16

EXACTLY SOLVING SPARSE RATIONAL LINEAR SYSTEMS VIA
ROUNDOFF-ERROR-FREE CHOLESKY FACTORIZATIONS*

CHRISTOPHER LOURENCO ' AND ERICK MORENO-CENTENO #

Abstract.

Exactly solving sparse symmetric positive definite (SPD) linear systems is a key problem in math-
ematics, engineering, and computer science. This paper derives two new sparse roundoff-error-free
(REF) Cholesky factorization algorithms which exactly solve sparse SPD linear systems Ax = b,
where A € Q™"*™ and x,b € Q"*P. The key properties of these factorizations are: (1) they ex-
clusively use integer-arithmetic and (2) in the bit-complexity model, they solve the linear system
Ax = b in time proportional to the cost of the integer-arithmetic operations. Namely, the overhead
related to data-structures and ancillary operations (those not strictly required to perform the fac-
torization) is subsumed by the cost of the integer-arithmetic operations that are essential/intrinsic
to the factorization. Notably, to-date our algorithms are the only exact algorithm for solving SPD
linear systems with this asymptotically efficient complexity bound. Computationally, we show that
the novel factorizations are faster than both sparse rational-arithmetic LDL and sparse exact LU
factorization. Altogether, the derived sparse REF Cholesky factorizations present a framework to
solve any rational SPD linear system exactly and efficiently.

Key words. Cholesky Factorization, Exact Factorization, Sparse Matrix Algorithms

AMS subject classifications. 15A23, 65F50, 65F05, 65G50

1. Introduction. Solving sparse symmetric positive definite (SPD) systems of
linear equations (SLEs) is a fundamental problem in mathematics, computer science,
and operations research. In general, SLEs with an SPD input matrix are solved via
Cholesky factorization, where the input matrix, A, is factored into the product of a
lower triangular matrix, L, and its transpose; that is A = LLT. For SPD matrices,
(floating-point) Cholesky factorization is normwise backward stable [45, 35], meaning
that the relative residual norm ||[Ax — b||/(||A||||x]|) is guaranteed to be close to
machine precision. However, despite strong residual error bounds, as Golub & Van
Loan point out, “small residuals do not imply high [solution] accuracy” [21]. Indeed,
Cholesky factorization may fail if the input is highly ill-conditioned [45, 35, 27, 44]
and Cholesky is guaranteed to fail if the singular values of the input matrix are too
small [10]. That said, it is unclear how many real world matrices may cause Cholesky
factorization to fail, and the correctness of commercial solvers is typically taken for
granted; thus, there is currently no exact algorithm specifically tuned to provide exact
solutions to SPD linear systems. Developing such algorithms is the core contribution
of this paper.

1.1. Contributions. To address the issues outlined above, this paper derives
two new sparse roundoff-error-free (REF) Cholesky factorization algorithms. The
two new factorizations extend the (dense) REF Cholesky factorization [16] and the
sparse left-looking integer-preserving (SLIP) LU factorization [33]. Specifically, we
extend the REF Cholesky factorization to the sparse case by deriving both an up-

*Submitted to the editors July 15, 2021.

Funding: This work was supported in part by the National Science Foundation under Grant
No, OAC-1835499. In addition, the first author was also partially supported by the Texas A&M
University Graduate Merit Fellowship and the US Naval Academy Junior NARC.

fDepartment of Mathematics, United States Naval Academy, Annapolis, Maryland 21402
(lourenco@usna.edu)

tDepartment of Industrial and Systems Engineering, Texas A&M University, College Station,
Texas 77843 (emc@tamu.edu)

This manuscript is for review purposes only.

mailto:lourenco@usna.edu
mailto:emc@tamu.edu

66
67
68
69

-~ =

Tt W N

I 9 N =

79
80
81
82
83
84
85
86

87
88

2 C. LOURENCO AND E. MORENO-CENTENO

looking and left-looking variant (two of the most common types used in practice
today). In addition, we modify the key subroutine within the SLIP LU factorization
to exploit symmetry, skip ancillary operations, and solve both lower triangular and
lower trapezoidal linear systems in order to derive two new algorithms to compute
the aforesaid factorizations in a sparse manner. These two new sparse REF Cholesky
factorizations are unique in that, unlike traditional Cholesky factorization, computing
the REF factor L does not require the usage of square root functions; thus they may
be applied to any rational SPD input matrix A € Q™*".

In addition, we analyze the computational complexity of both factorizations.
Specifically, we show that, using a bit-complexity model, both of our algorithms solve
the SPD sparse linear system Ax = b in time proportional to the cost of the integer-
arithmetic operations. This means that all of the overhead related to data structures
and ancillary operations is asymptotically dominated by the cost of the indispens-
able arithmetic operations to compute the factorization. Notably, this property is
not trivial in the sparse case, as currently, to the best of our knowledge, there are
only three sparse factorizations to achieve this asymptotically efficient complexity
bound: Gilbert and Peierls’ (floating-point) left-looking LU factorization [19], Liu’s
(floating-point) up-looking Cholesky factorization [31], and (exact) left-looking SLIP
LU factorization [33]. It is important to note that many classic sparse matrix algo-
rithms can not meet such asymptotic efficiency as their run times may be dominated
by ancillary operations such as data manipulation, access, and/or allocations; notably
this includes algorithms as fundamental (and seemingly trivial) as sparse matrix mul-
tiplication [8].

Next, we perform a computational study which shows that the derived factoriza-
tions are dramatically faster than exact unsymmetric LU factorization and rational-
arithmetic LDL factorization. Finally, we benchmark the relative forward error of
MATLAB sparse backslash, showing that state-of-the-art floating-point Cholesky
factorization may fail for a modest subset of real-world instances; thereby demon-
strating the need for our algorithms to exactly solve SPD linear systems. The
code associated with the sparse REF Cholesky factorizations is freely available at
https://github.com/clouren/IP_Chol.

1.2. Organization. This paper is organized as follows. Section 2 gives an
overview of the background required for this paper. Section 3 derives the up-looking
and left-looking REF Cholesky factorizations. Section 4 analyzes the computational
complexity of both factorizations. Section 5 computationally compares the derived
Cholesky factorizations with exact unsymmetric factorization and rational LDL fac-
torization on real-world SPD instances for run time and MATLAB sparse backslash
for accuracy. Finally, Section 6 concludes the paper.

2. Background. This section describes the theoretical foundation of the new
factorizations and is organized as follows. Subsection 2.1 discusses Integer-preserving
Gaussian elimination, the basis of our algorithms. Subsections 2.2, 2.3, and 2.4 dis-
cuss (floating point) up-looking Cholesky, left-looking Cholesky, and LDL factoriza-
tion, respectively. Finally, subsections 2.5 and 2.6 review the (dense) REF Cholesky
factorization and the SLIP LU factorization respectively. Note that, for the sake of
simplicity, the descriptions in this section assume no row or column permutations are
applied to the matrix A.

2.1. Integer-Preserving Gaussian Elimination. Integer-preserving Gaus-
sian elimination (IPGE) is an elimination process for solving a system of linear equa-

This manuscript is for review purposes only.

https://github.com/clouren/IP_Chol

89
90
91
92

93

94

95
96
97
98

99

114
115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130
131

EXACT SOLUTION OF SPARSE SPD SLES 3

tions Ax = b. Given a full rank matrix A € Z"*" and right hand side vector b,
denote the kth iteration IPGE matrix as A®) for k = 0,...,n (where A©) = A).
Let aﬁ ; and p* denote the individual entries of A®) and the kth pivot element for
1<i<n, 1<j<mn,and 0 <k <n (with p° = 1), respectively. Then, at iteration
k, the IPGE algorithm computes the entries af’ ; as follows:

-1 oo
) . afj if i =k,
1 af . = Kok—1_ k=1 _k—1
%] pia; T —ay al .
' TP,C—,’“IJ" otherwise

Note that Equation (1) differs from traditional Gaussian elimination only in the
denominator (in traditional Gaussian elimination, the division is by the current pivot,
p*, instead of the previous pivot). This seemingly minor modification leads to two

key properties summarized below.
LEMMA 2.1. The divisions in Equation (1) are integral [14, /, 56].

Lemma 2.1 has been proven in three different manners.

Both Edmonds and Bareiss prove the integrality of the IPGE entries by showing
(each in a different way) that each IPGE entry is a subdeterminant of A. Specifically,
by using row expansions, Edmonds [14] shows that each IPGE entry, af, j» Is equiva-
lent to a corresponding subdeterminant of A. Bareiss [4] proves the integrality of the
IPGE entries using Sylvester’s identity. Specifically, he shows that a block triangu-
lar partitioning of A can be manipulated to to take the form of Sylvester’s identity
[37], and then, uses various sub determinant properties to derive the IPGE equation.
Montante-Pardo and Mendez-Cavazos [36] aim to prove the integrality of IPGE by
induction; while this proof is good for building intuition, it falls short as they do not
show the induction hypothesis to be true for a general k.

LEMMA 2.2. Let 0 = max |a?j . Given an SPD matriz A, the maximum bit length
i,J ’

to store any IPGE entry, denoted Baz, is upper-bounded polynomially as follows [33]:

Bmaz < [nlog(o)].

Lemma 2.2 is proved as follows. Since each IPGE entry is a subdeterminant of
A, its worst case bit-length can be upper-bounded polynomially. This fact was first
shown in [5] and further revised in [29, 16]. The current tightest bound known for
SPD matrices is the one presented in Lemma 2.2 which was derived by [33] by using
Hadamard’s bound for SPD matrices [23, 25]. Note that though this bound is currently
the best known, it is pessimistic, as it is tight if and only if the matrix A is diago-
nal. That said, Lemma 2.2 is the key property making IPGE preferable to rational-
arithmetic Gaussian elimination. Specifically, IPGE achieves gratis the polynomial
bound on the entries; in contrast, the bit-lengths of the numerators/denominators in
rational-arithmetic algorithms grow exponentially without the usage of ancillary and
computationally expensive greatest common divisor operations [43, 42].

