
Threaded Dynamic Memory Management in

Many-Core Processors

Edward C. Herrmann and Philip A. Wilsey

Experimental Computing Laboratory, Dept. of ECE, PO Box 210030, Cincinnati, OH 45221–0030

Abstract—Current trends in desktop processor design have
been toward many-core solutions with increased parallelism. As
the number of supported threads grows in these processors, it
may prove difficult to exploit them on the commodity desktop.
This paper presents a study that explores the spawning of
the dynamic memory management activities into a separately
executing thread that runs concurrently with the main program
thread. Our approach works without requiring modifications to
the original source program by redefining the dynamic link path
to capture malloc and free calls in a threading dynamic
memory management library. The routines of this library are
setup so that the initial call to malloc triggers the creation
of a thread for dynamic memory management; successive calls
to malloc and free will trigger coordination with this thread
for dynamic memory management activities. Our preliminary
studies show that we can transparently redefine the dynamic
memory management activities and we have successfully done
so for numerous test programs including most of the SPEC
CPU2006 benchmarks, Firefox, and other unix utilities. The
results of our experiments show that it is possible to achieve
2-3% performance gains in the three most memory-intensive
SPEC CPU2006 benchmarks without requiring recompilation of
the benchmark source code. We were also able to achieve a 3-4%
speedup when using our library with the gcc and llvm compilers.

Index Terms—Many-core, threads, dynamic memory, SPEC
benchmarks

I. INTRODUCTION

Emerging multi-core and many-core processors provide

opportunities for parallel execution of threads in emerging

commodity desktop processors. While these solutions have

been available for some time in the server market, only

recently have such processors entered the low-cost consumer

desktop market. Currently the desktop solutions contain mostly

dual and quad core processors. However, the recently released

Intel Core i7 has four hyper-threading cores (2 threads/core)

which provides support for 8 concurrent threads and in 2007

Intel announced a processor prototype with 80 cores [1]. It is

only a matter of time before commodity desktop computers

contain many-core processors supporting tens to hundreds of

threads per processor [2].

The migration of this much parallelism into the desktop may

prove difficult to exploit fully. Certainly upgraded operating

systems and major application programs such as web browsers

and office tools can be reprogrammed with additional task

level parallelism but even this may not provide sufficient

parallelism for an (for example) 80 core processor. Further-

more, in the commodity market, many users will generally

Support for this work was provided in part by the National Science
Foundation under grant CNS–0915337.

stick with non-upgraded applications when purchasing new

desktop systems. Thus, techniques to transparently increase

the parallelism of existing applications should be explored.

In this paper we examine the possibility of transparently

threading the dynamic memory management activities of ex-

ecuting (system and application) programs. The general idea

is to deploy a new library for dynamic memory management

that forks a new thread for dynamic memory management.

In this library, initial calls to malloc trigger the creation

of a new thread and subsequent calls to malloc and free

cause synchronization with and service from the spawned

thread. Because most systems dynamically link to runtime

libraries, the transparent integration of our dynamic memory

management library is simply a matter of redefining the system

link path to point at our library before the system memory

management library. Of course the potential impact of this

threading is only significant if there is a worthwhile amount

of execution time costs in the dynamic memory management

operations that can be hidden in overlapped execution with

the original application thread. Thus, in this paper, we explore

two issues. First, we examine the execution time costs of

dynamic memory management in programs. In this study we

will examine (primarily) the SPEC CPU2006 benchmarks [3].

Second, we have tested a threaded dynamic memory manage-

ment library to gain some initial experiences and performance

numbers. The library has been deployed on a Linux-based

Intel i7 system and we have successfully used it to execute

a variety of system and application programs, including the

SPEC CPU2006 benchmarks, Firefox, and other unix utilities.

The remainder of this paper is organized as follows: Sec-

tion II presents some of the previous work in optimizing dy-

namic memory management. Section III reports performance

data showing the dynamic memory costs in the SPEC 2006

benchmarks. Section IV explains our implementation of a

dynamic memory library to fork and manage dynamic memory

threads. Section V presents the empirical results of using the

threading dynamic memory management utilities. Section VI

describes how this threaded technique could be applied to

other libraries. Finally, Section VII presents a summary of

our results and contains concluding remarks.

