
HOGEye: Neural Approximation of HOG Feature Extraction in
RRAM-Based 3D-Stacked Image Sensors

Tianrui Ma1, Weidong Cao1, Fei Qiao3, Ayan Chakrabarti2, Xuan Zhang1
1Department of ESE and 2Department of CSE, Washington University in St. Louis, St. Louis, Missouri, USA;

3Department of Electronics Engineering, Tsinghua University, Beijing, China;
{tianrui.ma,weidong.cao,ayan,xuan.zhang}@wustl.edu;qiaofei@tsinghua.edu.cn.

ABSTRACT
Many computer vision tasks, ranging from recognition to multi-

view registration, operate on feature representation of images rather
than raw pixel intensities. However, conventional pipelines for ob-
taining these representations incur significant energy consumption
due to pixel-wise analog-to-digital (A/D) conversions and costly
storage and computations. In this paper, we propose HOGEye, an
efficient near-pixel implementation for a widely-used feature extrac-
tion algorithm—Histograms of Oriented Gradients (HOG). HOG-
Eye moves the key but computation-intensive derivative extrac-
tion (DE) and histogram generation (HG) steps into the analog
domain by applying a novel neural approximation method in a
resistive random-access memory (RRAM)-based 3D-stacked image
sensor. The co-location of perception (sensor) and computation
(DE and HG) and the alleviation of A/D conversions allow HOG-
Eye design to achieve significant energy saving. With negligible
detection rate degradation, the entire HOGEye sensor system con-
sumes less than 48µW@30fps for an image resolution of 256×256
(equivalent to 24.3pJ/pixel) while the processing part only con-
sumes 14.1pJ/pixel , achieving more than 2.5× energy efficiency
improvement than the state-of-the-art designs.

CCS CONCEPTS
• Hardware→ On-chip sensors.

KEYWORDS
HOG, RRAM, Neural Approximation, Near Pixel Processing

ACM Reference Format:
Tianrui Ma1, Weidong Cao1, Fei Qiao3, Ayan Chakrabarti2, Xuan Zhang1.
2022. HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-
Based 3D-Stacked Image Sensors. In ACM/IEEE International Symposium on
Low Power Electronics and Design (ISLPED ’22), August 1–3, 2022, Boston, MA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3531437.
3539706

1 INTRODUCTION
Extracting high-dimensional features of an object is a primary

step in object detection and it has been extensively studied in the

This work is licensed under a Creative Commons Attribution International
4.0 License.

ISLPED ’22, August 1–3, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9354-6/22/08.
https://doi.org/10.1145/3531437.3539706

(a)
Downstream Classifier

Pixel
Array An

al
og

R

ea
do

ut ADCADC

M
em

or
y Computing Resources

(LUT, Reg, ALU)

An
al

og

R
ea

do
ut

Pixel
Array(b) …

Digital Domain

Near Pixel

ADCADC

… Pixel-wise
A/D

conversion Digital processing

Analog Domain
Backend DSPSensor

Sensor

Energy-efficient analog processing

Fewer A/D
conversions

RRAM-based
HOG Feature

Extraction

…

Backend DSP

ADCADC

ADCADC

Downstream
Classifier

M
em

or
y

Figure 1: (a) Conventional digital HOG implementation. (b)
Proposed HOGEye sensor system.

field of computer vision [15]. Efficient extraction of features is criti-
cal when deploying real-time perception onto resource-constrained
platforms. Despite recent advancements of learning features from
deep neural network (DNN) models, hand-crafted features exhibit
several orders of magnitude higher energy efficiency in actual hard-
ware implementation and remain a compelling design choice for
energy-critical systems [25]. We focus on Histogram of Oriented
Gradients (HOG) algorithm, which is widely used to extract hand-
crafted spatial features of an image. HOG algorithm can achieve
high detection rate and effective geometric extraction with rela-
tively simple computations, making it attractive for applications
ranging from automated surveillance for environmental monitoring
to obstacle avoidance and simultaneous-localization-and-mapping
(SLAM) for autonomous micro-robotics [14].

Conventional HOG implementation suffers from high energy
consumption due to pixel-wise analog-to-digital (A/D) conversion
and the resulting costly resource usage in digital processing. As
Fig. 1(a) illustrates, the image sensor quantizes all pixels and the
digital backend consumes large number of registers, look-up tables
(LUTs) and arithmetic-logic units (ALUs) to extract HOG features,
causing significant energy overheads [11].

To address these issues, we proposeHOGEye – an energy-efficient
near-pixel processing architecture to extract HOG features in the
analog domain before A/D converter (ADC). As shown in Fig. 1(b),
the analog readouts from the pixel array are directly used for HOG
feature extraction. The generated analog HOG features are then
quantized by ADC and processed by the digital backend where
downstream classifier resides. At circuit level, HOGEye adopts
resistive-random-access-memory (RRAM)-based neural approxi-
mation to efficiently realize the function of spatial derivative cal-
culation and facilitate histogram generation. At architecture level,
HOGEye takes the advantage of three-dimensional (3D) hetero-
geneous integration technology and is modeled after a two-layer
stacked sensor system where pixel substrate (pixel array) stacks
on top of processor substrate (processing circuitry) in the sensor.

https://doi.org/10.1145/3531437.3539706
https://doi.org/10.1145/3531437.3539706
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3531437.3539706

ISLPED ’22, August 1–3, 2022, Boston, MA, USA Tianrui Ma and Weidong Cao, et al.