2.2. Traditional Up-Looking Cholesky Factorization. Given an SPD ma-
trix A, the up-looking Cholesky factorization computes the sparse Cholesky factor-
ization, A = LL", one row at a time. Graphically, Figure 1 illustrates the data access
pattern of up-looking Cholesky factorization. Specifically, at iteration k, up-looking
Cholesky accesses the k—1x k—1 completed portion of L (denoted L(1 : k—1,1: k—1)
and the first & entries of the kth row of A (denoted A(k, 1 : k)) and computes the kth
row of L (thereby the kth column of LT). Up-looking Cholesky factorization computes

This manuscript is for review purposes only.

146
147
148
149
150
151

153

157

158

4 C. LOURENCO AND E. MORENO-CENTENO

the kth row of L by solving a lower triangular linear system and then computing a
square root. Formally, the solutions of the equations below yield the kth row of L,
where x is the first k£ — 1 entries of this row and I j is the kth entry of the row.

L:k—1,1:k—1)x=A(k:1:k—-1)7,

Lo = /al . —xTx.

Assuming that A has a fixed row/column ordering, the up-looking Cholesky fac-
torization computes L in time proportional to only the number of intrinsic floating-
point operations; meaning that the cost of these indispensable floating-point opera-
tions asymptotically dominates the cost of all data access, manipulation, and ancil-
lary operations. As a result, this algorithm’s computational complexity is directly
proportional to its arithmetic work. Up-looking Cholesky factorization was derived
in [40, 30, 3]; however, the modern version, which achieved the aforesaid asymptotic
efficiency, was developed by [31].

LT LT

(not yet

computed)

A

(not yet
accessed)

Fig. 1: Up-looking Cholesky Factorization

2.3. Traditional Left-Looking Cholesky Factorization. Given an SPD ma-
trix A, left-looking Cholesky factorization computes the sparse Cholesky factorization,
A = LL", one column at a time. Graphically, Figure 2 illustrates the data acccess
pattern of left-looking Cholesky factorization. Specifically, at iteration k, left-looking
Cholesky accesses rows k,...,n of the first £ — 1 computed columns of L (denoted
L(k :n,1:k—1)), the kth row of L (denoted L(k,1 : k — 1)), the kth column of L
(denoted L(1 : k — 1,k)) and the last n — k entries of the kth column of A (denoted
A(k +1:n,k)). Formally, the equations below give the kth column of the matrix L.

ok = \Jark — Lk 1ok — 1) L(k,1: k— 1)T,

Lk+1:nk)=(Ak+1:nk)—Lk:n,1:k—1)L(1:k—1,k))/lg .

Notice that, unlike up-looking Cholesky, left-looking Cholesky factorization is
based on performing a matrix vector product (specifically, computing L(k : n,1 :

This manuscript is for review purposes only.

159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187

EXACT SOLUTION OF SPARSE SPD SLES 5

k—1)-L(1 : k—1,k)). To the best of our knowledge, it is not claimed that this
factorization meets the same asymptotically efficient complexity bound of up-looking
Cholesky. Historically, left-looking Cholesky preceded the up-looking variants and can
be attributed to [38, 40, 15, 18]. We conclude this subsection by noting that both left-
looking and up-looking Cholesky factorization is used in the state-of-the-art package
CHOLMOD [7] for solving sparse SPD systems. Specifically, up-looking Cholesky is
utilized for very sparse input matrices while left-looking is used for all other matrices.

LT

A

L (not yet
accessed)

Fig. 2: Left-looking Cholesky Factorization

2.4. LDL Factorization. Given an SPD matrix A, LDL factorization computes
the sparse symmetric factorization, A = LDLT, where L is a unit lower triangular
matrix and D is a diagonal matrix. In general, there are two variants of LDL fac-
torization, the Bunch-Parlett LDL factorization (described below) [6] and the LDL
factorization with a block diagonal D matrix. This second method, detailed in [12],
is outside the scope of this paper as it is generally applied to symmetric indefinite
linear systems.

The Bunch-Parlett LDL factorization exploits the symmetry of an SPD input
matrix; however, in contrast to Cholesky factorization, avoids the use of square roots.
Thus, LDL factorization can be used with rational-arithmetic to exactly solve SPD
linear systems. Specifically, the LDL factorization generalizes Cholesky factorization
since the Cholesky factor L’ can be obtained from the LDL factors L and D as
L' = LvVD [21].

2.5. Dense REF Cholesky Factorization. The REF Cholesky factorization
solves a dense SPD system of linear equations exclusively in integer arithmetic [16].
Formally, the SPD matrix A € Z"*" is factored as A = (LvD)(LvD)" = LDL"

where D = diag(p°pt, ptp?,...,p" tp")~1 and the entries in L are IPGE entries
(specifically, I;; = ag‘;n(z’j)_1). Note that this factorization is indeed an integral

Cholesky factorization, as the matrix D is never explicitly constructed or used when
solving SPD linear systems.

2.6. SLIP LU. The SLIP LU factorization is a left-looking sparse factorization
that computes the exact solution of a sparse linear system Ax = b solely using integer

This manuscript is for review purposes only.

209

6 C. LOURENCO AND E. MORENO-CENTENO

arithmetic. Based on the roundoff-error-free (REF) LU factorization [16], SLIP LU
computes the factorization A = LDU one column at a time. At iteration k, SLIP LU

accesses the first £ — 1 columns of L, denoted Lgcfl)

D augmented by the last n — k + 1 columns of (1/p*~1)I, denoted D" and solves
the following linear system:

, and the first £k — 1 columns of

L(kal)D(kal)X = A(:, k).

The solution x to this linear system yields the (integral) kth column of the L and
U matrices. However, this system can not be solved directly with a traditional lower
triangular solve algorithm. Instead, it is solved in two phases: symbolic and numeric.

Symbolically, the nonzero pattern of the kth column of L and U is computed via
a graph algorithm. Namely, this algorithm performs a sequence of depth first searches
(DFS) on a graph Gp, of n nodes, where a directed edge (¢, j) exists if [;; # 0. The
nonzero pattern, denoted X, is given as the indices of the set of nodes reachable, via
DFS, from each node j in which a 1 7 0. This algorithm is referred to as obtaining the
reach of the kth column of A on the graph of L and is denoted X = Reachg, (A(:, k)).
After X is computed, it is sorted prior to numeric computation.

Numerically, this system is solved via a sequence of two operations. The first,
referred to as a History Update, involves multiplying the entry z; by the current pivot
and dividing it by a previous pivot which is an essential operation in order to exploit
sparsity in IPGE. The second operation is referred to as an IPGE Update (Equation
(1)). For completeness, this algorithm is given below as Algorithm 1.

Algorithm 1 Sparse REF Triangular Solve

1 x=A(k)

2: X = Reachg, (A(:, k))

3: sort(X)

4: Initialize history vector: h; =0Vj € X
5. for j € X do

6: if j <k then

T if hj<j—1then

8 History update: z; = xjpp hjj '

9 end if

10: for i > j and l@j #0do

11: if h; <j—1then

12: History update: x; = pp,izll
13: end if)

14: IPGE update: z; = %
15: History vector update: h; = j
16: end for

17: else

18: if hj <k —1 then

19: History update: z; = xj,f:j -
20: end if
21: end if
22: end for

Applied n times, Algorithm 1 factors the matrix A € Z™*™ by performing only

This manuscript is for review purposes only.

210
211
212
213
214
215

216

o
~

NN N

EXACT SOLUTION OF SPARSE SPD SLES 7

the indispensable number of full-precision operations. This is in contrast to rational
factorization, for example, which must perform ancillary greatest common divisor
operations to limit bit-growth. To date, SLIP LU is the only sparse exact factorization
method for solving unsymmetric linear systems in time proportional to the arithmetic
work using the bit-complexity model [33] subject to the same caveat as (floating-point)
up-looking Cholesky factorization, namely that the row/column ordering is fixed.

3. Sparse REF Cholesky Factorizations. This section formally defines the
two new sparse REF Cholesky factorizations, which can be applied to any rational
SPD input matrix. Both factorizations are computed by repeatedly solving sparse
lower triangular linear systems. Thus, in order to derive each factorization, we derive
two new REF triangular solve algorithms which modify Algorithm 1 to exploit sym-
metry. Subsection 3.1 derives Algorithm 2, the basis of the up-looking REF Cholesky
factorization, and Subsection 3.2 derives Algorithm 3, the basis of the left-looking
REF Cholesky factorization. Notice that, unlike the floating-point case, the left-
looking REF Cholesky factorization requires solving lower triangular systems in order
to guarantee integrality when computing the factorization (due to the interrelation of
consecutive pivots in IPGE). Henceforth, all matrices are assumed to be SPD, and
thus, pk = aﬁfkl for all 1 < k < n with po =1.

3.1. Up-Looking REF Cholesky Factorization. Given an SPD matrix A,
the up-looking REF Cholesky factorization computes a sparse version of the REF
Cholesky factorization, A = LDL”, one row at a time. At iteration k, the up-looking
REF Cholesky factorization accesses the first & — 1 rows and columns of L and D
and computes the kth row of the REF Cholesky L matrix. Prior to presenting this
factorization, we define the following notation:

DEFINITION 3.1. Let Lgc) and ngk) denote the kth up-looking REF L and D ma-
trices. Specifically, ngk) and D[(Jk) are the first k completed rows and columns of L
and D, respectively.

