Pre-computing Function Results in Multi-Core
and Many-Core Processors

Edward C. Herrmann, Prudhvi Janga, and Philip A. Wilsey
Experimental Computing Laboratory,
School of Electronic and Computing Systems,
PO Box 210030, Cincinnati, OH 45221-0030
herrmaec @mail.uc.edu, jangapi@mail.uc.edu, and philip.wilsey @uc.edu

Abstract—In recent years, the number of hardware
supported threads in desktop processors has increased
dramatically. All but the very lowest cost netbooks and
embedded processors now have at least dual cores and soon
systems supporting upwards of 8 to 16 hardware threads
are likely to be commonplace. Unfortunately, it will be
difficult to take full advantage of the parallelism emerging
processors will be able to provide. To help address this
issue, we are investigating mechanisms to pre-compute
function results in separate threads running concurrently
with the main program thread. The concurrent threads are
forked automatically and without program modification.
A critical component for the success of this idea is an
ability to build a background thread that can pre-compute
usable results in some effective manner. For some support
functions (dynamic memory) exact arguments predictions
for the function pre-computation are not necessary, for
others (trigonometric functions) they are. In work with
dynamic memory, we are able to pre-compute memory
blocks and show modest speedup: saving approximately
25% of the dynamic memory costs. In studies with predict-
ing argument values to trigonometric functions, we show
that learning algorithms are able to successfully predict
the next argument values approximately 44% of the time.

Index Terms—many-core; multi-threading; transparent
parallelism;

I. INTRODUCTION

Recent trends have shown that parallel processing is
emerging as the new frontier for the mass computing
market [1], [2]. The point of diminishing returns has been
reached in the field of instruction-level parallelism and
power and heat concerns have further slowed additional
processor performance gains [3], [4]. Hardware manufac-
turers have also joined the shift to more parallelism and a
shift from multi-core to many-core is on the horizon. The
road maps of all the major processor providers (Intel,

Support for this work was provided in part by the National Science
Foundation under grant CNS-0915337 and by Sun Microsystems.

AMD, Sun/Oracle, and IBM) clearly show this progres-
sion. The Intel 17 processor has hardware support for up
to eight simultaneous threads, their new Xeon processor
has 10 cores supporting up to 20 simultaneous threads.
IBM’s next generation Power7 product that supports
up to 32 threads per chip [5]. Sun/Oracle already has
single chip processors providing hardware support for
up to 64 threads. Intel demonstrated a “single-chip cloud
computer,” which contains 48 fully functional x86 com-
patible cores [6]. Following these patterns, it is clear that
desktop processors may soon contain hardware support
providing capabilities for hundreds of simultaneously
executing threads.

As the number of cores increases for desktop comput-
ers, it is important that software be able to take advantage
of their additional parallel processing capabilities. The
keys to successfully harnessing this power lies with
new advances to better introduce parallelism into the
practice of computer system and software development
[2]. While approaches to improve our parallel program-
ming capabilities are needed [1], we must also try to
discover new techniques to harness this widely available
parallelism. In addition, it is time to broaden our goals
for parallelism away from strictly scalable computing;
many-core processors provide untapped computational
resources that we should strive to exploit to achieve
any (even small) gains. While the goal for scalable
parallelism is desirable, the possibility of gaining even
modest speedup with the additional cores should be
considered. Toward this end, we have initiated a series
of studies to explore the development of techniques that
easily and, ideally, transparently find additional speedup
0N many-core processors.

Our studies with many-core processors has focused on
investigations to transparently fork separate background
threads for pre-computing function results. For success-
ful function pre-computation the background threads

must be able to learn and then successfully react to the
needs of the main program thread. For some functions
(e.g., trigonometric functions), exact values for the func-
tion arguments must be predicted; in other cases (e.g.,
dynamic memory) usable results can be achieved by
indirectly monitoring the effects of the main program
thread (in the case of dynamic memory, we observe
the allocations of memory blocks of various sizes). Fur-
thermore, it is also possible for the background threads
to pre-compute and hold multiple return values with
different expected arguments that can be matched and
quickly returned to the main program thread when the
actual argument is known.