Step1: Derivative calculation

Cell
(8x8 Pixels)

Block
(2x2 Cells)

Step 2: Histogram generation

Accumulate A based
on bin number

gx = VL − VR
gy = VT − VB

A = gx
2 + gy

2

θ = arctan(
gy

gx

)

VT

VB
VR VL

Convert θ to bin number

1
0

2 3 4 5 6
7
8

20°

40°
60°

80° 100°
120°

140°

160° 1
0

2 3 4 5 6
7
8

20°

40°
60°

80° 100°
120°

140°

160°

Step3: Normalization

Σ A

0 1 2 3 4 5 6 7 8

Σ A

0 1 2 3 4 5 6 7 8

Figure 2: Illustration of HOG algorithm.

Compared to the conventional HOG implementation, on the proces-
sor substrate, HOGEye reduces the number of A/D conversions by
7.1×, and consumes only 14.1pJ/pixel without extra area overhead,
outperforming state-of-the-art mixed-signal [6] and digital [26]
HOG implementation by more than 2.5× and 11×, respectively.

2 BACKGROUNDS
2.1 Histogram of Oriented Gradients (HOG)

HOG algorithm is based on evaluating normalized histograms
in local regions of an image, and the essential steps are shown in
Fig. 2. First, each pixel’s horizontal gradientдx and vertical gradient
дy are obtained by linear difference of neighbor pixels. With дx
and дy , the pixel’s full spatial derivative is obtained in the form of
magnitude A and orientation θ (Step 1). Second, for all the spatial
derivatives within the non-overlapping 8 × 8 pixels (called a cell),
their orientations are discretized to one of the nine bin numbers,
and their magnitudes are distributed into the corresponding bin
according to the orientation bin number. Each cell thus generates
a 1 × 9 vector, known as a histogram (Step 2). Third, for all the
histograms within the overlapping 2 × 2 cells (called a block), nor-
malization is performed to eliminate shadow effect. Each block thus
generates a (1 × 9) × 4 = 1 × 36 HOG vector (Step 3). HOG vectors
from different blocks are concatenated sequentially to construct
the final HOG features of the entire image.

HOG feature is proven to be an effective local descriptor with
high accuracy in human detection, outperforming Harr wavelets,
scale-invariant feature transform, Gabor filters, and shape con-
texts [7]. However, HOG feature extraction is computationally
intensive and time-consuming, especially the spatial derivative
calculation (Step 1) and histogram generation (Step 2). In this paper,
HOGEye aims to implement these two parts while leaving the block
normalization (Step 3) to the digital backend.

2.2 Existing HOG Implementations
HOG algorithms are conventionally implemented in FPGA or dig-

ital ASIC. In both cases, pixel-wise A/D conversions at the frontend
and massive digital data movements at the backend are unavoidable.
As for HOG feature extraction, the FPGA design [11] takes tens of
thousands of LUTs and registers, and the digital ASIC design [25]
takes 893k gates, causing significant power and area overheads. Re-
cent works also explore analog HOG implementations. For example,
digital horizontal/vertical gradient can be converted to the analog
domain for orientation binning, saving 93% of area as compared
to the digital counterpart [6]. However, this method suffers from

Processor
Substrate
Processor
Substrate

(a)

(b) (d)

(c)
Pixel Array
(256x256)

DE Array (1x256)
HG Array (1x32)

ADC Array (1x16)
Shift Register

S&H Array (3x256)
1-to-3 DEMUX (1x256)

CDS Array (1x256)

TS
V

DE Computational Model

Two MLPs,
separately trained

and combined

……
……

…
… …… θ

A

VT

VB

VL

VR

xH1

x9xH2

Histogram

R5 R3

R4

R4

R5 R6R4

R5 R6R7

S&H Value
Update Order

DE DE DE DE DE DE

HG

DE

Buffer 1
Buffer 2

Buffer 9

…

1-to-9
DEMUX

1-to-3 DEMUX

VT

VB

VL VR

S&H Array

R1 R2 R3

DE

R2 R3

Cyclic Update
Storage Row

Histogram

R5 R3

R4

R4

R5 R6R4

R5 R6R7

S&H Value
Update Order

DE DE DE DE DE DE

HG

DE

Buffer 1
Buffer 2

Buffer 9

…

1-to-9
DEMUX

1-to-3 DEMUX

VT

VB

VL VR

S&H Array

R1 R2 R3

DE

R2 R3

Cyclic Update
Storage Row

3μs 3μs 1μs
R1

R2

R3

Exposure
+CDS

S&H
sample

S&H
set

Exposure
+CDS

S&H
sample

S&H
set

Exposure
+CDS

S&H
sample

S&H
set

HGD
E ADC

0.2μs 1.6μs 7.2μs

(e)

Pixel
Substrate

Pixel
Substrate

6μs

Figure 3: Overview ofHOGEye. (a) 3D structure, (b) substrate
floorplan, (c) DE computational model, (d) computation sig-
nal flow, and (e) system processing sequence.

energy-intensive pixel-wise A/D and D/A conversions. Besides,
logarithm horizontal/vertical gradient is proposed to replace linear
gradient to realize data compression in both sensor frontend and
digital backend [28]. However, only one-dimensional gradients are
generated from sensor rather than the full histograms, causing the
overhead of histogram generation at the backend.

