Simulation Modelling Practice and Theory 28 (2012) 55-64

Contents lists available at SciVerse ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

Core frequency adjustment to optimize Time Warp
ONn many-core processors

Patrick Putnam, Philip A. Wilsey *, Karthik Vadambacheri Manian

Experimental Computing Lab, School of Electronic and Computing Systems, PO Box 210030, Cincinnati, OH 45221-0030, USA

ARTICLE INFO ABSTRACT
Article history: Time Warp synchronized parallel discrete event simulators are organized to operate asyn-
Received 2 January 2012 chronously and aggressively without explicit synchronization between the concurrently

Received in revised form 19 May 2012
Accepted 21 May 2012
Available online 25 July 2012

executing simulation objects. In place of an explicit synchronization mechanism, the con-
current simulators implement an independent but common virtual clock model and a roll-
back/recovery mechanism to restore causal order when out-of-order events are detected.
When the critical path of execution of the simulation is balanced across this parallel threads
of execution, this can result in a highly effective, lightweight synchronization mechanism to
Time Warp synchronization implement para}lel simulatiqn, However, imbalances in the workload across t?e threads can
Many-core processors result in excessive rollback in some threads and slowed progress of the critical path. On
Threaded execution small shared memory multi-core systems, a lowest time-stamp scheduling policy can effec-
tively balance the workload. However, on larger many-core chips, conventional load balanc-
ing and workload migration will once again become necessary. Fortunately, emerging
many-core chips contain some interesting features that can potentially be exploited to
improve the performance of parallel simulations. In particular, the recently developed Intel
Single-chip Cloud Computer (SCC) provides mechanisms for the runtime control of the fre-
quency and voltage settings of the chip. Furthermore, the frequency and voltage settings are
independently set within different regions (called islands) of the chip. Thus, in a Time Warp
simulation, one could increase the frequency of the cores executing threads on the critical
path (those experiencing infrequent rollback) and decrease the frequency of the cores exe-
cuting threads off the critical path (those experiencing excessive rollback). This paper inves-
tigates the run-time control and adjustment of core frequency in some contemporary x86
multi-core processors to identify the platforms that can support the exploration of dynamic
run-time control of core frequency settings. The results show that while all multi-core pro-
cessors have software controllable core frequency modulation capabilities, they are gener-
ally not fully independent as the system comes under load and are therefore unsuitable for
these studies. Fortunately, one processor, the AMD X6 line, provides software control for
core frequencies that can be fixed (by software) even as the system operates under load.
© 2012 Elsevier B.V. All rights reserved.

Keywords:
Parallel simulation

1. Introduction

Multi-core processors have been available for quite some time now. As the years have progressed, the number of processor
cores has continued to increase. At the time of writing, both AMD and Intel offer desktop computer processors that have 6-
cores on a single chip, namely the AMD Phenom II X6 and Intel Core i7-980 Gulftown. It is only a matter of time before there

* Corresponding author. Tel.: +1 513 556 4779; fax: +1 513 556 7326.
E-mail addresses: putnampp@gmail.com (P. Putnam), wilseypa@gmail.com (P.A. Wilsey), vadambkk@mail.uc.edu (K.V. Manian).

1569-190X/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.simpat.2012.05.011



56 P. Putnam et al./Simulation Modelling Practice and Theory 28 (2012) 55-64

are 8-, 10-, or 12-core desktop processors available. At the same time, there are research platforms available with significantly
more processors on a single chip. For example, the Intel Single-chip Cloud Computer (SCC) [1-3] platform offers researchers
with 48 IA cores on a single chip. Similarly, the Tile-Gx family of processors from Tilera offers 100-cores per chip [4].

These emerging many-core processors contain some interesting features that can potentially be exploited to improve the
performance of parallel applications. In particular, the research many-core SCC processor released by Intel contains: (i) on-
chip low-latency message passing hardware, (ii) software managed cache coherence, and (iii) mechanisms for the software
regulation of frequency and voltage settings of the on-chip processing cores, interconnection network, and memory control-
lers [1,2]. In the SCC chip, the frequency and voltage can be independently controlled among various sub-regions (called fre-
quency islands and voltage islands) of the chip. Using the on-chip thermal sensors to ensure safe setup, application programs
can attempt to dynamically adjust the operating frequency and voltage of the chip components to optimize run-time
performance.

