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Abstract.4
Exactly solving sparse symmetric positive definite (SPD) linear systems is a key problem in math-5

ematics, engineering, and computer science. This paper derives two new sparse roundoff-error-free6
(REF) Cholesky factorization algorithms which exactly solve sparse SPD linear systems Ax = b,7
where A ∈ Qn×n and x,b ∈ Qn×p. The key properties of these factorizations are: (1) they ex-8
clusively use integer-arithmetic and (2) in the bit-complexity model, they solve the linear system9
Ax = b in time proportional to the cost of the integer-arithmetic operations. Namely, the overhead10
related to data-structures and ancillary operations (those not strictly required to perform the fac-11
torization) is subsumed by the cost of the integer-arithmetic operations that are essential/intrinsic12
to the factorization. Notably, to-date our algorithms are the only exact algorithm for solving SPD13
linear systems with this asymptotically efficient complexity bound. Computationally, we show that14
the novel factorizations are faster than both sparse rational-arithmetic LDL and sparse exact LU15
factorization. Altogether, the derived sparse REF Cholesky factorizations present a framework to16
solve any rational SPD linear system exactly and efficiently.17
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1. Introduction. Solving sparse symmetric positive definite (SPD) systems of20

linear equations (SLEs) is a fundamental problem in mathematics, computer science,21

and operations research. In general, SLEs with an SPD input matrix are solved via22

Cholesky factorization, where the input matrix, A, is factored into the product of a23

lower triangular matrix, L, and its transpose; that is A = LLT . For SPD matrices,24

(floating-point) Cholesky factorization is normwise backward stable [45, 35], meaning25

that the relative residual norm ||Ax − b||/(||A||||x||) is guaranteed to be close to26

machine precision. However, despite strong residual error bounds, as Golub & Van27

Loan point out, “small residuals do not imply high [solution] accuracy” [21]. Indeed,28

Cholesky factorization may fail if the input is highly ill-conditioned [45, 35, 27, 44]29

and Cholesky is guaranteed to fail if the singular values of the input matrix are too30

small [10]. That said, it is unclear how many real world matrices may cause Cholesky31

factorization to fail, and the correctness of commercial solvers is typically taken for32

granted; thus, there is currently no exact algorithm specifically tuned to provide exact33

solutions to SPD linear systems. Developing such algorithms is the core contribution34

of this paper.35

1.1. Contributions. To address the issues outlined above, this paper derives36

two new sparse roundoff-error-free (REF) Cholesky factorization algorithms. The37

two new factorizations extend the (dense) REF Cholesky factorization [16] and the38

sparse left-looking integer-preserving (SLIP) LU factorization [33]. Specifically, we39

extend the REF Cholesky factorization to the sparse case by deriving both an up-40
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2 C. LOURENCO AND E. MORENO-CENTENO

looking and left-looking variant (two of the most common types used in practice41

today). In addition, we modify the key subroutine within the SLIP LU factorization42

to exploit symmetry, skip ancillary operations, and solve both lower triangular and43

lower trapezoidal linear systems in order to derive two new algorithms to compute44

the aforesaid factorizations in a sparse manner. These two new sparse REF Cholesky45

factorizations are unique in that, unlike traditional Cholesky factorization, computing46

the REF factor L does not require the usage of square root functions; thus they may47

be applied to any rational SPD input matrix A ∈ Qn×n.48

In addition, we analyze the computational complexity of both factorizations.49

Specifically, we show that, using a bit-complexity model, both of our algorithms solve50

the SPD sparse linear system Ax = b in time proportional to the cost of the integer-51

arithmetic operations. This means that all of the overhead related to data structures52

and ancillary operations is asymptotically dominated by the cost of the indispens-53

able arithmetic operations to compute the factorization. Notably, this property is54

not trivial in the sparse case, as currently, to the best of our knowledge, there are55

only three sparse factorizations to achieve this asymptotically efficient complexity56

bound: Gilbert and Peierls’ (floating-point) left-looking LU factorization [19], Liu’s57