2.3 Sensing-Processing With 3D-Stacked
Sensor

Modern three-dimensional large-scale integration (3D-LSI) tech-
nology allows different substrates of heterogeneous process to be
stacked and connected by through-silicon-vias (TSVs). As predicted
by 3D-LSI roadmap, the pitch of TSV can keep shrinking to as
narrow as 1µm, paving the way for high performance 3D-stacked
sensor design [21]. Sony proposes the industry’s first three-layer
stacked sensor with “pixel-DRAM-logic” structure [10]. Pixel values
from pixel substrate are transferred to logic substrate for quantiza-
tion, and to DRAM substrate for digital storage, so as to improve
frame rate. The connections between substrates are realized by
35k TSVs whose size and pitch are 2.5µm and 6.3µm, respectively.
Recently Sony implements a digital CNN processor below the pixel
substrate [12], making sensing-processing system a lightweight
frontend node. Many other works also explore integrating compli-
cated machine learning engine with the advantage of 3D-stacked
sensor architecture (e.g. CAMEL [8]).

3 PROPOSED HOGEYE SENSOR SYSTEM
3.1 System Overview

The proposed HOGEye sensor performs both sensing and HOG
histogram computing. It adopts the structure of 3D stacked sen-
sor by implementing the two functions with two TSV-connected
substrates: a pixel substrate and a processor substrate (Fig. 3(a)).

HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors ISLPED ’22, August 1–3, 2022, Boston, MA, USA

As shown in Fig. 3(b), the pixel substrate includes a 256×256 pixel
array. The processor substrate includes column-parallel correlated-
double-sampling (CDS) array, 3×256 sample-and-hold (S&H) array,
column-parallel derivative extractor (DE) array, 8-column-shared
histogram generator (HG) array, 16-column-shared ADC array as
well as peripheral switches and readout registers.

Analog pixel values are obtained by the pixel substrate, and sent
to the processor substrate through TSVs for analog buffering and
computing. 256 TSVs are needed to transfer a row of pixel values
in parallel. As shown in Fig. 3(d), S&H array holds three rows of
pixel values, and each DE takes four pixel values around a central
pixel and calculates the central pixel’s derivative. The calculated
derivatives from 8 DEs are moved to the same HG to generate a
partial histogram with 9 bins. After processing 8 rows of pixels,
each HG contains the complete histogram from a cell (referring to
Sec. 2.1), then ADC quantizes the histogram bin by bin. Since each
cell only needs 9 quantizations, the number of A/D conversions is
reduced by 8×8/9≈7.1 times as compared to pixel-wise quantization
in conventional methods.

Fig. 3(e) shows that HOGEye sensor works in sequential manner
as “sensing → computation → readout” while in the sensing stage
it performs “exposure→ analog buffering” in pipeline manner. The
computation will not start until the sensing of the third pixel row
is finished. To accommodate with the latency of pixel exposure and
CDS (3µs), S&H sampling time is set to 3µs . The pipeline mainly
helps reduce S&H holding time, holding energy, and analog signal
degradation.
3.2 Analog Buffering

The right part of Fig. 3(d) shows the operation of analog buffering.
As the pixel substrate performs exposure in rolling shutter way, 3
rows of pixels (R1-R2-R3) are read out row by row and stored at
the S&H array temporarily for later processing. After computing
the partial histogram from one row of derivative, a new pixel row
(R4) is stored to the S&H array, taking up the place of pixel row
R1; then after another processing cycle, pixel row R5 is stored to
replace pixel row R2. In this cyclic way, only one row is updated
during each S&H update cycle so as to maximize circuit reuse.
Since derivative calculation requires overlapped input pixels, a 1-
to-3 analog DEMUX is placed at the end of every S&H column such
that every stored value has access to three adjacent DEs.
3.3 Neural-Approximated Derivative

Extraction
Universal approximation theorem proves that a 3-layer multi-

layer-perceptron (MLP) with continuous nonlinear activation func-
tion can be trained to accurately approximate arbitrary input-output
relationship [13]. Prior works show the potential of this theorem
on approximating analog computing [5, 17] (analog input to analog
output) and A/D conversion [2, 3] (analog input to digital output).
Therefore, the similar strategy can be promisingly applied for HOG
feature extraction, which has analog input (analog pixel values) and
mixed-signal output (spatial derivative’s analog magnitude A and
digital orientation θ). Compared to explicit non-linear derivative
function, the strategy enables the proposed DE to perform only lin-
ear vector-matrix-multiplication (VMM) and non-linear activation
operations, thereby making the DE suitable to be implemented on
RRAM crossbar array.

The MLP model has 4 inputs (VL , VR , VT , VB), 10 outputs, and
H1+H2 hidden neurons, as shown in Fig. 3(c). The subscript in the
inputs represents left, right, top and bottom to the central pixel.
The outputs include one normalized analog value representing
A (A ∈ [0, 1]), and nine digits that encodes θ to 9-bit one-hot
code, representing 9 bins. To classify the continuous θ (∈ [0,π])
to discrete bins, we compare дy with дx · tan π

9 i to avoid explicit
division and inverse trigonometric function. The objective function
is then defined as:

A =

√
д2x + д2y

2 , index(θ) = Compare(дy, дx tan π
9 i) (1)

where i ∈ [1, 9]. For example, θ belongs to 2nd bin if: дx tan(π9) <
дy < дx tan(2π9). A and θ are trained separately by two MLPs,
which share the same inputs but have exclusive hidden neurons
and outputs. Mean-squared-error and cross-entropy are used as
loss function to train A and θ , respectively.

