
Pre-computing Function Results in Multi-Core

and Many-Core Processors

Edward C. Herrmann, Prudhvi Janga, and Philip A. Wilsey

Experimental Computing Laboratory,

School of Electronic and Computing Systems,

PO Box 210030, Cincinnati, OH 45221–0030

herrmaec@mail.uc.edu, jangapi@mail.uc.edu, and philip.wilsey@uc.edu

Abstract—In recent years, the number of hardware

supported threads in desktop processors has increased

dramatically. All but the very lowest cost netbooks and

embedded processors now have at least dual cores and soon

systems supporting upwards of 8 to 16 hardware threads

are likely to be commonplace. Unfortunately, it will be

difficult to take full advantage of the parallelism emerging

processors will be able to provide. To help address this

issue, we are investigating mechanisms to pre-compute

function results in separate threads running concurrently

with the main program thread. The concurrent threads are

forked automatically and without program modification.

A critical component for the success of this idea is an

ability to build a background thread that can pre-compute

usable results in some effective manner. For some support

functions (dynamic memory) exact arguments predictions

for the function pre-computation are not necessary, for

others (trigonometric functions) they are. In work with

dynamic memory, we are able to pre-compute memory

blocks and show modest speedup: saving approximately

25% of the dynamic memory costs. In studies with predict-

ing argument values to trigonometric functions, we show

that learning algorithms are able to successfully predict

the next argument values approximately 44% of the time.

Index Terms—many-core; multi-threading; transparent

parallelism;

I. INTRODUCTION

Recent trends have shown that parallel processing is

emerging as the new frontier for the mass computing

market [1], [2]. The point of diminishing returns has been

reached in the field of instruction-level parallelism and

power and heat concerns have further slowed additional

processor performance gains [3], [4]. Hardware manufac-

turers have also joined the shift to more parallelism and a

shift from multi-core to many-core is on the horizon. The

road maps of all the major processor providers (Intel,

Support for this work was provided in part by the National Science

Foundation under grant CNS–0915337 and by Sun Microsystems.

AMD, Sun/Oracle, and IBM) clearly show this progres-

sion. The Intel i7 processor has hardware support for up

to eight simultaneous threads, their new Xeon processor

has 10 cores supporting up to 20 simultaneous threads.

IBM’s next generation Power7 product that supports

up to 32 threads per chip [5]. Sun/Oracle already has

single chip processors providing hardware support for

up to 64 threads. Intel demonstrated a “single-chip cloud

computer,” which contains 48 fully functional x86 com-

patible cores [6]. Following these patterns, it is clear that

desktop processors may soon contain hardware support

providing capabilities for hundreds of simultaneously

executing threads.

As the number of cores increases for desktop comput-

ers, it is important that software be able to take advantage

of their additional parallel processing capabilities. The

keys to successfully harnessing this power lies with

new advances to better introduce parallelism into the

practice of computer system and software development

[2]. While approaches to improve our parallel program-

ming capabilities are needed [1], we must also try to

discover new techniques to harness this widely available

parallelism. In addition, it is time to broaden our goals

for parallelism away from strictly scalable computing;

many-core processors provide untapped computational

resources that we should strive to exploit to achieve

any (even small) gains. While the goal for scalable

parallelism is desirable, the possibility of gaining even

modest speedup with the additional cores should be

considered. Toward this end, we have initiated a series

of studies to explore the development of techniques that

easily and, ideally, transparently find additional speedup

on many-core processors.

Our studies with many-core processors has focused on

investigations to transparently fork separate background

threads for pre-computing function results. For success-

ful function pre-computation the background threads

must be able to learn and then successfully react to the

needs of the main program thread. For some functions

(e.g., trigonometric functions), exact values for the func-

tion arguments must be predicted; in other cases (e.g.,

dynamic memory) usable results can be achieved by

indirectly monitoring the effects of the main program

thread (in the case of dynamic memory, we observe

the allocations of memory blocks of various sizes). Fur-

thermore, it is also possible for the background threads

to pre-compute and hold multiple return values with

different expected arguments that can be matched and

quickly returned to the main program thread when the

actual argument is known.

