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Abstract

Many large protein-nucleic acid complexes exhibit allosteric regulation. In these systems, the propagation
of the allosteric signaling is strongly coupled to conformational dynamics and catalytic function, challeng-
ing state-of-the-art analytical methods. Here, we review established and innovative approaches used to
elucidate allosteric mechanisms in these complexes. Specifically, we report network models derived from
graph theory and centrality analyses in combination with molecular dynamics (MD) simulations, introduc-
ing novel schemes that implement the synergistic use of graph theory with enhanced simulations methods
and ab-initio MD. Accelerated MD simulations are used to construct “enhanced network models”, describ-
ing the allosteric response over long timescales and capturing the relation between allostery and confor-
mational changes. “Ab-initio network models” combine graph theory with ab-initio MD and quantum
mechanics/molecular mechanics (QM/MM) simulations to describe the allosteric regulation of catalysis
by following the step-by-step dynamics of biochemical reactions. This approach characterizes how the
allosteric regulation changes from reactants to products and how it affects the transition state, revealing
a tense-to-relaxed allosteric regulation along the chemical step. Allosteric models and applications are
showcased for three paradigmatic examples of allostery in protein-nucleic acid complexes: (i) the nucle-
osome core particle, (ii) the CRISPR-Cas9 genome editing system and (iii) the spliceosome. These meth-
ods and applications create innovative protocols to determine allosteric mechanisms in protein-nucleic
acid complexes that show tremendous promise for medicine and bioengineering.

� 2022 Elsevier Ltd. All rights reserved.
Introduction

Allostery is a fundamental process by which
biological macromolecules transmit the effect of a
local perturbation (e.g. a binding event) at one site
to a distal, functional site, allowing for regulation of
activity.1,2 This property plays a cardinal role in bio-
logical processes, as it enables signal transduction
and drug-drug synergy.3–8 Further, many large
protein-nucleic acid complexes require facile com-
munication between multi-domain structures for
proper functionality.9–13 Thus, structural remodeling
and long-range allosteric communication are the
td. All rights reserved.
main mechanistic determinants underlying their
function in cells. Processes including DNA/RNA
replication, chromatin packaging, gene editing and
regulation involve these complexes, demonstrating
the profound biological importance of allosteric reg-
ulation. Here we focus analysis of allostery on three
systems for which this paradigm holds: 1. the nucle-
osome core particle,14 which is the fundamental unit
of chromatin, 2. the CRISPR (clustered regularly
interspaced short palindromic repeats)-Cas9 com-
plex,15 which recently emerged as a transformative
gene editing technology, and 3. the spliceosome,16

which performs RNA splicing in eukaryotes (Fig.1).
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Figure 1. Overview of three allosteric protein and nucleic acid complexes. (a) The nucleosome core particle,
composed of chromosomal DNA wrapped around an octamer of four core histone proteins (H3, H4, H2A and H2B,
PDB: 1AOI).14 (b) The CRISPR-Cas9 gene editing system (PDB: 5F9R),46 composed of the Cas9 protein bound to
RNA (orange) and DNA (purple). The HNH and RuvC catalytic domains are shown in green and blue, respectively. (c)
The pre-catalytic spliceosome, composed of several proteins and five small nuclear ribonucleoprotein particles
(snRNPs: U1, U2, U4, U5, and U6) (B complex, PDB ID: 5NRL).47
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These systems hold tremendous potential for bio-
medicine, potential hampered by a poor fundamen-
tal understanding of the mechanisms that might be
viable targets for their application.
Allosteric pathways in biomolecular systems have

been widely investigated,3–8,17–19 with a number of
theoretical and experimental studies20–23 revealing
the significance of conformational dynamics. These
studies led to the current idea that the propagation
of the allosteric signaling arises from a concert of
multiple timescales, over fast and slow motions,
which transfer the information on multiple bina-
ries.24–26 This concept applies well to large macro-
molecular machines that process nucleic acids,
where slow conformational changes and fast local
perturbations could both impact the information
transfer. Such phenomena can be examined in
detail through the use of All-Atom MD simula-
tions.4–9,27,28 By capturing atomic fluctuations and
conformations, MD can uniquely describe the subtle
dynamical changes associated with allosteric sig-
naling. This has greatly enriched the experimental
determination of the allosteric phenomena attained
through NMR, X-ray crystallography, cryo-EM and
single-molecule experiments.
The data obtained from MD simulations, though

beneficial on their own, can also be effectively
organized into network models derived from graph
theory and centrality analyses, a methodology
particularly useful for examining allosteric
mechanisms. Here we present synergistic
schemes, such as “enhanced network models”,
which enable access to long timescale dynamics
and capture the relation between allostery and
conformational changes. We introduce a novel
approach combining graph theory with ab-initio
MD and quantum mechanics/molecular mechanics
(QM/MM) simulations to decrypt the allosteric
2

regulation of catalysis. These “ab-initio network
models” have been introduced to describe how
long-range allosteric signals affect the DNA
cleavage in CRISPR-Cas9, proposing a tense–to–
relaxed allosteric regulation along the chemical
step. Altogether, interfacing different simulation
techniques with graph theory creates innovative
protocols to access multiple timescales and
capture the role of the signal transduction in the
biophysical and chemical function of proteins and
nucleic acids. The innovative methods and
applications described here will inspire and impact
future studies of allostery in large proteins and
nucleic acid complexes.