4 IMPLEMENTATION OF SYSTEM BUILDING
BLOCKS

4.1 Pixel, TSV and S&H Circuit
Fig. 4 shows the circuitry of pixel and interface between pixel

and DE. The sensor uses typical 4-transistor active pixel. The pixel
output goes to bond pad on the pixel substrate, flows through TSV,
and reaches to bond pad on the processor substrate. Compared to
direct connection between circuit blocks, hiding TSV under bond
pad allows larger TSV pitch and lower fabrication cost [21]. Here
TSV is chosen to have 2µm size and 20µm length with 0.1Ω resis-
tance and 52fF capacitance [16]. CDS samples pixel’s readout before
and after exposure sequentially, and conducts subtraction to reduce
fixed pattern noise. Referring to system processing sequence in
Fig. 3(e), each S&H unit needs to hold value for at least 6µs so a low
leakage S&H design with negative feedback is chosen [23]. CDS
and S&H construct the analog interface between pixel and the fol-
lowing processing unit, avoiding digital interface in conventional
sensors [19].

4.2 Derivative Extractor (DE)
Fig. 5(a) shows the DE circuitry that performs VMM, analog shift-

and-add (S+A), and non-linear activation (NAF). VMM is realized
by RRAM crossbar array, where each RRAM cell is a 1T1R structure
consisting of one switch transistor and one RRAM device (Fig. 5(b)).
For simplicity, the transistor in the RRAM cell is omitted in Fig. 5(a).

The trained weights are mapped to the conductance of RRAM
devices. To deal with weight polarity, we adopt differential RRAM
array structure with complementary input proposed in the previous
work [3]. In this strategy, positive and negative weight matrices are
mapped to positive and negative path, respectively. Inside each path
both upper and lower RRAM sub-arrays are used to receive comple-
mentary inputs (®xp , ®xn) interchangeably. In Fig. 5, the positive path
of Layer 1 contains upper RRAM sub-array (blue-shadowed) and
lower RRAM sub-array (yellow-shadowed). The upper sub-array
receives ®xp=[VDD , VT , VB , VL , VR] as input while the lower one
receives ®xn=VDD - ®xp=[0, V ′

T , V
′
B , V

′
L , V

′
R] where VDD and 0 are

used to map bias. Output current of each RRAM column is the
weighted sum of input with corresponding RRAM conductances:

ISLPED ’22, August 1–3, 2022, Boston, MA, USA Tianrui Ma and Weidong Cao, et al.

Pixel

PD

RowSEL

RSTTX

sub

VRST VDD

VOUT

CDS S&H

A
Vref Vreset

Vsignal
400fF

300fFTSV

bond
pad

DE

Analog Interface

Figure 4: Sensing-processing interface circuit between the
two substrates.

VDD

VT

0

…

…

…

Layer 1 Layer 2
Hardware Model

VMM Analog
S+A

Non-linear
Activation VMM Analog

S+A

Derivative Extractor (DE)

Layer 1 Layer 2

× w

VB

VL

VR

…

VT
′

VB
′

VL
′

VR
′

…

Positive Path
one weight (P-bit)

…

…

…

…

…

Analog S+A

Analog S+A

Vo1,1
P

Vo1,H
P

Analog S+A

Analog S+A

…

 Negative Path

VDD

Vi2,1
P

Vi2,H
P

Vi2,1
N

Vi2,H
N

… …
Analog

S+A

Analog
S+A

Vo2,1
P

Vo2,10
P

Analog
S+A…

0

Analog
S+A

…
…

… …

Positive Path

A

θ[9]

…

…

…

…

…

…

…

…

…

…

Analog
S+A

Analog
S+A

Upper RRAM Sub-Array

Lower RRAM Sub-Array

…

…

Vo2,2
P

θ[1]

…

orientation
magnitude

…

(a)

(b) (c) (d) (e)
Vpos

Vneg

CLK

Out
VH

VL

Vcm ,o

Vcm ,i

…

ΣIi2Rs ΣIi
I1
I2
Iw VDD

2Rs

WL

SL BL

Figure 5: Circuit of (a) DE, (b) RRAM cell, (c) analog S+A,
and (e) comparator[27]. (d) illustrates CMOS inverter volt-
age transfer curve.

Ij =
∑5
i=1 xiдi, j . The negative path has the same structure except

that the positions of complementary input vectors are exchanged.
One challenge here is the limited precision of RRAM device (2-4

bit) [4], so we map a high precision weight (P-bit) into multiple
low-precision RRAM devices. We usew RRAM devices to represent
a single weight, with each device bearing the precision of P

w -bit.
To accumulate currents fromw RRAM columns, analog S+A imple-
mented by ratioed current mirrors (Fig. 5(c)) adds the currents up
with binary-weighting as I sum =

∑w
j=1 2

P
w (j−1)Ij . For example, if

P=6-bit andw=3, then one 6-bit weight is instantiated onto three
2-bit RRAM devices, whose conductance are w2, w1 and w0. The
final sum is: 24w2 ·x+22w1 ·x+20w0 ·x , with the current mirrors’ ra-
tios are 16, 4, 1, respectively. The accumulated current is converted
to voltage via a sampling resistor 2Rs and received by a CMOS
inverter emulating sigmoid function [3] (Fig. 5(d)). Combining the
two sub-arrays, input voltage to the hth inverter is derived as:

V p
o1,h = (I sum,u

h + I sum,l
h) × (2Rs | |2Rs)

= Rs (
w∑
j=1

2r (j−1)
5∑
i=1

xpi д
u
h,i, j +

w∑
j=1

2r (j−1)
5∑
i=1

xni д
l
h,i, j)

(2)

where r = P
w and superscript u and l represent upper and lower

sub-array. Same derivation can be applied to Layer 1’s negative

path to obtainV n
o1,h and Layer 2 to obtainV p

o2,h . Note that Layer 2’s
negative path is not necessary because the positive path is already
the final output. Before each θ output port there is a three-input
NAND gate comparator [27] (Fig. 5(e)) for binarization.

Note that the RRAM conductance дh,i, j in the above derivation
has no linear projection to the trained weight, because during
mapping the trained weights are normalized to guarantee that
the conductance is positive and fall into a reasonable range [3].
Therefore, compared with the absolute output value, the output
voltage represented by the mapped conductance (Eq. (2)) has a
scaling factor F and a constant offset VDD2 . F is related to the sum
of conductance placed in the same column, thus it is unique under
different mappings. We will explain how to deal with F in Sec. 5.2.

4.3 Histogram Generator (HG) and ADC
HG contains an 1-to-9 analog DEMUX and 9 analog buffers. The

calculated derivative magnitude (in current domain) is charged to
one of the 9 analog buffers according to its orientation bin num-
ber. Each analog buffer is a switch-controlled capacitor, including
one metal-insulator-metal capacitor (500fF) and two low leakage
switches used in [23] for read/write and reset. One HG receives the
magnitudes from 8 DEs sequentially. After processing 8 rows of
pixels, 64 (8×8) magnitudes are accumulated at each HG, then the
voltage at each bin is quantized by ADC sequentially. We use the
SAR ADC design in [9] with sampling rate of 2.5MS/s. To reduce
ADC’s area overhead and utilize its high sampling rate, one ADC is
shared by 2 HGs, meaning that one ADC needs to convert 18 (2×9)
values sequentially.

5 EVALUATION
5.1 Evaluation Methodology
Simulation. First, we train the neural-approximated DE with Ten-
sorFlow, and test inference accuracy of spatial derivative extraction
with hardware noise injection. Second, we generate SPICE netlist by
instantiating the trained weights with HfOx -based RRAM model,
and conduct circuit simulation with CMOS building blocks (S&H,
analog S+A, NAF and HG, in 130nm) in Cadence Virtuoso to eval-
uate energy consumption. Third, we validate the learned HOG
features on DaimlerChrysler [22] dataset for task-level detection
rate with hardware noise injection. We take 1,000 positive/negative
samples from the dataset, with 800 for training and 200 for testing,
and use linear support-vector-machine (SVM) as classifier. During
system design space exploration, design parameters include the
number of hidden neurons (H), weight precision (P) and weight
split-level (w). These parameters determine the DE’s inference accu-
racy and energy consumption, thereby affecting the entire HOGEye
sensor’s task-level accuracy and energy efficiency.
Noise model. Main hardware noise includes sensing noise (shot
noise, read noise) and processing noise (RRAM resistance varia-
tion), and we model them as Gaussian disturbance (σ1, σ2) in input
voltages of RRAM array xi and RRAM device conductance дi , re-
spectively:

x̃i = N (xi , σ 2
1 = f1f2xi + f

2
2 σ

2
r), д̃i = N (дi , σ 2

2) (3)

where f1, f2, σr are sensor’s conversion gain, column gain and read
noise [1] and we conservatively set them to 100µV /e−, 1 and 10mV ;

HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors ISLPED ’22, August 1–3, 2022, Boston, MA, USA

3.0%

4.0%

5.0%

6.0%

10 12 14 16 18

P,w=8,4 P,w=10,5 P,w=12,6

0.992
0.994
0.996
0.998
1.000

6 8 10 12 14

P,w=8,4 P,w=10,5 P,w=12,6

H1 H2

R

Er
ro

r R
at

e

(a) Magnitude Prediction (b) Orientation Prediction
3.0%

4.0%

5.0%

6.0%

10 12 14 16 18

P,w=8,4 P,w=10,5 P,w=12,6

0.992
0.994
0.996
0.998
1.000

6 8 10 12 14

P,w=8,4 P,w=10,5 P,w=12,6

Figure 6: Pearson correlation R and error rate for magnitude
and orientation prediction under different (H , P ,w).

10
11
12
13
14
15
16
17

84%
86%
88%
90%
92%
94%
96%
98%

100%

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

8 10 12 8 10 12 8 10 12 8 10 12 8 10 12 8 10 12

(10,16) (10,18) (12,16) (12,18) (14,16) (14,18)

𝐰

𝐏

(𝐇𝟏,𝐇𝟐)

N
or

m
. E

ne
rg

y
[p

J/
pi

xe
l]

D
et

ec
tio

n
R

at
e

Figure 7: Under different (H , P , w): averaged detection rate
(blue), and normalized energy consumption of HOGEye’s
processing part (orange).

and σ2 = 0.015дi as reported in [20]. Substituting Eq. (3) to Eq. (2)
gives the noise-injected output voltages.