In this paper, we present studies with function pre-
computation. In particular, we examine function pre-
computation for dynamic memory and then for trigono-
metric functions. Dynamic memory presents an op-
portunity where function results can be satisfied with
imprecise argument predictions (as long as the value
is equal or larger than the block size requested). In
contrast, trigonometric functions require precise predic-
tion of argument values. For dynamic memory, we use
simple heuristics to monitor the typical sizes requested
by the application program. For trigonometric functions,
we study the use of a a generalized online learning
algorithm to monitor and predict future argument values.
With dynamic memory, we implement a full solution
and show a reduction of 25% of the dynamic mem-
ory costs. Our studies with trigonometric functions are
limited to studies of argument prediction. In particular,
we captured argument histories from a couple of hours
of general workstation operation and fed these histories
into a learning algorithm. The learning algorithm then
predicts the next value for the input argument. In the
argument histories studied in this paper, the learning
algorithms were able to achieve a prediction accuracy
of 40-50%. Of course, the success of the prediction
algorithms will be heavily dependent on a program’s
behavior; some programs will have regularity to (some
or all of) their function arguments and benefit from
threaded pre-computation others may not. Fortunately
the approach we advocate is easily toggled on/off by
the end user of an application program.

The remainder of this paper is organized as follows:
Section II describes the constraints needed for a func-
tion to be candidate for pre-computation. Section III
discusses some related work. Section IV presents our
work with dynamic memory. Section V describes our
experiments with argument prediction to trigonometric
functions. Section VI describes the design of an gen-

eralized infrastructure to support the transparent pre-
computation of function results. Finally, Section VII
concludes our research and summarizes our results.

II. FUNCTIONS SUITABLE FOR PRE-COMPUTATION

In order to be suitable for pre-computation in a back-
ground thread, a function must exhibit certain properties.
In particular these properties must be met: (i) it must
be side-effect free or any side-effects must not impact
the correct processing of the main program thread,
(i1) it must not rely on external program/machine state
information to compute a correct result, and (iii) it must
be functionally idempotent. For example, the malloc
function will return a pointer to a memory container
of acceptable size; which container may vary, but any
suitably sized container is acceptable. The pre-computed
malloc function can alter the free space lists of the
operating systems, but this change does not impact
the correct execution of the main processing thread.
Any library function that can satisfy these requirements
is a candidate for optimization through threaded pre-
computation.

There are many factors that determine if threaded pre-
computation will actually benefit an application. First the
amount of speedup that can be gained will be limited by
the amount of time a program spends inside the targeted
function(s) (Amdhal’s law). Application functions that
do not contribute adequate computational costs to the
total execution time will not see speedup as a result
of the threaded pre-computation. Another factor is the
amount of overhead involved in communication between
the main program and the background thread. The main
program argument values must be easily captured by
the background thread (to facilitate learning and ac-
curate prediction of future argument values). Similarly
the background thread must be able to quickly transfer
the pre-computed results back to the main program
thread when the actual call occurs. The amount of time
saved in pre-computing results must be greater than the
communication overhead in order for speedup to occur.

Misprediction penalties will also affect performance.
If the input to the next function call is mispredicted or
(more precisely) if the set of pre-computed results do
not cover the input argument, then the function output
will have to be calculated in-line. Finally the timing of
the calls in the program can also affect how effective
function pre-computation will be. There must be suffi-
cient time between successive function calls to allow the
background thread to pre-compute the next result. If the

function calls occur in more rapid succession, the pre-
computed values may not be ready in time. This would
cause the main program to wait for the output to be
calculated, reducing the amount of parallelism that can
be extracted from the function.

III. RELATED WORK

Threaded pre-computation is related to thread level
speculation (TLS) [8], [9]. TLS identifies threads that
could be data independent and speculatively computes
the thread results. The chief difference between TLS
and function pre-computation is that TLS speculations
are (generally) transparent to the programming activity
and TLS must contain some recovery mechanism for
improper speculations; function pre-computation is a
threading mechanism that is inserted into a program
function only when pre-computation is guaranteed safe.
Although slightly related to TSL, speculative execution,
and value prediction in high performance out-of-order
pipelined processors [4], threaded pre-computation is a
parallelization technique that is more closely related to
program futures software based value prediction [7].

