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a b s t r a c t 

A central challenge for creativity research —as for all areas of experimental psychology and cognitive neuro- 
science —is to establish a mapping between constructs and measures (i.e., identifying a set of tasks that best 
captures a set of creative abilities). A related challenge is to achieve greater consistency in the measures used 
by different researchers; inconsistent measurement hinders progress toward shared understanding of cognitive 
and neural components of creativity. New resources for aggregating neuroimaging data, and the emergence of 
methods for identifying structure in multivariate data, present the potential for new approaches to address these 
challenges. Identifying meta-analytic structure (i.e., similarity) in neural activity associated with creativity tasks 
might help identify subsets of these tasks that best reflect the similarity structure of creativity-relevant constructs. 
Here, we demonstrated initial proof-of-concept for such an approach. To build a model of similarity between 
creativity-relevant constructs, we first surveyed creativity researchers. Next, we used NeuroSynth meta-analytic 
software to generate maps of neural activity robustly associated with tasks intended to measure the same set 
of creativity-relevant constructs. A representational similarity analysis-based approach identified particular con- 
structs —and particular tasks intended to measure those constructs —that positively or negatively impacted the 
model fit. This approach points the way to identifying optimal sets of tasks to capture elements of creativity (i.e., 
dimensions of similarity space among creativity constructs), and has long-term potential to meaningfully advance 
the ontological development of creativity research with the rapid growth of creativity neuroscience. Because it 
relies on neuroimaging meta-analysis, this approach has more immediate potential to inform longer-established 
fields for which more extensive sets of neuroimaging data are already available. 

Creativity —like all broad psychological constructs —is difficult to 
pin down ( Gl ăveanu et al., 2019 ; Gl ăveanu and Kaufman, 2019 ; 
Piffer, 2012 ; Runco and Jaeger, 2012 ). A prominent effort to character- 
ize the mental mechanisms that support creative thought, referred to as 
the creative cognition approach, posits that creativity emerges from the 
interaction of lower level cognitive processes ( Abraham, 2013 , 2014 ; 
Ward, 2007 , 1999 ). Such cognitive processes include memory, reason- 
ing, imagination, and cognitive control ( Abraham, 2014 ; Benedek and 
Fink, 2019 ). This approach has been critical for advancing creativity re- 
search because it enables researchers to understand the complex, multi- 
faceted nature of this construct by examining its component cognitive 
mechanisms, which are easier to measure. Additional core psychologi- 
cal abilities have also been identified in relation to creativity, including 
both divergent and convergent thinking ( Guilford, 1950 ). However, as 
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the number of cognitive constructs that relate to creativity grows, so 
does the complexity of operationalizing, measuring, and relating these 
constructs to each other. 

Pinning down creativity by mapping key sub-constructs onto spe- 
cific experimental tasks is critical to advancing current understand- 
ing ( Abraham, 2013 ; Beaty et al., 2019 ; Benedek and Fink, 2019 ; 
Dietrich, 2007 , 2019 ). Rigorous empirical study of creativity, includ- 
ing brain-based inquiry, has recently been recognized as a priority 
across multiple sectors ( Council and Committee, 2005 ; Florida, 2014 ; 
Frey and Osborne, 2017 ; Jennings, 2010 ; Lichtenberg et al., 2008 ; 
Newcombe, 2017 ), but lack of clarity concerning measurement in this 
relatively young field presents a challenge to further progress. Relat- 
edly, there is considerable inconsistency of measurement in the field, 
such that different groups “research past one another ” ( Gl ăveanu et al., 
2019 ) by using different tasks to operationalize the same construct 
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( Barbot et al., 2019 ; Cortes et al., 2019 ). To address this inconsistency, 
progress toward establishing an ontology of creativity measurement is 
a priority for advancing creativity research. We use the term, ontology, 
in the sense of a taxonomic structure that organizes a set of things based 
on the similarities and differences of their meanings. The meanings of 
research measures inhere in what their outcomes capture – what they 
tell us about a person or a group. Thus, an ontology of creativity mea- 
surement organizes creativity measures based on the similarities and 
differences between what each measure captures (i.e., the creativity- 
related constructs they reflect). Ontologies facilitate coherence within 
a research field through standardization of constructs and tasks, often 
requiring large-scale meta-analyses to agree on a set of terms and defi- 
nitions ( Bilder et al., 2009 ). In the current study, we sought to demon- 
strate an initial proof-of-concept for a meta-analytic data-driven ap- 
proach that leverages neuroimaging to support the ontological mapping 
of creativity-relevant constructs to tasks that measure those constructs. 

Ontological development in psychology has historically focused on 
a priori considerations. While considerations of the a priori nature and 
similarity of constructs and sub-constructs are essential to a meaningful 
ontology, they often prove difficult to objectively weigh against each 
other, leading to vague or inconclusive outcomes. New resources for ag- 
gregating and analyzing neuroimaging data may enable new ways of 
integrating data-driven approaches with a priori considerations toward 
more objective and more precise ontological development, especially 
as it regards the mapping of constructs to measurement tools. Cogni- 
tive neuroscience has generated a large and growing set of neural data 
over the course of nearly 30 years, comprising approximately 40,000 
studies ( Eklund et al., 2016 ). Substantial research has investigated neu- 
ral activity associated with a large number of psychological constructs, 
and an even larger number of specific tasks intended to measure those 
constructs. Thus, the data now exist to at least begin empirically test- 
ing the question, Which set of tasks reliably elicits neural activity reflective 
of a given set of cognitive constructs? In the context of an ontology of 
creativity measurement, similarity and dissimilarity at the neural level 
can inform the extent to which different measures reflect similar and/or 
distinct cognitive constructs. This question is critical for the field of cre- 
ativity neuroscience research, and psychological research more broadly, 
and the answers will directly impact our ability to utilize neural data 
to inform cognitive theories. Tools such as NeuroSynth ( Poldrack and 
Yarkoni, 2016 ; Yarkoni et al., 2011 ), a powerful software engine for 
generating meta-analyses based on text-based searches of thousands of 
neuroimaging studies, and the BrainMap database ( Laird et al., 2005 ), 
have been developed in recent years to aid in compiling, analyzing, and 
interpreting this massive body of data. NeuroSynth allows for compre- 
hensive meta analyses based on selected terms, such as those referring 
to specific cognitive constructs (e.g. “flexibility ”). The resulting meta- 
analyses indicate areas of the brain that are associated with that par- 
ticular construct. This outcome is accomplished using brain activation 
data from all the studies in the database that refer to that particular con- 
struct, while controlling for the neural responses associated with every 
other study in the database (over 14,000 total studies). Researchers can 
thereby generate new insights about the neural instantiation of specific 
cognitive constructs, informed by the volume of neural data amassed 
across thousands of studies conducted over the entire timespan of neu- 
roimaging experimentation. 