In this paper, we present studies with function pre-

computation. In particular, we examine function pre-

computation for dynamic memory and then for trigono-

metric functions. Dynamic memory presents an op-

portunity where function results can be satisfied with

imprecise argument predictions (as long as the value

is equal or larger than the block size requested). In

contrast, trigonometric functions require precise predic-

tion of argument values. For dynamic memory, we use

simple heuristics to monitor the typical sizes requested

by the application program. For trigonometric functions,

we study the use of a a generalized online learning

algorithm to monitor and predict future argument values.

With dynamic memory, we implement a full solution

and show a reduction of 25% of the dynamic mem-

ory costs. Our studies with trigonometric functions are

limited to studies of argument prediction. In particular,

we captured argument histories from a couple of hours

of general workstation operation and fed these histories

into a learning algorithm. The learning algorithm then

predicts the next value for the input argument. In the

argument histories studied in this paper, the learning

algorithms were able to achieve a prediction accuracy

of 40-50%. Of course, the success of the prediction

algorithms will be heavily dependent on a program’s

behavior; some programs will have regularity to (some

or all of) their function arguments and benefit from

threaded pre-computation others may not. Fortunately

the approach we advocate is easily toggled on/off by

the end user of an application program.

The remainder of this paper is organized as follows:

Section II describes the constraints needed for a func-

tion to be candidate for pre-computation. Section III

discusses some related work. Section IV presents our

work with dynamic memory. Section V describes our

experiments with argument prediction to trigonometric

functions. Section VI describes the design of an gen-

eralized infrastructure to support the transparent pre-

computation of function results. Finally, Section VII

concludes our research and summarizes our results.

II. FUNCTIONS SUITABLE FOR PRE-COMPUTATION

In order to be suitable for pre-computation in a back-

ground thread, a function must exhibit certain properties.

In particular these properties must be met: (i) it must

be side-effect free or any side-effects must not impact

the correct processing of the main program thread,

(ii) it must not rely on external program/machine state

information to compute a correct result, and (iii) it must

be functionally idempotent. For example, the malloc

function will return a pointer to a memory container

of acceptable size; which container may vary, but any

suitably sized container is acceptable. The pre-computed

malloc function can alter the free space lists of the

operating systems, but this change does not impact

the correct execution of the main processing thread.

Any library function that can satisfy these requirements

is a candidate for optimization through threaded pre-

computation.

There are many factors that determine if threaded pre-

computation will actually benefit an application. First the

amount of speedup that can be gained will be limited by

the amount of time a program spends inside the targeted

function(s) (Amdhal’s law). Application functions that

do not contribute adequate computational costs to the

total execution time will not see speedup as a result

of the threaded pre-computation. Another factor is the

amount of overhead involved in communication between

the main program and the background thread. The main

program argument values must be easily captured by

the background thread (to facilitate learning and ac-

curate prediction of future argument values). Similarly

the background thread must be able to quickly transfer

the pre-computed results back to the main program

thread when the actual call occurs. The amount of time

saved in pre-computing results must be greater than the

communication overhead in order for speedup to occur.

Misprediction penalties will also affect performance.

If the input to the next function call is mispredicted or

(more precisely) if the set of pre-computed results do

not cover the input argument, then the function output

will have to be calculated in-line. Finally the timing of

the calls in the program can also affect how effective

function pre-computation will be. There must be suffi-

cient time between successive function calls to allow the

background thread to pre-compute the next result. If the

function calls occur in more rapid succession, the pre-

computed values may not be ready in time. This would

cause the main program to wait for the output to be

calculated, reducing the amount of parallelism that can

be extracted from the function.