(floating-point) up-looking Cholesky factorization [31], and (exact) left-looking SLIP58

LU factorization [33]. It is important to note that many classic sparse matrix algo-59

rithms can not meet such asymptotic efficiency as their run times may be dominated60

by ancillary operations such as data manipulation, access, and/or allocations; notably61

this includes algorithms as fundamental (and seemingly trivial) as sparse matrix mul-62

tiplication [8].63

Next, we perform a computational study which shows that the derived factoriza-64

tions are dramatically faster than exact unsymmetric LU factorization and rational-65

arithmetic LDL factorization. Finally, we benchmark the relative forward error of66

MATLAB sparse backslash, showing that state-of-the-art floating-point Cholesky67

factorization may fail for a modest subset of real-world instances; thereby demon-68

strating the need for our algorithms to exactly solve SPD linear systems. The69

code associated with the sparse REF Cholesky factorizations is freely available at70

https://github.com/clouren/IP Chol.71

1.2. Organization. This paper is organized as follows. Section 2 gives an72

overview of the background required for this paper. Section 3 derives the up-looking73

and left-looking REF Cholesky factorizations. Section 4 analyzes the computational74

complexity of both factorizations. Section 5 computationally compares the derived75

Cholesky factorizations with exact unsymmetric factorization and rational LDL fac-76

torization on real-world SPD instances for run time and MATLAB sparse backslash77

for accuracy. Finally, Section 6 concludes the paper.78

2. Background. This section describes the theoretical foundation of the new79

factorizations and is organized as follows. Subsection 2.1 discusses Integer-preserving80

Gaussian elimination, the basis of our algorithms. Subsections 2.2, 2.3, and 2.4 dis-81

cuss (floating point) up-looking Cholesky, left-looking Cholesky, and LDL factoriza-82

tion, respectively. Finally, subsections 2.5 and 2.6 review the (dense) REF Cholesky83

factorization and the SLIP LU factorization respectively. Note that, for the sake of84

simplicity, the descriptions in this section assume no row or column permutations are85

applied to the matrix A.86

2.1. Integer-Preserving Gaussian Elimination. Integer-preserving Gaus-87

sian elimination (IPGE) is an elimination process for solving a system of linear equa-88
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EXACT SOLUTION OF SPARSE SPD SLES 3

tions Ax = b. Given a full rank matrix A ∈ Zn×n and right hand side vector b,89

denote the kth iteration IPGE matrix as A(k) for k = 0, . . . , n (where A(0) = A).90

Let aki,j and ρk denote the individual entries of A(k) and the kth pivot element for91

1 ≤ i ≤ n, 1 ≤ j ≤ n, and 0 ≤ k ≤ n (with ρ0 = 1), respectively. Then, at iteration92

k, the IPGE algorithm computes the entries aki,j as follows:93

(1) aki,j =

{
ak−1i,j if i = k,
ρkak−1

i,j −a
k−1
k,j a

k−1
i,k

ρk−1 otherwise
94

Note that Equation (1) differs from traditional Gaussian elimination only in the95

denominator (in traditional Gaussian elimination, the division is by the current pivot,96

ρk, instead of the previous pivot). This seemingly minor modification leads to two97

key properties summarized below.98

Lemma 2.1. The divisions in Equation (1) are integral [14, 4, 36].99

Lemma 2.1 has been proven in three different manners.100

Both Edmonds and Bareiss prove the integrality of the IPGE entries by showing101

(each in a different way) that each IPGE entry is a subdeterminant of A. Specifically,102

by using row expansions, Edmonds [14] shows that each IPGE entry, aki,j , is equiva-103

lent to a corresponding subdeterminant of A. Bareiss [4] proves the integrality of the104

IPGE entries using Sylvester’s identity. Specifically, he shows that a block triangu-105

lar partitioning of A can be manipulated to to take the form of Sylvester’s identity106