This paper studies the development of a platform using contemporary x86 multi-core processing chips to explore the run-
time adjustment of frequency in the individual processing cores on the chip. This has turned out to be surprisingly difficult
and locating documentation on the full of operation of the power states has proven challenging. While all ACPI compliant
multi-core processor chips have the standard well-defined power states (C-states, D-states, and T-states), the response of
these chips to settings of those states are often ignored by the hardware as the system comes under load. Thus, when the
system is idle the power states are well-defined and highly effective for minimizing power consumption. However, when
the system is operating under load, experimental data shows that dynamic (software) control of core frequencies to throttle
one core and overclock another core becomes impossible on most multi-core processors. Fortunately one contemporary mul-
ti-core processor, the AMD Phenom II X6, does adhere to the software power settings even when the system is under load.
This paper presents the results of these investigations and outlines the application of dynamic frequency control to optimize
parallel simulations using the Time Warp synchronization protocol [5,6].

The remainder of this manuscript is organized as follows. Section 2 presents the motivating factors for dynamic frequency
control including a description of how frequency control can address optimizing Time Warp synchronized parallel simula-
tions. Section 3 provides some background information about the frequency and power states and their control by software
in contemporary x86 multi-core processors. In addition, a review of the Intel SCC processor and its voltage and frequency
adjustment capabilities is presented. Section 4 briefly describes some experiments running parallel simulation on an emu-
lation environment for the Intel SCC (many-core) platform. Several simulation models are run and projections of the theo-
retical increases available from an idealized frequency modulation are explored. Section 5 describes the experimental
platforms and software codes that were developed to explore dynamic frequency control. Section 6 reviews the results of
the experimental analysis and presents some general discussions of the findings from these studies. Finally, Section 7 con-
tains some concluding remarks and suggestions for future research.

2. Motivation

Migrating parallel programs from multi-core to many-core processors will likely require refactoring to alleviate possible
contention to shared resources and move some of the communication events from shared memory to messaging using the
on-chip network subsystem. Load sharing and process migration on many-core processors will be more difficult, slow, and
computationally expensive. Thread partitioning and core assignment will also become more significant in the effective
deployment of parallelism to many-core processors. However, one important new tool to help in this matter is the integra-
tion of software controlled frequency adjustment on many-core processors. These adjustments allow software to overclock
some cores and underclock others—sometimes by dramatic amounts. For example, on the Intel SCC processor, core frequen-
cies can be adjusted from 300 MHz to 1.3 GHz. Effectively managed, and ensuring that thermal limits are maintained, the
cores in the system cores can be underclocked and overclocked to balance the load and potentially accelerate the critical path
of execution. This will not replace the need for effective partitioning and task assignment/scheduling. Instead it is a potential
refinement to further improve total system throughput. Of course the challenge is to learn which cores have threads on the
critical path of execution and which are not. While this may not be easily achievable for all application, there are certainly
applications for which this should be possible. In particular, as outlined below, Time Warp synchronized parallel simulations
are an ideal candidate for this approach.

2.1. Time Warp

The Time Warp mechanism is an optimistic synchronization mechanism for parallel and distributed discrete event-driven
simulation [5,6]. Under Time Warp, the discrete event simulation is decomposed into a collection of concurrently executed
discrete event simulators called Logical Processes (LPs), Fig. 1. Conceptually, each LP maintains a local simulation time
(called the local virtual time or LVT) and each LP processes events, in their time-stamp order, without regard to the progress
of other LPs in the system. When an event is processed, it may generate one or more time-stamped events that are distrib-
uted to the designated LPs (by message passing or by direct insertion into the receiving LPs input event queue). When an LP
receives an input event that is in its simulated past (the event’s timestamp is less than the LVT of the LP), the LP will rollback
to a previously saved state and re-process the events in their proper order. Such events are called straggler events (or mes-



P. Putnam et al./Simulation Modelling Practice and Theory 28 (2012) 55-64 57

Anti-messages

Input Queue Output Queue /
LVT /l 7/
[}
Physical
Straggler Process
Message

State Queue

Fig. 1. A Logical Process in a Time Warp Simulation.

sages). If necessary, prematurely sent output events will be terminated by distributing anti-message events that tell the
receiving LP to erase the premature event (which might also trigger secondary rollback from the receiving LP).