Specifically, to inject RRAM variation into trained weights, we
conduct following steps: 1. Normalize and round the weights, then
convert them to P-bit binary-weighted representation; 2. Split the
P-bit representation tow weight levels. For each weight level, con-
vert it to its integer representation and add Gaussian disturbance
as Eq. (3); 3. Multiply each noise-injected weight level with corre-
sponding binary-weighting factor and add all weight levels together,
which gives weights injected with RRAM variation.

5.2 Accuracy Validation
DE accuracy. To explore how the design parameters affect DE’s
inference, we evaluate the prediction accuracy for A and θ against
different (H , P , w). For conservative estimation, we map trained
weights onto 2-bit RRAM devices by limiting P/w to 2. We use two
metrics to measure prediction accuracy for A and θ , due to their
difference in datatype (analog vs. digital) and the property of our
mapping method. For A prediction, as stated in Sec 4.2 the circuit
output has a scaling factor F that changes along with mapped con-
ductance, thus using circuit output V p

o2,1 to recover real magnitude
is difficult. However, under the same mapping, F keeps uniform so
that the specific value of F does not affect the generated histogram’s
shape. And for HOG algorithm, it is the histogram’s shape rather
than absolute value that matters, so we use Pearson correlation
coefficient R between circuit output and magnitude groundtruth
as the metric (Fig. 6(a)) . Higher R means higher linearity between
circuit output and groundtruth, as well as more accurate circuit out-
put. Increasing H1 from 6 to 14, the coefficient R increases towards
1, with the trend being stable around H1 = 10. For θ prediction,
we use binning error rate as the metric (Fig. 6(b)). One-hot θ is
obtained by comparing circuit outputs with the offset VDD2 , and it
is not skewed by the scaling factor F . Increasing H2 from 10 to 18,
the error rate decreases from 6% to nearly 3%, with the trend being
stable around H2 = 14.
System detection rate. Based on Fig. 6, we chooseH1 from {10, 12,
14} and H2 from {16, 18} as these sets show the highest prediction
accuracy. Together with different (P , w), we evaluate task-level

Pixel+CDS

TSV

S&H Array

DE Array

HG Array

ADC Array Pixe
l+CDS

TSV

S&H Arra
y

DE Arra
y

HG Arra
y

ADC Arra
y

0%
20%
40%
60%
80%

100%

(10+16,8,4)

others

Comparator

Analog S+A

RRAM Crossbar (Ori)

RRAM Crossbar (Mag)

22.8%

RRAM Crossbar (A)

RRAM Crossbar (theta)

Analog S+A

Comparator and Others

(b) Energy (pixel+processor)(a) Area (processor only)

S&H Array

DE Array

HG Array

ADC

30.9%

29.1%

8%

32% 8.8%
42.1%

23.9%

Figure 8: (a) Area and (b) energy consumption breakdown
of HOGEye sensor under (H , P ,w)=(10+16, 8, 4). “Others” in-
cludes energy of RRAM read, write, leakage, reset and set.

detection rate with the trainedDE array onDaimlerChrysler dataset.
First, we inject sensing noise to training set and train a linear SVM.
Second, we convert images in test set to voltages (with sensing
noise) as DE array’s input, add RRAM variation, and send the output
histograms to the pre-trained SVM for detection rate. Third, to
overcome stochastic property in the output, we perform 50 tests
at each (H , P , w), and plot averaged detection rate with standard
deviation as error band in Fig. 7 (blue). Compared with baseline
(black dotted line), HOGEye achieves less than 1% detection rate
degradation in most cases.

5.3 System Hardware Performance
Area overhead. For the pixel substrate, we set pixel resolution to
be 256×256 and pixel pitch to be 5µm×5µm, so pixel array area is
1.64mm2. For the processor substrate, in the worst case, we set (H1+
H2) = (14 + 18), then less than 256KB RRAM cells are used, which
have the area of 0.51mm2 according to DESTINY[24] simulator.
Besides, S&H array, CMOS inverters in DE array, HG array andADC
array consume about 0.54mm2, 200µm2, 0.14mm2, and 0.56mm2,
respectively. Therefore, the two substrates have comparable area.
The estimated area breakdown for the processor substrate is shown
in Fig. 8(a).
Energy consumption. The energy breakdown for the whole sen-
sor under parameter (H1 + H2, P ,w) = (10 + 16, 8, 4) is shown
in Fig. 8(b). ADC energy is significantly reduced by analog com-
puting. Zooming into DE array’s energy, the neural approximator
for A costs less than the neural approximator for θ due to fewer
hidden/output neurons. Since pixel array does not participate any
HOG computation, it is excluded from sensor’s energy estimation
in the following discussion. To explore the effect of different param-
eters on HOGEye sensor’s energy, the trend of normalized energy
is plotted in Fig. 7 (orange). With (H1, H2) increasing, the energy
increases due to larger number of inverters in RRAM crossbar array.
And under each (H1, H2), the energy increases along with (P , w)
due to larger number of analog S+A.

5.4 Performance Comparison and Discussion
We compare our work with one mixed-signal design [6], one

digital design [26] and one analog design [28] in Table 1. We con-
servatively set HOGEye’s frame rate to 30fps to be comparable
with other works, though higher frame rate can be achieved. For
FoM1 which normalizes energy consumption by pixel array res-
olution, HOGEye achieves 2.7×, 33.4× and 5.9× higher efficiency
than [6], [26] and [28]. However, FoM1 does not consider the ex-
tracted feature’s complexity. For example, in the digital design [26],
they extract 12-level HOG features from a single frame. Thus we

ISLPED ’22, August 1–3, 2022, Boston, MA, USA Tianrui Ma and Weidong Cao, et al.

