the GC. We find that for also for this case the var-
iable-PSF mode provides strong gains in astrometry and photometry, with the average accu-
racy in position and magnitude changing from 8.3 X 10! to 1.7 x 10~ mas and from 3.7 x 1072
to 0.6 x 1072 mag, respectively. The improvement in the recovery of position and luminosity is
more substantial for the most distant stars from the optical axis of the instrument, as can be seen
by comparing the panels on the left and right of Fig. 13.

We have tested the capacity of AIROPA to reconstruct the instrumental part of the PSF by
fitting the profile of the calibration fiber source with the predicted model (Sec. 5). Since we do
not have a precise knowledge of the true position and luminosity of the source, we have used
the FVU as diagnostic metric. We have found that the variable-PSF of AIROPA provides
a median FVU of 6.2 x 1075, still a significant advantage over the single-PSF mode
(FVU = 5.7 x 107*). Instrumental aberrations also present a remarkable stability, with the
reconstructed PSF providing the same improvements in PSF fittings data taken after one year.

When we analyze real observations of the GC, we find that AIROPA does not improve the
astrometry or photometry, with fitting residuals of bright stars similar between the single-
PSF and variable-PSF modes. The speckle patterns also change with the direction in the
FOV. To determine the cause of the difference between the predicted and observed PSF, we have
considered the atmospheric and instrumental modules that constitute the PSF-reconstruction
algorithm in AIROPA.

We believe that the source of the problem is not likely in the atmospheric simulation, since it
does not dominate the reconstruction of the PSF shape and its variability, when compared to the
contribution of the instrument (Fig. 5). Also, our atmospheric modeling deals principally with
the angular anisoplanatism effect on long exposure, and is not capable to reproduce the speckles
like those observed in the residuals.

We also judge the phase diversity algorithm used for measuring the instrumental OTF to be
sound, because of the positive results when tested with the calibration fiber images. One impor-
tant contribution to the total instrumental aberrations that is not accounted in our model is the
impact of quasi-static aberrations introduced by the telescope. Since they would be introduced
before the calibration unit, they are not probed by the calibration fiber, and therefore are not
included in our instrumental phase maps. The 10-m primary mirror of the Keck telescopes
requires a careful positioning of the segments.*® It is, however, unlikely that an error in the align-
ment caused by the telescope elevation is the source of the speckles observed, since the primary
mirror is in a pupil, and they would appear with the same pattern across the FOV. It is instead
possible that the sagging of the secondary mirror or aberrations introduced by the telescope’s
K-mirror could be the cause of field-dependent aberrations that are not modeled and that domi-
nate over the internal aberrations of the AO bench and NIRC2 that AIROPA is trying to suppress.

To overcome the shortfall of AIROPA with on-sky observation, our next step will be to mea-
sure static and quasi-static aberrations directly on sky with phase diversity, as in 48. We will use a
bright star with a similar elevation to the GC during our observations. By dithering the telescope,
we would also position it at different detector coordinates, to sample the PSF in different direc-
tions of the FOV. By comparing our model of the wavefront with that measured on NIRC2 with
phase diversity, we expect to identify the source of the described inconsistencies. This necessary
step will ultimately allow us to understand the aberrations of the full optical system, to correct the
approach of AIROPA and to reliably use PSF reconstruction on sky.
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