II. RELATED WORK

One of the major issues with current dynamic memory

allocation systems is that they do not scale well with mul-

tithreaded programs. Many of the current standard allocation

systems were designed before multiple processor systems



became commonplace [4]. As a result, memory concurrency

issues were not factored into designing the systems. Since

then, most allocators have been updated to support multi-

threaded programs by using mutex locks around any dynamic

memory function to ensure no race conditions occur. This

is a simple solution, but it adds synchronization overhead

to the critical paths of all allocations and deallocations [5].

The allocation functions can also become bottlenecks when

multiple threads want to allocate or free memory at the same

time. Although a program may be multithreaded, it essentially

becomes sequential when threads must wait before entering

atomic sections of code in the allocation functions [6].

Numerous memory allocators have been created to help

alleviate this problem. Ptmalloc was an extension built on top

of Doug Lea’s dlmalloc that incorporates multiple regions in

the heap so that threads can access different regions of the

heap in parallel [7]. McIlroy et al created an allocator that used

local core memory regions called scratch-pads to localize heap

memory distribution [8]. Dice and Garthwaite [4] and Michael

[7] proposed allocators that avoid using locking mechanisms.

Hudson and associates created a lock-free allocator named

McRT-Malloc [9]. Streamflow [5] is a scalable and locally

conscious dynamic memory allocator. One of the most recent

dynamic memory libraries for multithreaded applications is the

Hoard allocator, created by Berger et al [10]. The Hoard

allocator avoids global locking by creating thread-local heaps

for each processor. These heaps can grow or shrink by taking

blocks from a global heap area. This allocator also helps avoid

false sharing, which occurs when values in separate caches

share the same cache block [10].

All of these allocation systems do well in increasing the

performance of multithreaded applications. However, not all

applications are multithreaded. There are many legacy applica-

tions and programs that are not inherently parallel. Even native

multithreaded applications have limitations as to how much

parallelism can be exploited. There remains a need to find

new ways to extract parallelism out of sequential programs.

Threading common system code such as the dynamic memory

allocation functions is one way to improve the performance of

sequentially coded applications on multiprocessor systems.

III. DYNAMIC MEMORY EXECUTION COSTS

To show that performance improvements obtained by

threading dynamic memory can be meaningful, it must be

shown that the time spent in dynamic memory operations is

significant. The cost of dynamic memory management is heav-

ily program dependent. There are many factors that determine

the dynamic memory behavior of a process: the frequency of

allocations and de-allocations, the size of the requested blocks,

the pattern in which the blocks are requested, and the order in

which the requests occur. All of these attributes can also affect

memory fragmentation, which can slow down the search times

for future allocations. It is also difficult to obtain consistent

measurements because program behavior can change for each

run depending on the program inputs, external interrupts, and

CPU scheduling of other processes.