Table 1: HOGEye Specifications and Comparison with State-
of-the-art

Our Work JSSC [6] JSSC [26] JSSC [28]

Process
130nm
CMOS +
RRAM

180nm
CMOS

65nm
CMOS

130nm
CMOS

Pixel
Array 256×256 256×256 1920×1080 320×240

Supply
Volt.

1.5V 0.8V 0.77V 1.5V/0.9V

Frame Rate 30fps 15fps 30fps 30fps
Feature
Type

single-scale
histograms

single-scale
histograms

multi-scale
HOG

multi-scale
log-gradient

Imple-
mentation analog mixed-signal digital analog

CR@A/D
Interface∗

1
7.1 1 - 1

5.3 ∼ 1
2.9

Number of
Histograms 1024 1024 87188 -

FoM∗∗
1

[pJ/pixel] 14.1∼16∗∗∗ 38.5 471 83.7∼97.9

FoM∗∗
2

[nJ/hist.] 0.9∼1∗∗∗ 2.5 11.2 -

* compression ratio (CR) = sensor generated digits
pixel resolution×8bit .

** FoM1=
sensor energy (excluding pixel array)

sensor resolution , FoM2=
sensor energy (excluding pixel array)
number of histograms generated .

*** Our results come from simulation, while the results of other works come
from real chip measurement.

additionally compare FoM2, which normalizes the energy consump-
tion by the number of HOG histograms generated from single frame.
For FoM2, HOGEye achieves 2.5× and 11× higher energy efficiency
than [6] and [26]. Besides, compared with [28] where compressive
log-gradient is generated, HOGEye achieves higher compression ra-
tio because denser histogram is generated. Finally, as a quantitative
comparison of the energy overhead between DNN learned features
and hand-crafted features, RedEye [18] consumes 3.3nJ/pixel when
implementing only one convolutional layer, which is 200× higher
than the proposed HOGEye sensor. It can be estimated that learning
features using DNN with more layers must consume more energy.

In this paper we only discuss HOG algorithm implementation.
However, HOGEye sensor architecture can be applicable to vari-
ous block-based image processing algorithms, such as block-based
learning/compression and compressive sensing, depending on dif-
ferentMLP (or more advanced neural network) structure and RRAM
crossbar array configuration.We leave generalizing HOGEye sensor
architecture as future work.

6 CONCLUSION
We propose HOGEye, an efficient near-pixel processing architec-

ture for HOG feature extraction in 3D-stacked image sensor. Spatial
derivatives and histograms are generated in the analog domain
with raw pixel values via column-parallel RRAM-based neural-
approximated derivative extractors and column-shared histogram
generators, reducing required A/D conversions by 7.1×. HOGEye’s
processing part only consumes 14.1pJ/pixel with less than 1% de-
tection rate degradation, which is more than 2.5× and 11× better
than state-of-the-art mixed-signal and digital implementation, re-
spectively.

REFERENCES
[1] Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dillon Sharlet, and

Jonathan T. Barron. 2018. Unprocessing Images for Learned Raw Denoising.

CoRR abs/1811.11127 (2018). arXiv:1811.11127
[2] Weidong Cao, XinHe, AyanChakrabarti, and Xuan Zhang. 2019. NeuADC: Neural

Network-Inspired RRAM-Based Synthesizable Analog-to-Digital Conversion
with Reconfigurable Quantization Support. In DATE’19. 1477–1482.

[3] Weidong Cao, Xin He, Ayan Chakrabarti, and Xuan Zhang. 2020. NeuADC:
Neural Network-Inspired Synthesizable Analog-to-Digital Conversion. IEEE
TCAD 39, 9 (2020), 1841–1854.

[4] Weidong Cao, Liu Ke, Ayan Chakrabarti, and Xuan Zhang. 2019. Neural Network-
Inspired Analog-to-Digital Conversion to Achieve Super-Resolution with Low-
Precision RRAM Devices. In IEEE/ACM ICCAD’19. 1–7.

[5] Weidong Cao, Yilong Zhao, Adith Boloor, Yinhe Han, Xuan Zhang, and Li Jiang.
2021. Neural-PIM: Efficient Processing-In-Memory with Neural Approximation
of Peripherals. IEEE Trans. Comput. (2021), 1–1.

[6] Jaehyuk Choi, Seokjun Park, Jihyun Cho, and Euisik Yoon. 2014. A 3.4-µ WObject-
Adaptive CMOS Image Sensor With Embedded Feature Extraction Algorithm for
Motion-Triggered Object-of-Interest Imaging. IEEE JSSC 49, 1 (2014), 289–300.

[7] N. Dalal and B. Triggs. 2005. Histograms of oriented gradients for human detec-
tion. In IEEE CVPR’05, Vol. 1. 886–893 vol. 1.

[8] B. Mudassar et al. 2019. CAMEL: An Adaptive Camera With Embedded Machine
Learning-Based Sensor Parameter Control. IEEE JETCAS 9, 3 (2019), 498–508.

[9] H. Kim et al. 2016. A Delta-Readout Scheme for Low-Power CMOS Image Sensors
With Multi-Column-Parallel SAR ADCs. IEEE JSSC 51, 10 (2016), 2262–2273.