Threaded pre-computation is a technique that could be
nicely matched with memoization for added performance
enhancements. We review both memoization and futures
below. Memoization is a technique to capture previous
results of a function call for reuse rather than recom-
pute a later function invocation having the same input
arguments [10]. Memoization requires that the function
be referentially transparent and it works if the search
for a previously saved result is lower than the runtime
of the actual function invocation. Memoization could
be an effective technique to combine with some uses
of threaded pre-computation for even greater savings
that either technique provides separately (specifically
consider the empirical studies of Section V where several
of the function argument traces are nearly always the
same).

Another topic that is related to our work is the concept
of computing futures. A future is defined as “a promise to
deliver the value of a subexpression at some later time”
[11], [12]. Certain parts of programs can be broken down
into functional arguments, where futures can be used to
evaluate argument expressions in parallel. Each future is
assigned to an evaluator process to calculate its value.
This allows each future to be calculated independently
on separate processors. When the value of a future is
needed, if the value is ready it is used immediately;
otherwise, the process must block until the evaluation
is complete. Futures use “eager evaluation” where once

a value is anticipated to be needed, evaluation will start
[11]. This approach introduces the possibility of wasteful
calculation if features end up being unused. The initial
implementation by Baker and Hewitt dealt with memory
management by using futures in a garbage collection
system [11].

Our threaded pre-computation approach is similar to
futures in that we use eager evaluation by designating an
extra processor to pre-compute function values before
they are needed. However, futures are a programming
feature that must be supported by the programming
language and explicitly coded by the user into the appli-
cation software. Our threaded pre-computation approach
can be implemented by building a wrapper around library
functions to thread and pre-compute function values
without change to the application program (provided the
program is dynamically linked and the dynamic link path
can be modified to point first to the wrapper library).

The transparent threading of dynamic memory is
explored and reported in [13], [14]. Both groups show
improvement in application performance by transparent
threading. In both projects, the idea is developed solely
as a means to transparently deploy a parallel thread
for dynamic memory management. In this paper we
reposition these works as function pre-computation in
order to generalize the concept for application with other
functions. In particular we explore the online monitoring
of the main program behaviors to support function pre-
computation.

IV. PRE-COMPUTING DYNAMIC MEMORY
OPERATIONS

Our dynamic memory management library aims to
offload, to a separate thread, many of the instructions
required for the main program thread to allocate and
deallocate memory blocks. We exploit the dynamic link
step in contemporary Linux systems so that simply
setting the Linux environment variable LD_PRELOAD
points an application to the new threaded library before
the standard system library. In this way, applications that
are well served by our library can easily be configured
to use it and others with insufficient dynamic memory
remain pointed at the standard library (applications with
no dynamic memory are not affected by either choice).

The background dynamic memory thread prepares for
future memory requests by queuing up free memory
blocks of predetermined sizes and making them available
when requests for new allocations arrive. Free memory
blocks are allocated in power of two sizes and stored
into bins; new allocation requests use atomic moves to

remove blocks from the bin with blocks large enough
to service the input argument request size. Each bin
maintains a counter to size the number of pre-allocated
blocks in that bin for the background thread to maintain.
This counter is managed by a heuristic algorithm that
reacts to empty or near empty bins by increasing the
pre-allocation block counter. Thus, for dynamic memory
management, the pre-computation thread does not actu-
ally predict values of input arguments; instead it monitors
the overall impact of the malloc argument values.
The background thread is responsible for ensuring that
free blocks of memory are always available for future
requests. The thread periodically refills any bins that are
running low on free blocks by creating new free blocks
and placing them into the bins. The background thread is
also responsible for processing blocks recently freed by
the program by either placing them back into the bins or
returning them back to the operating system. In order to
ensure no race conditions occur, the library uses a lock-
free approach by utilizing atomic operations to ensure no
two threads interfere with each other or the background
thread.