fp tests percent of total computation

malloc realloc calloc free total

bwaves 0.00 0.00 0.00 0.00 0.00

gamess 0.00 0.00 0.00 0.00 0.00

milc 0.01 0.00 0.00 0.00 0.01

zeusmp n/a n/a n/a n/a n/a

gromacs 0.00 0.00 0.00 0.00 0.00

cactusADM 0.00 0.00 0.00 0.00 0.00

leslie3d 0.00 0.00 0.00 0.00 0.00

namd 0.00 0.00 0.00 0.00 0.00

dealll n/a n/a n/a n/a n/a

soplex 0.01 0.00 0.00 0.00 0.01

povray 0.03 0.00 0.00 0.02 0.05

calculix 0.02 0.00 0.00 0.01 0.03

GemsFDTD 0.01 0.00 0.00 0.00 0.01

tonto 7.52 0.00 0.00 5.96 13.48

lbm 0.00 0.00 0.00 0.00 0.00

wrf 0.17 0.00 0.00 0.09 0.26

sphinx3 0.00 0.00 0.23 0.06 0.29

int tests percent of total computation

malloc realloc calloc free total

perlbench 0.96 0.16 0.00 0.57 1.69

bzip2 0.00 0.00 0.00 0.00 0.00

gcc 0.19 0.00 9.68 0.28 10.15

mcf 0.00 0.00 0.00 0.00 0.00

gobmk 0.01 0.00 0.00 0.00 0.01

hmmer 0.02 0.02 0.01 0.02 0.07

sjeng 0.00 0.00 0.00 0.00 0.00

libquantum 0.00 0.00 0.00 0.00 0.00

h264ref 0.00 0.00 0.00 0.00 0.00

omnetpp 5.86 0.00 0.00 4.24 10.10

astar 0.21 0.00 0.00 0.12 0.33

xlanchbmk 2.26 0.00 0.00 1.24 3.50

n/aData for these programs were not gathered due to their

extremely long callgrind runtimes (still running after 7 days)

Fig. 1. SPEC CPU2006 callgrind profiling results

In this work, we study primarily the SPEC CPU2006 [3]

benchmark suite for our performance analysis. The SPEC

benchmarks are processor intensive and consist of represen-

tative programs from a diverse range of applications. The

SPEC benchmarks are widely used by the computer archi-

tecture community to study design tradeoffs. They also come

complete with batch execution scripts to facilitate their use in

testing and profiling system performance.

We use valgrind [11] to profile the runtime characteristics

of our benchmark programs and to capture results of the com-

putational costs that dynamic memory management adds to

each benchmark program’s total execution time. These results

for the SPEC benchmark suite are summarized in Figure 1.

This table lists the percent of overall assembly instructions

executed inside each of the four main dynamic memory func-

tions (malloc, realloc, calloc, and free). The sum



percent of total computation

Test description malloc realloc calloc free total

Firefox load top 10 most visited websites 1.08 4.88 2.13 1.62 9.71

vlc play 2 mins of 420p video 1.86 1.18 0.40 1.29 4.73

gcc compiling my malloc library 26.37 0.10 0.24 0.10 26.81

Fig. 2. Linux applications callgrind profiling results

of these numbers represents the overall percent of execution

time spent inside all dynamic memory functions, as shown in

the last column. A small collection of standard, fairly CPU-

intensive, Linux applications were also run through callgrind

to gather additional test points. The profiling results for these

applications are given in Figure 2.

The results show that the dynamic memory costs vary

from application to application. The majority of the tests use

dynamic memory sparingly and spend insignificant amounts

of time in the standard memory functions. There are how-

ever three benchmarks that spend more than 10% of total

processing time dealing with dynamic memory management,

namely: tonto, gcc, and omnetpp. tonto is a quantum

chemistry package, omnetpp is a network simulator, and gcc

is the standard GNU C compiler [3]. These applications would

benefit the most from a parallelized dynamic memory library.

Throughout the remainder of the paper, we will be focusing on

the performance of these three benchmarks, as well as some

tests involving code compilation. The distributed dynamic

memory strategy that we propose will focus on improving the

performance of these applications by introducing concurrency

into the memory management subsystem. The next section

details our approach on how to implement such a system.

IV. THREADING DYNAMIC MEMORY MANAGEMENT

When the basic malloc and free functions are invoked,

the processing that is carried out can be split into two

categories: request processing and system processing. Request

processing is the minimal processing required to fulfill the

current request. For a call to malloc, this includes finding

a block of free memory of the adequate size and returning

the address. For calls to free, the request-specific processing

involves marking the block at the specified address as unused.

System processing is the extra processing that takes place to

help manage the system. This includes coalescing free blocks

together, maintaining sorted linked lists of available blocks,

and requesting new chunks of memory from the operating

system. System processing maintains efficiency by keeping the

level of internal and external memory fragmentation low, and

also prepares the system for future requests by performing

maintenance on internal data structures.

Both types of processing are essential to the successful

and efficient operation of a memory management system.