Theorem 3.2 gives the up-looking REF Cholesky factorization.

THEOREM 3.2. The REF Cholesky factorization can be obtained in an up-looking
fashion as follows. Initialize p' = a(f’l. Then, for k = 2,...,n, solve Equation (2)
and subsequently apply Equation (3).

(2) LU IDE Ny — A1 k—1,k),
k—1 l,%)

(3) L ()
— pip

Prior to proving this theorem, we present and prove the following Lemma.

LEMMA 3.3. For any k € {2,...,n} suppose that L,(Jk_l)Dgc_l) is correct. Then
solving Equations (2) and (3) yields the kth row of L. Specifically, x = L(k,1: k—1)T
and p* = L(k, k).

Proof. To prove this Lemma, we will first derive an expression for entries 1 : k—1
of the kth row of L and the pivot element using the first k£ rows and columns of the
REF Cholesky factorization, that is L¥, and D¥ (notice that the first k — 1 rows
and columns of this factor are L’f]_lDU_l). We will then show that these derived

This manuscript is for review purposes only.

w N

263
264

265

266

267

268

269

8 C. LOURENCO AND E. MORENO-CENTENO

expressions are equivalent to Equations (2) and (3), respectively. The REF Cholesky
factorization of A(1: k,1: k) is given as:

L DI (LINT = A1 : k1 : k)

Let 1,_; and aj_; denote entries 1 : k — 1 of the kth column of (ngk))T and A,
respectively. Then, a 2 x 2 block decomposition of the above factorization is:

Ly VDY 0
17, DFY Lk, k)D(k, k)

(ngk_l))T e | _ [AQ:E-1,1:k-1) ap_
0 L(k, k) al_, ap

Performing the matrix multiplication in the above decomposition, yields the fol-
lowing two equations:

(4) LDy, —a
(5) 17 DY Yoy + Lk, k) D(k, k)L(k, k) = af

Notice that Equation (4) is identical to Equation (2) thus x = 1;_;.
Likewise, recall that D = diag(p°p', ptp?,...,p" 1p")~L; thus D(k, k) = Wlk,l,
L(k, k) = p* and
k—1

B Lk, i)
D V1 = > E z’—)l
i=1 PP

Substituting the above expressions into Equation (5) and simplifying we obtain:

k—1 2 k

> =l
i ni—1 k—1)

= P

Solving for p* we obtain:

k—1 l’%
pk = pk_l(a’k,k - Z i 2’11)
i PP

The above equation is the same as Equation (3), which completes the proof. 0O
Now we prove the correctness of Theorem 3.2.

Proof. This proof will use induction on k to show that solving Equations (2) and
(3), for k = 1,...,n, correctly obtains the REF Cholesky factorization of A in an
up-looking fashion.

Base Case: k = 1. At step 1, we initialize p' = I;; = af ;. This is the correct
first row of L.

Induction Hypothesis: For all j < k assume that the solution of Equations (2)
and (3) give the correct kth row of L. Then, for row k, the induction hypothesis
tells us that L= D®=1 is correct. Lemma 3.3 showed that since L*—1 D#=1) ig
correct, then Equations (2) and (3) correctly compute the kth row of L. Since this is
true for an arbitrary k it is true for all k. 0

This manuscript is for review purposes only.

EXACT SOLUTION OF SPARSE SPD SLES 9

Theorem 3.2 shows how to compute the up-looking REF Cholesky factorization
by solving a sequence of lower triangular systems (Equation 2). However, note that,
solving this system directly via a traditional (floating-point) lower triangular solve
algorithm would introduce roundoff errors (this is easily noticed in Equation (3)).
In order to solve these systems without roundoff errors, one could simply use SLIP
LU’s triangular solve algorithm (i.e., Algorithm 1). However, while avoiding roundoff
errors, this approach would be inefficient for the following reasons: (1) Algorithm
1 assumes that the system is lower trapezoidal not strictly lower triangular (since
it is for left-looking LU), (2) Algorithm 1 performs its symbolic analysis without
exploiting the special structure of SPD instances, and (3) Algorithm 1 computes the
entire row/column which would double the work for Cholesky factorization. Thus,
we modify Algorithm 1 to both exploit the properties of SPD matrices and symmetry
(while maintaining its integer-preserving property) as follows:

First, we modify the symbolic analysis. Since Equation (2) is a lower triangular
system of the form L~V Dk-Nx = A(1 : k — 1,k), the conditions for a nonzero
entry in x are identical to those in the unsymmetric case, specifically: x; is nonzero
if a; is nonzero or if both I;; and [;; are nonzero for some 7. Thus, it is valid to
compute the nonzero pattern of x as the reach of the kth column of A on the graph of
L. However, since the input matrix is SPD, the graph reachability can be computed
more efficiently than in the unsymmetric case. Specifically, some of the conditions for
a nonzero z,; discussed above are redundant for an SPD matrix [39]; thus, instead of
analyzing the graph of L as described in Subsection 2.6, a simpler graph, referred to
as the elimination tree, can be used. As its name suggests, the elimination tree of
the k — 1 x k — 1 matrix Lgﬂfl) is an in-tree of k — 1 nodes (i.e., a directed tree with
edges directed towards the root node), where node j is the parent of node i if the first
off-diagonal nonzero in column ¢ appears in row j. Then the nonzero pattern of x,
denoted X, is given as the set of indices of all nodes reachable while traversing (up)
the elimination tree beginning at each node j in which a;, # 0 [30]. Consequently,
this algorithm is referred to as obtaining the reach of the kth column of A on the
elimination tree of A, and is denoted as X = Reachr, (A(1 : k — 1,k)). Note that
this algorithm is identical to the symbolic analysis step performed in traditional up-
looking Cholesky factorization [31] due to the fact that the nonzero patterns of the
REF and traditional Cholesky factorizations are identical [17].

Second, we modify the numeric routines to improve efficiency as follows. The
matrices ngkfl) and Dgcfl) are of dimension k — 1 x k — 1, thus this system is indeed
lower triangular and not lower trapezoidal (as is the system solved by Algorithm (1)).
As a result, the up-looking triangular solve does not have to determine whether a
nonzero lies above or below the current pivot element (as is done in line 6 of Algorithm
1). In addition, notice that computing Equation (3) directly is inefficient, as it requires
access to previously computed entries in the kth row. Moreover, computing the pivot
directly as shown is not guaranteed to preserve integrality. To remedy this issue, we
note that Equation (3) is of the same format as Equation (8) of [33]; thus, as argued
in that paper, it can be computed via a sequence of IPGE and History updates. To
perform these operations, we update the value of p* after obtaining the final value of
each z; (since each x; = i, ;). These numeric modifications result in performing half
the number of operations as the unsymmetric variant. Taken together, the symbolic
and numeric improvements lead to Algorithm 2, an efficient and exact method to
compute the kth row of the integer preserving Cholesky factor L.

This manuscript is for review purposes only.

344
345
346
347

348

10 C. LOURENCO AND E. MORENO-CENTENO

Algorithm 2 Symmetric Sparse REF Triangular Solve (Up-Looking)

1: Initialization: x = A(1: k — 1, k)
2: Nonzero Pattern: X = Reachr, (A(1: &k —1,k))
3: sort(X)
4: Initialize history vector: h; =0 Vj e X
5: Initialize pivot history value: A’ = 0
6: for j€X: j#kdo
T if hj <j—1then
8: History Update: z; = wjpp:j :
9: end if
10: fori>jdo
11: if h; < 7j—1 then
12: History Update: z; = mipp,j;l
13: end if _
14: IPGE Update: z; = pu‘p]—#
15: History Vector Update: h; = j
16: end for
17: if B’ < j—1 then .
18: History Update: pF = pkpp:,_l
19: end if -
20: IPGE Update: pb = 22 5%
21: History Vector Update: h' = j
22: end for
23: if W' < k —1 then —
24: History Update: p* = 2 pphk
25: end if

3.2. Left-Looking REF Cholesky Factorization. Given an SPD matrix A,
the left-looking REF Cholesky factorization computes a sparse version of the REF
Cholesky factorization, A = LDL”T one column at a time. At iteration k, the left-
looking REF Cholesky factorization accesses the first £ — 1 columns of L and D and
computes the kth column of L. Prior to presenting this factorization, we introduce
the following notation.

DEFINITION 3.4. Let L(Lk) and D(Lk) denote the kth left-looking L and D matrices

for k = 0,...,n. Specifically, L(Lk) and D(Lk) are the first k columns of L and D
augmented by I and 1/pF=11, respectively.

Theorem 3.5 formally introduces the left-looking REF Cholesky factorization.

THEOREM 3.5. The REF Cholesky factorization can be obtained in a left-looking
fashion by solving Equation 6 for k=1,... n.

(6) LYY DI k= A(, k)

Theorem 3.5 follows directly from applying Theorem 3.1 and Lemma 3.2 of [33]
to an SPD matrix. However, since the left-looking REF Cholesky factorization is
algorithmically different than traditional left-looking Cholesky factorization, below
we present an alternate proof of Theorem 3.5. This proof illustrates that computing
x via the traditional approach (using a matrix-vector multiplication) does not preserve

This manuscript is for review purposes only.

w W
(=]

=

360

361
362

363

364
365

368

372

w w
~N

I

[«

-~

w W W w
oo

SRS RS IS

EXACT SOLUTION OF SPARSE SPD SLES 11

integrality because it breaks the interrelation of consecutive pivots in IPGE; thus a
specially-designed REF triangular solve algorithm must be used.