As mentioned, each bin contains a counter variable
that determines how many blocks can be stored in the
bin queue. Since the frequency of memory allocation
sizes is program dependent, each bin size starts off at
zero and increases dynamically throughout the program
based on the demand for blocks of that particular size.
Whenever an allocation request arrives for a bin that is
empty (called a bin miss), the bin size is increased by
one. This prevents more allocation misses in the future
and allows block sizes that are used more frequently
to have larger buffers. The bin size grows until enough
blocks are queued up so that bin misses no longer
occur. This means that upon initial startup, bin misses
will occur until the bins reach their optimal size. Since
different programs exhibit different allocation patterns,
this method of slowly increasing the bin sizes allows the
bin queues to dynamically adapt to the request patterns
of the program. Block sizes that are requested more
frequently will have more blocks buffered in the bin
queue, whereas block sizes that are used infrequently
will have small queue sizes. In an effort to minimize
the number of bin misses and simplify the complexity
of the algorithm, bin sizes are not allowed to decrease.
Each bin also contains a variable used to keep track of
how many blocks are currently stored in the bin. This
variable is used to quickly obtain the number of available
blocks without having to traverse the entire linked list.

On bin refreshes, the manager thread cycles through

all the bins and locates any that are under half full and
refills them with new blocks. New blocks are allocated
until the number of blocks stored equals half the bin
size. The bins are only filled to half their capacity to
allow room for blocks to be added from other sources
(such as recently freed blocks). The manager thread
refills bins in two cases. First, the manager thread is
signaled by the program thread at regular intervals to
refill the bins. This periodic refilling ensures that new
blocks are constantly buffered so that future allocation
requests can be satisfied. Secondly, in the case that a
bin is empty when an allocation request arrives, the
main thread signals the manager thread for an immediate
refresh and then waits until a new block is available.
After initial startup, this case should happen only rarely
since the periodic refreshes will typically keep enough
blocks buffered so that bins should never empty.

The free function works in a similar distributed fash-
ion. When a free request arrives, the address is stored in a
“free array” to be freed later by the manager thread. The
manager thread periodically parses through the array,
grabbing the addresses and freeing their corresponding
blocks. This array acts as a circular queue, meaning
addresses beyond the end of the array wrap around and
are placed in the beginning slot. In the rare event that
the free array is full during a call to free, the main
thread signals the manager thread to clear the array and
waits until a spot becomes available.

To obtain a quantitative analysis of the effectiveness
our threaded library, we ran the SPEC CPU2006 bench-
marks with both the standard library and our library
[15]. The benchmark scores are calculated by timing the
benchmark runs and comparing the times to the those
of a fixed reference machine. The test system hardware
consisted of a 2.66GHz Intel Core 17-920 processor with
3GB of RAM. The system malloc library used was
the Linux glibc ptmalloc library. The standard SPEC
benchmark scrips were used to perform the experiments
and the reported results are the geometric mean of
ten base benchmark runs of the library. The average
variance of each test was below .003. The results from
the tests are shown in Figure 1. For each benchmark, we
show: the performance values output by the SPEC scripts
using (i) the original system library (higher values are
better), (ii) our threaded library, and (iii) the resulting
speedup. The results show a maximum speedup of 6.42%
(xlanchbmk). In all cases, this speedup is the result of
a reduction of the dynamic memory costs by 25% (the
total number of instruction for malloc and free were
actually reduced by half, but the atomic instructions

35.00

30.00

25.00

20.00

15.00

10.00

5.0

SPEC Perf Number/Speedup %
o

0.00

perlbench astar omnetpp

Benchmark Name

Fig. 1.

are approximately 20 times more expensive than the
removed integer operations [16]).