Critical overview of the field

Nonstop development of more powerful
supercomputers and smarter algorithms enables
researchers to study biomolecules of increasing
motion complexity, reaching timescales from
nanoseconds (ns) to microseconds (ls). This is
critical to identify transitions and short-lived
conformations that escape experimental
characterization.29 Nevertheless, investigating
allosteric mechanisms in large proteins through
MD is often difficult. Indeed, the biological function
of such large macromolecular machines relies on
slow dynamical motions ranging from ls to millisec-
onds (ms), which are associated with the (re)organi-
zation of protein domains and long-range
conformational effects.
This challenges the state-of-the-art computational

approaches, requiring methods that enhance the
sampling of the configurational space to access
long timescale dynamics. Another intriguing aspect
of large biomolecules is that allostery can often
activate catalysis,30 but the relation between the
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two phenomena is yet to be fully clarified. This rela-
tion can rely on the transmission of signaling over
short timescales.17,24–26,30,31 This transfer of infor-
mation “cliques” the catalysis, but a comprehensive
characterization has not yet been given. It is also lar-
gely unknown how the allosteric regulation changes
from reactants to (R) to products (P) and how it
affects the transition state (TS�). In this complex sce-
nario, an in-depth investigation requires novel
strategies that leverage a variety of computational
methodologies, able to capture the different extent
of the motions. Enhanced sampling simulations are
required to extend the timescale limits of classical
MD and capture long timescale conformational
changes.32 Furthermore, since classicalMD simula-
tions are based on force field parameterization, they
are unable to describe bond breakage and forma-
tion, andcannotbeemployed tounderstand the rela-
tion between catalysis and allostery. To overcome
this limitation, quantum mechanical simulations
can be valuable to study the allosteric response
along the catalysis. These simulations allow one to
integrate the equation of motion from the first quan-
tum mechanical principles and are commonly
referred as ab-initioMD simulations.33

Other long-lasting limitations associated to
classical MD refer to the accuracy of the empirical
force field in reproducing the experimental (or
quantum mechanical) properties. Though
ceaseless refinement of the most popular force
field models – OPLS,34 AMBER,35 GROMOS36

and CHARMM37 – is leading to good representa-
tions of proteins. For nucleic acids, the description
of base-pairing, stacking and base/sugar interac-
tions can be challenging. Improvements to the Cor-
nell et al. model38 led to the correction of several
parameters, from van der Waals to electrostatic
terms and dihedral parameters. These include the
bsc0 corrections of the unbalanced a/c transitions
in DNA,39 and the vOL3 corrections for RNA,40,41

which balances the anti and the high-anti conforma-
tion related to the v angle. Studies summarized here
have indicated the reliability of thesemodels for pro-
tein/nucleic acid complexes. Moreover, computa-
tional studies of protein allostery can be
fundamentally assisted by solution NMR.42 In this
respect, recent force field models have improved
the consistency of the backbone conformational
ensemble with NMR experiments,43 and were used
in combined MD-NMR studies discussed here.44,45

Overall, considering these challenges, our
contribution accounts methods and innovative
approaches to efficiently decrypt dynamic allostery
in proteins and nucleic acids. Methods and
applications showcased here will help in creating
novel protocols to determine the allosteric network
of communication over multiple scales, as well as
the relation between allostery and catalysis, which
has remained unaddressed through classical
approaches.
3

Allosteric proteins and nucleic acids

Here, we introduce the biomolecular function of
the three proteins-nucleic acid complexes that will
be used as paradigmatic examples of allosteric
mechanisms.
The nucleosome core particle is the fundamental

unit of chromatin, composed of chromosomal DNA
of 145–147 base pairs, wrapped around an
octamer of four core histone proteins (H3, H4,
H2A and H2B, Figure 1(a)).14 Nucleosomes have
the essential role of compacting DNA in eukaryotic
cells, where the majority of DNA assumes a packed
conformation, rather than as free oligonucleotides
or non-protein–DNA complexes. The allosteric reg-
ulation of nucleosomes have been well character-
ized,11,48 revealing the effect of local alterations of
the histones’ dynamics on the protein and DNA
binding properties at distal sites. Moreover, drug
targeting of nucleosomes can exploit histones’
allostery to achieve drug-drug synergistic
effects.49,50 This regulation is promising for devel-
oping new therapeutic strategies that could interfere
with chromatin compaction.51,52 In fact, allosteric
drugs can hinder the binding of chromatin transcrip-
tion factors that modulate gene expression in can-
cer cells, leading to new strategies for anticancer
therapy.
CRISPR-Cas9 is the core of a transformative

genome editing technology that is innovating
biomedicine, pharmaceutics and agriculture.15

Cas9 is an RNA-guided DNA endonuclease, which
generates double-stranded breaks in DNA by first
recognizing its protospacer-adjacent motif (PAM)
sequence, and then cleaving the two DNA strands
via the HNH and RuvC nuclease domains. The
largemulti-domain Cas9 protein comprises a recog-
nition (REC) and a nuclease (NUC) lobe, the latter
including the catalytic domains and the PAM-
interacting region (Figure 1(b)).46 At the molecular
level, an intricate allosteric signaling regulates the
CRISPR-Cas9 biochemical information transfer to
activate double-stranded DNA cleavage.53,54 This
allosteric communication is critical for transmitting
the DNA binding information, affecting the function
and specificity of Cas9. Its knowledge is essential
for the system’s activation and for improving its gen-
ome editing applicability.
The spliceosome, a multi-mega Dalton assembly

of proteins and small nuclear RNAs, is one of the
most important non-coding RNA–protein
complexes in humans (Figure 1(c)).16 By perform-
ing RNA splicing, the spliceosome edits the prema-
ture messenger RNA (pre-mRNA), which is cleared
of its non-coding sections (introns). The coding
exons are then ligated, forming messenger RNA
(mRNA) which is subsequently translated into pro-
teins. The spliceosome is composed of hundreds
of proteins and five small nuclear ribonucleoprotein
particles (snRNPs: U1, U2, U4, U5, and U6), which
undergo a continuous conformational and composi-
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tional remodeling during the splicing cycles.47

Understanding the inter-protein/RNA communica-
tion can pose the foundations to interfere with the
spliceosome function, a clinically significant goal
considering splicing deregulation is associated with
more than 200 human diseases.