III. RELATED WORK

Threaded pre-computation is related to thread level

speculation (TLS) [8], [9]. TLS identifies threads that

could be data independent and speculatively computes

the thread results. The chief difference between TLS

and function pre-computation is that TLS speculations

are (generally) transparent to the programming activity

and TLS must contain some recovery mechanism for

improper speculations; function pre-computation is a

threading mechanism that is inserted into a program

function only when pre-computation is guaranteed safe.

Although slightly related to TSL, speculative execution,

and value prediction in high performance out-of-order

pipelined processors [4], threaded pre-computation is a

parallelization technique that is more closely related to

program futures software based value prediction [7].

Threaded pre-computation is a technique that could be

nicely matched with memoization for added performance

enhancements. We review both memoization and futures

below. Memoization is a technique to capture previous

results of a function call for reuse rather than recom-

pute a later function invocation having the same input

arguments [10]. Memoization requires that the function

be referentially transparent and it works if the search

for a previously saved result is lower than the runtime

of the actual function invocation. Memoization could

be an effective technique to combine with some uses

of threaded pre-computation for even greater savings

that either technique provides separately (specifically

consider the empirical studies of Section V where several

of the function argument traces are nearly always the

same).

Another topic that is related to our work is the concept

of computing futures. A future is defined as “a promise to

deliver the value of a subexpression at some later time”

[11], [12]. Certain parts of programs can be broken down

into functional arguments, where futures can be used to

evaluate argument expressions in parallel. Each future is

assigned to an evaluator process to calculate its value.

This allows each future to be calculated independently

on separate processors. When the value of a future is

needed, if the value is ready it is used immediately;

otherwise, the process must block until the evaluation

is complete. Futures use “eager evaluation” where once

a value is anticipated to be needed, evaluation will start

[11]. This approach introduces the possibility of wasteful

calculation if features end up being unused. The initial

implementation by Baker and Hewitt dealt with memory

management by using futures in a garbage collection

system [11].

Our threaded pre-computation approach is similar to

futures in that we use eager evaluation by designating an

extra processor to pre-compute function values before

they are needed. However, futures are a programming

feature that must be supported by the programming

language and explicitly coded by the user into the appli-

cation software. Our threaded pre-computation approach

can be implemented by building a wrapper around library

functions to thread and pre-compute function values

without change to the application program (provided the

program is dynamically linked and the dynamic link path

can be modified to point first to the wrapper library).

The transparent threading of dynamic memory is

explored and reported in [13], [14]. Both groups show

improvement in application performance by transparent

threading. In both projects, the idea is developed solely

as a means to transparently deploy a parallel thread

for dynamic memory management. In this paper we

reposition these works as function pre-computation in

order to generalize the concept for application with other

functions. In particular we explore the online monitoring

of the main program behaviors to support function pre-

computation.

IV. PRE-COMPUTING DYNAMIC MEMORY

OPERATIONS

Our dynamic memory management library aims to

offload, to a separate thread, many of the instructions

required for the main program thread to allocate and

deallocate memory blocks. We exploit the dynamic link

step in contemporary Linux systems so that simply

setting the Linux environment variable LD_PRELOAD

points an application to the new threaded library before

the standard system library. In this way, applications that

are well served by our library can easily be configured

to use it and others with insufficient dynamic memory

remain pointed at the standard library (applications with

no dynamic memory are not affected by either choice).

The background dynamic memory thread prepares for

future memory requests by queuing up free memory

blocks of predetermined sizes and making them available

when requests for new allocations arrive. Free memory

blocks are allocated in power of two sizes and stored

into bins; new allocation requests use atomic moves to

remove blocks from the bin with blocks large enough

to service the input argument request size. Each bin

maintains a counter to size the number of pre-allocated

blocks in that bin for the background thread to maintain.

This counter is managed by a heuristic algorithm that

reacts to empty or near empty bins by increasing the

pre-allocation block counter. Thus, for dynamic memory

management, the pre-computation thread does not actu-

ally predict values of input arguments; instead it monitors

the overall impact of the malloc argument values.