Here we used this extensive meta-analytic resource to examine a set 
of constructs that are targets of creativity research. Our main goal was 
to develop a method by which we can leverage neural meta-analyses 
to identify a set of commonly-used experimental tasks that elicit neural 
activity reflective of these cognitive constructs. Our second goal was to 
examine the ways in which these constructs relate to each other in terms 
of neural activity —to examine the structure among these constructs on 
a neural level —in order to inform our understanding of how the brain 
instantiates creativity as a constellation of constructs. A tertiary goal of 
our study was to compare this neural construct space to its correspond- 
ing construct space defined by creativity researchers, and to examine 

similarities and differences in these models in order to learn more about 
both models and possibly generate hypotheses for further research. 

To accomplish these goals, we first generated a model of creativity- 
relevant cognitive constructs by querying a group of researchers sam- 
pled from two academic societies focused on creativity. This model, 
based on the behavioral ratings of researchers describing the rela- 
tionship between pairs of constructs, formed our basis for comparison 
against which we evaluated various models derived from neural data. In 
order to generate a corresponding neural model, we used NeuroSynth to 
calculate term-based meta-analyses of neural activity indicating which 
brain regions are specifically and robustly associated with the same set 
of cognitive constructs. Inputting these maps into a meta-analytic rep- 
resentational similarity analysis, we then compared the neural data di- 
rectly to the expert-informed conceptual model. We also generated a 
separate neural model based on meta-analyses of individual experimen- 
tal tasks that are commonly used to represent those same constructs. 
Next, we calculated several variations in both neural models to find a 
better fit to the expert model. Specifically, we tested whether removing 
or adding individual tasks or constructs to the neural model improved 
the fit of the neural data to the expert model. Such an approach allows 
us to identify the set of tasks best reflecting the similarity structure of 
the target set of constructs related to creativity. 

The focus of this work was on establishing a proof-of-concept for 
methods that are likely to have long-term value for the selection of ex- 
perimental tasks to capture given cognitive constructs. Practical con- 
straints, especially concerning the relative paucity of neural data for 
creativity tasks that are currently available in NeuroSynth, limit the 
interpretability of the particular set of data we used for this proof- 
of-concept. However, some preliminary conclusions might usefully be 
drawn from the results about the constructs and tasks we considered. 
As the first steps toward data-driven ontological development of cre- 
ativity research, we explored each of several step-wise methodological 
approaches briefly in order to demonstrate a proof-of-concept for its use. 
The main point demonstrated by the current study is that the field of 
creativity neuroscience is poised to begin a new phase in which a grow- 
ing volume of available neural data can usefully inform our ontological 
mappings of constructs to tasks. Using methods such as those described 
here, we can begin to build an ontology of creativity-relevant cognitive 
constructs that accurately reflect the brain-behavior relationships de- 
scribed by roughly three decades of empirical observation. These meth- 
ods can also be used to facilitate similar efforts in other fields. 

1. Methods 

1.1. Participants 

Sixty-five participants took part in this study. All participants 
were recruited from academic societies focused on empirical cre- 
ativity research, the Society for the Neuroscience of Creativity 
( https://tsfnc.org ) and the American Psychological Association Division 
10 (Society for the Psychology of Aesthetics, Creativity, and the Arts; 
http://www.div10.org ). Participants (49% male, 39% female, 12% un- 
known) had an average age of 39.4 years (SD = 12.21 years) with an 
average experience of studying creativity of 10 years (SD = 9.5 years). 
This study was approved by Georgetown University’s Institutional Re- 
view Board. 

1.2. Procedure 

Informed consent and all task stimuli were presented via Qualtrics 
( www.qualtrics.com ). After providing informed consent, participants 
were presented with pairs of cognitive constructs from which pairwise 
ratings were derived, which in turn formed the basis of the expert cog- 
nitive model. Participants were first presented with general task instruc- 
tions indicating the rules of the task and how to record a response for 
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each item, including an example trial. Following these instructions, par- 
ticipants were presented, one at a time, with each unique pairwise com- 
bination of the 10 terms naming cognitive constructs (Cognitive Control, 
Convergent Thinking, Creativity, Divergent Thinking, Flexibility, Gen- 
eration, Imagery, Insight, Novelty, Reasoning) for a total of 45 trials. 
When each pair of terms was presented, participants were also shown a 
series of seven Venn-diagrams (each containing two overlapping circles 
representative of the two terms) with varying degrees of overlap, rang- 
ing from no overlap to almost complete overlap. The participants were 
instructed to indicate how much overlap the two terms have by selecting 
one of the Venn-diagrams by mouse click. Once the participant decided, 
they were immediately presented with a new pair of terms. Order of term 

pair presentation was randomized across participants and trials did not 
advance until participants made a response. Following this task, par- 
ticipants completed other surveys which are not analyzed or discussed 
further here. 

1.3. Materials 

1.3.1. Expert model of construct space 
A behavioral similarity matrix was computed based on participants 

judging the overlap in similarity of two terms, by selecting from a se- 
ries of Venn-diagrams (described above), the image that best conveys 
the similarity of these two terms ( Aron et al., 1992 ; Necka et al., 2015 ). 
Participants were presented with all possible pairs of ten terms (45 pairs 
in total) that named cognitive constructs related to creativity. The ten 
terms included in this task were: Cognitive Control, Convergent Think- 
ing, Creativity, Divergent Thinking, Flexibility, Generation, Imagery, 
Insight, Novelty, Reasoning. These terms were part of a large set of pos- 
sible terms to be used in this task, selected by a group of expert creativity 
researchers including the authors and the leadership of the Society for 
the Neuroscience of Creativity. We limited the list of terms to ten terms 
in order to keep the ratings survey to a manageable length. Furthermore, 
the ten final terms used in our task were terms that also appeared in the 
NeuroSynth database, which allowed us to examine how behavioral and 
neural similarity matrices for the same terms related to each other. 

Pairwise ratings of each pair of terms were used to generate a simi- 
larity matrix that represents the conceptual space of these 10 constructs. 
Construction of this type of representational similarity matrix allows for 
comparison to other data sources, such as neural data, to determine the 
goodness of fit between two multidimensional representational spaces 
( Kriegeskorte et al., 2008 ). In the present study, we use this similarity 
matrix defined by pairwise expert ratings of creativity-related constructs 
as a model that represents the way that experts conceive of these con- 
structs in relation to each other. By comparing this model to neural data, 
as described below, we can evaluate the similarities and differences be- 
tween the expert conception of these constructs, and the way in which 
these same constructs manifest in the human brain via the data gener- 
ated by thousands of neuroimaging experiments. 