[37], and then, uses various sub determinant properties to derive the IPGE equation.107

Montante-Pardo and Mendez-Cavazos [36] aim to prove the integrality of IPGE by108

induction; while this proof is good for building intuition, it falls short as they do not109

show the induction hypothesis to be true for a general k.110

Lemma 2.2. Let σ = max
i,j
|a0i,j |. Given an SPD matrix A, the maximum bit length111

to store any IPGE entry, denoted βmax, is upper-bounded polynomially as follows [33]:112

βmax ≤ dn log(σ)e.113

Lemma 2.2 is proved as follows. Since each IPGE entry is a subdeterminant of114

A, its worst case bit-length can be upper-bounded polynomially. This fact was first115

shown in [5] and further revised in [29, 16]. The current tightest bound known for116

SPD matrices is the one presented in Lemma 2.2 which was derived by [33] by using117

Hadamard’s bound for SPD matrices [23, 25]. Note that though this bound is currently118

the best known, it is pessimistic, as it is tight if and only if the matrix A is diago-119

nal. That said, Lemma 2.2 is the key property making IPGE preferable to rational-120

arithmetic Gaussian elimination. Specifically, IPGE achieves gratis the polynomial121

bound on the entries; in contrast, the bit-lengths of the numerators/denominators in122

rational-arithmetic algorithms grow exponentially without the usage of ancillary and123

computationally expensive greatest common divisor operations [43, 42].124

2.2. Traditional Up-Looking Cholesky Factorization. Given an SPD ma-125

trix A, the up-looking Cholesky factorization computes the sparse Cholesky factor-126

ization, A = LLT , one row at a time. Graphically, Figure 1 illustrates the data access127

pattern of up-looking Cholesky factorization. Specifically, at iteration k, up-looking128

Cholesky accesses the k−1×k−1 completed portion of L (denoted L(1 : k−1, 1 : k−1)129

and the first k entries of the kth row of A (denoted A(k, 1 : k)) and computes the kth130

row of L (thereby the kth column of LT ). Up-looking Cholesky factorization computes131
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4 C. LOURENCO AND E. MORENO-CENTENO

the kth row of L by solving a lower triangular linear system and then computing a132

square root. Formally, the solutions of the equations below yield the kth row of L,133

where x is the first k − 1 entries of this row and lk,k is the kth entry of the row.134

L(1 : k − 1, 1 : k − 1)x = A(k : 1 : k − 1)T ,135

136

lk,k =
√
a0k,k − xTx.137

Assuming that A has a fixed row/column ordering, the up-looking Cholesky fac-138

torization computes L in time proportional to only the number of intrinsic floating-139

point operations; meaning that the cost of these indispensable floating-point opera-140

tions asymptotically dominates the cost of all data access, manipulation, and ancil-141

lary operations. As a result, this algorithm’s computational complexity is directly142

proportional to its arithmetic work. Up-looking Cholesky factorization was derived143

in [40, 30, 3]; however, the modern version, which achieved the aforesaid asymptotic144

efficiency, was developed by [31].145

Fig. 1: Up-looking Cholesky Factorization

2.3. Traditional Left-Looking Cholesky Factorization. Given an SPD ma-146

trix A, left-looking Cholesky factorization computes the sparse Cholesky factorization,147

A = LLT , one column at a time. Graphically, Figure 2 illustrates the data acccess148

pattern of left-looking Cholesky factorization. Specifically, at iteration k, left-looking149

Cholesky accesses rows k, . . . , n of the first k − 1 computed columns of L (denoted150

L(k : n, 1 : k − 1)), the kth row of L (denoted L(k, 1 : k − 1)), the kth column of L151

(denoted L(1 : k − 1, k)) and the last n − k entries of the kth column of A (denoted152