The background thread is responsible for ensuring that

free blocks of memory are always available for future

requests. The thread periodically refills any bins that are

running low on free blocks by creating new free blocks

and placing them into the bins. The background thread is

also responsible for processing blocks recently freed by

the program by either placing them back into the bins or

returning them back to the operating system. In order to

ensure no race conditions occur, the library uses a lock-

free approach by utilizing atomic operations to ensure no

two threads interfere with each other or the background

thread.

As mentioned, each bin contains a counter variable

that determines how many blocks can be stored in the

bin queue. Since the frequency of memory allocation

sizes is program dependent, each bin size starts off at

zero and increases dynamically throughout the program

based on the demand for blocks of that particular size.

Whenever an allocation request arrives for a bin that is

empty (called a bin miss), the bin size is increased by

one. This prevents more allocation misses in the future

and allows block sizes that are used more frequently

to have larger buffers. The bin size grows until enough

blocks are queued up so that bin misses no longer

occur. This means that upon initial startup, bin misses

will occur until the bins reach their optimal size. Since

different programs exhibit different allocation patterns,

this method of slowly increasing the bin sizes allows the

bin queues to dynamically adapt to the request patterns

of the program. Block sizes that are requested more

frequently will have more blocks buffered in the bin

queue, whereas block sizes that are used infrequently

will have small queue sizes. In an effort to minimize

the number of bin misses and simplify the complexity

of the algorithm, bin sizes are not allowed to decrease.

Each bin also contains a variable used to keep track of

how many blocks are currently stored in the bin. This

variable is used to quickly obtain the number of available

blocks without having to traverse the entire linked list.

On bin refreshes, the manager thread cycles through

all the bins and locates any that are under half full and

refills them with new blocks. New blocks are allocated

until the number of blocks stored equals half the bin

size. The bins are only filled to half their capacity to

allow room for blocks to be added from other sources

(such as recently freed blocks). The manager thread

refills bins in two cases. First, the manager thread is

signaled by the program thread at regular intervals to

refill the bins. This periodic refilling ensures that new

blocks are constantly buffered so that future allocation

requests can be satisfied. Secondly, in the case that a

bin is empty when an allocation request arrives, the

main thread signals the manager thread for an immediate

refresh and then waits until a new block is available.

After initial startup, this case should happen only rarely

since the periodic refreshes will typically keep enough

blocks buffered so that bins should never empty.

The free function works in a similar distributed fash-

ion. When a free request arrives, the address is stored in a

“free array” to be freed later by the manager thread. The

manager thread periodically parses through the array,

grabbing the addresses and freeing their corresponding

blocks. This array acts as a circular queue, meaning

addresses beyond the end of the array wrap around and

are placed in the beginning slot. In the rare event that

the free array is full during a call to free, the main

thread signals the manager thread to clear the array and

waits until a spot becomes available.

To obtain a quantitative analysis of the effectiveness

our threaded library, we ran the SPEC CPU2006 bench-

marks with both the standard library and our library

[15]. The benchmark scores are calculated by timing the

benchmark runs and comparing the times to the those

of a fixed reference machine. The test system hardware

consisted of a 2.66GHz Intel Core i7-920 processor with

3GB of RAM. The system malloc library used was

the Linux glibc ptmalloc library. The standard SPEC

benchmark scrips were used to perform the experiments

and the reported results are the geometric mean of

ten base benchmark runs of the library. The average

variance of each test was below .003. The results from

the tests are shown in Figure 1. For each benchmark, we

show: the performance values output by the SPEC scripts

using (i) the original system library (higher values are

better), (ii) our threaded library, and (iii) the resulting

speedup. The results show a maximum speedup of 6.42%

(xlanchbmk). In all cases, this speedup is the result of

a reduction of the dynamic memory costs by 25% (the

total number of instruction for malloc and free were

actually reduced by half, but the atomic instructions

Fig. 1. SPEC Benchmark Result Summary on Intel i7

are approximately 20 times more expensive than the

removed integer operations [16]).