Allostery as a violin or a domino

The early models on protein cooperativity have
been a stepping stone to the understanding of
allostery as a fundamentally a dynamic
phenomenon.1,55,56 It is now established that allos-
tery is characterized by a change in the dynamical
properties. Indeed, the binding of an allosteric effec-
tor (e.g., a drug or a substrate) can induce major
conformational rearrangements or subtle shifts in
the conformational ensemble, resulting in the trans-
mission of the binding information to distal sites.5

This favorable free energy change, induced by
effector binding, can be characterized by enthalpy,
which implies an explicit change of conformation,
or by entropy, as in the case of allostery without
an explicit conformation change.57

A brilliant interpretation of the signal transmission
suggested that this phenomenon can resemble a
“violin” or a “domino”.58 In the violin model, the bind-
ing of an allosteric effector (i.e., a drug or substrate)
triggers a pattern of vibrations, which results in the
activation of the system at distal sites. This behavior
is analogous to a violin, when the player pitches a
Figure 2. Violin and domino models for biomolecula
allosteric effector triggers a pattern of vibrations, similar to the
system at distal sites. In CRISPR-Cas9, the binding of the
leads to a change in the conformational dynamics, as indicate
motions (bottom panel).10 (b) In a domino model, the allo
propagating via a well-defined pathway, similar to the effec
particle, the biding of RAPTA-T induces a local kink, that
(shown using arrows), allowing the transfer of information to

4

string (ligand binding) and triggers a pattern of
vibrations that transfers itself to the sounding board
(the biomolecule) for function. Substrate binding
thereby shifts the conformational ensemble by alter-
ing the system’s motions in a non-specific way. On
the other hand, in a domino model effector binding
triggers a sequential set of local events propagating
via a well-defined pathway from one allosteric active
site to the other. Two examples that show the differ-
ence in mechanism between the “violin” and
“domino” models are CRISPR-Cas9 and the nucle-
osome core particle (Figure 2).
In the CRISPR-Cas9 complex, the binding of the

PAM recognition sequence triggers coupled
motions within the protein framework, resulting in
a shift in the conformational dynamics (Figure 2
(a)).10 In this case, PAM is the allosteric effector
“pitching” the right cord and triggering a pattern of
vibrations that transfers across the system. In-
depth analysis of the dynamics of CRISPR-Cas9
bound to PAM and of its analogue crystallized with-
out the PAM sequence revealed that PAM binding
substantially strengthens inter-domain correlations
between the RuvC and HNH catalytic domains. This
suggested that PAM binding activates the system
for concerted cleavages of the two DNA strands.
Analysis of the allosteric inhibition in CRISPR-
Cas9 also suggested a violin model, where the inhi-
bition shifts the conformational ensemble toward a
less catalytically competent state.59 In the nucleo-
some core particle, the binding of two unrelated
r allostery.58 (a) In a violin model, the binding of an
player’s pitch on a string, leading to the activation of the
PAM recognition sequence (i.e., the allosteric effector)
d by a shift in the free energy basin and in the correlated
steric effector triggers a sequential set of local events
t of a hand touch to a domino. In the nucleosome core
is dynamically coupled to a path of adjacent ⍺-helices
the auranofin site.49
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metal compounds – viz., RAPTA-T and auranofin –
that yield a synergistic activity in killing cancer cells,
has shown to activate an allosteric response though
a mechanism that resembles the “domino” model
(Figure 2(b)).49 Crystallographic studies have
shown that RAPTA-T and auranofin bind the nucle-
osome core particle located at a �40 �A distance
from each other. Hence, experimental characteriza-
tion of the synergistic activity was limited. Molecular
simulations revealed that the binding of RAPTA-T
induces a local kink in the ⍺-helix of the H2A his-
tone, which was not observed in the absence of
RAPTA-T. This kink was found to be dynamically
coupled to a path of adjacent ⍺-helices, allowing
the transfer of information from RAPTA-T to the
auranofin site. This suggested that the signal trans-
mission could mainly occur through a domino of
events, where a few pathways with particularly high
local correlations result in a defined sequence of
correlations among ⍺-helices connecting the
RAPTA-T and auranofin sites. These findings led
to cross-linking the allosteric sites, increasing nucle-
osome stability and proposing a novel strategy for
therapeutic applications.50

Interestingly, in this system, the signal
transmission was also shown to arise from the
reorganization in coupled motions, and thereby
not limited the domino model. In this respect, it is
important to note that the violin vs. domino
representation is not absolute and there is no
marked physical difference between the two
models. As the effector binds, a dynamic
perturbation is observed, which could manifest as
a pattern of non-specific vibrations and can also
hold more specific information. This indicates that
allosteric communication lands on a continuum
between the violin and domino model. Both
models are an effect of the change in free energy
induced by effector binding. An important aspect
of this effect is causality, which links the
perturbation to the allosteric communication. A
recent theoretical model reveals the causal
relation between effector binding and allosteric
communication on a per-residue basis.60–62 In this
model, an “allosteric potential” is used to measure
the signaling on a residue, as a result of the confor-
mational changes of its neighborhood. Then, the
entropic contribution to the allosteric free energy
of the residue is computed by comparing the confor-
mational ensembles in the effector-free and
effector-bound systems. This effectively tracks the
causal relation between effector binding and the
per-residue allosteric communication.
Long-range communication and
mutual dynamics

The examples above clearly pinpoint the
importance of dynamic cooperativity for
biomolecular allostery. Correlation analysis allows
detecting the presence of possible dynamic
5

correlations among spatially distant sites, and the
molecular elements responsible for the “signal
transmission” between them. Dynamic correlations
can be detected through Cross-Correlation (CC)
analysis, by computing the Pearson’s correlations
between the fluctuations of the Ca atoms relative
to their average position. Cross-correlations
measure the collinear coupling between two
atoms, determining whether they tend to move in
lockstep (positive CC) or show opposed motions
(negative CC).
This analysis neglects correlated motions

occurring out of phase, prompting the introduction
of a Generalized Correlation (GC) method.63 This
approach measures the degree of correlation
between residues based on their mutual informa-
tion, capturing also non-linear correlations. Here,
the correlations of fluctuations in the positions of
Ca atoms is based on the GC coefficients, namely
rMI x i ; x j