Proof. We prove Theorem 3.5 via a 3 x 3 block matrix decomposition. The REF
Cholesky factorization of an SPD matrix A is given as A = LDL”. Let L;;, D; ;,
and A; ;, be the ¢,j block of L, D, and A, respectively. At iteration k, we decompose
this factorization as follows:

Liy O 0 D1 0 0 L{l L;l

Loy Lap O 0 Dyo O 0 Ly,
L3y L3z Lsgs 0 0 Dsgs 0 0

Ay AT A%l
3 = A2,1 A2,2 A372
3,3 A3,1 A3,2 A3,3

&S &
2508y

where the first row and column of the above matrices represent rows/columns 1 to
k — 1, the second row and column represent row/column k, and the last row/column
represent rows/columns k + 1 to n, respectively.

Since this is a left-looking algorithm, we want to compute the kth column of L
(i.e., Lo 2 and L3 2). Via matrix multiplication, we obtain the following two equations:

(7) L2,1D1,1L2T,1 + L2,2D2,2L2T,2 = Ay,

(8) L3,1D1,1L2T,1 + L3,2D2,2L2T,2 = A3 .
Since Lo s = p* and Dy o = 1/(p¥p*~1), the expression L2,2D272L2T72 is equivalent
to p¥/pF=1. Thus, we can solve Equatlon (7) for p* as:

Pk = Pkil(A2,2 - L2,1D1,1L:£1)~

. k—1 12
Since Az o = a%k and L2’1D1,1L2T’1 => .1 p/f -, the above equation becomes:

k—1

9) o = p" " Had -
=1 P

Next, since D272L£2 = 1/p*~1, Equation (8) can be solved for L35 as:
(10) Lyo=p" " (A2 — L3,1D1,1L2T,1)-
Expanding the expression L3,1D171L2T’1, we obtain:

Zk71 let1,ilki
i=1 " pi=Tpi

T
L31D11Ls 5 =

Zk—l In,ilk,i
i=1 pi-1pi

Finally, substituting the above expression into Equation (10) and solving for an
arbitrary [; ; € L3 2, we obtain:

j—1

_ l 'lez .
(11) lik=p" l(ag,k_ZW) forj=k+1,....n
i=1

Note that Equations (9) and (11) are of the same format as Equation (8) from
[33] (with w; = lg:k = lg,; due to symmetry). Thus, as argued in that paper, in order
to maintain integrality, these equations must be solved with a lower triangular solve
function. O

This manuscript is for review purposes only.

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

12 C. LOURENCO AND E. MORENO-CENTENO

Theorem 3.5 shows how to compute the left-looking REF Cholesky factorization
by solving a sequence of lower trapezoidal systems (Equation 6). Similar to the
discussion in Section 3.1, directly applying either a floating-point algorithm or SLIP
LU’s triangular solve would be inexact or inefficient, respectively. Thus, we modify
Algorithm 1 to both exploit the properties of SPD matrices and symmetry (while
maintaining its integer-preserving property) as follows:

Symbolically, the major difference is how the nonzero pattern X is computed.
Computing the reach on the elimination tree (as described in Subsection 3.1) would
only give the indices of the nonzeros located in the first £ — 1 rows of the kth column
of L. It is also possible to compute the reach directly as is done for LU factorization;
but this is overly inefficient. Instead, as is done in other modern left-looking Cholesky
factorizations, we preallocate the matrix L prior to factorization [8]. Essentially, this
consists of analyzing the elimination tree to compute the entire nonzero pattern of L
prior to the factorization; then, the unsorted X is given as input to the left-looking
factorization.

Numerically, we avoid half of the operations of the unsymmetric left-looking REF
triangular solve. Specifically, the first k£ — 1 entries of x are given as the kth row of L
(which has already been computed). Thus the first k — 1 entries are not recomputed
and are only used to update the nonzeros located in rows k : n of x. This modification,
along with the aforementioned symbolic analysis changes, lead to Algorithm 3, an
efficient method to compute the kth column of the REF Cholesky factor L.

Algorithm 3 Symmetric Sparse REF Triangular Solve (Left-Looking)

1: Initialization: z(1: k—1) = L(k,:), z(k:n) = A(k : n,:)
2: sort(X)

3: Initialize history vector: h; =0Vj € X
4: for j € X do

5. if j <k then

6: fori>j:i>kdo

7 if h; <j—1then _

8: History Update: x; = “lf’,j;l
9: end if ,

10: IPGE Update: z; = p]“]_#
11: History Vector Update: h; = j
12: end for

13: else

14: if h; <j—1then

15: History Update: z; = zjjjj :

16: end if

17: end if

18: end for

4. Computational Complexity. This section derives the computational com-
plexity of the up-looking and left-looking REF Cholesky factorizations. Prior to
deriving these complexities, we introduce the following lemma.

LEMMA 4.1. Based on the best known fast Fourier transform algorithm, the cost
of performing multiplications and divisions on two integers of bit length B is given by

O(Blog Bloglog B) [28, 41].

This manuscript is for review purposes only.

107
408
409

410

{11
412
413
414
415
116
417
418
419
420
121
122
423
424
425
126
127
428
429
430
131
132
433
434
435
436
137
138
439
440
441
442
143
444
445
446
447
148
449
450
451
452
153
154

EXACT SOLUTION OF SPARSE SPD SLES 13

Also, given an SPD matrix A € Z"*" with largest initial entry, o, Lemma 2.2
implies that the maximum bit-length required to store any entry in the REF Cholesky
factorizations, denoted Bz, iS:

Prior to discussing the complexities of the sparse REF Cholesky factorizations,
we note that, in contrast to the dense case, there are three special considerations
common to all sparse matrix factorization complexity analyses:

1. Most sparse algorithms preorder the input matrix, A. In the pre-ordering pro-
cess, A is analyzed and its columns/rows are ordered to reduce fill/operations.
Critically, this problem is NP-Hard; consequently, it is solved via heuristics.
Most importantly, sparse factorization complexity analysis assumes that the
order of the rows and columns of A is fixed (that is, the cost of symbolic
preordering is never included in the complexity analysis of a sparse factoriza-
tion).

2. Sparse algorithms rely more heavily on manipulating intricate data struc-
tures; indeed, poor data manipulation or failure to exploit special objects like
the elimination tree can cause the algorithm to have the same asymptotic
complexity as a dense algorithm [19, 8, 13].

3. The number of arithmetic operations required to factorize a sparse matrix,
A, does not depend exclusively on the matrix’ dimension, n, but it heav-
ily depends on the number and structure of nonzeros in A. For example,
in floating-point arithmetic, if A is tridiagonal it requires O(n) arithmetic
operations; however, if A is dense it requires O(n?) arithmetic operations.

Thus, in order to better capture the amount of work, and, more precisely, in order
to better distinguish between the (sparsity-specific) overhead of data structure and the
necessary (arithmetic) work, the complexity of sparse matrix algorithms is typically
given in terms of the number of indispensable floating-point arithmetic operations
performed, denoted f [8, 13]. For the examples above f = n if A is tridiagonal and
f = n3 if A is dense. Thus, f is a convenient term to encapsulate the number of
arithmetic operations performed by a sparse matrix algorithm (each of which, in the
floating-point case, require O(1) work).

Sparse matrix algorithms whose complexity depends solely on the cost of the arith-
metic operations are called “proportional to arithmetic work” meaning that the cost
of all ancillary operations is asymptotically dominated by the cost of the indispensable
arithmetic work. For example, both Gilbert and Peierl’s left LU [19] and up-looking
Cholesky [31] have complexities of O(f) meaning that the cost of the arithmetic work
asymptotically dominates the cost of all other operations. Conversely, an algorithm
such as right-looking factorization performs ancillary data manipulation which is not
asymptotically dominated by the cost of the arithmetic operations. Lastly, though
floating-point left-looking LU and up-looking Cholesky are asymptotically efficient,
their rational-arithmetic counterparts are not due to their usage of ancillary greatest
common divisor operations that are required to limit the bit-length growth of entries.

To keep with this convention, we define two new terms: Iy and I;, which denote
the total number of integer-arithmetic operations required to compute the sparse up-
looking and left-looking REF Cholesky factorizations, respectively. Subsection 4.1
presents and proves the computational complexities of both factorizations using these
terms. Then, Subsection 4.2 provides bounds on I, and Iy to provide intuition behind
the meaning of these terms.

This manuscript is for review purposes only.

14 C. LOURENCO AND E. MORENO-CENTENO

155 4.1. Sparse REF Cholesky Complexities. Theorems 4.2 and 4.3 formally
456 give the computational complexity of each factorization.

A57 THEOREM 4.2. The computational complexity of the sparse up-looking REF Cholesky
458 factorization is

159 O(IU [5ma:c IOg Bmax log lOg Bmax])

460 THEOREM 4.3. The computational complexity of the sparse left-looking REF Cholesky
161 factorization is

462 O(IL [ﬂma;ﬂ IOg 6maa: 1Og log 6mam])~

463 Below, we prove Theorem 4.2. Since the proof of Theorem 4.3 is very similar, it is

464 omitted for brevity. Prior to proving Theorem 4.2, we present and prove the following
165 Lemma.

166 LEMMA 4.4. Let Iy denote the total number of integer-arithmetic operations per-
167 formed by the up-looking REF triangular solve, Algorithm 2. The computational
468 complexity of this algorithm is

469 O(fU [ﬁmaw IOg Bmaw lOg log ﬁmaw]) .

A70 Proof. For Cholesky factorization, the nonzero pattern, X, is obtained by ana-
471 lyzing the elimination tree; thus lines 1, 2, 3, and 4 have complexities O(|A(:, k)|),
172 O(|X]), O(|X|log|X]|), and O(|X]), respectively. Thus, the total cost of lines 1-4 is
473 O(]X|log |X]). Note that |X| < n because the vector is reused in between iterations
474 and thus stays a constant size n throughout the factorization.