V. PRE-COMPUTING ARGUMENTS FOR

TRIGONOMETRIC FUNCTIONS

Our experiences pre-computing dynamic memory op-

erations encouraged us to consider expanding the ap-

proach to apply to more complex operations. The key

question is: can we develop algorithms that are ef-

fective at predicting future argument values for ap-

plication programs? The constraints on arguments to

dynamic memory methods (specifically malloc) are

somewhat alleviated because we can always use pre-

allocated blocks that are slightly larger than the actual

value requested. In order to generalize the work, the

question becomes: are program arguments well behaved

and occurring such that the future arguments to a value

can be accurately predicted? To answer this question, we

decided to examine the arguments passed into some of

the standard trigonometric functions.

Rather than work with specific programs to capture

argument values, we simply defined a library for sin,

cos, and tan to record the process id (PID) and argu-

ment value to a file. Our library methods then used the

regular system library functions to compute and return

the correct values. We then setup a Linux workstation

with the system path defined to use our library and

captured the values for a couple of hours while the

system was being used as a general purpose workstation.

We captured a total of 155,362 uses of trig function

values from 14 different PIDs. We discovered that all the

arguments to the tan function were trivial, having only

one or two distinct arguments and our predictor achieved

a nearly 100% success rate on them. Therefore, we do

not display the results (Figure 3) for the tan function.

The next step was to develop an online learning

algorithm and use it to determine if we could reasonably

predict the next argument that was used. The learning al-

gorithm uses the current history to predict the next value;

the predicted next value is compared against the actual

next value. Only exact matches are considered a success.

To keep things simple, we did not consider performance

issues and implemented our algorithms in Mathlab. A

generalized learning algorithm is evaluated so that it

could potentially be used for an argument stream from

any program/function that has a type compatible argu-

ment list. Lastly, we considered a match success/failure

only on the immediately next argument used. This is a

strict comparison and if combined with memoization, we

could well find that the pre-computed result is actually

used farther into the future. However, we have not yet

performed any analysis on that possibility.

The algorithm that has been used to predict the future

data values is based on context and hence is often

referred to as context predictor [17]. Sazeides et al state

that the context predictor has an accuracy from 50%-

90% [18]. We have implemented their context prediction

algorithm with slight modification. Context is considered

as an interrelated set of data values (finite sequence of

values) following certain pattern. In our context predic-

tion algorithm we have considered a matrix to store

different contexts as the learning process progresses.

Based on the previous values a particular context is

chosen and if the context contains a value after the

previous value a prediction is made. However, if it

does not contain any future value after the previous

if M == NULL then

Initialize C, Pc, j, k to 0

else

if Ac == Pc then

if M[C][j+1]! = NULL then

Pc = M[C][j+1]

if k==15 then

Set k to 0

end if

ACT[k] = Ac

Increment k and j by 1

else

Set Pc to argument value with maximum

frequency in the current context, C

end if

else

Initialize i, l, Cfound to 0

while (Cfound == 0) and (M[i][0] != NULL) do

find the current context using ACT[] and M[i][l] matrix

if current context is found then

set Cfound to 1

C = i

Pc = M[C][l] and exit loop

end if

end while

if Cfound == 0 then

Add new context at i+1

set C=i+1 with M[C][0] = Ac

Pc = Ac

end if

end if

end if

Fig. 2. Learning Algorithm to Predict The Next Input Argument

value a prediction based on the maximum frequency of

occurrences in the particular context is made. When two

or more values have the same maximum frequency in

the same context then the algorithm makes a random

selection. If a prediction previously made is wrong then

the algorithm corrects the existing contexts or create

new contexts so that it becomes more accurate as the

predictions progress. A pseudo-code representation of

the algorithm is shown in Figure 2. In this algorithm

the matrix M is updated to store the different contexts in

rows as the learning process progresses (M is initialized

to a null matrix). In addition to the context matrix, M,

we make use of four important parameters:

C: The current context of argument values which

points to a particular row in the matrix (M[i]).