1.3.2. Term-based meta-analytic maps 
In order to create study lists for the ten creativity related terms used 

in the Creativity Ontology survey, the following steps were taken. In 
the “initial search ” phase, the ten terms used in the survey were entered 
into NeuroSynth ( www.neurosynth.org ; Yarkoni et al., 2011 ) as a search 
query for titles in the NeuroSynth database that contained each of the 
terms. The studies returned by the search were compiled into respec- 
tive term lists. Next, in the “relevance check cutdown ” phase, each of 
the studies were manually checked to ensure that the studies included in 
the set were appropriate studies of constructs related to creativity (e.g. a 
study in the Novelty category was about novel uses for items, not about 
a novel analysis). Term lists with fewer than 20 studies were consid- 
ered insufficient and removed from further analysis. However, after the 
cutdown, in an effort to gather a sufficient number of studies for Nov- 
elty and Divergent Thinking (which initially had fewer than 20 studies 
each), the terms were queried for titles and abstracts in PubMed in the 

“adding PubMed papers ” phase. One of the terms, Convergent Think- 
ing, was eliminated from the group for having fewer than 20 studies 
in total, after exhausting both search methods. After checking all arti- 
cles (including the PubMed articles) for relevance, the final lists were 
also checked to ensure that no study appeared in more than one list in 
the “deleting duplicates ” phase. If a study remained on multiple lists, 
the study was eliminated providing the elimination did not reduce the 
list below 20 studies. This process resulted in 14 studies remaining on 
more than one list (but no study remained on more than two lists). Ulti- 
mately, the nine remaining terms were: Cognitive Control (63 studies), 
Creativity (26 studies), Divergent Thinking (20 studies), Flexibility (20 
studies), Generation (22 studies), Imagery (44 studies), Insight (21 stud- 
ies), Novelty (20 studies), Reasoning (46 studies). See SI Table 1 for the 
full list of PMIDs included for each term, and SI Table 2 for a sample of 
papers included for each term. 

All NeuroSynth based analyses were run on a local implemen- 
tation of the NeuroSynth core tools ( https://github.com/neurosynth/ 
neurosynth ) using the database version 0.7, released in July 2018 and 
includes activation data from 14,371 studies. All neuroimaging data and 
images from NeuroSynth are previously registered to 2 mm MNI space. 
Because the NeuroSynth database includes data from some non-fMRI 
neuroimaging studies (e.g., PET, or voxel-based morphometry; for de- 
tails on data selection see Yarkoni et al., 2011 ), our selection criteria 
resulted in a small number of these non-fMRI studies being included 
in our analyses. These studies represent a small percentage of the total 
number of included studies (e.g., only 4 studies out of approximately 
500 contained PET data), and are noted in SI Table 1 and SI Table 2 . 
The numbers of these studies for each non-fMRI source of data were too 
small to reliably determine whether the signal provided by these sources 
differed significantly from the fMRI data. However, in general, inclusion 
of multiple converging sources of data should increase the power to de- 
tect meaningful signal related to cognition-brain associations. 

For each of the nine terms, a term-based meta-analysis was con- 
ducted using the activation data associated with the PubMed IDs for 
each of the studies (see Fig. 1 for examples). Both association and uni- 
formity test z -maps were generated for each term-based meta-analysis, 
and each z -map is FDR corrected at p < .01. Whereas uniformity tests in- 
dicate which brain-regions show consistency of activation within the set 
of included studies, the association test shows which brain regions have 
higher levels of activation in the set of included studies compared to the 
rest of the studies in the full database ( Yarkoni et al., 2011 ). Therefore, 
the association FDR-corrected z -map was chosen for further analysis. 

1.3.3. Neurally-defined model of construct space 
In order to compare the expert-generated behavioral ratings de- 

scribed above to a similar model of construct space defined by neural 
data, we generated a neural similarity matrix ( Fig. 2 ) as follows. For 
each of the 9 term-based meta-analytic maps described in the previ- 
ous section, the brain maps were converted into vector arrays, where 
each element in the array represented the FDR-corrected z -value for the 
meta-analytic map at that voxel. Then we calculated the Spearman cor- 
relation between that neural map and every other meta-analytic neural 
map. In this way, we were able to obtain a single value representing 
the Spearman correlation between every pair of meta-analytic maps (36 
unique correlations in total). These correlation values were then input 
into a representational similarity matrix, in which each cell represents 
the correlation between two meta-analytic maps, and the entire matrix 
thus comprises every possible pairing of meta-analytic maps ( Fig. 2 ). 

1.3.4. Task-based meta-analytic maps 
Meta-analytic task-based maps were created through NeuroSynth, 

similar to the term-Based maps described in the preceding section. For 
each of the creativity-related constructs included in the expert model, 
a list of tasks commonly used to measure each construct was generated 
by the authors ( Table 1 ). Each author listed tasks that they believe best 
measure the construct terms, based on use in previous literature. Tasks 
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Table 1 
Candidate tasks commonly used to operationalize each cognitive construct. 

Cognitive Control Creativity Divergent Thinking Flexibility Generation Imagery Insight Novelty Reasoning 

Stroop Analogical 

Reasoning 

Verb Generation Task Switching Fluency Mental Rotation Analogical 

Reasoning 

Verb 

Generation 

Analogical 

Reasoning 

Flanker Verb Generation Fluency Wisconsin Card 

Sorting 

Verb Generation Wisconsin Card 

Sorting 

Fluency Wisconsin Card 

Sorting 

Go/No-Go 

Table 2 
Spearman correlations between expert ratings and neural data for similarity matrices and individual terms. 

Entire Matrix CC Cr DT Fl Gn Im In Nv Rs 

Full Model .21 .67 ∗ .44 . 89 ∗∗ .03 .38 − 0.25 .05 .72 ∗∗ .39 

Leave-one-out models: 

Cognitive Control .09 NA .55 . 86 ∗∗ .12 .48 .17 .02 .60 .13 

Creativity .30 .68 ∗ NA . 92 ∗∗∗ .19 .55 − 0.15 .31 .61 ∗ .59 

Divergent Thinking − 0.12 .71 ∗ .37 NA − 0.12 .19 − 0.18 − 0.01 .62 ∗ .34 

Flexibility . 35 ∗ .68 ∗ .66 ∗ .88 ∗∗ NA .55 − 0.19 .10 .81 ∗∗ .45 

Generation .23 .71 ∗ .46 .93 ∗∗∗ .10 NA − 0.24 .03 .76 ∗ .45 

Imagery . 38 ∗ .86 ∗∗ .53 .85 ∗∗ .00 .38 NA .08 .79 ∗ .54 

Insight .32 .63 ∗ .47 .90 ∗∗ .21 .31 − 0.17 NA .81 ∗∗ .49 

Novelty .06 .64 ∗ .25 .88 ∗∗ .10 .30 − 0.18 .23 NA .37 

Reasoning .23 .53 .45 .86 ∗∗ .07 .43 − 0.19 .06 .79 ∗ NA 

Note : ∗ = p < .05; ∗ ∗ = p < .01; ∗ ∗ ∗ = p < .001. All p- values are generated by permutation correction against a null 
distribution of 10,000 random permutations. For the Full Model, all constructs were included in both the expert and 
neural similarity matrices. Row labels for the leave-one-out models indicate the term left out of that model. Column 
labels indicate the term of interest being correlated between neural and behavioral data sources, each drawn from 

the same model. CC = Cognitive Control; Cr = Creativity; DT = Divergent Thinking; Fl = Flexibility; Gn = Generation; 
Im = Imagery; In = Insight; Nv = Novelty; Rs = Reasoning. 