[10] H. Tsugawa et al. 2017. Pixel/DRAM/logic 3-layer stacked CMOS image sensor
technology. In IEEE IEDM’17. 3.2.1–3.2.4.

[11] K. Mizuno et al. 2012. Architectural Study of HOG Feature Extraction Processor
for Real-Time Object Detection. In IEEE Workshop on SiPS’12. 197–202.

[12] R. Eki et al. 2021. 9.6 A 1/2.3inch 12.3Mpixel with On-Chip 4.97TOPS/W CNN Pro-
cessor Back-Illuminated Stacked CMOS Image Sensor. In IEEE ISSCC’21, Vol. 64.
154–156.

[13] Kurt Hornik. 1991. Approximation Capabilities of Multilayer Feedforward Net-
works. Neural Netw. 4, 2 (March 1991), 251–257.

[14] WooYeon Jeong and Kyoung Mu Lee. 2005. CV-SLAM: a new ceiling vision-based
SLAM technique. In IEEE/RSJ IROS’05. 3195–3200.

[15] Vadim Kantorov and Ivan Laptev. 2014. Efficient Feature Extraction, Encoding,
and Classification for Action Recognition. In IEEE CVPR’14. 2593–2600.

[16] Guruprasad Katti, Michele Stucchi, Kristin De Meyer, and Wim Dehaene. 2010.
Electrical Modeling and Characterization of Through Silicon via for Three-
Dimensional ICs. IEEE TED 57, 1 (2010), 256–262.

[17] Boxun Li, Peng Gu, Yi Shan, Yu Wang, Yiran Chen, and Huazhong Yang. 2015.
RRAM-Based Analog Approximate Computing. IEEE TCAD 34, 12 (2015), 1905–
1917.

[18] Robert LiKamWa, Yunhui Hou, Yuan Gao, Mia Polansky, and Lin Zhong. 2016.
RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile
Vision. In ACM/IEEE ISCA’16. 255–266.

[19] Zheyu Liu, Erxiang Ren, Fei Qiao, Qi Wei, Xinjun Liu, Li Luo, Huichan Zhao,
and Huazhong Yang. 2020. NS-CIM: A Current-Mode Computation-in-Memory
Architecture Enabling Near-Sensor Processing for Intelligent IoT Vision Nodes.
IEEE TCAS-I 67, 9 (2020), 2909–2922.

[20] Yandong Luo, Xu Han, Zhilu Ye, Hugh Barnaby, Jae-Sun Seo, and Shimeng Yu.
2020. Array-Level Programming of 3-Bit per Cell Resistive Memory and Its
Application for Deep Neural Network Inference. IEEE TED 67, 11 (2020), 4621–
4625.

[21] Makoto Motoyoshi. 2009. Through-Silicon Via (TSV). Proc. IEEE 97, 1 (2009),
43–48.

[22] S. Munder and D.M. Gavrila. 2006. An Experimental Study on Pedestrian Classi-
fication. IEEE TPAMI 28, 11 (2006), 1863–1868.

[23] M. O’Halloran and R. Sarpeshkar. 2004. A 10-nW 12-bit accurate analog storage
cell with 10-aA leakage. IEEE JSSC 39, 11 (2004), 1985–1996.

[24] Matt Poremba, Sparsh Mittal, Dong Li, Jeffrey S. Vetter, and Yuan Xie. 2015.
DESTINY: A tool formodeling emerging 3DNVMand eDRAM caches. InDATE’15.
1543–1546.

[25] Amr Suleiman, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2017. Towards closing
the energy gap between HOG and CNN features for embedded vision. In IEEE
ISCAS’17. 1–4.

[26] Amr Suleiman, Zhengdong Zhang, and Vivienne Sze. 2017. A 58.6 mW 30
Frames/s Real-Time Programmable Multiobject Detection Accelerator With De-
formable Parts Models on Full HD 1920 × 1080 Videos. IEEE JSSC 52, 3 (2017),
844–855.

[27] Skyler Weaver, Benjamin Hershberg, and Un-Ku Moon. 2014. Digitally Synthe-
sized Stochastic Flash ADC Using Only Standard Digital Cells. IEEE TCAS-I 61, 1
(2014), 84–91.

[28] Christopher Young, Alex Omid-Zohoor, Pedram Lajevardi, and Boris Murmann.
2019. A Data-Compressive 1.5/2.75-bit Log-Gradient QVGA Image Sensor With
Multi-Scale Readout for Always-On Object Detection. IEEE JSSC 54, 11 (2019),
2932–2946.

https://arxiv.org/abs/1811.11127

	Abstract
	1 Introduction
	2 Backgrounds
	2.1 Histogram of Oriented Gradients (HOG)
	2.2 Existing HOG Implementations
	2.3 Sensing-Processing With 3D-Stacked Sensor

	3 Proposed HOGEye Sensor System
	3.1 System Overview
	3.2 Analog Buffering
	3.3 Neural-Approximated Derivative Extraction

	4 Implementation of System Building Blocks
	4.1 Pixel, TSV and S&H Circuit
	4.2 Derivative Extractor (DE)
	4.3 Histogram Generator (HG) and ADC

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Accuracy Validation
	5.3 System Hardware Performance
	5.4 Performance Comparison and Discussion

	6 Conclusion
	References