Pc: predicted argument value.

Ac: Actual argument value.

ACT[]:an array to store the latest 15 actual argument

values.

As it can be seen from the algorithm, if the actual

value and the predicted value are the same (a success

in the previous prediction) then the same context is

continued and the next argument value to be predicted

is the next value in the current or same context, C. If

no future values exist under the current context, C then

the argument value with the maximum frequency in the

context is chosen to be the next predicted value. If the

previous prediction is a failure then the same context is

now longer valid. So, a search for a different context is

initiated using the ACT[] array and the context matrix M.

Once a different context is obtained, the next argument

value is predicted as shown in the algorithm. However, if

the search completes without finding a different context

then a new context is added to the context matrix, M with

only a single value in the context which is Ac (actual

argument value) and the predicted value is also set to

Ac.

Summarizing, based on the previous values a par-

ticular context is chosen and if the context contains

a value after the latest actual value a prediction is

made. However, if it does not contain any future value

after the latest actual value a prediction based on the

maximum frequency of occurrences in the particular

context is made. When two or more values have the

same maximum frequency in the same context then we

go for a random selection among them. If a prediction

previously made is wrong then we correct the existing

contexts or create new contexts so that it becomes more

accurate as the predictions progress.

This algorithm was implemented in Matlab and used

to predict the input arguments arguments to the sine,

cosine, and tangent trig functions that were captured one

afternoon from an operating Linux workstation. Figure 3

summarizes our match results. The results are organized

into 2 groups (top row: sin and bottom row: cos). Each

column shows a unique trig function/PID combination.

The results for all uses of the tan function are above

99% as there were no uses that were non-trivial, therefore

we do not show results for tan. Notice that even with

sin and cos there are several bars that show nearly

100% prediction accuracy. This is because their input

arguments consisted of only one or two distinct values

that are easy predicted. However, what is interesting

are results for other uses of sin and cos. In both

cases, we show a prediction accuracy between 40%

and 50%. Lastly, we have also evaluated the argument

prediction process using other learning algorithms based

on clustering the data values and using decision trees

[17]. They have given approximately the same match

results for the considered data and therefore we have

not presented them.

While the computational costs of trigonometric func-

tions may not be sufficiently high to merit pre-

computation in a background thread, this result encour-

ages us by showing that for some functions the prediction

of future argument values can be reasonably accurate.

The successful prediction and pre-computation of 40-

50% of a computational expensive function call could

drastically improve an applications performance. In the

next section, we develop a design solution that can pro-

vide the infrastructure that will simplify the deployment

of pre-computation in user library functions.

VI. METHODS TO SUPPORT PRE-COMPUTING

FUNCTION VALUES

Once a function is identified as a candidate for pre-

computation the next task is deciding how to implement

an effective and efficient prediction system. We are de-

signing a software development environment to assist in

the integration of pre-computation into existing function

calls. A predictor class object could be coded to serve

as an intermediary between the function calls and the

actual function execution. Essentially the class would

serve as a wrapper that resides between the program

code and the function code. An instance of the predictor

class would be instantiated for each function to be forked

into a pre-computation thread. The normal calls to the

function would be replaced by a call to a method of the

predictor class. The same arguments would be passed in

and the correct output would still be returned. Using this

method all prediction, pre-computation, and threading

details are abstracted. The programmer of the function

pre-computation wrapper only has to create and setup

the predictor object and write the function calls to go

through it.

When creating the predictor, information about the

function is needed to accurately replicate the structure

of the function. The number and type of arguments to

the function need to be known, as well as the type of the

return value. Once this information is know, the method

used to replace the function calls can be set to have the

exact same interface structure as the real function. In

addition, the predictor object must be passed a pointer

to the original function so that it can use the existing

implementation for the pre-computation activities. To

illustrate how the predictor class would be used, some

pseudo-code based loosely on C/C++ are shown. In this

example, we show how the predictor class would be used

to enable pre-calculation for a simple cosine function.