On a shared memory machine, a common configuration for a Time Warp simulator is to have a common event list for the
worker threads organize their behavior to process events in time-stamp order across all LPs in that memory space. Thus,
insuring that the worker threads balance the work and mostly follow the critical path of causal order of the events. When
migrating to a many-core solution, the common event list becomes a point of contention and alternate organizations with
multiple event lists for distinct subsets of the LPs are deployed. In this case, one or more worker threads on each core are
assigned to a, time-stamp ordered, event list and some form of messaging is used to exchange event information between
the distributed event lists. Likewise partitioning and assignment of LPs to the distributed event lists may lead to load imbal-
ances that will need to be addressed. While migrating LPs between event lists may become necessary, a complimentary ap-
proach is to also adjust processor frequencies to further fine tune performance to accelerate the critical path of the
simulation.

2.2. Runtime tuning of Time Warp

Runtime tuning to optimize performance has been successfully applied to a number of subalgorithms of a Time Warp syn-
chronized parallel simulation [7]. Most significantly it has been used for: (i) sizing the checkpoint interval of an LP [8-10], (ii)
selecting the cancellation strategy for an LP [11], and (iii) for event scheduling [12-15]. Each of these mechanisms develop
and use some runtime measurements to assess performance and guide the tuning algorithms (e.g., rollback frequency vs roll-
back costs, distance from the global time, effectiveness of premature computations to produce useful work, and so on). From
the perspective of dynamic control of core frequency, it appears (from previous work) that the rollback frequency is an indi-
rect measure of an LP’s relation to the critical path of execution. LPs with a higher rollback frequency are processing events
prematurely and are further off the critical path than LPs with little or no rollback activity. Thus, monitoring the rollback
behavior of the LPs provides an indication of how to adjust the local core’s clock frequency. This measure will be discussed
more fully in later sections of this paper.

3. Background

Dynamic Voltage and Frequency Scaling (DVFS) are computer architecture techniques by which, as the name suggests, the
processor voltage and/or frequency can by adjusted to better compensate for the processing needs of the system. Typically
these techniques are most commonly used for reducing the power consumption of the system. Both techniques aim to re-
duce the dynamic power, or switching power, consumed by a CMOS gate. The switching power roughly follows P = CV?f[16],
where C is the capacitance of the gate, V is the voltage, and f is the switching frequency. The dynamic voltage technique re-
duces the voltage portion of this equation, and the dynamic frequency aims at reducing the frequency. Intel’s SpeedStep, and
AMD’s PowerNow! or Cool'n’Quiet technologies are implementations of dynamic frequency scaling (DFS). In a later section,
this paper explores the use of these features of multi-core chips to demonstrate dynamic control of core frequency by a run-
ning program. Ultimately this will serve as the basis for future studies with dynamically controlled many-core processors.

The open standard called Advanced Configuration and Power Interface (ACPI) [17] provides industry-standard interfaces
for Operating System directed configuration and Power Management of devices. All ACPI compliant processors and devices



58 P. Putnam et al./Simulation Modelling Practice and Theory 28 (2012) 55-64

have well-defined power states, C-states and D-states, respectively. The CO and DO states correspond to active/operating
states. The ACPI standard also defines Performance States, or P-states. These states are power consumption or capability
states available while the processor is in state CO and devices are in state DO. In terms of a processor, the P-states define
the different frequency/voltage states it can be in. The number of P-states is variable, and dependent upon the component
in question. PO is the highest performance state, where a component consumes the most energy and has the highest fre-
quency; and Pn is the lowest performance state. The key advantage of P-states is that switching between states is low la-
tency. Finally, the ACPI standard also defines Throttling states, or T-states, which only control processor frequency
throttling. However, these states do not generally reduce power consumption [18] and are not generally used by modern
Operating Systems.

The Operating System is usually in control of specifying the system P-state, and may allow some level of control to the
user. The Linux 2.6 kernel [19] provides access to devices, device drivers, and device configurations through the sysfs vir-
tual file system. In sys fs there is a subsystem called CPUfreq [20-22] that provides access to the processor configurations of
the current system. This subsystem relies on governors to set the processor frequency to specific levels based on certain cri-
teria. As mentioned, the governor only sets the desired frequency of the processor, it is left to the hardware to select the near-
est P-state to the desired frequency. There are several governors available with the Linux kernel, namely: Performance,
Powersave, Userspace, Ondemand, and Conservative. The Ondemand governor is usually the default governor, and will
dynamically adjust the frequency of the processor based on processor load. Of interest to us is the Userspace governor which
provides the user the ability to manually select the processor frequency.