V. PRE-COMPUTING ARGUMENTS FOR
TRIGONOMETRIC FUNCTIONS

Our experiences pre-computing dynamic memory op-
erations encouraged us to consider expanding the ap-
proach to apply to more complex operations. The key
question is: can we develop algorithms that are ef-
fective at predicting future argument values for ap-
plication programs? The constraints on arguments to
dynamic memory methods (specifically malloc) are
somewhat alleviated because we can always use pre-
allocated blocks that are slightly larger than the actual
value requested. In order to generalize the work, the
question becomes: are program arguments well behaved
and occurring such that the future arguments to a value
can be accurately predicted? To answer this question, we
decided to examine the arguments passed into some of
the standard trigonometric functions.

Rather than work with specific programs to capture
argument values, we simply defined a library for sin,
cos, and tan to record the process id (PID) and argu-
ment value to a file. Our library methods then used the
regular system library functions to compute and return
the correct values. We then setup a Linux workstation
with the system path defined to use our library and
captured the values for a couple of hours while the
system was being used as a general purpose workstation.
We captured a total of 155,362 uses of trig function
values from 14 different PIDs. We discovered that all the
arguments to the tan function were trivial, having only
one or two distinct arguments and our predictor achieved

llllllmt

milc

B System library
B Threaded library
O % Speedup

tonto xlanchbmk

SPEC Benchmark Result Summary on Intel i7

a nearly 100% success rate on them. Therefore, we do
not display the results (Figure 3) for the tan function.

The next step was to develop an online learning
algorithm and use it to determine if we could reasonably
predict the next argument that was used. The learning al-
gorithm uses the current history to predict the next value;
the predicted next value is compared against the actual
next value. Only exact matches are considered a success.
To keep things simple, we did not consider performance
issues and implemented our algorithms in Mathlab. A
generalized learning algorithm is evaluated so that it
could potentially be used for an argument stream from
any program/function that has a type compatible argu-
ment list. Lastly, we considered a match success/failure
only on the immediately next argument used. This is a
strict comparison and if combined with memoization, we
could well find that the pre-computed result is actually
used farther into the future. However, we have not yet
performed any analysis on that possibility.

The algorithm that has been used to predict the future
data values is based on context and hence is often
referred to as context predictor [17]. Sazeides et al state
that the context predictor has an accuracy from 50%-
90% [18]. We have implemented their context prediction
algorithm with slight modification. Context is considered
as an interrelated set of data values (finite sequence of
values) following certain pattern. In our context predic-
tion algorithm we have considered a matrix to store
different contexts as the learning process progresses.
Based on the previous values a particular context is
chosen and if the context contains a value after the
previous value a prediction is made. However, if it
does not contain any future value after the previous

if M NULL then
Initialize C, Pc, 7,
else
if Ac Pc then
if M[C][J+1]! =
Pc = M[C][j+1]
if k==15 then
Set k to O
end if
ACT[k] = Ac
Increment k and j by 1
else

k to O

NULL then

Set Pc to argument value with maximum
frequency in the current context, C

end if
else
Initialize i, 1, Cfound to O
while (Cfound == 0) and (M[i][0]

find the current context using ACT[]

if current context is found then
set Cfound to 1

C =i
Pc = M[C][1] and exit loop
end if
end while
if Cfound == 0 then
Add new context at i+l
set C=1+1 with M[C][0] = Ac
Pc = Ac
end if
end if
end if

!= NULL) do

and M[i][1l] matrix

Fig. 2. Learning Algorithm to Predict The Next Input Argument

value a prediction based on the maximum frequency of
occurrences in the particular context is made. When two
or more values have the same maximum frequency in
the same context then the algorithm makes a random
selection. If a prediction previously made is wrong then
the algorithm corrects the existing contexts or create
new contexts so that it becomes more accurate as the
predictions progress. A pseudo-code representation of
the algorithm is shown in Figure 2. In this algorithm
the matrix M is updated to store the different contexts in
rows as the learning process progresses (M is initialized
to a null matrix). In addition to the context matrix, M,
we make use of four important parameters:

C: The current context of argument values which

points to a particular row in the matrix (M [1]).
Pc: predicted argument value.
Ac: Actual argument value.
ACT []an array to store the latest 15 actual argument
values.