Current implementations of dynamic memory management

systems distribute system processing across all the function

calls. Requests for more memory from the O/S are made

by malloc when no more free blocks are available. The

free function combines newly freed blocks with adjacent

free blocks as they arrive. Both functions maintain internal

linked lists and other data structures that allow for quick

indexing of freed blocks. In single processor systems this

method of distributing the system processing alongside the

request processing works very well. The main program has to

be interrupted at some point to handle the system processing,

so dividing the processing up evenly among the calls allows

the system to carry out each request in a reasonable amount

of time. In multiprocessor environments, the main program

does not have to be interrupted to handle system processing.

If properly implemented the system processing can be done

in parallel with the main program, performing background

cleanup and maintenance operations on the dynamic allocation

system while the main program continues. The goal of our

research is to create a plug-and-play dynamically linked library

that will take advantage of this parallelism by having a separate

thread take care of the system processing.

The first step was to override the default system free and

malloc commands. Since we decided to use a Linux devel-

opment environment, the LD_PRELOAD environment variable

allowed us to easily override the default library search path.

By creating a new dynamic library that redefined the dynamic

memory functions and placing it earlier in the dynamic link

chain, any dynamically linked program will use our replace-

ment malloc and free functions. For our initial research,

we did not want to completely recreate the entire dynamic

memory system. Therefore, we built our memory management

system on top of the original memory functions by allowing

our library to act as a wrapper. The dlsym function recurses

through the dynamically linked library structure to locate the

next occurrence of a particular function. Using this command

our library was able to create new chunks of memory by

calling the system malloc command, and similarly was able

to free memory using the system free.

Our first implementation (which we call pass-through) of

the library created a separate memory manager thread upon

the first invocation of malloc or free. We used the Native

POSIX Thread Library (NPTL) functions to create and syn-

chronize the manager thread with the program threads. Be-

cause the thread communication took so much time compared

to the time spent in calling a single dynamic memory function,

it was clear that another approach was needed. Our second

implementation (called distributed) focused on minimizing the

communication required between the threads. In our case, we

minimized the communication by pre-allocating free blocks of

predetermined sizes, so that they would be ready to be taken by



fp tests % sys lock

cost malloc free

bwaves 0.00 14.90 14.20

gamess 0.00 14.50 14.50

milc 0.01 16.00 16.30

zeusmp n/a 12.00 12.00

gromacs 0.00 6.43 6.43

cactusADM 0.00 8.71 8.24

leslie3d 0.00 8.93 8.50

namd 0.00 12.10 12.10

dealll n/a 19.30 19.10

soplex 0.01 21.70 21.30

povray 0.05 15.30 15.20

calculix 0.03 4.47 4.47

GemsFDTD 0.01 10.30 9.72

tonto 13.48 11.10 11.50

lbm 0.00 32.60 30.90

wrf 0.26 n/a n/a

sphinx3 0.29 26.30 26.30

int tests % sys lock

cost malloc free

perlbench 1.96 19.50 19.80

bzip2 0.00 12.10 12.10

gcc 10.15 20.20 20.60

mcf 0.00 29.20 29.30

gobmk 0.01 16.60 16.40

hmmer 0.07 8.04 8.04

sjeng 0.00 16.50 16.50

libquantum 0.00 28.10 28.00

h264ref 0.00 21.10 21.00

omnetpp 10.10 16.60 16.90

astar 0.33 11.50 11.70

xlanchbmk 3.50 21.80 23.20

n/aData for the wrf benchmark was not gathered due to runtime

errors in the benchmark.

Fig. 3. SPEC benchmark result summary

the next call to malloc. Pre-allocated memory blocks were

sized using powers of two and stored in “bins”, which were

linked lists of blocks of a particular size. On the free side,

addresses of freed blocks of memory were stored in a circular

array to be freed by the memory manager thread.

Results show that our distributed approach performs much

better than the pass-through implementation, but that it re-

mains slower than the original non-threaded library. This led us

to a third implementation that uses a lock-free communication

exchange which we describe more fully below.

In our third implementation (called lock-free), atomic op-

erations are used to ensure data integrity between threads.