As suggested, the primary use for P-states is reducing power consumption of a system when it is not under load. For
example, when a system is idling it can be placed into a lower performance state (higher P-state index), thus causing the
system to waste less energy while it is not performing computationally intensive tasks. This power savings model has been
useful in many applications. However, this model relies on the OS determining when to throttle the processor up or down
based on the task load of the system. What if we are not concerned about the power savings, but more about the processor
frequency during the execution of a process? What if we allowed a processor bound thread determine the frequency at
which the processor should be running?

3.1. Frequency and voltage adjustment in the Intel SCC chip

The Intel SCC platform is an experimental many-core processor developed and distributed to support research into many-
core processing. SCC is the first Intel many-core chip with x86 compliant cores on a single die. The die has 48 cores organized
into 24 Tiles with 2 x86 cores per Tile (Fig. 2). Each of the 24 tiles contains a dual-core x86 processor, L1 and L2 caches, and

VI: Voltage Island
FI: Frequency Island/Dual Core Tile vV
R: Router

R R R R R R

Fig. 2. The Intel SCC chip.



P. Putnam et al./Simulation Modelling Practice and Theory 28 (2012) 55-64 59

router for sending messages over the 2-D mesh network connecting the tiles. There are four memory controllers on the
board, supporting a total of 64 GB of addressable DDR3 memory.

The Intel SCC platform offers an interesting set of features. Of relevance to this body of work are the voltage and frequency
throttling features. This platform is a 6x4 grid of tiles, where each tile is essentially a dual-core processor. The chip is divided
into 7 voltage domains (called voltage islands); 6 for each 2 x 2 block of tiles, and 1 for the onchip network. There are 28
frequency domains (called frequency islands); 24 for each dual-core tile, one for the onchip network, one for the system inter-
face, one for the memory controller, and one for the voltage regulator controller. Within limits defined by the set voltage of a
voltage island, the corresponding tiles can be throttled independently of the each other. Basically, the voltage domain spec-
ifies a maximum operating frequency for the tiles. The tiles are then able to throttle to that frequency or specific lower fre-
quencies which follow a step function. Frequency changes require only a few cycles to take affect, whereas voltage changes
occur on the order of a million cycles.

4. Parallel simulation in the SCC emulation environment

This section focuses on the potential opportunities between Time Warp synchronized parallel simulation and the Intel
SCC many-core platform. To pursue these investigations, the warpep simulation kernel [23] is used. warrED was developed
to support large scale simulations (millions of LPs) on small (32-64 node) Beowulf clusters. warPep is used because it is a
modular design setup with threaded objects setup for execution on a heterogeneous Beowulf platform that contains local
(shared memory) and remote (Message Passing Interface, MPI, based messaging) communication capabilities.

The experiments with the SCC many-core platform were performed in a software emulation environment that executes
on a conventional x86 platform. The emulation environment is called RCCE. The RCCE environment provides a framework for
software development that closely emulates the SCC communication environment. An expanded discussion on the work to
execute warpPep simulation models on the RCCE environment is presented in [24]. This section summarizes results from that
paper and extrapolates the theoretical speedup that could be possible with idealized frequency adjustment.

In these studies, four simulation models packaged with the warpep simulation kernel are run on the Intel SCC emulation
environment executing on a Intel Core2Duo operating at 2.00 GHz, with 3 Gb of RAM, and running Linux (version 2.6). Due to
size considerations, the emulated SCC platform was configured as 4 cores (or two tiles). In these experiments, the wArPED sim-
ulator was configured with 4 LPs each bound to one of the emulated SCC cores. The four simulation models are a standard
parallel simulation model called PHOLD [5], a model of a RAID-4 disk array, and a model of a memory traffic in a shared
memory multiprocessor.

In this analysis, we assume that: (i) the operating frequency of all processing cores can be adjusted up or down by any
fractional amount; (ii) the frequency adjustments must be balanced, that is any increase must be offset by a corresponding
decrease; and (iii) that the total number of rollbacks are uniformly distributed throughout the simulation run and that any
frequency adjustment will have a direct correlation with an increase and/or decrease in the rollback frequency. These are
highly idealized assumptions, but they should provide an upper bound on the potential performance impact that dynamic
frequency adjustment can provide.