Fig. 1. Term-based meta-analytic association Z -maps for Creativity, Divergent Thinking, and Novelty. Uncorrected Z maps generated using NeuroSynth are shown 
here to display full results; FDR-corrected Z -maps are displayed in Fig. 2 and were used for all analyses. Each map is thresholded at Z > 2.3 and spatially clustered 
in the volume resulting in a minimum cluster size of 20 voxels per cluster. 

were allowed in multiple lists as long as the task is commonly used to 
measure all of the constructs it is listed for, but any given study could 
only be present in one task list. We then conducted a PubMed search for 
each task along with the term “fMRI ” to identify neuroimaging studies 
using these tasks in the “Initial PubMed Search ” phase. A list for each 
of the tasks was generated using the PubMed IDs for each of the studies 
that met that search query. These studies were initially culled to only 
include studies that appeared in the NeuroSynth database (limited to 
studies that have been processed to catalog the neuroimaging regions 
for results) in the “Cross-reference with Neurosynth ” phase before be- 
ing manually reviewed to ensure the study was appropriately related 
to creativity and the task was used for the neuroimaging results in the 

“Relevance Check Cutdown ” phase. Finally, any duplicate studies were 
removed from all instances on the task lists and the two list sets (task 
and term) were compared to identify any duplicate studies between the 
sets in the “Deleting Duplicates ” phase. If a study existed across both 
sets, the study was eliminated providing the elimination did not reduce 
the term list below 20 studies or the task list below 10 studies. This pro- 
cess resulted in no duplicate studies between task lists, and 26 duplicate 
studies remaining across sets (i.e., between task lists and construct lists). 
See SI Table 3 for the full list of PMIDs included for each task, and SI 
Table 4 for a sample of papers included for each task. With those lists of 
IDs, association and uniformity test meta-analytic z -maps were gener- 
ated for each of the tasks, and were FDR corrected at p < .01. As noted 
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Fig. 2. Meta-analytic maps for some terms showed more pattern similarities than others. The NeuroSynth meta-analytic maps for Creativity and Divergent thinking 
show some regions of overlap and have a correlation of r = 0.33. By contrast, Creativity and Reasoning have no overlap in patterns of activity, and do not correlate. 
All meta-analytic surface-based Z- maps were generated in 3-dimensional MNI space using the NeuroSynth association map function and FDR-corrected ( p < .01). 

Table 3 
Spearman correlations for the models using individual neuroimaging tasks to 
represent cognitive control. 

Flanker Go/No-Go Stroop 

Full Model .01 .10 .13 

Individual constructs: 

Cognitive Control .24 .00 .63 ∗ 

Creativity .66 ∗ .66 ∗ .33 

Divergent Thinking .92 ∗∗ .93 ∗∗ .83 ∗∗ 

Flexibility − 0.03 .03 .08 

Generation .42 .38 .28 

Imagery − 0.25 − 0.23 − 0.09 

Insight − 0.18 − 0.02 − 0.02 

Novelty .53 .65 ∗ .65 ∗ 

Reasoning .34 − 0.08 .39 

Note : ∗ = p < .05; ∗ ∗ = p < .01. All p- values are generated by permutation cor- 
rection against a null distribution of 10,000 random permutations. Row labels 
indicate the terms correlated between behavioral and neural data sources. Col- 
umn labels indicate the task used to represent cognitive control in each neural 
model. 

in the previous section, the FDR corrected association map for each of 
the tasks was used for further analysis. 

1.4. Statistical analyses 

1.4.1. Multidimensional scaling analysis 
For the purpose of illustrating the relationships between terms as 

defined by the expert model and the neural model, we conducted a 
classical (metric) multidimensional scaling analysis (using the cmdscale 
function in R from the stats package; https://www.rdocumentation.org/ 
packages/stats ). This analysis, used mainly to depict similarities and dif- 
ferences between the models, generated a projection of each construct 
into 2-dimensional space, based on the similarity matrices described 
above. The data points in this 2-dimensional space were then subjected 
to a k- means clustering algorithm (using the kmeans function in R from 

the stats package; https://www.rdocumentation.org/packages/stats ) 
aimed at defining up to 3 distinct clusters. 

1.4.2. Spearman correlations and permutation corrections 
We used Spearman correlation to test the fit between the similarity 

matrix generated by behavioral ratings of experts and the similarity ma- 
trix generated by neural meta-analyses. Spearman correlations were also 
used to test the fit between the modified similarity matrices described 
below. All correlations were permutation-corrected to determine signifi- 
cance. When each correlation was calculated, we randomized one of the 
two matrices or vectors (depending on the analysis) 100,000 times and 
re-ran the correlation to generate a distribution of potential correlations 
values from the distribution of our data. From that distribution, we z - 
scored the actual observed correlation value to identify where it fell rel- 
ative to the distribution of permuted correlation values, and therefore 
how likely it was that we found the observed correlation by chance, 
given our data. This approach allows us to correct for multiple com- 
parisons without making any assumptions about the distribution of our 
data. 

1.4.3. Row-wise analysis 
When correlating between full models, we make use of the full rep- 

resentational similarity space between behavioral ratings and patterns 
of neural activity. However, this analysis provides only one correlation 
value to represent all of the data contained in both of those similarity 
matrices, including all 9 constructs. To examine specifically how simi- 
lar creativity is, for example, when comparing its place in the behavioral 
construct space to its place in the neural construct space, we use row-by- 
row correlations (i.e., individual term correlations). In these analyses, 
we correlate the vector associated with each term drawn from the be- 
havioral similarity matrix with the same vector drawn from the neural 
similarity matrix. This approach allows us to identify the correlation be- 
tween the behavioral and neural data sources for each construct and for 
each task. 
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Table 4 
Full model and term-wise Spearman correlations for the models using tasks to represent all constructs. 