ATS Now, we analyze lines 5-24. As argued in Subsection 3.1 and in [19, 33], each
176 IPGE operation corresponds to an equivalent Gaussian elimination operation and the
477 triangular solve performs only the necessary number of operations, making these lines
478 require O(f v) total operations. Thus, the complexity for these lines is the total num-
479 ber of operations multiplied by their cost, which is O(fU [Brmaz 108 Bmaz 108108 Brmaz])-
480 To conclude the proof, we now show that the cost O(]X|log|X]) is dominated
181 by the cost of operations O(fU [Bimaz 108 Bimaz log1og Bimaz]). Since Bnar = nlogo, we
482 have:

483 O(fU [ﬁmaw IOg ﬁmaw IOg log 5maw}> = O(fU [n IOg o 1Og<n lOg U) IOg 10g(n IOg U)])

184 Thus, since |X]|log|X| < nlogn, the complexity of Algorithm 2 is indeed:

485 O(jU [5max 1Og Bmaz 10g IOg 5maz])‘ O
486 We now prove Theorem 4.2.

487 Proof. This complexity follows from Lemma 4.4. Specifically, the overall factor-

488 ization consists of repeated triangular solves; thus, the complexity of its arithmetic
189 operations is equal to the total number of operations performed, Iy, multiplied by
490 their cost. In addition, prior to factorization, the vectors X', h, and x are initialized
491 requiring O(n). This leads to a complexity of O(n + Iy [Bmaz 108 Bmaz 10g10g Bmaz])-
492 (Note that the cost of creating the elimination tree of A is asymptotically dominated
493 by using the tree in the triangular solve [8]).

194 The proof is completed by noting that O(n) C O(Iy) since the factorization must
495 perform at least one operation on each diagonal entry (lines 6-8 in Algorithm 2). 0O

This manuscript is for review purposes only.

L e e e
S U s W N = O

iy
oo

Ul Ot Ot Ot Ot Ut Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot ot Ot

N =
S ©

D o =

3

O NN N NN NN
(G2 BTN NN

[\
oo

v Oov Ov Ot Ot Ot Ot Ot Ot v Ov Ov Qv Ot Ot Ot Ot Ot Ot Ot Ot Ot

EXACT SOLUTION OF SPARSE SPD SLES 15

In a bit-complexity model, these complexities mean that both the up-looking and
left-looking REF Cholesky factorizations solve the SPD linear system, Ax = b, in
time proportional to integer-arithmetic work. To date, these are the only exact fac-
torizations specifically tuned for SPD linear systems with this asymptotically efficient
bound.

4.2. Intuition on Iy and I;. The complexities discussed above depend on
the terms Iy and I; which are the total number of integer-arithmetic operations
required for up-looking and left-looking factorization, respectively. However, much
like the term f in floating-point arithmetic, these terms can be quite vague. In this
subsection, we discuss some bounds on these terms in order to both relate them to
the dimension of the matrix and gain some intuition.

First, note that each of these terms is lower bounded by n. Consider the case
where A is diagonal. In this case, both the up-looking and left-looking algorithms must
perform one multiplication and one division on each diagonal entry in rows/columns
2 : n (lines 6-8 of Algorithm 2 and 14-16 of Algorithm 3, respectively). Thus, for a
diagonal matrix, either algorithm must perform 2(n — 1) operations showing that Ir,
and Iy are both lower bounded by O(n).

For an upper bound, consider the case where A is dense. In this case, there is
no sparsity to be exploited and operations must be performed on every entry in the
matrix. As a result, O(n?) operations are performed.

This dramatic difference between the lower and upper bound provides further
intuition as to why the complexity of sparse matrix algorithms are not given in terms
of n. That said, for most sparse input matrices, it has been shown that the number
of operations required in Cholesky factorization is in the range of [O(n®/?), O(n?)]
[20, 19, 21].

5. Computational Results. This section computationally analyzes the two
new factorizations and is organized as follows. Subsection 5.1 describes the speci-
fications of the computational study. Subsection 5.2 compares the two sparse REF
Cholesky algorithms. Subsection 5.3 compares our sparse REF Cholesky factoriza-
tions to a rational-arithmetic Bunch-Parlett LDL factorization [6] as well as the un-
symmetric SLIP LU factorization. Lastly, Subsection 5.4 benchmarks the relative
forward error of MATLAB sparse backslash on real world SPD systems.

Throughout these computational tests, we use Dolan and Moré [11] performance
profiles when comparing competing algorithms/approaches. Briefly, a performance
profile is a tool which takes into account both the number of instances solved as well
as the cost required to solve each instance. The performance of each algorithm cor-
responds to a curve on a graph, where each point on the curve is what percentage of
instances (y-axis) the algorithm solved within a time-multiple (x-axis) of the fastest
solution time (among all algorithms) for each instance. An important property of per-
formance profiles is that they are insensitive to the relative difficulty among different
instances (i.e., they are not biased toward easy or hard instances). This is because
given an instance, all solution times are relative to the fastest solver on that instance.
The simplest way to interpret performance profiles is that the highest curve on the
graph corresponds to the best performing algorithm. Lastly, as is common practice,
all times in the performance profiles are shifted by 1 second, thereby precluding dra-
matic yet potentially misleading results from instances with insignificant run time
differences.

5.1. Specifications.

This manuscript is for review purposes only.

544
545
546
547
548
549

N o= O

Tt o= W

Ut Ut Ut Ot Ot Ot Ot
v Ot Ot gt Ot Ot Ut

ot Ot Ot Or Ut Ut Ut Ut
2]

D O
[SX NG

L

Ut Ot Ot Ot Ot Ot Ot Ot
J9 >
DD Ul W N = oo

0

JEES BEES BEES BEES S IR IO |

co 0o 00 0o
T W N =

v Oov Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot
o

Z:

587
588
589
590

591

16 C. LOURENCO AND E. MORENO-CENTENO

5.1.1. Competitor Algorithms. Our first set of tests evaluate the run times of
the sparse REF Cholesky factorizations. To date, direct methods could exactly solve
SPD linear systems in one of two ways: rational-arithmetic Bunch-Parlett LDL fac-
torization or exact unsymmetric LU factorization. In [33] it was shown that the SLIP
LU factorization dramatically outperforms rational LU factorization. Thus, we com-
pare our sparse REF Cholesky factorizations to rational-arithmetic LDL factorization
and the SLIP LU factorization. The code for SLIP LU [32] was obtained from https:
//github.com/clouren/SLIP_LU and is also hosted at www.suitesparse.com. However,
since we could not find a readily available, commercial-quality rational-arithmetic LDL
factorization, we used the GNU Multiple Precision Artithmetic (GMP) [22] Library
rational-arithmetic data type as a class template argument for the Eigen [26] solver’s
LDL factorization routines. Henceforth, this rational LDL factorization is referred to
as Q-LDL.

5.1.2. Computing Environment. The experiments conducted in Subsections
5.2 and 5.3 measure run time and were coded in C and performed on a computing
node running CentOS 7.6.1810 which has 22 GB of RAM shared by two 2.8 GHz
quad core Intel Xeon 5560 processors. The experiments conducted in Subsection 5.4
measure the accuracy of MATLAB sparse backslash and were performed in MATLAB
R2020a on a computer running Ubuntu 18.04 with 16 GB of RAM using a 4.0 GHz
Intel Core i7-8550U CPU. As mentioned in the previous subsection, all full precision
integer and rational arithmetic operations were performed with the GMP library.

5.1.3. Chosen Instances. We tested our algorithms on a subset of the SuiteS-
parse Matrix Collection [9], a collection of over 2800 real-world matrices arising from a
vast array of applications. To obtain the subset of SPD instances from this collection,
we first selected the instances which MATLAB flagged as SPD, and then verified if
they were indeed SPD using our sparse REF Cholesky factorizations. We kept a total
of 104 instances: all those which were both verified to be SPD and could be factor-
ized within 24 hours. Appendix A includes the comprehensive results along with the
indices of each selected matrix from this collection.

5.1.4. Symbolic Analysis. Cholesky factorization algorithms are almost al-
ways preceded by a symbolic analysis phase in which a permutation matrix P is
chosen so that the Cholesky factorization of the matrix PAPT requires less work to
compute than the direct factorization of A. Finding a permutation which minimizes
the number of nonzeros in the Cholesky factor is NP-Complete [46]; similarly, finding
a permutation which minimizes the total work required to perform a (floating-point)
Cholesky factorization is NP-Hard [34]. Exact factorization differs from these prob-
lems in that the total work to be performed is not only a function of the number of
operations but also the cost of each operation (which is not constant). As a result,
it is nearly certain that finding a permutation which minimizes the total work for
these exact factorizations is also NP-Hard. Thus, for the symbolic analysis phase, we
utilize the approximate minimum degree (AMD) ordering [1, 2], the state-of-the-art
approach to efficiently reduce fill-in in the Cholesky factor. Specifically, we preordered
all matrices with AMD prior to executing the exact REF or LDL factorizations.