� � ¼ ½1� expð� 2
3
ÞI½x i ; x j ���

1
2 and is com-

puted in terms of mutual information
I x i ; x j

� � ¼ H xi½ �;þH xj

� �� H xi ; x j

� �
. Here, H xi½ �,

H xj

� �
are the marginal Shannon entropies, while

H xi ; x j

� �
is the joint Shannon entropy for atomic

vector displacements ðx i ; x jÞ. These are computed
as ensemble averages over trajectories from multi-
ple replicates. This provides a method for detecting
any type of dependence in the atomic motions,
regardless of the direction of motion. Notably, the
GC method uses the mutual information to dis-
cretize positional displacements. This prompted
alternative approaches to also consider the dihedral
space as a valuable descriptor of coupled dynam-
ics.64 Overall, the GC method is a normalized mea-
sure of how much information on one atom’s
position is dependent on that of another atom. It
does not inform the sign, nor the direction of the
correlations.
The synergistic application of CC and GC

analyses is useful to characterize any type of
correlation and how it contributes the signal
transmission. An example is given by the study of
the conformational dynamics of CRISPR-Cas12a,
a recent CRISPR system that expands
applications to nucleic acid detection (Figure 3
(a)).65 CC analysis revealed that the REC lobe of
Cas12a, which mediates nucleic acid binding,
moves in the opposite direction with respect to the
NUC lobe, suggesting an “open-to-close” confor-
mational transition for nucleic acid binding. CC anal-
ysis did not detect relevant differences in the RNA-
and DNA-bound states. On the other hand, GC
analysis revealed an overall increase in the sys-
tem’s correlations upon DNA binding, suggesting
a DNA-induced allosteric dynamic switch to favor
the conformational activation of Cas12a toward
DNA cleavage. Taken together, the CC and GC
methods inform how coupled motions contribute to
the allosteric phenomenon. Since both methods
provide information on the per-residue correlations,
it is difficult for very large biomolecules to localize



Figure 3. Correlation analysis. (a) Coupled motions in the CRISPR-Cas12a system, suggesting an “open-to-
close” conformational transition for nucleic acid binding.45 Cross-Correlation (CC, upper triangles) and Generalized
Correlations (GC, lower triangles) matrices, computed for Cas12a in the RNA-bound (left) and DNA-bound (right)
states (color-coded according to the scales on the right). DNA binding induces a sensible increase in GCs. Adapted
with permission from Saha et al. (2020).65 Copyright 2020 American Chemical Society. https://pubs.acs.org/doi/full/
10.1021/acs.jcim.0c00929. Further permissions related to the material excerpted should be directed to the American
Chemical Society. (b) Per-domain CC histogram of the spliceosome dynamics.46 The inter-domain cross-correlations
reveal domains moving in lockstep (blue) and through opposite motions (red). Adapted with permission from Casalino
et al. (2018).65 Copyright 2018 National Academy of Sciences.
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the correlations effectively responsible for the sig-
naling, due to a high noise. To overcome this limita-
tion, a coarse representation of the correlation
matrix, which accumulates the inter-domain correla-
tions, has been introduced to provide a measure of
the per-domain correlations.10 This approach has
been useful in detecting allosteric responses in
large systems, where >1500 amino acids generate
a large noise. An example is the human spliceo-
some, where a per-domain correlation matrix has
been instrumental in describing the functional
dynamics (Figure 3(b)).66
6

Using graphs to describe
communication networks

Graph theory is a sub-discipline of mathematics
and computer science pioneered by Leonard Euler
in the eighteenth century. Euler was a
mathematician in Königsberg (now Kaliningrad,
Russia), where the Pregel river dissected the city
in a peculiar fashion and was crossed by seven
bridges. Euler answered the question of whether it
is possible to find a path crossing each bridge
exactly once, and in doing so pioneered graph

https://pubs.acs.org/doi/full/10.1021/acs.jcim.0c00929
https://pubs.acs.org/doi/full/10.1021/acs.jcim.0c00929
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theory. This field experienced an enormous
development, leading to the widespread use of
networks in communication science (e.g., for
social media), economics, geology, physics, and
systems biology.67

Network models for protein allostery build on
correlation analysis to construct a network of long
range interactions, which efficiently describes the
allosteric transmission.9 In a typical dynamical net-
work model, the biomolecular system is described
as a graph of nodes and edges (Figure 4(a–b)),
where nodes represent the amino acids (Ca atoms)
and the nucleotides (P atoms, N1 in purines and N9
in pyrimidines), while edges denote the connection
between them. An edge’s length is weighted as a
function of the strength of the correlations, placing
strongly correlated nodes close to each other (i.e.,
displaying shorter edge-length). This network
model has been developed building on Pearson’s
cross-correlations.9 Recent applications have
shown that a GC-based dynamical network analysis
sensibly improves the description of the allosteric
network.10,68,69 Indeed, the GC method does not
only provide a more complete estimation of the
overall coupled motions but, building on Shannon’s
entropy, it allows for a direct evaluation of the sys-
tem’s entropy redistribution, induced by effector
binding.
As noted above, the edge lengths are obtained by

“weighting” the system’s correlations, with the
Figure 4. Network models for biomolecular allostery, show
be described as a network of residue nodes and edges wh
correlations (b), and as a network of communities connecte
(c).9 The network model builds on correlation analysis (d),
are used to weight the edges connecting nodes (wij ¼ �logG
other. (e) From the network model, the shortest pathways c
as efficient communication routes among allosteric sites.
connecting the HNH and RuvC domains as shortest pathwa