To protect access to the free blocks, each bin has a counter

that records the number of free blocks available. Prior to each

allocation, this counter is atomically decremented. If the value

returned from the atomic decrement function is greater than

zero, then a free block is reserved for that allocation and

is guaranteed to be available. An atomic compare and swap

(CAS) instruction is used to remove the address from the front

of the bin. When adding new blocks into the bins, the memory

manager also calls an atomic decrement to reserve the last

block in the bin. Once the last block is reserved, the new linked

list of free blocks is appended to the list. Once the new blocks

are added, the counter is atomically incremented to include the

new quantity of blocks added to the bin. On the free side, a

similar counter is used to assign entries in the address array

to each incoming free request. Atomically incrementing the

counter ensures that no two free requests will reserve the same

array index. The manager thread travels through the free array

freeing any entry that has a valid address.

In addition to removing locks, additional performance im-

provements were made to the lock-free algorithm. In particu-

lar, to prevent blocking during free requests, the free address

array was replaced by a linked list. Each recently freed block

stores a pointer to the next block in the list. Besides preventing

blocking on the free requests, this also allows the manager

thread to free the blocks without having to traverse the entire

address array to check for addresses. The reuse of freed blocks

was also implemented. Instead of releasing a block of memory

back to the system and having to recreate a block of the

same size later, freed blocks are placed directly back into

their respective bins (when the bins are not full). This requires

assigning extra bytes along with each block to store the size

of the block. When the block is freed, these bits are used

to identify which bin to place the block. Freed blocks are

placed back into the front of the bins to provide better temporal

locality for future requested blocks.

V. EXPERIMENTAL RESULTS

To measure the performance of our threaded dynamic mem-

ory implementations, the SPEC benchmarks were executed

using each version of the library. The SPEC benchmark suite

evaluates system performance by measuring the execution

time of a specific benchmark and comparing it to the time

taken by a reference machine. Each test outputs the ratio of

the current system execution time to the reference system

execution time, resulting in the benchmark score. All three

versions of the library were tested but only results for the lock

free implementation are presented (Figure 3). The data shows

the percent of dynamic memory in the original program and

the SPEC performance numbers with and without our lock-

free library. These performance results are from the standard

SPEC scripts and the reported number is the geometric mean

of scores of ten trials. In each of these tests, the variance was

below .003. Lastly, the test system hardware was an 2.66GHz

Intel Core i7-920 processor with 3GB of RAM.

Results from the three most memory-intensive benchmarks

are also displayed in Figure 4 (including data from all three

of our implementations). In these results, system malloc is

the Linux glibc ptmalloc library, which is a modification

of Doug Lea’s dlmalloc. Although the first (pass-through)

implementation performs comparably to the standard library



Fig. 4. Memory-intensive SPEC benchmark results

(system malloc) on the less memory intensive benchmarks, it

produces the worst results on the memory intensive bench-

marks due to the communication overhead involved. The

second (distributed) solution shows much better results on

these tests, but it is still not able to surpass the performance

of the unthreaded library. The third (lock-free) method is able

to provide performance gains of 2-3% in the benchmarks that

have larger dynamic memory costs.

Analysis of callgrind results of the three memory intensive

benchmarks shows that the number of instructions executed

per call to malloc and free were reduced on average by

49% and 62%, respectively, with the lock-free library. Ideally

then, we could have seen a potential maximum speedup of

between 5-8% on these three benchmarks. Of course, cache

effects, O/S threading and scheduling overheads, and other

costs prevent reaching the ideal numbers.

Lastly, we show results with all of the SPEC tests, even

those with minimal dynamic memory costs, to illustrate the

possible negative costs of this approach. Clearly one would

not use our approach for programs with minimal dynamic

memory usage and instead only point the dynamic loader to

our threaded library for applications containing larger amounts

of dynamic memory usage.

To conclude our study with the SPEC benchmarks, we

measured the performance of our lock-free library when

compiling the benchmarks using the gcc and llvm compilers.

To measure the effects of our threaded library we measured the

time it takes to compile the entire benchmark suite using both

the regular system malloc library and our lock-free dynamic

memory library. For each compiler, five runs were performed.

Figure 5 shows the results from the trial runs and the average

speedup gained by using the threaded library. The results show

that our library outperformed the standard library by 3-4%.