5.2. Comparison of Sparse REF Cholesky Algorithms. This subsection
compares the performance of the left-looking and up-looking REF Cholesky factoriza-
tions. Across all 104 instances the algorithms are essentially identical; the up-looking
factorization’s average run-time was about 0.5% smaller than the left-looking’s run
time, while the left-looking factorization’s geometric-mean run-time was about 1%

This manuscript is for review purposes only.

https://github.com/clouren/SLIP_LU
https://github.com/clouren/SLIP_LU
https://github.com/clouren/SLIP_LU
www.suitesparse.com

592
593
594
595
596
597
598
599
600
601

EXACT SOLUTION OF SPARSE SPD SLES 17

smaller than that of up-looking. Figure 3 confirms graphically that both algorithms
perform almost identically. Specifically, Figure 3a is a performance profile showing
that, for all of the instances, both algorithms’ run-times are within 7% of each other.
Indeed, even though the profile appears to show that up-looking factorization is supe-
rior, notice that the magnitude of differences between the two algorithms (i.e., the x
axis) is practically insignificant. Figure 3b further illustrates this via a scatter plot of
the run-time of both algorithms for each instance. Therein, any dot lying below the
line corresponds to a matrix in which left-looking required more run-time, and vice
versa. Note how the only minor performance differences occurred in instances where
both algorithms ran in less than 1 second.

—Left-looking
-Up-looking

Percentage of Instances Solved

: 20 20.02 20.04 20.06 20.08 20.1 20.12 20.14 20 16 20 18 20.2
Performance Ratio

(a) Left and Up-looking Perform Similarly

Up-looking time (s)
= iy o
& < <

H
S
S

10° 7 4 2 0 2 4 6
10 10° 10° 10 10 10 10
Left-looking time (s)

(b) Our sparse REF Cholesky factorizations are Nearly Identical

Fig. 3: Comparison of Left-looking and Up-looking Cholesky

5.3. Sparse REF Cholesky vs Alternate Direct Methods. This subsec-
tion compares the performance of the sparse REF Cholesky factorizations to both
the unsymmetric SLIP LU factorization and the rational LDL factorization (Q-LDL).
Since the up-looking and left-looking REF Cholesky factorizations have similar per-
formance; for simplicity, this subsection only compares the left-looking algorithm to
the alternate direct methods.

First, we compare left-looking REF Cholesky factorization to the SLIP LU fac-

This manuscript is for review purposes only.

18 C. LOURENCO AND E. MORENO-CENTENO

torization. Since SLIP LU is an unsymmetric algorithm, we would expect it to require
about double the run time of the left-looking REF Cholesky factorization. Across the
104 instances, REF Cholesky was faster than SLIP LU for 85% of the instances with
an average and geometric mean run time 1.70 and 1.86 times smaller, respectively.
Note that these results are slightly biased in favor of SLIP LU as it could not factor
6 of the instances within a 24 hour time period; thus its run time was set to this up-
per bound. Graphically, we see these results via figure 4a which gives a performance
profile comparing these two algorithms which shows that left-looking Cholesky fac-
torization clearly outperforms SLIP LU. Fix. Similarly, Figure 4b, which is a scatter
plot of the algorithm’s run-times, illustrates that Cholesky left-looking factorization
outperforms SLIP LU on over 80% of the instances.

While REF Cholesky outperforms SLIP LU, its dominance is not uniform as ex-
pected. Specifically, SLIP LU outperforms REF Cholesky in about 15% of the test in-
stances, a counter-intuitive result which would not occur in floating-point arithmetic.
This behavior can be attributed to the interplay between the fundamental nature of
SPD instances and the properties of integer-arithmetic factorization algorithms:

1. The majority of SPD instances are diagonally dominant [21] meaning that
the magnitudes of their diagonal entries are larger than the sum of all other
entries in their respective row/column.

2. Lourenco et al. [32] showed that IPGE-based algorithms, such as SLIP LU
and REF Cholesky, perform best when small pivots are selected (specifically,
in the unsymmetric case, selecting small pivots is about 4 times faster than
selecting large pivots).

3. Cholesky is bound to select the (large in magnitude) diagonal entries as pivots,
while SLIP LU has the freedom to select (relatively smaller) off-diagonal
pivots.

Consequently, even though SLIP LU generally performs about twice as many op-
erations as REF Cholesky, in a small subset of instances, the smaller cost of the
operations in SLIP LU allows it to negate this disadvantage. Indeed, this result pro-
vides motivation for the eventual development of an integral LDL factorization in the
vein of [12] which would allow symmetric, off diagonal (thus smaller in magnitude)
pivoting.

We next compare left-looking REF Cholesky factorization to rational-arithmetic
LDL factorization. Across the 104 instances, REF Cholesky is faster than rational
LDL on 83% of the tested instances, and its average and geometric mean run-times are
2.04 and 2.22 times smaller, respectively. Moreover, like SLIP LU, these results are
slightly biased in favor of rational LDL, as this method could not factorize 8 instances
within 24 hours; thus the run times for these matrices were set to this upper bound.
These result support the following important observations:

1. Rational-arithmetic is incredibly slow. Notably, this can be almost exclu-
sively attributed to the rational-arithmetic operations (and, specifically to
their intrinsic GCD operations) because both REF Cholesky and rational
LDL return matrices with the same nonzero pattern (both utilize AMD as a
preordering and pivot along the diagonal). Conversely, the savings of REF
Cholesky over rational LDL can be almost entirely attributed to its use of
fast integer-arithmetic.

2. Sparse REF Cholesky factorization outperforms Q-LDL for over 80% of in-
stances including every instance that requires more than two minutes except
for one matrix (index 43). In contrast, the vast majority of the instances
where Q-LDL is faster than left-looking REF Cholesky have insignificant run

This manuscript is for review purposes only.

660
661
662
663
664
665

666

667
668
669
670
671
672
673
674

675

EXACT SOLUTION OF SPARSE SPD SLES 19

=

===
-

|

e : —Left-looking
- -SLIP LU
)

o
©
1

°
N
1

o
n

Percentage of Instances Solved
I o .
» o
'
i
1

o
w

o
N

22 23 24
Performance Ratio

IN]
o

N
-

(a) Left-looking Cholesky Outperforms SLIP LU

SLIP LU time (s)

10°° 10* 102 10° 102 10* 10°
Left-looking time (s)

(b) Left-looking Cholesky Outperforms SLIP LU

Fig. 4: Comparison of Left-looking Cholesky with SLIP LU

times for both methods (less than 1 second).

Graphically, the performance profile in Figure 5a and the scatter plot of the run-
times in Figure 5b depict the superiority of REF Cholesky over rational LDL.

We conclude this subsection with the following interesting note: Rational LDL
factorization performs so poorly in general that it is slower than even the unsymmetric
SLIP LU factorization. Altogether, these results present compelling evidence of the
superiority of our sparse REF Cholesky factorizations over both the best available
exact LU factorization (SLIP LU) and rational-arithmetic LDL factorization.

5.4. Relative Forward Error of MATLAB Sparse Backslash. As dis-
cussed in the introduction, Cholesky factorization is known to be normwise backward
stable [45] meaning that the relative residual ||Ax — b||/(]|A]|||x]|) is guaranteed to
be in the neighborhood of machine precision. That said, a small relative residual does
not necessarily mean that the solution x is close to the exact solution of the system
[21]. In this section, we use our sparse REF Cholesky factorizations to benchmark
the relative forward error of MATLAB backslash on our set of SPD matrices. For
this purpose, we solve the linear system Ax = 1 in both MATLAB and with our
sparse REF Cholesky factorization. Our exact solution is then converted to double

This manuscript is for review purposes only.

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

20 C. LOURENCO AND E. MORENO-CENTENO

————————

—Left-looking
-Q-LDL

[=}
© =
'
1
1

[l

1

1

1

o
©

°
N

o
n

Percentage of Instances Solved
I o .
» o
i
!

o
w

o
N

20.5 21 215 22 22.5 23 23.5 24
Performance Ratio

IN]
o

(a) Left-looking Cholesky Outperforms Q-LDL

)
—
o

N

Q-LDL time (s

10° 6 2 0 2 6
10° 10 10° 10 10 10* 10
Left-looking time (s)

(b) Left-looking Cholesky Outperforms Q-LDL in Run Time

Fig. 5: Comparison of Left-looking Cholesky with Q-LDL

precision (note that internally, this conversion is done in higher precision; thus this
solution from REF Cholesky is accurate to machine precision). Finally, we compare
this rounded-to-double exact solution, x(¢), to the solution returned by MATLAB, x,
by computing the relative forward error ||x(¢) — x||/||x(¢)|| using the 2-norm within
MATLAB.

Table 1 gives the relative forward error of MATLAB sparse backslash on the
tested linear systems. Overall, the Cholesky routines produce nearly exact solutions
(relative forward error less than 10712) for 69% of tested instances and solutions with
6 to 12 digits, 2-5, or fewer than 2 digits of precision for 23%, 5% and 3% of instances,
respectively. While these results may seem troubling, it is important to contextualize
them. Specifically, it is important to note that: (1) the majority of the instances
in which the MATLAB solution was not accurate have a smallest singular value in
the neighborhood of machine precision (as approximately computed with MATLAB
dense SVD)—thereby meeting Demmel’s [10] criterion for floating-point Cholesky to
fail; and (2) unlike the LU routines, the Cholesky routines within MATLAB sparse
backslash do not perform any iterative refinement to fine tune the solutions.

From these results we draw two conclusions. First, enabling iterative refinement

This manuscript is for review purposes only.

EXACT SOLUTION OF SPARSE SPD SLES 21
693 within MATLAB Cholesky routines would likely increase the accuracy of the solutions

694 returned. Second, exact methods are necessary for a modest subset of real world
695 problems in which finite-precision Cholesky factorizations are not adequate.

Table 1: Relative Forward Error of MATLAB on SPD Linear Systems

Relative Forward Error Threshold | Percentage of Instances
<1072 69.23%
<1076 92.31%
<1072 97.12%
696 6. Conclusion. This paper derives two new factorization algorithms which ex-

697 actly solve sparse SPD linear systems exclusively using integer-arithmetic. Applied to
698 a sparse matrix with a fixed row and column ordering, both derived algorithms have
699 the property that their worst-case time complexity is proportional to the cost of the
700 necessary integer-arithmetic work. Our derived sparse REF Cholesky factorizations
1 require no square roots, thus they can be applied to any SPD linear system.