For example, a sample constructor for the predictor class

is:

//structure of the constructor

void Predictor(char* functionName,

int numargs,

char* returnType,

char* argumentType,...);

Fig. 3. Argument Match Results for Trigonometric Functions

//initializing the predictor

Predictor cosPredictor =

new Predictor("cos", 1,

"double",

"double");

cosPredictor.setParams(

<additional configuration params>);

cosPredictor.Initialize();

The next code block illustrates how the predictor class

can be easily substituted into the code anywhere the

original function would have been called.

//calling the function

xcoordinate =

cosPredictor.callFunction(degrees);

During initialization, the predictor class uses the name

of the library function to recurse down the dynamic link

path to find a pointer to the function. In our dynamic

memory library implementation, the dlsym function

performed this task. The function pointer is used in

conjunction with the function structure information to

allow the predictor class to access the original library

function. The function structure information is also used

to set up the size and type of the argument arrays.

Internally the predictor class uses online learning

algorithms to monitor arguments passed into the func-

tion and identifies the best prediction result. Once a

certain configurable threshold is met, a separate thread

is spawned to handle pre-calculation of future function

calls. The main thread must communicate the argument

patterns to the predictor thread periodically so that it

can accurately predict the arguments to future function

calls. Similarly, the predictor thread must provide the

program thread with predicted future function outputs.

These outputs would be stored with the predicted argu-

ments that produced them so that the main thread can

determine if the argument prediction was successful. It

may even be beneficial to implement a buffer of future

argument-output combinations to increase the chance of

a correct prediction. Memoization could also be used

to cache a certain number of previous function calls

if it is found that calls are periodically duplicated. A

happy medium must be reached; the more predicted

argument pairs that need to be checked the longer the

search overhead becomes. It is possible that the number

of future predictions to be buffered and the frequency of

thread communication could be adjusted, either statically

through a configuration variable or dynamically during

program execution (based on current performance). If an

argument pair is incorrectly predicted, the function must

be computed in-line by the main program thread.

The appropriateness of threaded pre-computation for

a function will depend on how the function is used

inside a particular application program. The predictor

class could be coded to monitor overall effectiveness

and adjust the amount of pre-computation based on the

prediction accuracy and processing power availability. It

could even switch off the thread if the prediction and

pre-computation fails to provide performance benefits.

If no speedup is found using the predictor class, it does

not have to be used.

One benefit of constructing and using a predictor

class is that it opens the possibility of using multiple

predictor threads in a single program. Each candidate

function would spawn its own predictor thread, allowing

a program to have as many predictor threads as it has

candidate functions. If properly implemented, a generic

predictor class could be used to easily adapt serial pro-

grams to many-core systems without placing the burden

of parallel programming on the application developer.

VII. CONCLUSION

Emerging many-core processors provide unique op-

portunities and significant challenges for the parallel pro-

cessing community. In particular, we need to rethink our

conventional thoughts of parallelism where we pursue

solutions whose success is measured by scalability with

the number of processors/threads. We must also begin to

think of these processors/threads as free/cheap resources

that should be exploited whenever possible to gain any,

and even modest, speedup opportunities.

In the work of this paper, we examine the prospects

of transparently migrating user functions to concurrent,

background threads that pre-compute function results for

an application program. The background thread can use

online learning algorithms to predict future arguments

in order to facilitate the pre-computation of function

results. While sharing many similarities with the con-

cept of “program futures,” threaded pre-computation is

unique in that the threading and pre-computation is done

transparently and without requiring parallel program-

ming skills from the application programmer. Empirical

studies with the argument values from trigonometric

functions recorded from a running system show that an

online learning algorithm is able to accurately predict the

immediately next argument value 40-50% of the time.