7

weight (wij ) of the edge connecting nodes i and j
computed as w0

ðijÞ ¼ �log½rMIðx i ; x jÞ�. The resulting
“weighted graph” defines the system as a
dynamical network, with information on the critical
nodes that are important for the communication
within the complex. The weighted network is then
structured in a set of “communities”, groups of
nodes in which the network connections are
dense but between which they are sparse
(Figure 4(c)). These local substructures of highly
correlated residues can be obtained through the
Girvan-Newman algorithm,70 a divisive algorithm
that uses the “edge betweenness” (EB) partitioning
criterion. The EB is the number of shortest path-
ways that cross the edge, and is computed using
the Floyd-Warshall algorithm,71 which sums the
lengths (wij ) of all edges in different paths of nodes,
and identifies the pathway displaying the shortest
total length. In a typical community network plot
(Figure 4(c)), the communities are linked by bonds
whose thickness is proportional to the total EB, indi-
cating the strength of the communication between
communities. Recently, a community network
model of the transcription preinitiation complex
was constructed.72 This work delivered critical
insights into the biomolecular function of an impor-
tant complex involved in the expression of protein-
encoding genes, demonstrating the tremendous
value of MD simulations in combination with graph
theory.
n for the CRISPR-Cas9 system. The biomolecule (a) can
ose length is weighted by the strength of the residues’
d by bonds measuring their intercommunication strength
whereby the Generalized Correlations (GC = rMI x i ; x j

� �
)

C), such placing strongly correlated nodes close to each
rossing the edges between distal sites can be computed
This is shown for the L1/L2 loops in CRISPR-Cas9,
ys.10
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Circular networks to depict allosteric
gain and loss

The EB is an important measure of the “traffic”
passing through edges. It accounts for the number
of times an edge acts as a bridge in the
communication flow between nodes of the
network. Hence, the total EB between couples of
communities (i.e., the sum of the EB of all edges
connecting two communities) is an important
measure of their communication strength. In a
recent study, this measure has been used to
construct circular networks of the mutation-
induced allosteric gain/loss (Figure 5).44

In detail, in a study of improved specificity by
lysine-to-alanine mutations in CRISPR-Cas9, the
mutation-induced EB change (DEB) was
computed as a difference between the EB of the
mutant and the WT system. The normalized DEB
were plotted using circular networks, where the
communities are displayed in a circle and
connected using links with thickness proportional
to the DEB. Negative values of DEB (�1 < 0, red)
represent loss of communication, as opposed to
positive values (0 < 1, blue), which indicate a
communication gain upon mutation. As a result, a
dramatic loss of communication was observed
between the allosteric communities that connect
the functional sites (i.e., the A1–A3 communities).
On the contrary, the non-allosteric sites (NA1–
NA4) gained in communication, overall indicating
that mutations increasing Cas9 specificity also
perturb its allosteric signaling. In summary,
Figure 5. Circular network of the allosteric communicati
change (DEB), a measure of communication gain or loss
communities are displayed in a circle and are connected by
connecting allosteric sites (A1–A3) display a loss of commun
(NA1–NA4) gain in communication (positive DEB, blue). C
published in eLife under a Creative Commons Attribution lic8
circular networks are useful to spot the allosteric
gain or loss uponmutation in biomolecular systems.
Shortest paths linking allosteric sites

A useful applications of network analysis is the
identification of “shortest pathways” between distal
sites through the Floyd-Warshall algorithm. These
pathways are likely to be efficient communication
routes among allosteric sites, as shown for the
allosteric pathways communicating the HNH and
RuvC catalytic sites in CRISPR-Cas9.10 Calculation
of the shortest routes for information transfer
revealed that the crosstalk between HNH and RuvC
flows through the L1/L2 loops (Figure 4(e)), which
have been indicated as “signal transducers”. Struc-
tural studies supporting this notion46,73 revealed
that the L1/L2 loops allow the conformational activa-
tion of the HNH domain toward DNA cleavage. The
Floyd-Warshall algorithmwas also employed for the
identification of the shortest pathways in the
spliceosome12 and its components.74 The principal
routes of communication identified the splicing
cofactors as signal conveyors for pre-mRNA matu-
ration. This is a paradigmatic example of how the
signaling transfer may not happen exclusively
through a single optimal path, granting in-depth
investigation of the alternative or sub-optimal paths.
For increasingly complex biological systems,

however, the number of paths between distal
nodes increases with the total number of
interconnected nodes and poses a combinatorial
problem. Hence, the identification of the near
on, reporting the mutation-induced Edge Betweenness
between couples of communities upon mutation.44 The
links with thickness proportional to DEB. Communities

ication (negative DEB, red), while the non-allosteric sites
ircular network adapted from Nierzwicki et al. (2021)44,
ense. https://elifesciences.org/articles/73601.

https://elifesciences.org/articles/73601
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optimal pathways for the signaling transfer might
quickly become computationally intractable as the
number of nodes increases.75 Recent contributions
have shown that alternative path searches are valu-
able to overcome this possible limitation. Among
them, distance fluctuation analysis76,77 and
machine learning-based analyses,78,79 which can
provide excellent agreement with experimental test-
ing, holding a tremendous potential in the drug dis-
covery field. An efficient algorithm for path search in
large biomolecular systems is the scheme pro-
posed by Dijkstra,80 which is widely used in cartog-
raphy to find the shortest roads leading to the
desired destination. The Dijkstra’s algorithm defines
a starting and destination point and optimizes itera-
tively a pathway from the former to the latter (Fig-
ure 6(a)).
For protein allostery, the algorithm uses the

correlation coefficients as a metric to define the
iterative optimization problem. It finds the roads,
composed by the w0

ðijÞ inter-node connections,
which minimize the total distance (and so
maximize the correlation) between nodes. In this
way, the Dijkstra’s algorithm finds the roads that
optimize the momentum transport between distal
sites (nodes) and therefore are efficient signaling
pathways. The Dijkstra’s algorithm was applied to
identify the allosteric signaling within the HNH
nuclease of CRISPR-Cas9 (Figure 6(b)).23,45 Dijk-
stra revealed a potential route of signal transduction
connecting the DNA recognition region to the cat-
alytic sites. This signaling route, comprising the
top ten most likely pathways, displayed a remark-
able overlap with the slow residues of HNH identi-
fied through NMR Carr-Purcell-Meiboom-Gill
(CPMG) relaxation dispersion experiments. Alto-
gether this suggested a mechanism of activation,
where the transfer of the DNA binding information
is critical to activate DNA cleavage.
Central residues in the allosteric
network