The runtime results are shown in Table 1. The results contain the total runtime and rollbacks experienced by each emu-
lated core. In column 5 (Optimal Frequency Adjustment), we computed the target (idealized) frequency changes using these
runtime numbers. In particular, the optimal frequency adjustment is computed assuming that the rollbacks were directly
correlated to the rollback frequency. Thus, the frequency adjustment was computed as a percent speedup or slowdown
(denoted by a negative percent) to match the average number of rollback experienced for all of the LPs for that simulation

Table 1
Simulation results from Core2Duo.
Model Core Runtime (s) Rollbacks Optimal frequency Potential runtime (s) Potential speedup
adjustment
PHOLD 0 346.87 2462 16.59% 289.32 1.20
1 352.06 3794 —28.33%
2 352.57 2911 1.38%
3 352.76 2640 10.56%
Ave: 2951.75
RAID 0 26.36 381 44.30%
1 26.53 175 74.42% 6.79 6.79
2 26.52 1344 —96.49%
3 26.54 836 —22.22%
Ave: 684
SMMP 0 71.92 20,052 —185.00%
1 71.91 2359 66.47%
2 71.94 1201 82.93% 12.28 5.86
3 71.92 4531 35.60%

Ave: 7035.75




60 P. Putnam et al./Simulation Modelling Practice and Theory 28 (2012) 55-64

Table 2
Hardware & Software specifications of the two machines used in testing.
Intel AMD

Processor Xeon W3680 Phenom II X6 1055T
Cores 6 6
Max Frequency 3.33 GHz 2.80 GHz
Hyper-threading Disabled N/A
Operating System Fedora 14 Ubuntu 11.01
Kernel 2.6.35.14-96 2.6.38-6-generic

Independent Core Frequency Settings
AMD Phenom I x6

184 ®800->2800MHz
B800->2200MHz
©800->1500MHz
B800->800MHz

Millions of Nodes Visited
=
1

Time (s)

Fig. 3. This is an execution profile upon an AMD Phenom II X6 processor. Four threads are executed over a 10 s period, nodes visited are reported every
second, three of the processors throttle to higher frequencies after 5.

model. From this, a new completion time is computed for the critical path and then the potential speedup under these ide-
alized conditions is shown. From these results we see that the dynamic voltage and frequency control features of SCC could
be highly useful for balancing and optimizing the performance of Time Warp synchronized PDES simulations. The remainder
of this paper explores our experiences evaluating several existing multi-core platforms for use to continue further, more
practical dynamic frequency modulation for optimizing parallel simulation.

5. Experiments with dynamic frequency adjustment

In this section we want to accomplish two main goals. First, we set out to establish a multi-threaded application where
threads are bound to specific processors and able to specify their own frequency. Second, we endeavored to determine the
throttling capabilities of different x86 hardware platforms from Intel and AMD (see Table 2).

5.1. Software

To make the development process simpler, the test application was designed to run on a Linux platform with root level
access. Additionally, we assumed there would be a minimal number processes competing for execution time. These assump-
tions meant that our software would be manually manipulating the system via the sysfs interface.

The application followed a four step process: (i) initialize, (ii) bind, (iii) run thread, and (iv) clean up. During (i), the appli-
cation parses the user arguments, determines the number of available processors, sets their governors to be userspace, and
determines the available processor frequencies. Step (ii) attempts to bind each currently running process to a user specified
set of processors.

The third step of the application process creates a single processor bound thread for each of the available processors. Each
thread controls its processor and measures the processor performance by a circular graph traversal algorithm. The algorithm
generates a circular graph with N nodes, throttles the processor to a specified frequency, traverses the graph for a specified
period of time counting the total number of nodes visited, and finally cleans up the graph. For the purposes of these exper-
iments, it was sufficient to set N = 1000 for all testing scenarios. An independent list of throttling events, or throttling event
scenarios, is provided to each thread, where each event is a pair of processing frequency and the loop time duration. Begin
and end times are recorded for both the throttling stage and the graph traversal stage. Finally, the “clean up” step returns the
system to the pre-initialized state in terms of process binding and processor governors.



P. Putnam et al./Simulation Modelling Practice and Theory 28 (2012) 55-64 61
5.2. Hardware

Two multi-core processor environments were studied in the experiments. The first system was a workstation built
around an Intel Xeon W3680 processor with 6-cores. The second system was a desktop computer built around an AMD Phe-
nom Il X6 1055T processor with 6-cores. Although both processors have 6-cores, that is where the similarities end. The Intel
processor has an available 15 frequency settings ranging from 1596 to 3326 MHz. The AMD has only 4 ranging from 800 to
2800 MHz.

6. Results

While there were no other computationally intensive applications running on either system during testing, it was decided
that the standard Linux system processes should be bound to 2 of the 6 cores. The remaining 4 cores would then be used in
the “thread” step of the application. Several different throttling event scenarios were performed on each of the test plat-
forms. Each set of scenarios was repeated 10 times.