This speedup is obtained by simply inserting the new library

into the link path before calling the compile script. No changes

to the source code or hardware were necessary. This speedup

comes no cost to the system by utilizing extra processing

power that would have otherwise gone unused.

gcc

Original time(ns) Threaded time(ns) Speedup(%)

620664871896 606460323756 102.3%

628267056925 603266265277 104.1%

635297406466 605694212411 104.9%

630458667011 607401427149 103.8%

635380815759 606422945462 104.8%

Avg difference: 24164728800 Avg: 104.0%

llvm

Original time(ns) Threaded time(ns) Speedup(%)

723584918236 691882133455 104.6%

724780429654 696974112396 104.0%

714829357879 693343381500 103.1%

729322211743 702887493433 103.8%

723332596904 695465632151 104.0%

Avg difference: 27059352296 Avg: 103.9%

Fig. 5. SPEC 2006 Compile Times using the Threaded Dynamic Memory
Manager with the GCC and LLVM Compilers

VI. FURTHER APPLICATIONS

The multithreaded approach used in our library can also

be applied to other library functions to provide performance

improvement gains in other areas. Dynamic memory functions

are a good candidate because they are used in a variety of

programs and because memory blocks are easily pre-allocated.

However, there are other computation-intensive library func-

tions that might benefit from multithreading. A library function

must exhibit certain properties in order for a threading im-

plementation to be considered. In particular these properties

must be met: it must be side-effect free, it must not rely on

external program/machine state information, and it must be

functionally idempotent. For example, the malloc function will

return a pointer to a memory container of acceptable size;

which container may vary, but any suitably sized container is

acceptable. Any library function that can satisfy these require-

ments could be a candidate for optimization through threading.

One example could be the trig functions sine and cosine.

Provided applications call these functions using arguments that

follow a predictable pattern (for example calculating the sine

function in fixed degree increments) then it would be possible

to precalculate future calls.

There are many factors that determine if threading would

actually benefit an application. First the amount of speedup

that can be gained will be limited by the amount of time

a program spends inside the particular functions. As shown

above in the experiments with the threaded dynamic memory

library, applications that do not use dynamic memory exten-

sively will not see speedup as a result of using the threaded

library. Another factor is the amount of overhead involved in

communication between the main program and the manager

thread. The main program must provide data to the manager

thread to allow accurate prediction of future calls. Similarly

the manager thread must transfer the pre-calculated outputs

to the main thread so that they will be available when the



function calls arrive. The amount of time saved in function

calculation must be greater than the communication overhead

in order for speedup to occur. Misprediction penalties will

also affect performance. If the input to the next function call

is mispredicted, the function output must be calculated in-line,

essentially negating any gains that the predicted value would

have provided. Finally the timing of the calls in the program

can also affect how effective library threading will be. There

needs to be time separating successive function calls to allow

the manager thread to predict the next output. If there are many

function calls in a row, the predicted values may not be ready

in time. This would cause the main program to wait for the

output to be calculated, reducing the amount of parallelism

that can be extracted from the function.

VII. CONCLUSION

The results of our experiments show that it is possible to

obtain speedup from traditionally single-threaded applications

by handling the dynamic memory management in a sepa-

rate thread. Our custom library was able to achieve 2-3%

performance gains in the memory-intensive SPEC CPU2006

benchmarks without requiring recompilation of the benchmark

source code. We were also able to achieve a 3-4% speed up

of the benchmark compile time (using either gcc or llvm).

Traditionally dynamic memory libraries have had to deal with

the tradeoff between the complexity of the algorithm and

the speed at which it operates. Multithreading the dynamic

memory system opens up more processing power without

negative performance effects on the main application thread.

This allows more complex but efficient algorithms to be

implemented, providing extra time savings not only from faster

dynamic memory function calls but also from better cache per-

formance of allocated blocks. The multithreading of dynamic

memory allows traditionally single-threaded applications to

transparently take advantage of extra processors provided by

multi- and many-core architectures.