One of the cornerstones of the network theory is
the concept of centrality,81 i.e. the relative influence
of a node or cluster of amino acid nodes in the net-
work.82–84 The application of graph theory to social
media emphasizes the importance of centrality in
the information transfer. In a social network, some
friends hold more connections, becoming the hubs
of the communication, where the information cen-
tralizes and transfers more efficiently. Analogously,
central residues are the hubs governing the
biomolecular dynamics. Three main measures can
be harnessed to define centrality: (i) degree central-
ity (DC), (ii) betweenness centrality (BC) and (iii)
eigenvector centrality (EC). DC is simply the num-
ber of edges hold by a node and can be interpreted
as a local centrality measure. BC is the number of
shortest pathways passing through a node and
quantifies the number of times a node acts as a
9

bridge along the shortest path between two other
nodes. BC is the most popular centrality measure
and has been applied in studies of allostery in
CRISPR-Cas9,10 the nucleosome core particle48

and the spliceosome.12,74 The EC is the third cen-
trality measure, which defines influence of a node
in the network, weighting the nodes based on their
contribution to the system’s dynamics. This
approach relies on assigning the functional dynam-
ics to the major collective mode of the system, i.e.,
the first eigenvector of the adjacency matrix A
(based on the generalized correlations rMI). The
EC of a node, ci, is defined as the sum of the cen-
tralities of all nodes that are connected to it by an
edge, ci ¼ 1

k

Pn
j¼1Aijcj; where the edges Aij are ele-

ments of the adjacency matrix A and k is the eigen-
value associated to the eigenvector composed by ci
elements. The EC estimation quantifies the degree
of connectivity of each amino acid (or nucleobase)
within the system and quantifies how well nodes
are interconnected. Hence, this measure holds sig-
nificant promise to identify the hubs of the signal
transduction in protein/nucleic acid complexes.
Application of the centrality analysis to the HNH–

RuvC cross-talk in CRISPR-Cas9 revealed that the
E584, Q771, K775, and R905 residues of the L1/L2
loops act as central hubs of the dynamics.10 Muta-
tions of the central node residues, through which
the majority of allosteric pathways pass, reported
an increased specificity, observed for the K775A
and R905A residues in the eCas985 and
HypaCas986 variants. This indicates that altering
the central hubs of the dynamics affects the system
function, also suggesting the targeting of the allos-
teric regulation as a strategy for the specificity
enhancement.
Enhanced network models and
conformational control

In large biomolecular complexes, such as those
of multidomain proteins with nucleic acid
elements, the conformational dynamics are
characterized “per se” by slow dynamical motions,
affecting the transmission of the allosteric
response that occurs over longer timescales.
Understanding this conformational control of the
allosteric response is difficult though conventional
MD simulations, which are notoriously limited to
short ns–to–ms motions. Another hurdle of MD
simulations of large ribonucleoproteins is that the
protein components are tightly entangled to
nucleic acids, requiring extensive sampling for
converged results.
Considering the above, to investigate the

allosteric response in large biomolecular systems,
it is essential to capture their long timescale
dynamics, and to combine enhanced simulations
methods with graph theory. Through “enhanced
network models”, the conformational landscape
obtained through enhanced sampling methods



Figure 6. Shortest paths connecting allosteric sites. (a) Dijkstra algorithm for shortest path calculation. The
algorithm defines a starting and a destination point (i.e., nodes A and C) and optimizes iteratively a path from the
former to the latter. In each iteration, the closest unvisited node is designated as the current node, updating the
remaining unvisited nodes until the destination is reached. For biomolecular allostery, the algorithm uses the
correlation coefficients as a metrics to identify the closest nodes (i.e., wij ¼ �logGC), maximizing the correlation
between starting and destination nodes. (b) Allosteric pathway within the HNH domain of CRISPR-Cas9 connecting
the DNA recognition region (REC2) to the RuvC cleavage site. The signaling route identified through the Dijkstra
algorithm (pink line) overlaps with slow dynamical residues found through solution NMR (purple spheres).23
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can be used as a basis to construct the allosteric
network (Figure 7(a)). In this way, the allosteric
network preserves the memory of the long
timescale conformational change. Enhanced
network models can also be constructed through
Markov State Models of biomolecular allostery, to
elucidate the kinetic pathways connected to the
allosteric transmission.87–89 Recent studies com-
bined a Gaussian accelerated MD (GaMD)
method90 with network models to characterize the
10
allosteric response over long timescales. GaMD
adds a harmonic boost potential to smoothen the
potential energy surface of the simulation system,
accelerating the transitions between low-energy
states. In GaMD, when the threshold energy is set
to the maximum potential (E = Vmax), the system’s
potential energy surface is smoothened by adding
a harmonic boost potential that follows a Gaussian
distribution (Figure 7(b)). Briefly, when the system
potential V r

!� �
is lower than a threshold energy E



Figure 7. Enhanced network models. (a) The conformational landscape obtained through enhanced sampling
molecular dynamics (top) is used as a basis to construct the allosteric network (bottom). Enhanced network models
are constructed by applying graph theory on the reweighted conformational landscape, which reports the canonical
ensemble. Inspired by Wereszczynski & McCammon (2012) Proc. Natl. Acad. Sci. USA 109, 7759–7764.94 (b)
Gaussian accelerated MD (GaMD) method.86 Quadratic functions are used to modify the original potential energy of
the system to overcome energetic barriers. The extent of acceleration is controlled by the harmonic constant k0,
varying from 0 to 1. The greater the value of k0, the greater the acceleration and the easier the system overcomes the
barrier between states, enhancing the conformational ensemble.
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(i.e., for V r
!� �

< E), the energy surface is modified
by adding a boost potential as
V� r

!� � ¼ V r
!� �þ DV r

!� �
, where

DV r
!� � ¼ 1

2
k E� V r

!� �� �2
. The harmonic constant

k0 determines the magnitude of the applied boost
potential, accelerating the conformational sampling
by orders of magnitude and reducing energy barri-
ers. k0 is an adjustable parameter (ranging from 0
to 1), which can be determined from conventional
11
MD runs, considering the max/min, average and
standard deviation of the system’s potential energy
ðV). We refer to the original article for a theoretical
description,90 and to a recent review for the expla-
nation of its application.91 This method allows
enhancing the exploration of the configurational
space and “routine access” to the ms timescale.92