Since the AMD and Intel processors have differing frequency ranges and values, it was expected that the number of nodes
visited on each platform would be significantly different. When the AMD is running at its maximum frequency (2.8 GHz) it is
able to visit roughly 17.7 million nodes per second (Fig. 3). However, when the Intel is running at its lowest frequency
(1.59 GHz) it is able visit 16.0 million nodes per second (Fig. 4). The performance difference is also evident in the number
of nodes visited per clock cycle. The Intel processor is able to visit roughly 10.2 nodes per 1000 clock cycles, and as the fre-
quency increases so do the number of nodes visited (see Fig. 5). Conversely, the AMD processor starts out visiting more nodes
at lower frequencies and decreases as the frequency increases (Fig. 6).

Independent Core Frequency Setting
Intel Xeon W3680

B 1596 -> 3326MHz
357 m1596 -> 2527MHz
304 01596 -> 2394MHz
B 1596 -> 1596MHz

Millions of Nodes Visited
N
o
1

15
10
5_
0_
1 2 3 4 5 6 7 8 9 10
Time (s)

Fig. 4. This is an execution profile upon an Intel Xeon W3680 processor. Four threads are executed over a 10 s period, nodes visited are reported every
second, three of the processors throttle to higher frequencies after 5 s.

Average Trend of Nodes Visited
Intel Xeon W3680

1055
105

1045 =

104 - @ Nodes per 1000

cycles
1035 -

103 [e—

1025

102

Nodes Visited per 1000 Cycles

10.15 T 1
1596000 2527000 3326000
Frequency (kHz)

Fig. 5. This graph depict the average number of nodes being visited per 1000 clock cycles on the Intel processor.



62 P. Putnam et al./Simulation Modelling Practice and Theory 28 (2012) 55-64

Average Trend of Nodes Visited
AMD Phenom Il X6

58

5.7 4

5.6 -

55 4

@ Average over 40

54 - samples

5.3 4

5.2 4

MNodes Visited per 1000 cycles

5.1+

5 T 1
800000 2200000 2800000

Processor Frequency (kH2)

Fig. 6. This graph depict the average number of nodes being visited per 1000 clock cycles on the AMD processor.

The unexpected result was that the number of nodes visited by each thread while running on the Intel platform corre-
sponded to the maximum frequency of all the threads. In other words, if one of the threads throttled itself to the maximum
frequency, it does not matter what frequency the other threads throttle to, all of the cores will end up throttled to the max-
imum frequency. This is clearly shown in Fig. 4 where after 5 s (when the software frequency changes are triggered), all the
cores jump to the maximum node visit rates despite being set by the software to different frequencies. Further research indi-
cates that on the Intel platform has a single voltage regulator per socket. “Hence P-state transitions (which impact both fre-
quency and voltage) for all the cores need to happen at the same time” [25]. On the other hand, the AMD is not subject to this
same design decision. Fig. 3 clearly shows the cores visiting nodes at different rates after the frequency changes are affected
(after 5 s). With the Phenom II X6 line of processors, AMD has “unlocked” the P-states[26], allowing each core to take on its
own frequency. Thus, the Intel is unsuitable for experimenting with program controlled frequency throttling to optimize per-
formance. The AMD X6 is, however, capable of supporting software controlled configurations to experiment with dynamic
control of core frequency.

6.1. Discussion

As mentioned above, controlling the processors voltage and frequency has been primarily been utilized for power saving
purposes. As evidenced by our research and experiments, implementations of this technology varies on common desktop
multi-core processor lines. While each processor line implements P-states, the decision on whether all the cores should exist
in the same state or be allowed to exist in their own state seems to differ. Our experiments did reveal a significant difference
in performance between an Intel and AMD processor. However, it was beyond the scope of our present interests to determine
how much of an effect the P-state design decision had on the actual processor performance. We have primarily been focused
on utilizing this technology as it will be available on many-core systems, such as the Intel SCC platform. To that end, the AMD
processor is better suited for the task. It provides multiple cores on a single chip with the ability to throttle each of the cores
individually.

Another interesting feature of the AMD Phenom II X6 processor line is the Turbo CORE technology[27]. This technology
provides a set of hidden P-states, called Boost P-states, which only the hardware can control. In addition to current processor
P-states, the hardware tracks the load on each core. If a core is in the highest P-state (PO) with a heavy load, then the hard-
ware will attempt to overclock the core for a period of time while remaining with in thermal and electrical limits. The hard-
ware can boost a maximum of 3 cores at the same time. For example, if core 2 of a processor is in a “boost eligible” state on a
2.8 GHz X6, the hardware may attempt to overclock the core to 3.30 GHz for a period of time. In following the trend from our
experimental data, assuming that the addition 500 MHz would further decrease the nodes visited per 1000 cycles to just 5
nodes, we would still see an increase of roughly 1.7 million nodes visited.