Cognitive Control Tasks Flanker Go/No-Go Stroop 
Creativity Tasks Analogy Verb Gen Analogy Verb Gen Analogy Verb Gen 

Full Model − 0.15 − 0.25 − 0.37 − 0.52 ∗ − 0.24 − 0.32 

Behavioral Ratings by Constructs: 

Cognitive Control (varies by model) .60 .71 .20 .71 .37 .37 

Creativity (varies by model) .46 − 0.12 .46 − 0.12 .46 − 0.12 

Flexibility (Task Switching) .37 .09 .37 .09 .37 .26 

Generation (Fluency) .43 .54 .20 .54 .20 .31 

Imagery (Mental Rotation) − 0.12 − 0.03 − 0.06 − 0.03 .06 .32 

Reasoning (Wisconsin) .49 .70 .12 .70 .12 .32 

Note : ∗ = p < .05. All p- values are generated by permutation correction against a null distribution of 10,000 random permutations. Table headings refer to the model 
used to generate the NeuroSynth Neural Task similarity data with the construct-specific behavioral ratings of similarity. Cognitive control was represented by each of: 
Flanker, Go/No-Go, and Stroop tasks. Creativity was represented by each of: Analogical Reasoning and Verb Generation tasks. All other constructs were represented 
by an individual task each, indicated in parentheses after the construct name. Under each model heading, each cell contains the Spearman correlation between 
the Neural Task similarity for that model and the behavioral rating similarity. For example, the cell for Reasoning under Stroop/Analogy indicates the correlation 
between the Wisconsin Card Sorting task and Reasoning ratings while Cognitive Control is represented by the Stroop Task and Creativity is represented by Analogical 
Reasoning. Analogy = Analogical Reasoning; Verb Gen = Verb Generation. 

Fig. 3. Multidimensional scaling plots demonstrating the structure of construct space in two principal dimensions. A: Projection of expert model reflecting construct 
space defined by pairwise similarity ratings of creativity researchers; B: Projection of neural model reflecting construct space defined by pairwise similarity of 
NeuroSynth meta-analytic association maps generated by term-based meta-analysis. Colors depict results of k-means clustering. 

1.4.4. Leave-one-out analysis 
To examine the contributions of each of the terms to the overall 

model fit between behavioral and neural data sources, we conducted a 
leave-one-out analysis. We conducted this analysis by iterating through 
the model and leaving out one term in each iteration and then calcu- 
lating a new Spearman correlation between the revised NeuroSynth- 
defined similarity matrix (i.e., the neural leave-one-out model) and 
the revised behavioral similarity matrix (i.e., the expert leave-one-out 
model). A total of nine additional models were generated thusly. 

2. Results 

2.1. Relating the meta-analytic neural model to the expert-based construct 
similarity model 

2.1.1. Full model space 
As described above, our primary goal was to develop a means of us- 

ing neural data to inform our understanding and measurement of the 
cognitive constructs that comprise creativity. We began with a quan- 
tification of the similarity ratings of experts regarding the relationships 
between these constructs, thus defining a multidimensional space of cog- 

nitive constructs ( Fig. 3 ). As our first approach to testing this expert- 
defined construct space against neural data, we used NeuroSynth to 
generate term-based meta analyses for every construct in the expert 
model test (see Methods section for details). Each construct was used 
as the basis for a separate whole-brain meta-analysis, and the results 
were then combined into a full model indicating the neurally-defined 
construct space ( Fig. 3 ). We then compared this neural model to the 
expert-defined cognitive model using Spearman correlation ( Fig. 4 ). The 
correlation between these similarity matrices is the most direct test of 
whether the data generated by the field of cognitive neuroscience re- 
flects the way that experts conceptualize the space of creativity-related 
constructs. Results revealed a non-significant correlation between the 
full expert model and the full neural model, r (34) = 0.21, z = 1.26, 
p = .10. 

To gain further insight into the mapping between expert and neural 
models, we conducted a multidimensional scaling analysis to illustrate 
the construct spaces defined by each model. As seen in Fig. 3 , some con- 
structs anchor the multidimensional construct space similarly in both 
the neural model and the cognitive model. For example, in both mod- 
els, the term creativity clusters with the term divergent thinking . Like- 
wise, in both models, the terms reasoning and cognitive control cohere 



Y.N. Kenett, D.J.M. Kraemer and K.L. Alfred et al. NeuroImage 221 (2020) 117166 

Fig. 4. Behavioral and neural results for the full model space and a reduced set of constructs. Top row, left: Similarity matrix defined by experts through pairwise 
ratings of terms. These ratings are scaled to range from 0 to 1 (1 = complete conceptual overlap between terms). Top row, right: Similarity matrix defined by 
NeuroSynth term-based meta-analyses. Each of the FDR-corrected NeuroSynth meta-analytic association z-maps were Spearman-correlated with each other to create 
a measure of how similar the patterns of neural activity associated with those terms are to each other. Bottom row, left: A reduced construct space is defined by 
removing the term imagery from the expert similarity matrix. Bottom row, right: A reduced construct space is defined by removing the term imagery from the neural 
similarity matrix. In this example, correlation between the expert model and neural model improves when the construct imagery is removed. Note: Each similarity 
matrix is scaled separately to better illustrate variations in patterns of similarity. Full similarity matrices are shown here, however values along the diagonal were 
excluded from analyses. 

into the same cluster. Also, in both models, insight falls into a separate 
cluster from either of these two other clusters, falling somewhere in 
between these other terms along one dimension of the 2-dimensional 
projection space. However, many differences are also notable between 
the two models ( Fig. 3 ): Critically, we believe that the differences between 
the expert model and the neural data are at least as informative as the sim- 
ilarities between them. Next, we examine the correlation between each 
individual construct as defined by these two separate multidimensional 
spaces, as well as the effect that each construct has on the overall fit 
between the two models. 

2.2. Individual term correlations and leave-one-out models 

To the degree that there was not a perfect correlation between the 
neural model and the expert model, there are many potential sources to 
explain this disconnect. As evident in Fig. 3 , several cognitive constructs 
were not well represented by the neural data. The misalignment of even 
one construct substantially reduces the goodness-of-fit for the overall 
model, and this reduction is compounded by the aggregate of several 
misaligned constructs. Therefore, in the next step of this analysis, we ex- 
amined the correlation between individual terms as defined separately 
by the neural model and the cognitive model. To further investigate the 
goodness of fit between expert-generated cognitive constructs and their 
neural counterparts, we examined how well each individual construct 
as defined by the expert model correlated with the same construct as 
defined by the neural model. Along these same lines, we also tested 
whether the overall model fit between the expert model and the neu- 
ral model improved when removing each individual construct from the 
model ( Fig. 4 ). This approach has the long-range potential to reveal im- 

portant information to the field; namely, which constructs are not iso- 
morphic between the conception of expert researchers and the observed 
patterns of neural activity from the aggregated results of the field as a 
whole. 