2 Computationally, we show that the derived algorithms dramatically outperform
3 both exact LU factorization and rational LDL factorization. Specifically, REF Cholesky
I outperforms the unsymmetric SLIP LU factorization and the rational LDL factoriza-
5 tion on average by a factor of 1.7 and 2.04, respectively. Surprisingly, this shows
6 that rational LDL is even outperformed by SLIP LU. Interestingly, SLIP LU outper-
formed REF Cholesky on 15% of instances despite requiring twice the operations. We
8 attribute this counter-intuitive result to the complex interplay between the number
9 of operations performed and the cost of these operations. Specifically, unlike REF
Cholesky which must select diagonal pivot elements (typically large in SPD matri-
ces), SLIP LU is able to select pivots of small bit-length thereby reducing the cost of
the exact operations. Additionally, we measured the relative forward error of MAT-
LAB sparse backslash, showing that, as expected from the literature, it produced
solutions of low accuracy on those instances which are highly ill-conditioned and/or
have extremely small singular values.

Altogether, these results (1) show REF Cholesky is the best among competing
factorization approaches for exactly solving SPD linear systems, (2) provide evidence
that fixed precision floating-point Cholesky factorization can fail on real world highly
ill-conditioned systems which do not meet the stability bounds proposed by [45, 10,
24], and (3) illustrate that commercial Cholesky routines would likely benefit from
iterative refinement—a technique that is currently used in modern LU factorization
routines.

In conclusion, the derived sparse REF Cholesky factorizations provide a robust
framework to exactly solve SPD linear systems. The code associated with these
factorizations is hosted at https://github.com/clouren/IP_Chol.

T W N = O

N = O © o

0 =1 =1 =] =1 =] =1 =1 = =1 ~J =1 ~J ~J ~J ~J =~ =1 =1 =1 =~ ~1 - —=J
DN NN NN =P R e e
©

Tt = W

Acknowledgments. The authors would like to thank the reviewers for their
very helpful comments which significantly improved the quality of this paper. The
work is partially supported by the National Science Foundation under Grant No.
OAC-1835499. In addition, the first author was also partially supported by the Texas
A&M University’s Graduate Merit Fellowship and the United States Naval Academy
Junior NARC.

3

oo

b e S B B BN

W W NN NN

This manuscript is for review purposes only.

https://github.com/clouren/IP_Chol

22

I

=

=5

(-

—

—

wn

S0 =

T O pwmwmEz =

<

C. LOURENCO AND E. MORENO-CENTENO

REFERENCES

. R. AmEestoy, T. A. Davis, AND I. S. DUFF, An approximate minimum degree ordering
algorithm, STAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 886-905.

. R. AMEsTOY, T. A. DAvis, AND 1. S. DurF, Algorithm 837: Amd, an approximate mini-
mum degree ordering algorithm, ACM Transactions on Mathematical Software (TOMS),
30 (2004), pp. 381-388.

. E. BaANK AND R. K. SMITH, General sparse elimination requires no permanent integer

storage, SIAM journal on scientific and statistical computing, 8 (1987), pp. 574-584.

H. BAREISs, Sylvester’s identity and multistep integer-preserving gaussian elimination,

Mathematics of computation, 22 (1968), pp. 565-578.

. H. BAREIss, Computational solutions of matriz problems over an integral domain, IMA
Journal of Applied Mathematics, 10 (1972), pp. 68-104.

. R. BuNCH AND B. N. PARLETT, Direct methods for solving symmetric indefinite systems of

linear equations, SIAM Journal on Numerical Analysis, 8 (1971), pp. 639-655.

. CHEN, T. A. Davis, W. W. HAGER, AND S. RAJAMANICKAM, Algorithm 887: Cholmod, su-
pernodal sparse cholesky factorization and update/downdate, ACM Transactions on Math-
ematical Software (TOMS), 35 (2008), p. 22.

. A. Davis, Direct methods for sparse linear systems, STAM, 2006.

. A. Davis AND Y. Hu, The university of florida sparse matriz collection, ACM Transactions
on Mathematical Software (TOMS), 38 (2011), p. 1.

. DEMMEL, On floating point errors in Cholesky, University of Tennessee. Computer Science

Department, 1989.
. D. DoLAN AND J. J. MORE, Benchmarking optimization software with performance profiles,
Mathematical programming, 91 (2002), pp. 201-213.

. S. DUFF, Ma57—a code for the solution of sparse symmetric definite and indefinite systems,

ACM Transactions on Mathematical Software (TOMS), 30 (2004), pp. 118-144.

. S. Durr, A. M. ErisMAN, AND J. K. REID, Direct methods for sparse matrices, Oxford

University Press, 2017.

. EDMONDSs, Systems of distinct representatives and linear algebra, J. Res. Nat. Bur. Standards

Sect. B, 71 (1967), pp. 241-245.

. C. EISENSTAT, M. H. ScHULTZ, AND A. H. SHERMAN, Algorithms and data structures for

sparse symmetric gaussian elimination, SIAM Journal on Scientific and Statistical Com-
puting, 2 (1981), pp. 225-237.

. R. EsCOBEDO AND E. MORENO-CENTENO, Roundoff-error-free algorithms for solving linear
systems via cholesky and lu factorizations, INFORMS Journal on Computing, 27 (2015),
pp. 677—689.

. R. EscoBEDO, E. MORENO-CENTENO, AND C. LOURENCO, Solution of dense linear systems
vat roundoff-error-free factorization algorithms: Thoeretical connections and computa-
tional comparisons, ACM Transactions on Mathematical Software, (2018).

. GEORGE AND J. W. Liu, Computer solution of large sparse positive definite, Prentice Hall
Professional Technical Reference, 1981.

. R. GILBERT AND T. PEIERLS, Sparse partial pivoting in time proportional to arithmetic

operations, SIAM Journal on Scientific and Statistical Computing, 9 (1988), pp. 862—874.

. R. GILBERT AND R. SCHREIBER, Nested dissection with partial pivoting, in Sparse Matrix

Symposium 1982: Program and Abstracts, 1982, p. 61.

. H. GoLuB AND C. F. VAN LoAN, Matriz computations, vol. 3, JHU Press, 2012.

. GRANLUND ET AL., GNU MP 6.0 Multiple Precision Arithmetic Library, Samurai Media
Limited, 2015.

HADAMARD, Résolution d’une question relative auz déterminants, Bull. sci. math, 17 (1893),
pp. 240-246.

. J. HicuAM, Accuracy and stability of numerical algorithms, vol. 80, Siam, 2002.

. A. HOrRN AND C. R. JOHNSON, Matriz analysis, Cambridge university press, 2012.

. JAcoB, G. GUENNEBAUD, ET AL., Eigen: C++ template library for linear algebra, 2013.

. KIELBASINSKI, A note on rounding-error analysis of cholesky factorization, Linear Algebra
and its Applications, 88 (1987), pp. 487-494.

. E. KNuTH, The art of computer programming: sorting and searching, vol. 3, Pearson Edu-
cation, 1998.

. R. LEE AND B. D. SAUNDERS, Fraction free gaussian elimination for sparse matrices, Journal
of symbolic computation, 19 (1995), pp. 393—402.

. W. Liu, A compact row storage scheme for cholesky factors using elimination trees, ACM

Transactions on Mathematical Software (TOMS), 12 (1986), pp. 127-148.

This manuscript is for review purposes only.

827
828
829
830
831
832
833
834
835
836
837

[42] A.

[43] J.

[44] J-

[45] J.

EXACT SOLUTION OF SPARSE SPD SLES 23

. W. L1u, A generalized envelope method for sparse factorization by rows, ACM Transactions

on Mathematical Software (TOMS), 17 (1991), pp. 112-129.

. LOURENCO, J. CHEN, E. MORENO-CENTENO, AND T. DAvIS, Algorithm 1zzx: Slip lu, exactly

solving sparse linear systems via a sparse left-looking integer-preserving lu factorization.
Submitted ACM Transactions on Mathematical Software, 2020.

. LOURENCO, A. R. EscOBEDO, E. MORENO-CENTENO, AND T. A. DAVIS, Ezact solution of

sparse linear systems via left-looking roundoff-error-free lu factorization in time propor-
tional to arithmetic work, SIAM Journal on Matrix Analysis and Applications, 40 (2019),
pp- 609-638.

. Luce AND E. G. NG, On the minimum flops problem in the sparse cholesky factorization,

SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 1-21.

. MEINGUET, Refined error analyses of cholesky factorization, STAM journal on numerical

analysis, 20 (1983), pp. 1243-1250.

. M. MONTANTE-PARDO AND M. A. MENDEZ-CAVAZOS, Un método nimerico para cdlculo

matricial, Revista Técnico-Cientifica de Divulgacién, 2 (1977), pp. 1-24.

. MUIrR AND W. H. METZLER, A Treatise on the Theory of Determinants, Courier Corporation,

2003.

. U. D. oFr COMPUTER SCIENCE, S. EISENSTAT, M. SCHULTZ, AND A. SHERMAN, Efficient

implementation of sparse symmetric Gaussian elimination, 1975.

. PARTER, The use of linear graphs in gauss elimination, SIAM review, 3 (1961), pp. 119-130.
. Rosg, G. WHITTEN, A. SHERMAN, AND R. E. TARJAN, Algorithms and software for in-core

factorization of sparse symmetric positive definite matrices, Computers & Structures, 11
(1980), pp. 597-608.