Further exploration into the use of processor throttling would consist of a couple of tasks. Removing the constraint that
the user must have root access to the machine in order to be able to throttle the cores is a first step. There are several dae-
mons available which provide this functionality [28]. Another step is to implement the process into a Time Warp simulation
kernel.



P. Putnam et al./Simulation Modelling Practice and Theory 28 (2012) 55-64 63
7. Conclusion

Many-core and multi-core processing platforms pose interesting challenges and opportunities for optimizing Time Warp
synchronized parallel simulation. In a Time Warp simulation, all of the LPs aggressively execute events with those off the
critical path experiencing an overly large number of rollbacks due to their over aggressive computation. On small, shared
memory multi-core processors, it is possible to use a shared event pool and schedule events in their global least time-stamp
order for concurrent execution (to a collection of worker threads). On a larger many-core processor platforms (such as the
Intel SCC chip) LP partitioning, load balancing, and network latency issue will become more significant. One feature of many-
core platforms that appears to provide an interesting addition to the optimization and balancing of LP execution is the ability
to independently throttle (up or down) the frequency of the processing cores on the chip. While this feature does not replace
load balancing, it does provide a complimentary mechanism to further refine and tune the execution of Time Warp simula-
tions to optimize performance.

This paper examined the execution of Time Warp synchronized parallel simulations on the Intel SCC emulation frame-
work. From these simulations we assigned LPs to specific cores and observed the total number of rollbacks experienced
by each core. Using an idealized theoretical analysis with infinitely selectable core frequency settings, we demonstrated
how frequency adjustments could accelerate the critical path for a total speedup of the three simulation models by 1.2,
5.86, and 6.79. While this is an idealized result that is not achievable in practice, this analysis does show that non-trivial
speedup numbers could be possible.

The second main contribution of this paper was to explore the feasibility of using existing multi-core chips to study dy-
namic frequency modulation. It turns out that this is not as easy as one might think. Initially we believed that virtually any
multi-core platform would suffice. What we discovered was that only the AMD Phenom II X6 1055T platform would respect
software based frequency settings. The other Intel and AMD chips that we studied would not follow the software based fre-
quency settings when all the cores on the chip were under load. Another challenging aspect of using multi-core chips is the
relatively coarse settings of the frequencies. Despite this, we are continuing our studies to use dynamic frequency control on
the X6 processor to optimize our Time Warp simulator.

Acknowledgment

Support for this work was provided in part by the National Science Foundation under Grant CNS-0915337.

References

[1] J. Howard et al., A 48-core I1A-32 message-passing processor with DVFS in 45 nm CMOS, in: 2010 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2010, pp. 108-109.

[2] Intel Press Release, Intel Corporation, Futuristic Intel Chip Could Reshape How Computers Are Built, Consumers Interact with their PCs and Personal
Devices, Tech. Rep., Intel Press Release, Intel Corporation, December 2009. <http://www.intel.com/pressroom/archive/releases/20091202
comp_sm.htm>.

[3] L Labs, The SCC Platform, Tech. Rep., Intel Corporation, May 2010. <http://techresearch.intel.com/spaw2/uploads/files/SCC_Platform_Overview.pdf>.

[4] T. Corporation, TILE-Gx Processor Family, Tech. Rep., Tilera Corporation, 2011. <http://www.tilera.com/products/processors/TILE-Gx_Family>.

[5] R.M. Fujimoto, Parallel discrete event simulation, Communications of the ACM 33 (1990) 30-53.

[6] D. Jefferson, Virtual time, ACM Transactions on Programming Languages and Systems 7 (3) (1985) 405-425.

[7] A. Palaniswamy, P.A. Wilsey, Parameterized Time Warp: an integrated adaptive solution to optimistic pdes, Journal of Parallel and Distributed
Computing 37 (2) (1996) 134-145.

[8] L. Auriche, F. Quaglia, B. Ciciani, Run-time selection of the checkpoint interval in time warp based simulations, Simulation Practice and Theory 6 (5)
(1998) 461-478.