Emerging many-core processors provide unique opportu-

nities and significant challenges for the parallel processing

community. In particular, we need to rethink our conventional

thoughts of parallelism where researchers/software designers

pursue solutions whose success is measured by scalability

with the number of processors/threads. We must begin to

think of these processors/threads as free/cheap resources that

should be exploited whenever possible to gain any (and every)

speedup opportunity. In this paper, we examine the small (but

measurable) overhead of dynamic memory and develop tech-

niques to transparently parallelize some aspects of the dynamic

memory functions. In our case, we were able to reduce the

average number of machine instructions for each malloc and

free call by 49% and 62% respectively. Unfortunately this

does not ultimately provide a corresponding reduction in the

total dynamic memory costs. In our experiments, we achieve

only 30-40% of the maximum possible reduction of dynamic

memory costs. Factors such as cache effects, O/S (threading)

overheads, and synchronization costs can (and do) impede

speedup.

With multi-core processing already here and many-core

processing on the horizon, is it important for programmers

and architects to shift their perspective on computing in order

to take advantage of the benefits many-core processing will

provide. As processors shift from serial to parallel execution,

it is crucial that software adapts to support these changes.

We must find ways to introduce parallelism into programs.

Methods such as predicting arguments for and early invocation

of future function calls that would not be feasible to implement

in a single core system can now thrive on emerging multi-

core architectures. Even recent advances in parallel processor

architectures can be seen through our experimentation. Many

of the tests detailed in this paper were run on an Intel core2duo

processor as well as the i7. None of the tests provided speedup

on the core2duo, whereas the improved multi-core architecture

in the i7 (specifically the much lighter-weight synchronization

primitives) allowed us to report modest speedup success with

the threaded dynamic memory library. Future many-core ar-

chitectures must provide even better support for fine-grained

multithreading similar to the type found in our threaded

dynamic library implementation. Operating system impacts

must also be considered. We are beginning to evaluate our

library with Solaris, and, we are also considering work with

more exotic O/S’s such as Barrelfish [12].

REFERENCES

[1] Intel Press Release, Intel Corporation, “Intel research advanced
’era of tera’,” Intel Press Release, Intel Corporation, Tech. Rep.,
Feb. 2007. [Online]. Available: http://www.intel.com/pressroom/archive/
releases/20070204comp.htm

[2] Intel Corporation, “From a few cores to many: A tera-scale
computing research overview,” Intel Corporation, Tech. Rep.,
2006. [Online]. Available: http://download.intel.com/research/platform/
terascale/terascale overview paper.pdf

[3] S. P. E. Corporation, “Spec cpu 2006,” Jan. 2009. [Online]. Available:
http://www.spec.org/cpu2006/

[4] D. Dice and A. Garthwaite, “Mostly lock-free malloc,” in Proceedings

of the 3rd International Symposium on Memory Management, 2002.
[5] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos, “Scalable

locality-conscious multithreaded memory allocation,” in Proceedings of

the 5th international symposium on Memory Management, E. Petrank
and J. E. B. Moss, Eds. ACM, 2006.

[6] D. R. Butenhof, Programming with POSIX Threads, ser. Professional
Computing Series. Addison-Wesley, 1997.

[7] M. M. Michael, “Scalable lock-free dynamic memory allocation,” Con-

ference on Programming Language Design and Implementation, vol. 39,
no. 6, 2004.

[8] R. McIlroy, P. Dickman, and J. Sventek, “Efficient dynamic heap
allocation of scratch-pad memory,” in The International Symposium on

Memory Management, R. Jones and S. M. Blackburn, Eds. ACM, 2008.
[9] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg, “Mcrt-

malloc: a scalable transactional memory allocator,” in Proceedings of

the 5th International Symposium on Memory Management, E. Petrank
and J. E. B. Moss, Eds. ACM, 2006.

[10] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A scalable memory allocator for multithreaded applications,”
in The Ninth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-IX), 2000.
[11] M. Behm, “Using valgrind to detect and prevent application memory

problems,” Redhat Magazine, vol. 15, 2006.
[12] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schpbach, and A. Singhania, “The multikernel: A new os
architecture for scalable multicore systems,” in Proceedings of the 22nd

ACM Symposium on OS Principles, Oct. 2009.