As it can be seen from the algorithm, if the actual
value and the predicted value are the same (a success
in the previous prediction) then the same context is
continued and the next argument value to be predicted
is the next value in the current or same context, C. If
no future values exist under the current context, C then
the argument value with the maximum frequency in the
context is chosen to be the next predicted value. If the
previous prediction is a failure then the same context is

now longer valid. So, a search for a different context is
initiated using the ACT [] array and the context matrix M.
Once a different context is obtained, the next argument
value is predicted as shown in the algorithm. However, if
the search completes without finding a different context
then a new context is added to the context matrix, M with
only a single value in the context which is Ac (actual
argument value) and the predicted value is also set to
Ac.

Summarizing, based on the previous values a par-
ticular context is chosen and if the context contains
a value after the latest actual value a prediction is
made. However, if it does not contain any future value
after the latest actual value a prediction based on the
maximum frequency of occurrences in the particular
context is made. When two or more values have the
same maximum frequency in the same context then we
go for a random selection among them. If a prediction
previously made is wrong then we correct the existing
contexts or create new contexts so that it becomes more
accurate as the predictions progress.

This algorithm was implemented in Matlab and used
to predict the input arguments arguments to the sine,
cosine, and tangent trig functions that were captured one
afternoon from an operating Linux workstation. Figure 3
summarizes our match results. The results are organized
into 2 groups (top row: sin and bottom row: cos). Each
column shows a unique trig function/PID combination.
The results for all uses of the tan function are above
99% as there were no uses that were non-trivial, therefore
we do not show results for tan. Notice that even with
sin and cos there are several bars that show nearly
100% prediction accuracy. This is because their input
arguments consisted of only one or two distinct values
that are easy predicted. However, what is interesting
are results for other uses of sin and cos. In both
cases, we show a prediction accuracy between 40%
and 50%. Lastly, we have also evaluated the argument
prediction process using other learning algorithms based
on clustering the data values and using decision trees
[17]. They have given approximately the same match
results for the considered data and therefore we have
not presented them.

While the computational costs of trigonometric func-
tions may not be sufficiently high to merit pre-
computation in a background thread, this result encour-
ages us by showing that for some functions the prediction
of future argument values can be reasonably accurate.
The successful prediction and pre-computation of 40-
50% of a computational expensive function call could

drastically improve an applications performance. In the
next section, we develop a design solution that can pro-
vide the infrastructure that will simplify the deployment
of pre-computation in user library functions.

VI. METHODS TO SUPPORT PRE-COMPUTING
FUNCTION VALUES

Once a function is identified as a candidate for pre-
computation the next task is deciding how to implement
an effective and efficient prediction system. We are de-
signing a software development environment to assist in
the integration of pre-computation into existing function
calls. A predictor class object could be coded to serve
as an intermediary between the function calls and the
actual function execution. Essentially the class would
serve as a wrapper that resides between the program
code and the function code. An instance of the predictor
class would be instantiated for each function to be forked
into a pre-computation thread. The normal calls to the
function would be replaced by a call to a method of the
predictor class. The same arguments would be passed in
and the correct output would still be returned. Using this
method all prediction, pre-computation, and threading
details are abstracted. The programmer of the function
pre-computation wrapper only has to create and setup
the predictor object and write the function calls to go
through it.

When creating the predictor, information about the
function is needed to accurately replicate the structure
of the function. The number and type of arguments to
the function need to be known, as well as the type of the
return value. Once this information is know, the method
used to replace the function calls can be set to have the
exact same interface structure as the real function. In
addition, the predictor object must be passed a pointer
to the original function so that it can use the existing
implementation for the pre-computation activities. To
illustrate how the predictor class would be used, some
pseudo-code based loosely on C/C++ are shown. In this
example, we show how the predictor class would be used
to enable pre-calculation for a simple cosine function.
For example, a sample constructor for the predictor class
is:

//structure of the constructor
void Predictor (charx functionName,
int numargs,
charx returnType,
char* argumentType, ...);

120.00

100.00

80.00

60.00

40.00

20.00

% of arguments correctly predicted

0.00

sin/4972 sin/5026 sin/5041 sin/5043 sin/5109 sin/5163 sin/5165 sin/5180 sin/5210 sin/5215 sin/5218 sin/5226 sin/5249 sin/16885
Function/PID

120.00

100.00

80.00

60.00

40.00

20.00

% of arguments correctly predicted

0.00

c0s/4972 cos/5026 cos/5041 cos/5043 cos/5109 cos/5163 cos/5165 cos/5180 cos/5210 cos/5215 cos/5218 co0s/5226 cos/5249 cos/16885
Function/PID

Fig. 3.