[9] J. Fleischmann, P.A. Wilsey, Comparative analysis of periodic state saving techniques in Time Warp simulators, in: Proc. of the 9th Workshop on Parallel
and Distributed Simulation (PADS 95), 1995, pp. 50-58.

[10] R. Rénngren, R. Ayani, Adaptive checkpointing in Time Warp, in: Proc. of the 8th Workshop on Parallel and Distributed Simulation (PADS 94), Society
for Computer Simulation, 1994, pp. 110-117.

[11] R. Rajan, R. Radhakrishnan, P.A. Wilsey, Dynamic cancellation: selecting Time Warp cancellation strategies at runtime, VLSI Design 9 (3) (1999) 237-
251

[12] C. Burdorf, J. Marti, Non-preemptive Time Warp scheduling algorithms, Operating Systems Review 24 (2) (1990) 7-18.

[13] A. Palaniswamy, P.A. Wilsey, Scheduling Time Warp processes using adaptive control techniques, in: ].D. Tew, S. Manivannan, D.A. Sadowski, A.F. Seila
(Eds.), Proceedings of the 1994 Winter Simulation Conference, 1994, pp. 731-738.

[14] F. Quaglia, V. Cortellessa, Grain sensitive event scheduling in time warp parallel discrete event simulation, in: Proc. of 14th Workshop on Parallel and
Distributed Simulation (PADS 00), 2000.

[15] T. Som, R. Sargent, A probabilistic event scheduling policy for optimistic parallel discrete event simulation, in: Proc. of 12th Workshop on Parallel and
Distributed Simulation (PADS98), 1998, pp. 56-63.

[16] Wikipedia, Dynamic Voltage Scaling—Wikipedia, the Free Encyclopedia, 2011. <http://en.wikipedia.org/w/index.php?title=Dynamic_
voltage_scaling&oldid=451282154> (accessed 04.10.11).

[17] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd., Toshiba Corporation, Advanced Configuration and
Power Interface Specification, fourth ed., 2010. <http://www.acpi.info/ DOWNLOADS/ACPIspec40a.pdf>.

[18] ThinkWiki, How to Make Use of Dynamic Frequency Scaling, 2011. <http://www.thinkwiki.org/wiki/How_to_make_use_of_Dynamic_Frequency_
Scaling>.

[19] LK.O. Inc., The Linux Kernel Archives, Tech. Rep., Linux Kernel Organization Inc., 2011. <http://www.kernel.org>.

[20] D. Brodowski, N. Golde, Linux CPUFreq - CPUFreq Governors, Tech. Rep., Linux Kernel. <http://www.mjmwired.net/kernel/Documentation/cpu-freq/
governors.txt>,

[21] J. Hopper, Reduce Linux Power Consumption. Part 1: The CPUfreq Subsystem, Tech. Rep., IBM. <http://www.ibm.com/developerworks/linux/library/l-
cpufreq-1/index.html>.



64 P. Putnam et al./Simulation Modelling Practice and Theory 28 (2012) 55-64

[22] V. Pallipadi, A. Starikovskiy, The Ondemand Governor: past, present, and future, in: Proceedings of the Linux Symposium, 2006, pp. 223-238. <http://
www.linuxinsight.com/ols2006_the_ondemand_governor.html>.

[23] D.E. Martin, P.A. Wilsey, R.J. Hoekstra, E.R. Keiter, S.A. Hutchinson, T.V. Russo, L.J. Waters, Redesigning the warped simulation kernel for analysis and
application development, in: Proceedings of the 36th annual symposium on Simulation, ANSS '03, 2003, pp. 216-223.

[24] K.V. Manian, P.A. Wilsey, Distributed simulation on a many-core processor, in: The Third International Conference on Advances in System Simulation
(SIMUL 2011), 2011.

[25] S. Siddha, Multi-Core and Linux Kernel, Tech. Rep., Intel Inc., 2007. <http://software.intel.com/sites/oss/pdfs/mclinux.pdf>.

[26] S. Wasson, C. Kowaliski, AMD’s Phenom II X6 processors. <http://techreport.com/articles.x/18799>.

[27] A.L. Shimpi, AMD Divulges Phenom II X6 Secrets, Turbo Core Enabled, Tech. Rep., AnandTech, April 2010. <http://www.anandtech.com/show/3641/
amd-divulges-phenom-ii-x6-secrets-turbo-core-enabled>.

[28] ThinkWiki, How to Configure CPUfreqd, 2011. <http://www.thinkwiki.org/wiki/How_to_configure_cpufreqd>.