To examine the overall improvement in fit between the models gen- 
erated by the expert ratings and by the neural data upon removing each 
individual construct, we iterated through each construct in succession 
removing it from both models (expert and neural) and then correlat- 
ing the resulting expert and neural similarity matrices leaving out only 
that one construct at a time. The results of these Spearman correlations 
are reported in the left column of Table 2 . Results demonstrate that for 
two terms, flexibility and imagery , removing either term from both the 
expert similarity matrix and the neural similarity matrix increases the 
correlation strength between these two multidimensional spaces. When 
flexibility is left out of the model, the expert ratings and neural data cor- 
relate at r (28) = 0.35, z = 1.87, p = .03 . Likewise, leaving imagery out of 
the model results in a significant correlation between expert and neural 
data r (28) = 0.38, z = 1.95, p = .03 . These results demonstrate that when 
these individual constructs were included in the full models, they each 
contributed to reducing the overall goodness of fit between the two rep- 
resentations of the construct space; i.e., both constructs decreased the 
correlation between the model generated by the expert ratings and the 
model generated by the neural data. More generally, these results also 
confirm that this approach can be used to detect changes in an overall 
representational space that result from removing an individual construct 
of interest. 

Next, to examine the relationship of each construct in the expert 
model to each of the constructs in the neural model, we computed cor- 
relations between the rows of each similarity matrix using the full expert 
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model and the full neural model (see Table 2 , top row). In this way, each 
term was defined as a point in the construct space defined by each data 
source (expert ratings and neural data), and the similarity between the 
vector coordinates of each of these points was calculated using Spear- 
man correlation. This analysis revealed the strongest neural-behavioral 
correlations for the terms Cognitive Control, r (8) = 0.67, z = 1.91, 
p = .03, Divergent Thinking, r (8) = 0.89, z = 2.53, p = .01, and Novelty, 
r (8) = 0.72, z = 2.05, p = .02. Weaker correlations were observed for the 
terms Creativity, r (8) = 0.44, z = 1.27, p = .10, Generation, r (8) = 0.38, 
z = 1.09, p = .14, and Reasoning, r (8) = 0.39, z = 1.12, p = .13. Cor- 
relations in the null to negative range were observed with the terms 
Flexibility, r (8) = 0.03, z = 0.09, p = .46, Insight, r (8) = 0.05, z = 0.14, 
p = .44, and Imagery, r (8) = − 0.25, z = − 0.72, p = .24. This analy- 
sis demonstrates both convergence and divergence between expert and 
neural models on the level of individual terms, which is a useful demon- 
stration for future uses of this methodology. However, given the small 
number of terms in the present models —and consequently few degrees 
of freedom in the present analyses —the statistical significance of these 
correlations should be viewed with caution. Table 2 also shows the re- 
sults for each term from each of the other leave-one-out models, but for 
space considerations (and because these results do not directly relate 
to the goals of the current research) these results are not interpreted in 
further detail here. 

2.3. How much depends on the selection of a task to represent a cognitive 
construct? 

To define our initial neural model, the analysis above relied on 
meta-analyses based on terms that named cognitive constructs. It is a 
strength of tools such as NeuroSynth that we can now easily gener- 
ate such term-based meta-analyses on the level of whole constructs. 
However, in any given study, each construct of interest is typically op- 
erationalized through a single specific experimental task. Clearly, the 
choice of task used to represent a given construct has a fundamental 
effect on the resulting neural activity, and there can be great variability 
between two tasks that claim to measure the same cognitive mechanism 

( Poldrack et al., 2011 ). Therefore, for our second analysis approach, we 
chose to go beyond entire constructs and focus on individual tasks by 
testing the change in correlation between the expert model and neural 
model when a single task is taken to represent a given construct. This ap- 
proach takes the neural model created in the first analysis and replaces 
one of the term-based meta-analysis (e.g., for the construct, cognitive con- 
trol ) with a task-based meta-analysis focusing on a single task that is often 
used to represent that construct (e.g., “Stroop color-word ”). In this way, 
we can estimate how much the correlation between the expert model 
and the neural model improves or worsens as we replace a construct 
with a specific task, and as we replace each individual task with an- 
other task (e.g., replacing “Stroop ” with “Go-NoGo ” or “Flanker ”), while 
holding the rest of the representational space constant. Therefore, the 
results of this analysis demonstrate the effect of choosing a single task 
over another task as a stand-in for an entire construct, with respect to 
other constructs related to creativity. 

As a demonstration of this method, we chose to use three com- 
mon tasks used to operationalize cognitive control : the Flanker task 
( Chen et al., 2015 ; Grajewska et al., 2011 ; Wager et al., 2005 ), Go/No- 
Go task ( McCormick et al., 2016 ), and Stroop ( Liu et al., 2015 ; Shin and 
Kim, 2015 ). We then correlated the revised neural similarity model (now 

with 8 term-based neural meta-analytic maps and one task-based meta- 
analytic map) with the similarity matrix made from the experts’ be- 
havioral similarity ratings. This analysis allows us to consider whether 
removing unnecessary noise from using a variety of different tasks to 
measure the same construct results in a better fit with the expert model. 
Alternatively, the meta-analytic neural maps used in the prior analysis 
(which include a variety of tasks) could result in a more robust neural 
signal that better fits the expert model. Finally, as in the analysis above, 

we compute the row-wise correlation for each of the terms and tasks 
( Table 3 ). 

The Spearman correlation analysis of the full model replicated the 
previous results, in the sense that none of the correlations were signif- 
icant (based on the permutation test, all p ’s > 0.1). In fact, the effect 
sizes of each of these correlations is nominally lower than the original 
model correlation above. For the row-wise correlation analysis, how- 
ever, we found both increased and decreased neural-behavioral correla- 
tions across the three models. To answer the question of which task best 
represents the construct of cognitive control, we only find a significant 
neural-behavior correlation for cognitive control in the Stroop model, 
r (8) = 0.62, z = 1.79, p = .04, and not in the Flanker model, r (8) = 0.24, 
z = 0.69, p = .24, or the Go/No-Go model, r (8) = 0.00, z = 0.001, p = .99. 
This result suggests that among these three tasks, using the Stroop task 
to represent cognitive control represents the best alignment between neu- 
ral and behavioral models; i.e., this task may elicit a neural response that 
most closely reflects the way in which creativity experts conceive of cog- 
nitive control. However, we only find significant neural-behavior corre- 
lations for the construct creativity in the Flanker, r (8) = 0.66, z = 1.89, 
p = .03, and Go/No-Go models, r (8) = 0.66, z = 1.89, p = .03, and not 
in the Stroop model, r (8) = 0.33, z = 0.95, p = .17. Thus, the model 
that produces the best fit for cognitive control produces the worst fit for 
creativity . 