//initializing the predictor
Predictor cosPredictor =
new Predictor ("cos", 1,

"double",
"double");

cosPredictor.setParams (

<additional configuration params>);
cosPredictor.Initialize();

The next code block illustrates how the predictor class
can be easily substituted into the code anywhere the
original function would have been called.

//calling the function
xcoordinate =
cosPredictor.callFunction (degrees) ;

During initialization, the predictor class uses the name
of the library function to recurse down the dynamic link
path to find a pointer to the function. In our dynamic
memory library implementation, the dlsym function
performed this task. The function pointer is used in
conjunction with the function structure information to
allow the predictor class to access the original library

Argument Match Results for Trigonometric Functions

function. The function structure information is also used
to set up the size and type of the argument arrays.

Internally the predictor class uses online learning
algorithms to monitor arguments passed into the func-
tion and identifies the best prediction result. Once a
certain configurable threshold is met, a separate thread
is spawned to handle pre-calculation of future function
calls. The main thread must communicate the argument
patterns to the predictor thread periodically so that it
can accurately predict the arguments to future function
calls. Similarly, the predictor thread must provide the
program thread with predicted future function outputs.
These outputs would be stored with the predicted argu-
ments that produced them so that the main thread can
determine if the argument prediction was successful. It
may even be beneficial to implement a buffer of future
argument-output combinations to increase the chance of
a correct prediction. Memoization could also be used
to cache a certain number of previous function calls
if it is found that calls are periodically duplicated. A
happy medium must be reached; the more predicted
argument pairs that need to be checked the longer the

search overhead becomes. It is possible that the number
of future predictions to be buffered and the frequency of
thread communication could be adjusted, either statically
through a configuration variable or dynamically during
program execution (based on current performance). If an
argument pair is incorrectly predicted, the function must
be computed in-line by the main program thread.

The appropriateness of threaded pre-computation for
a function will depend on how the function is used
inside a particular application program. The predictor
class could be coded to monitor overall effectiveness
and adjust the amount of pre-computation based on the
prediction accuracy and processing power availability. It
could even switch off the thread if the prediction and
pre-computation fails to provide performance benefits.
If no speedup is found using the predictor class, it does
not have to be used.

One benefit of constructing and using a predictor
class is that it opens the possibility of using multiple
predictor threads in a single program. Each candidate
function would spawn its own predictor thread, allowing
a program to have as many predictor threads as it has
candidate functions. If properly implemented, a generic
predictor class could be used to easily adapt serial pro-
grams to many-core systems without placing the burden
of parallel programming on the application developer.

VII. CONCLUSION

Emerging many-core processors provide unique op-
portunities and significant challenges for the parallel pro-
cessing community. In particular, we need to rethink our
conventional thoughts of parallelism where we pursue
solutions whose success is measured by scalability with
the number of processors/threads. We must also begin to
think of these processors/threads as free/cheap resources
that should be exploited whenever possible to gain any,
and even modest, speedup opportunities.

In the work of this paper, we examine the prospects
of transparently migrating user functions to concurrent,
background threads that pre-compute function results for
an application program. The background thread can use
online learning algorithms to predict future arguments
in order to facilitate the pre-computation of function
results. While sharing many similarities with the con-
cept of “program futures,” threaded pre-computation is
unique in that the threading and pre-computation is done
transparently and without requiring parallel program-
ming skills from the application programmer. Empirical
studies with the argument values from trigonometric
functions recorded from a running system show that an

online learning algorithm is able to accurately predict the
immediately next argument value 40-50% of the time.