The canonical ensemble average system is
obtained by reweighting each point in the configura-
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tion space on the modified potential by the strength
of the Boltzmann factor of the bias energy,
exp½bDV ðr tðiÞÞ� at that particular point. Since the
boost potential follows a near-Gaussian distribution,
this also allows for an improved reweighting proce-
dure (through cumulant expansion to the 2nd
order).93 Enhanced network models are then con-
structed by applying graph theory on the reweighted
conformational landscape, which reports the canon-
ical ensemble.
GaMD simulations have been employed to

generate a ms–to–ms timescale conformational
ensemble of the CRISPR-Cas9 HNH nuclease,
which was used for the application of the Dijkstra’s
algorithm for shortest path search.23 As a result,
the enhanced network model identified a route of
residue–to–residue amino acids that maximizes
the correlations from long timescale motions. The
residues composing this pathway also displayed
slow dynamics throughCPMG relaxation dispersion
experiments (vide supra, Figure 6(b)). Hence, resi-
dues that are critical for the long timescale dynam-
ics, as computed through GaMD and the enhanced
network model, overlap with residues displaying
slow dynamics experimentally. This consistency
indicates that the experimental dynamics is cap-
tured well by the enhanced network model. On the
other hand, classical MD simulations described fas-
ter timescales (ns range), as arising from the com-
parison of the computed and measured S2 order
parameters. Hence, the use of enhanced sampling
could properly describe the long timescaledynamics
responsible for the transmission of the allosteric sig-
naling. This application thereby demonstrates the
value of “enhanced network models” in the charac-
terization of allosteric mechanisms in large ribonu-
cleoproteins, and suggests the combination of
graph theory with other enhanced sampling meth-
ods.32 This will allow the description of the allosteric
network as arising from extended timescales (ms to
ms), characterizing how slow dynamical motions
affect the communication network.
Ab-initio network models and
allosteric regulation of the catalysis

The allosteric regulation is critical in enzymes to
activate their catalytic function.30 This modulation
can occur over long timescale conformational
changes, and through an instantaneous sub-ns
transfer of motions.17,24–26,30,31 Allosteric modifica-
tions can activate catalysis relying on short time-
scale motions with instantaneous transfer of
information. However, the mechanism of sub-ns
transfer and the relation between allostery and
catalysis has not yet been fully clarified. It is also
not clear how the allosteric regulation changes from
reactants to (R) to products (P) and how it affects
the transition state (TS�). This is mainly because
graph theory-based techniques have been widely
applied on classical and enhanced MD simulations,
12
but little is known on the network dynamics along
chemical reactions. To comprehend the allosteric
regulation of catalysis, graph theory met ab-initio
quantum mechanics/molecular mechanics (QM/
MM) simulations. In this approach, local events
within the biomolecular system – such as catalytic
reactions or short timescale fluctuations – can be
sampled though MD at a high QM level, while the
rest of the system is treated using the classical force
field.33 Ab-initio QM/MM MD can provide the step-
by-step dynamics along the chemical reaction,
and allow sub-ns sampling at critical steps. Building
on these dynamics, graph theory can be used to
inform how the allosteric pathway of communication
changes from the R to P states, passing through the
TS�. This approach has been introduced to study
the allosteric regulation of the RuvC catalysis in
Cas9 (Figure 8(a)).95,96 Analysis of the generalized
correlations (GC) revealed highly coupled motions
in the R state, which are progressively reduced in
the TS� and in the P states (Figure 8(a), bottom
panel). The R is therefore in a “tense” state, with
highly entangled dynamics. The TS� reduces its
tension toward a more “relaxed” state, while the sig-
nal fades away in the P state, which demonstrates
quenchedGC coefficients. Building on this observa-
tion, the allosteric regulation of the catalysis follows
a tense–to–relaxed model, where “tense” refers to
highly correlated and “relaxed” to poorly coupled.
This suggests that the R is in a tense state, alloster-
ically “prone” due to highly coupled dynamical
motions and enthalpically poised for catalysis.
As the reaction proceeds, the dynamics of the

TS� starts losing correlated motions as an effect
of the starting of bond breaking. As the system
fully relaxes, it reaches the P state. To further
understand how the allosteric signaling changes
from the R to P, the pathways communicating
the DNA recognition region (REC) to the RuvC
catalytic core have been computed using the
Dijkstra’s algorithm. In the R and TS� states,
the information transfers through a pathway of
charged and polar residues (Figure 8(b), shown
for the R state). This suggests that electrostatic
and conformational effects could influence the
chemistry from a long-range though allostery, in
addition to the electrostatics being critical at the
active site level.97 It is also notable that alanine
mutation of central nodes in the REC lobe
reduces the catalytic efficiency of Cas9 toward
off-target DNAs,86 reinforcing the notion that dis-
tal point mutations could allosterically modulate
the catalysis.98,99 Analysis of the P state revealed
that the allosteric pathway is largely disrupted, in
line with alteration of the correlation system.
Overall, this was the first attempt to characterize
the allosteric regulation of catalysis by following
the step-by-step dynamics of biochemical reac-
tions. Future studies by our lab will delve into fur-
ther understanding the role of allostery along the
catalysis.