Another notable result is that for all three models the neural- 
behavior row-wise correlation of divergent thinking were significant 
(Flanker: r (8) = 0.92, z = 2.63, p = .004; Go/No-Go: r (8) = 0.93, z = 2.65, 
p = .004; Stroop: r (8) = 0.83, z = 2.34, p = .009). However, we only 
found significant neural-behavior correlations for novelty for the Go/No- 
Go, r (8) = 0.65, z = 1.86, p = .03, and the Stroop, r (8) = 0.63, z = 1.86, 
p = .03, models. Overall, this analysis demonstrates that whereas all 
three of the selected experimental tasks are commonly used to measure 
cognitive control , each of the tasks captures somewhat different neural- 
behavior relationships. 

We further investigated the impact of task selection on fit with the 
expert-defined model by conducting a third analysis in which we re- 
placed every construct with a task that is commonly used to represent 
that construct. Whereas the second analysis method (above) used mostly 
construct-based neural meta-analyses into which we slotted one task- 
based neural meta-analysis to stand in for a corresponding construct, 
this third approach uses only task-based meta analyses to define the neu- 
ral model. In other words, for each construct in the expert model, we 
generated a neural meta-analysis based on a single task to represent the 
neural counterpart of the corresponding cognitive construct. There are 
two main motivations for this approach. One motivation is that most 
neuroimaging studies use only a single task to probe a cognitive con- 
struct, so defining the neural model exclusively by the most-often-used 
single tasks provides a means of demonstrating how well any individ- 
ual study might approximate the expert construct space. This approach 
therefore serves as a useful complement to the analyses above. 

A second —and related —motivation is that perhaps when our expert 
participants generated their ratings for each construct, they were bas- 
ing these ratings (at least in part) on a set of commonly-used tasks. If 
true, this interpretation raises the possibility that a neural model de- 
fined by using only one task to represent each construct might be a 
better match for the expert model. In fact, even disregarding the various 
ways in which experts may have interpreted the task instructions, it is 
possible that using a single task to define each construct reduces the 
variance due to noise that results from incorporating so many different 
tasks into the meta-analytic model. In short, it may be that the neural 
space of these constructs is better defined by a more constrained set of 
tasks that powerfully tap the targeted cognitive mechanisms. 

To test this possibility, for our third analysis approach we examined 
how well the tasks that are used to represent the terms capture neural- 
behavior relations. To do so, we identified up to three common tasks 
for each of our nine terms ( Table 1 ). This process led to three of the 
terms to be rated as having the same tasks ( novelty, divergent thinking , 
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and insight ). As such, we were unable to use tasks to represent all of 
the original nine constructs to create a full task-based 9 × 9 similarity 
space of all the terms. Instead, as a proof of concept to demonstrate 
the viability of the approach, we built a task-based similarity matrix for 
six of the terms for which we could find unique task mappings: Stroop 
was used for cognitive control , Task Switching for flexibility , Fluency for 
generation , Mental Rotation for imagery , and the Wisconsin Card Sorting 
Task for reasoning . 

Further, we aimed to demonstrate that the same methodology used 
above —in which we replace each task in succession and compare the 
resulting model correlations —could be applied here as well. Therefore, 
we used the same three tasks as above (Flanker, Go/No-Go, and Stroop) 
to represent cognitive control . And in order to test which candidate task 
(between Analogical Reasoning and Verb Generation) was a better fit 
to measure creativity (e.g., Beaty et al., 2017 ; Green et al., 2015 , 2009 ), 
we used the same approach to substitute in these two tasks in successive 
models. This process resulted in 5 distinct neural models (i.e., similarity 
matrices) derived from NeuroSynth task-based meta-analyses. We then 
correlated these models —both full models and row-wise term correla- 
tions —between the neural data and the experts’ behavioral ratings for 
the included terms. Results are reported in Table 4 . 

As with the previous analysis, results demonstrate that the choice of 
task greatly influences the fit between the experts’ model and the neu- 
ral data putatively reflecting the same constructs. An extreme example 
of this effect is that when Go/No-Go is used to represent cognitive con- 
trol and Verb Generation is used for creativity , the full models show the 
worst overall fit between neural and behavioral data, correlating nega- 
tively r (15) = − 0.52, z = − 2.00, p = .04. Similarly, the two tasks used to 
measure creativity led to different results in the Stroop model: while the 
term-wise correlation between Analogical Reasoning (neural data) and 
creativity (behavioral data) was r (5) = 0.46, z = 1.05, p = .15, the corre- 
lation between Verb Generation (neural data) and creativity (behavioral 
data) was r (5) = − 0.12, z = − 0.26, p = .40. This difference highlights 
the critical role the task used to operationalize the cognitive constructs 
(e.g., creativity ), plays in how well the neural signal reflects the putative 
cognitive construct in a way that is consistent with how researchers in 
the field conceptualize this construct. 

3. Discussion 

In order to progress towards a clearly defined understanding of 
the neurocognitive constituents of creative thinking, a well-defined on- 
tology of creativity measurement is needed. Such ontological devel- 
opment will facilitate convergence among the scientific community 
on a set of constructs and operationally validated tasks that measure 
these constructs. The present study demonstrated a proof-of-concept for 
data-analytic methodology that can support the achievement of this 
long-term objective. Specifically, this work demonstrated how a data- 
driven meta-analytic approach to aggregate neuroimaging data can 
identify a set of experimental tasks that elicit neural activity optimally 
reflecting the similarity/dissimilarity of a targeted set of cognitive con- 
structs. Evidence for the efficacy of this approach has implications for 
creativity research as creativity neuroscience expands the available neu- 
ral data. However, there is nothing about this approach that is unique 
to creativity, and nearer-term value might well be gained by applying 
these methods to more canonical areas of psychological inquiry such as 
memory, executive function, and emotion, for which far more extensive 
neuroimaging literatures already exist. 

Our analysis approach aims to quantify the degree to which a choice 
of experimental task will affect the fit between an observed neural re- 
sponse and an expected cognitive construct. As a demonstration of the 
methodology, we tested different neural meta-analytic models using 
three different tasks to measure cognitive control and two different tasks 
to measure creativity . In terms of the tasks that best aligned with concep- 
tual models of their corresponding constructs, the Stroop task emerged 
to be the best aligned with the construct of cognitive control and tasks 

that used an analogical reasoning paradigm were best aligned with the 
construct of creativity . While the current results should be considered 
exploratory (see limitations, described below), these results illustrate 
the type of insight that using meta-analytic representational similarity 
analysis can contribute toward the goal of developing an ontology of 
creativity. 

Similarly, at the level of constructs, we found that neural meta- 
analyses of flexibility and imagery were the least-well aligned with the 
corresponding constructs within the expert-informed conceptual model. 
Consequently, the model fit was improved when these terms were 
removed. In contrast, cognitive control, divergent thinking, and novelty 
showed stronger correlations between the expert model and the neural 
model. Therefore, removing these terms worsens the fit between neural 
data and the expert conceptual model. Whereas the task-based analysis 
indicated which tasks elicit cognitive constructs that are well reflected 
in neural activity, by examining where the neural data are aligned or 
misaligned with the experimenters’ model on the level of constructs , we 
can learn about how well aligned the expert conceptual model is to the 
neural data of the field as a whole, aggregated over numerous tasks. 
Such insights can drive future research in terms of examining both the 
neural models and the cognitive models with the overall goal of cali- 
brating the two models to improve the fit between them. 