As the computing market heads towards many-core
parallel architectures, increasing system performance
will ultimately depend on the ability of applications to
more fully utilize parallelism. Finding ways to extract
parallelism from user and system libraries with minimal
programmer inputs provides one way to help accomplish
this goal. Fortunately, threaded pre-computation can also
be used in programs that are also manually parallelized
to gain even more speedup. For example, our work
with pre-computing dynamic memory management was
successfully used with the multi-threaded firefox web
browser.

REFERENCES

[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek,
D. Wessel, and K. Yelick, “A view of the parallel computing
landscape,” Communications of the ACM, vol. 52, no. 10, pp.
56-67, Oct. 2009.

[2] A. Ghuloum, “Face the inevitable, embrace parallelism,” Com-
munications of the ACM, vol. 52, no. 9, pp. 36-38, Sep. 2009.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape of
parallel computing research: A view from berkeley,” Electrical
Engineering and Computer Sciences, University of California
at Berkeley, Tech. Rep. Technical Report No. UCB/EECS-
2006-183, Dec. 2006. [Online]. Available: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[4] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, 4th ed. Morgan Kaufmann, 2007.

[5] R. Kalla, “Power7: Ibm’s next generation power microproces-
sor,” in Hot Chips 21, Aug. 2009.

[6] Intel Press Release, Intel Corporation, “Futuristic intel
chip could reshape how computers are built, consumers
interact with their pcs and personal devices,” Intel
Press Release, Intel Corporation, Tech. Rep., Dec. 2009.
[Online]. Available: http://www.intel.com/pressroom/archive/
releases/20091202comp_sm.htm

[7] X.-F. Li, Z.-H. Du, Q.-Y. Zhao, and T.-F. Ngai, “Software value
prediction for speculative parallel threaded computations,” in In
First Value Prediction Workshop, Jun. 2003, pp. 18-25.

[8] C. E. Oancea, A. Mycroft, and T. Harris, “A lightweight in-
place implementation for software thread-level speculation,” in
SPAA °09, 2009, pp. 1-10.

[9] P. Rundberg and P. Stenstrom, “An all-software thread-level data

dependence speculation system for multiprocessors,” Journal of

Instruction Level Parallelism, vol. 3, pp. 1-28, 2001.

U. A. Acar, G. E. Blelloch, and R. Harper, “Selective mem-

oization,” SIGPLAN Notices, vol. 38, no. 1, pp. 14-25, Jan.

2003.

H. Baker and C. Hewitt, “The incremental garbage collection of

processes,” Proceedings of the Symposium on Artifical Intelli-

gence and Programming Languages, SIGPLAN Notices, vol. 12,

no. 8, pp. 55-59, Aug. 1977.

(10]

(11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

D. P. Friedman and D. S. Wise, “Cons should not evaluate its
arguments,” in Third International Colloquium on Automata,
Languages and Programming, 1976, pp. 257-284.

E. C. Herrmann and P. A. Wilsey, “Threaded dynamic memory
management in many-core processors,” in Proceedings of the
2010 International Workshop on Multi-Core Computing Systems
(MuCoCoS 2010). IEEE Computer Society, 2010.

D. Tiwari, S. Lee, J. Tuck, and Y. Solihin, “Mmt: Exploiting
fine-grained parallelism in dynamic memory management,” in
IEEE International Parallel & Distributed Processing Sympo-
sium, Apr. 2010.

S. P. E. Corporation, “Spec cpu 2006,” Aug. 2008 (last
updated). [Online]. Available: http://www.spec.org/cpu2006/
E. C. Herrmann, “Threaded dynamic memory management in
many-core processors,” Master’s thesis, University of Cincin-
nati, Cincinnati, OH, 2009.

P. Laird, “Identifying and using patterns in sequential data,”
in 4th International Workshop in Algorithmic Learning Theory,
1993, pp. 1-18.

Y. Sazeides and J. E. Smith, “The predictability of data val-
ues,” in Proceedings of the 30th International Symposium on
Microarchitecture, Dec. 1997, pp. 248-258.