. SCHONHAGE AND V. STRASSEN, Schnelle multiplikation grosser zahlen, Computing, 7 (1971),

pp- 281-292.

SCHRIJVER, Theory of integer and linear programming, 1986.

STEIN, Computational problems associated with racah algebra, Journal of Computational
Physics, 1 (1967), pp. 397-405.

G. SuN, Componentwise perturbation bounds for some matrixz decompositions, BI'T Numer-
ical Mathematics, 32 (1992), pp. 702-714.

H. WILKINSON, A priori error analysis of algebraic processes, in Intern. Congress Math,
vol. 19, 1968, pp. 629-639.

[46] M. YANNAKAKIS, Computing the minimum fill-in is np-complete, STAM Journal on Algebraic

Discrete Methods, 2 (1981), pp. 77-79.

Appendix A. Comprehensive Computational Results.

Tables 2, 3, and 4 present exhaustive computational results for all 104 tested
instances sorted based on their run times. The first three columns of each table give
the name (i.e., matrix index from SuiteSparse collection), dimension, and number of
nonzeros of each matrix. Column 4 gives the run time of the left-looking Cholesky
factorization. Finally columns 5, 6, and 7 give the run times of up-looking Cholesky,
SLIP LU, and Q-LDL relative to left-looking Cholesky, respectively. Note that N/A
in relative run times indicates that the algorithm could not factorize this instance
within 24 hours. Lastly, any matrix whose solution had less than 2 digits of precision
is bolded and colored red and any instance whose solution had between 2 and 6 digits
of precision is italicized and colored blue.

Relative Run Time
Matrix Index n nnz Left-Looking (hr) | Up-Looking | SLIP LU | Q-LDL
888 9801 87025 21.89 1 N/A N/A
1330 7102 | 340200 20.14 0.99 N/A N/A
760 4704 | 104756 18.50 1 N/A | N/A
887 9604 85264 17.68 0.99 N/A N/A
50 4410 | 219024 14.69 1 N/A N/A
46 3562 | 159910 12.92 1 1.23 N/A
791 8205 | 125567 12.28 0.99 N/A N/A
35 2003 83883 8.78 1.01 N/A N/A

This manuscript is for review purposes only.

24

C. LOURENCO AND E. MORENO-CENTENO

Relative Run Time
Matrix Index n nnz Left-Looking (hr) | Up-Looking | SLIP LU | Q-LDL
360 4515 | 97707 8.57 0.99 1.61 1.93
413 6867 | 98671 5.20 0.99 1.22 3.51
2211 2000 | 41906 4.83 0.98 0.44 N/A
759 2910 | 174296 3.92 0.99 3.93 5.85
1214 4098 72356 2.16 1 N/A 3.17
758 2146 | 72250 2.00 0.99 1.33 4.74
440 3363 | 99471 1.85 1.02 3.97 3.66
43 3600 | 26600 1.31 0.99 3.38 0.58
36 1806 | 63454 1.25 1 1.56 5.39

Table 2: Results for Instances Greater than 1 Hour

Relative Run Time

Matrix Index n nnz Left-Looking (min) | Up-Looking | SLIP LU | Q-LDL
359 1440 | 44998 57.61 1 2.05 6.09
357 726 | 34518 37.09 1 0.75 7.58
57 1824 | 39208 36.34 1 4.74 6.60
411 2568 75628 33.60 1 3.89 2.85
1437 19998 99982 26.24 0.95 2.31 8.12
889 9801 | 87025 24.47 1 0.12 3.65
31 1083 | 18437 16.26 0.99 0.95 6.79
228 1919 32399 14.33 1 2.36 2.16
48 1922 30336 14.28 1 6.87 3.74
34 1473 34241 13.70 1 1.34 3.67
33 1473 | 34241 13.66 1 1.36 3.77
427 1821 | 52685 13.58 0.99 2.87 2.97
1331 7102 | 170134 13.19 1 3.40 1.28
408 2548 57308 11.39 1 3.21 1.16
1439 19994 79966 10.27 0.93 4.41 3.89
407 2410 54840 10.20 1.01 3.54 1.26
49 1224 56126 9.00 1 1.68 6.51
30 1074 | 12960 7.51 1 10.54 4.19
1911 1282 30644 6.84 1 1.14 1.61
339 588 21418 4.48 1 1 5.90
430 1733 22189 3.49 1 2.38 1.71
219 960 15844 3.22 0.99 1.44 2.10
358 1050 | 26198 2.30 1 5.36 3.08
223 729 4617 1.89 1.06 3.06 2.01
67 1473 19659 1.71 0.99 3.01 0.76
2210 700 12654 1.61 1 0.36 13.32
32 1086 | 22070 1.22 0.98 2.60 2.80
1328 500 | 28726 1.01 0.98 4.03 4.58

Table 3: Results for Instances Between 1 Min and 1 Hour

This manuscript is for review purposes only.

EXACT SOLUTION OF SPARSE SPD SLES 25

Relative Run Time
Matrix Index n nnz | Left-Looking (s) | Up-Looking | SLIP LU | Q-LDL
221 468 | 5172 58.150 1 1.99 0.31
28 420 | 7860 21.426 0.98 1.83 3.17
29 420 | 7860 21.025 0.99 1.86 3.23
2209 500 | 8478 19.073 1.01 0.56 14.42
62 420 7252 12.991 1 1.61 5.64
41 817 | 6853 12.838 0.98 2.47 3.31
222 675 | 3255 7.336 1 2.21 2.07
229 362 | 5786 5.094 1 1.33 3.62
929 415 | 2779 2.289 0.99 3.74 3.81
1401 2541 | 7361 2.173 0.92 7.65 0.01
4 685 | 3249 2.010 0.98 5.26 2.17
2208 300 | 4678 1.616 1 0.55 15.65
1 1138 | 4054 1.516 1.22 6.31 0.70
42 485 | 3135 1.219 1 2.12 3.61
75 15439 | 15439 1.014 1 1.36 0.02
875 306 | 2018 1.004 1 3.11 2.98
3 662 | 2474 0.991 0.96 6.40 2.20
876 306 | 2018 0.898 1.05 3.54 3.28
26 132 | 3648 0.649 0.81 1.73 5.12
1425 10001 | 49999 0.567 0.91 1.82 0.09
878 289 | 1377 0.538 1.12 1.97 4.38
206 147 | 2449 0.492 0.99 2.18 3.83
159 900 | 7744 0.450 0.98 0.40 5.86
27 153 | 2423 0.375 1.11 2.14 8.02
207 147 | 2441 0.348 1.03 2.32 5.13
2206 199 2873 0.241 1.12 0.93 17.23
2207 200 | 2890 0.240 1.16 0.83 16.42
2 494 | 1666 0.193 1.09 5.34 1.69
315 416 | 2312 0.104 1.13 3.02 0.09
1506 124 | 12068 0.101 0.94 1.46 11.35
2205 150 | 2040 0.097 1.02 1.20 14.99
73 3134 | 3134 0.094 0.76 0.88 0.06
24 66 | 4356 0.084 1.41 1.68 12.71
44 138 696 0.042 0.71 2.25 4.82
218 957 | 4137 0.028 1.22 2.64 0.26
76 1922 | 1922 0.028 1.04 1.08 0.10
220 100 594 0.021 0.63 2.56 5.74
23 48 400 0.015 1.70 2.02 7.97
63 1074 | 1074 0.014 1.04 0.74 0.15
66 1473 | 1473 0.012 1.64 1.26 0.22
873 48 306 0.009 0.96 0.87 5.97
877 289 | 1377 0.008 1.21 0.96 10.29
25 112 640 0.007 1.70 2.69 5.92
874 48 306 0.006 1.01 2.18 5.44
872 48 306 0.005 0.93 2.09 7.72
71 3600 | 3600 0.005 1.15 1.49 1.03
69 817 817 0.005 2.07 1.48 0.24
70 485 485 0.003 0.73 1.83 0.35

This manuscript is for review purposes only.

26

C. LOURENCO AND E. MORENO-CENTENO

Relative Run Time

Matrix Index n nnz | Left-Looking (s) | Up-Looking | SLIP LU | Q-LDL
1939 3240 | 3240 0.002 0.83 1.39 2.74
61 420 420 0.002 1.28 0.72 0.30
436 27 279 0.001 1.17 1.98 8.15
217 237 1017 0.001 1.52 3.37 1.44
60 153 153 0.001 0.36 1.41 0.34
1438 18 82 0.001 1.04 1.03 4.66
57 66 66 0.000 0.50 1.37 0.30
1440 14 46 0.000 0.84 0.52 3.06
2204 20 158 0.000 1.45 2.05 3.01
2203 19 147 0.000 1.42 2.11 5.54
72 138 138 0.000 0.94 2.06 1.36

Table 4: Results for Instances Less than 1 Minute

This manuscript is for review purposes only.

	Introduction
	Contributions
	Organization

	Background
	Integer-Preserving Gaussian Elimination
	Traditional Up-Looking Cholesky Factorization
	Traditional Left-Looking Cholesky Factorization
	LDL Factorization
	Dense REF Cholesky Factorization
	SLIP LU

	Sparse REF Cholesky Factorizations
	Up-Looking REF Cholesky Factorization
	Left-Looking REF Cholesky Factorization

	Computational Complexity
	Sparse REF Cholesky Complexities
	Intuition on IU and IL

	Computational Results
	Specifications
	Competitor Algorithms
	Computing Environment
	Chosen Instances
	Symbolic Analysis

	Comparison of Sparse REF Cholesky Algorithms
	Sparse REF Cholesky vs Alternate Direct Methods
	Relative Forward Error of MATLAB Sparse Backslash

	Conclusion
	References
	Appendix A. Comprehensive Computational Results