Taken together, our results highlight how removing or adding con- 
structs and tasks in a neural-behavioral model changes its goodness-of- 
fit, and how this approach can be used to study the accuracy of specific 
tasks for operationalizing cognitive constructs. Furthermore, building on 
previous research ( Poldrack et al., 2011 ; Poldrack and Yarkoni, 2016 ), 
this work demonstrated the strength of meta-analytic neural maps in an- 
alyzing cognitive constructs. In relation to previous work with related 
goals and methods, some notable progress has been made in develop- 
ing cognitive ontologies using behavioral data (e.g., ( Poldrack et al., 
2011 ), and a few studies have used neuroscience data to partially vali- 
date cognitive ontologies in other research areas ( Eisenberg et al., 2019 ; 
Lenartowicz et al., 2010 ; Sabb et al., 2008 , 2009 ). Sabb et al. (2008 ; 
2009 ) applied a bibliometric analysis over PubMed to evaluate the re- 
lationship between heritability, behavior, and constructs of executive 
functions. Such approaches have revealed important insights regarding 
constructs in the executive function literature, and how these terms re- 
late to cognitive control ( Sabb et al., 2008 ). 

Building on these efforts, Lenartowicz et al. (2010) examined 
whether the cognitive ontology uncovered by Sabb et al. (2008) can be 
mapped onto neural systems. To do so, the authors conducted a meta- 
analysis of brain activation across a range of tasks related to these onto- 
logical terms. This was achieved via the BrainMap database ( Laird et al., 
2005 ). These efforts and others have demonstrated the utility of com- 
paring patterns of brain activation evoked by different cognitive tasks 
in order to map constructs of the mind onto structures of the brain 
( Lenartowicz et al., 2010 ; Poldrack and Yarkoni, 2016 ; Varoquaux et al., 
2018 ). However, less research has explored the possibility of ontolog- 
ical mapping in the other direction: building a bottom-up ontology of 
mental constructs by starting with a data-driven, brain-based approach 
to explore how different tasks and sub-components of a construct relate 
to one another in a neurally-defined representational space. The results 
of our current study indicate a path that leads toward filling this gap in 
the literature by demonstrating that neural data and expert conceptu- 
alizations can be used together to further the ontological development 
of creativity measurement. Notably, this approach can also be applied 
more broadly to other domains of cognitive neuroscience. 

Finally, it is important to emphasize again that this study is an initial 
proof-of-concept. Our overall goal was primarily to develop and illus- 
trate a methodological approach that we believe has long-term potential 
for integrating neural data into the ontological development of creativ- 
ity measurement. However, we did not seek to collect the requisite data 
to draw strong conclusions from the present results, and the reported 
analyses are constrained by several limitations. For instance, while a 
relative strength of NeuroSynth is the vast number of studies included 
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in the database, the data reported for each study are not as extensive 
as they could be. In particular, neural activations for each neuroimag- 
ing study are included in a meta-analysis on the level of the publication , 
rather than on the level of the neuroimaging analysis . This organizational 
structure can at times become problematic. Consider, for example, the 
case of a single study that includes two task conditions, one aimed at di- 
vergent thinking task and one aimed at convergent thinking. The results of 
these two task conditions would appear in all of the same meta-analyses, 
despite the fact that they presumably would show very different pat- 
terns of activation and reflect very different constructs. Such noise in the 
database would be attenuated by an analysis approach that operates on 
the level of analyses rather than whole studies , perhaps by allowing ac- 
cess to the original data (e.g., NeuroSynth; Poldrack and Yarkoni, 2016 ; 
Yarkoni et al., 2011 ) or by providing more extensive meta-data coding 
(e.g., BrainMap; Laird et al., 2005 ). 

Another limitation concerns the number of available studies relevant 
to our focus on creativity and related tasks and constructs. Despite the 
fact that the NeuroSynth database contains data referring to over 14,000 
studies, this number of studies still reflects only about 20–30% of the to- 
tal number of neuroimaging studies conducted. Moreover, there remains 
only a comparatively small —though increasing —number of neuroimag- 
ing studies that have specifically focused on creativity. Thus, constructs 
such as creativity , and even related concepts such as divergent thinking 
and convergent thinking have relatively few studies associated with them 

compared to, e.g., cognitive control . Indeed, higher-level cognitive corre- 
lates of creativity (such as mental modeling or visuospatial reasoning) 
were not included in the term list as there were not sufficient data avail- 
able for these constructs in the NeuroSynth database. Consequently, our 
terms and task list does not capture the entire space of creativity. In time, 
this issue will hopefully be resolved by the steady increase in the volume 
of creativity neuroscience studies. At present, however, due to these lim- 
itations as well as the constraints of our selection approach (described 
above), our analyses were limited to a smaller set of tasks and cogni- 
tive constructs than might have been ideal. Consequently, many of our 
neural model similarity spaces were more sparsely populated than we 
would have liked, and many of our correlation tests were under-powered 
for reaching firm conclusions about the constructs and tasks. Therefore, 
future research should provide a larger replication and extension of our 
approach, examining a much larger number of studies reflecting a more 
comprehensive set of terms and tasks (e.g., Eisenberg et al., 2019 ). Fi- 
nally, even in the short term, surveying larger numbers of experts in the 
field and more extensive searching of experimental tasks that reflect the 
relevant cognitive constructs could certainly produce a more extensive 
space of neural and conceptual models to explore and to examine with 
the current methods. 

These limitations notwithstanding, the present work provides a 
promising indication that methods such as those described here can con- 
tribute to building an ontology of measurement suitable to overcoming 
historical constraints and advancing understanding of human creativity. 
In this way, we hope that the methods described here can be useful in 
developing an ontology that can serve at least two major functions as the 
field develops: 1) converge on a set of constituent cognitive constructs that 
together —by virtue of their relations to each other —comprise a multi- 
dimensional representation of the complex construct of creativity; and 
2) converge on a set of experimental tasks that reliably evoke neural ac- 
tivity reflective of these individual cognitive constructs. Therefore, in 
addition to the particular utility of these methods, they may be more 
broadly useful in overcoming historical constraints by helping to re- 
frame how researchers conceptualize and measure creativity. Instead of 
asking, What is creativity? with the expectation that a unitary construct 
can be satisfactorily defined, it may be more fruitful to think about cre- 
ativity as a multi-dimensional similarity space and begin to optimize 
our tasks to measure different cognitive elements within the space of 
creativity . 
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