Figure 8. Ab-initio network models. (a) Catalytic mechanism of DNA cleavage in the RuvC active site of CRISPR-
Cas9, investigated through QM/MM ab-initio simulations.95,96 The reaction evolves from the Reactants (R) to the
Transition State (TS�) and Product though an associative SN2 mechanism activated by H983, and with an activation
barrier of �16.5 kcal mol�1 (free energy profile at the bottom left). Analysis of the generalized correlations (GC,
bottom right) reveals highly coupled motions in the R state, which are progressively reduced in the TS� and in the P
states. This reveals a tense-to-relaxed model for the allosteric regulation of the chemical step (details in the main
text). (b) Allosteric pathways connecting the DNA recognition region (REC) to the RuvC catalytic core in the R (green)
and P (magenta) states. Adapted with permission from Casalino et al. (2020). Copyright 2020 American Chemical
Society.
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Perspectives

Here, we review established and innovative
approaches to decrypt allostery in proteins and
nucleic acids. We discuss the use of classical and
13
enhanced molecular dynamics (MD) simulations in
combination with network models and centrality
analyses. We report emerging schemes, such as
the synergistic use of enhanced simulations
methods and network models, which define the
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allosteric response over long timescales, and
“ab initio network models” to describe the
allosteric regulation of catalysis. These
approaches revealed the allosteric transfer in
three paradigmatic examples: (i) the nucleosome
core particle, (ii) the CRISPR-Cas9 genome
editing system and (iii) the spliceosome.
Examples of applications also highlight the current
challenges and the prospects of the field,
attempting to capture the allosteric response over
multiple timescales, relating allostery to
conformational changes and catalysis. Indeed,
investigating allosteric mechanisms in large
biomolecules is often difficult, due to slow
dynamical motions virtually inaccessible through
classical simulation methods. Along the same
lines, little is known about the evolution of the
allosteric response along chemical reactions.
Taken together, methods and applications
showcased here will help overcome these
challenges, creating novel protocols to determine
the allosteric network of communication over
multiple time scales, as well as the relation
between allostery and catalysis, which has
remained unaddressed through classical
approaches.
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Pfister, R., Blöchliger, N., Steiner, S., Caflisch, A., et al.,

(2013). Kinetic response of a photoperturbed allosteric

protein. Proc. Natl. Acad. Sci. U. S. A. 110, 11725–11730.

26. Hawkins, R.J., McLeish, T.C.B., (2006). Coupling of global

and local vibrational modes in dynamic allostery of

proteins. Biophys. J. 91, 2055–2062.

27. Hertig, S., Latorraca, N.R., Dror, R.O., (2016). Revealing

Atomic-Level Mechanisms of Protein Allostery with

Molecular Dynamics Simulations. PLOS Comput. Biol. 12,

e1004746

28. Holliday, M.J., Camilloni, C., Armstrong, G.S.,

Vendruscolo, M., Eisenmesser, E.Z., (2017). Networks of

Dynamic Allostery Regulate Enzyme Function. Structure

25, 276–286.

29. Nierzwicki, Ł., Palermo, G., (2021). Molecular Dynamics to

Predict Cryo-EM: Capturing Transitions and Short-Lived

Conformational States of Biomolecules. Front. Mol. Biosci.

8, 120.

30. Goodey, N.M., Benkovic, S.J., (2008). Allosteric regulation

and catalysis emerge via a common route. Nature Chem.

Biol. 4, 474–482.

31. Henzler-Wildman, K.A., Lei, M., Thai, V., Kerns, S.J.,

Karplus, M., Kern, D., (2007). Hierarchy of timescales in

protein dynamics is linked to enzyme catalysis. Nature 450,

913–916.

32. Bernardi, R.C., Melo, M.C.R., Schulten, K., (2015).

Enhanced sampling techniques in molecular dynamics

simulations of biological systems. Biochim. Biophys. Acta

5, 872–877.

33. Brunk, E., Ashari, N.A., Athri, P., Campomanes, P., de

Carvalho, F.F., Curchod, B.F.E., Diamantis, P., Doemer,

M., et al., (2011). Pushing the Frontiers of First-Principles

Based Computer Simulations of Chemical and Biological

Systems. Chimia (Aarau) 65, 667–671.

34. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J., (1996).

Development and Testing of the OPLS All-Atom Force

Field on Conformational Energetics and Properties of

Organic Liquids. J. Am. Chem. Soc. 118, 11225–11236.
15
35. Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G.,

Zhang, W., Yang, R., Cieplak, P., et al., (2003). A point-

charge force field for molecular mechanics simulations of

proteins based on condensed-phase quantum mechanical

calculations. J. Comput. Chem. 24, 1999–2012.

36. Christen, M., Hünenberger, P.H., Bakowies, D., Baron, R.,

Bürgi, R., Geerke, D.P., Heinz, T.N., Kastenholz, M.A.,

et al., (2005). The GROMOS software for biomolecular

simulation: GROMOS05. J. Comput. Chem. 26, 1719–

1751.

37. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L.,

Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., et al.,

(1998). J. Phys. Chem. B 102, 3586–3616.

38. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.

M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., et al.,

(1995). A Second Generation Force Field for the

Simulation of Proteins, Nucleic Acids, and Organic

Molecules. J. Am. Chem. Soc. 117, 5179–5197.

39. Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham

3rd, T.E., Laughton, C.A., Orozco, M., (2007). Refinement

of the AMBER Force Field for Nucleic Acids: Improving the

Description of Alpha/Gamma Conformers. Biophys. J. 92,

3817–3829.

40. Zgarbova, M., Otyepka, M., Sponer, J., Mladek, A., Banas,

P., Cheatham, T.E., Jurecka, P., (2011). Refinement of the

Cornell et al. Nucleic Acids Force Field Based on

Reference Quantum Chemical Calculations of Glycosidic

Torsion Profiles. J. Chem. Theory Comput. 7, 2886–2902.

41. Banas, P., Hollas, D., Zgarbova, M., Jurecka, P., Orozco,

M., Cheatham 3rd, T.E., Sponer, J., Otyepka, M., (2010).

Performance of Molecular Mechanics Force Fields for RNA

Simulations: Stability of UUCG and GNRA Hairpins. J.

Chem. Theor. Comput. 6, 3836–3849.

42. East, K.W., Skeens, E., Cui, J.Y., Belato, H.B., Mitchell, B.,

Hsu, R.V., Batista, V.S., Palermo, G., et al., (2020). NMR

and computational methods for molecular resolution of

allosteric pathways in enzyme complexes. Biophys. Rev.

12, 155–174.
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