As the computing market heads towards many-core

parallel architectures, increasing system performance

will ultimately depend on the ability of applications to

more fully utilize parallelism. Finding ways to extract

parallelism from user and system libraries with minimal

programmer inputs provides one way to help accomplish

this goal. Fortunately, threaded pre-computation can also

be used in programs that are also manually parallelized

to gain even more speedup. For example, our work

with pre-computing dynamic memory management was

successfully used with the multi-threaded firefox web

browser.

REFERENCES

[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,

J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek,

D. Wessel, and K. Yelick, “A view of the parallel computing

landscape,” Communications of the ACM, vol. 52, no. 10, pp.

56–67, Oct. 2009.

[2] A. Ghuloum, “Face the inevitable, embrace parallelism,” Com-

munications of the ACM, vol. 52, no. 9, pp. 36–38, Sep. 2009.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,

J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape of

parallel computing research: A view from berkeley,” Electrical

Engineering and Computer Sciences, University of California

at Berkeley, Tech. Rep. Technical Report No. UCB/EECS–

2006–183, Dec. 2006. [Online]. Available: http://www.eecs.

berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[4] J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach, 4th ed. Morgan Kaufmann, 2007.

[5] R. Kalla, “Power7: Ibm’s next generation power microproces-

sor,” in Hot Chips 21, Aug. 2009.

[6] Intel Press Release, Intel Corporation, “Futuristic intel

chip could reshape how computers are built, consumers

interact with their pcs and personal devices,” Intel

Press Release, Intel Corporation, Tech. Rep., Dec. 2009.

[Online]. Available: http://www.intel.com/pressroom/archive/

releases/20091202comp sm.htm

[7] X.-F. Li, Z.-H. Du, Q.-Y. Zhao, and T.-F. Ngai, “Software value

prediction for speculative parallel threaded computations,” in In

First Value Prediction Workshop, Jun. 2003, pp. 18–25.

[8] C. E. Oancea, A. Mycroft, and T. Harris, “A lightweight in-

place implementation for software thread-level speculation,” in

SPAA ’09, 2009, pp. 1–10.

[9] P. Rundberg and P. Stenstrom, “An all-software thread-level data

dependence speculation system for multiprocessors,” Journal of

Instruction Level Parallelism, vol. 3, pp. 1–28, 2001.

[10] U. A. Acar, G. E. Blelloch, and R. Harper, “Selective mem-

oization,” SIGPLAN Notices, vol. 38, no. 1, pp. 14–25, Jan.

2003.

[11] H. Baker and C. Hewitt, “The incremental garbage collection of

processes,” Proceedings of the Symposium on Artifical Intelli-

gence and Programming Languages, SIGPLAN Notices, vol. 12,

no. 8, pp. 55–59, Aug. 1977.

[12] D. P. Friedman and D. S. Wise, “Cons should not evaluate its

arguments,” in Third International Colloquium on Automata,

Languages and Programming, 1976, pp. 257–284.

[13] E. C. Herrmann and P. A. Wilsey, “Threaded dynamic memory

management in many-core processors,” in Proceedings of the

2010 International Workshop on Multi-Core Computing Systems

(MuCoCoS 2010). IEEE Computer Society, 2010.

[14] D. Tiwari, S. Lee, J. Tuck, and Y. Solihin, “Mmt: Exploiting

fine-grained parallelism in dynamic memory management,” in

IEEE International Parallel & Distributed Processing Sympo-

sium, Apr. 2010.

[15] S. P. E. Corporation, “Spec cpu 2006,” Aug. 2008 (last

updated). [Online]. Available: http://www.spec.org/cpu2006/

[16] E. C. Herrmann, “Threaded dynamic memory management in

many-core processors,” Master’s thesis, University of Cincin-

nati, Cincinnati, OH, 2009.

[17] P. Laird, “Identifying and using patterns in sequential data,”

in 4th International Workshop in Algorithmic Learning Theory,

1993, pp. 1–18.

[18] Y. Sazeides and J. E. Smith, “The predictability of data val-

ues,” in Proceedings of the 30th International Symposium on

Microarchitecture, Dec. 1997, pp. 248–258.