A(k + 1 : n, k)). Formally, the equations below give the kth column of the matrix L.153

lk,k =
√
ak,k − L(k, 1 : k − 1) · L(k, 1 : k − 1)T ,154

155
L(k + 1 : n, k) = (A(k + 1 : n, k)− L(k : n, 1 : k − 1)L(1 : k − 1, k))/lk,k.156

Notice that, unlike up-looking Cholesky, left-looking Cholesky factorization is157

based on performing a matrix vector product (specifically, computing L(k : n, 1 :158
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EXACT SOLUTION OF SPARSE SPD SLES 5

k − 1) · L(1 : k − 1, k)). To the best of our knowledge, it is not claimed that this159

factorization meets the same asymptotically efficient complexity bound of up-looking160

Cholesky. Historically, left-looking Cholesky preceded the up-looking variants and can161

be attributed to [38, 40, 15, 18]. We conclude this subsection by noting that both left-162

looking and up-looking Cholesky factorization is used in the state-of-the-art package163

CHOLMOD [7] for solving sparse SPD systems. Specifically, up-looking Cholesky is164

utilized for very sparse input matrices while left-looking is used for all other matrices.165

Fig. 2: Left-looking Cholesky Factorization

2.4. LDL Factorization. Given an SPD matrix A, LDL factorization computes166

the sparse symmetric factorization, A = LDLT , where L is a unit lower triangular167

matrix and D is a diagonal matrix. In general, there are two variants of LDL fac-168

torization, the Bunch-Parlett LDL factorization (described below) [6] and the LDL169

factorization with a block diagonal D matrix. This second method, detailed in [12],170

is outside the scope of this paper as it is generally applied to symmetric indefinite171

linear systems.172

The Bunch-Parlett LDL factorization exploits the symmetry of an SPD input173

matrix; however, in contrast to Cholesky factorization, avoids the use of square roots.174

Thus, LDL factorization can be used with rational-arithmetic to exactly solve SPD175

linear systems. Specifically, the LDL factorization generalizes Cholesky factorization176

since the Cholesky factor L′ can be obtained from the LDL factors L and D as177

L′ = L
√
D [21].178

2.5. Dense REF Cholesky Factorization. The REF Cholesky factorization179

solves a dense SPD system of linear equations exclusively in integer arithmetic [16].180

Formally, the SPD matrix A ∈ Zn×n is factored as A = (L
√
D)(L

√
D)T = LDLT181

where D = diag(ρ0ρ1, ρ1ρ2, . . . , ρn−1ρn)−1 and the entries in L are IPGE entries182

(specifically, li,j = a
min(i,j)−1
i,j ). Note that this factorization is indeed an integral183

Cholesky factorization, as the matrix D is never explicitly constructed or used when184

solving SPD linear systems.185

2.6. SLIP LU. The SLIP LU factorization is a left-looking sparse factorization186

that computes the exact solution of a sparse linear system Ax = b solely using integer187
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6 C. LOURENCO AND E. MORENO-CENTENO

arithmetic. Based on the roundoff-error-free (REF) LU factorization [16], SLIP LU188

computes the factorization A = LDU one column at a time. At iteration k, SLIP LU189

accesses the first k − 1 columns of L, denoted L
(k−1)
L , and the first k − 1 columns of190

D augmented by the last n− k+ 1 columns of (1/ρk−1)I, denoted D
(k−1)
L , and solves191

the following linear system:192

L
(k−1)
L D

(k−1)
L x = A(:, k).193

The solution x to this linear system yields the (integral) kth column of the L and194

U matrices. However, this system can not be solved directly with a traditional lower195

triangular solve algorithm. Instead, it is solved in two phases: symbolic and numeric.196

Symbolically, the nonzero pattern of the kth column of L and U is computed via197

a graph algorithm. Namely, this algorithm performs a sequence of depth first searches198

(DFS) on a graph GL of n nodes, where a directed edge (i, j) exists if lj,i 6= 0. The199

nonzero pattern, denoted X , is given as the indices of the set of nodes reachable, via200

DFS, from each node j in which a0j,k 6= 0. This algorithm is referred to as obtaining the201

reach of the kth column of A on the graph of L and is denoted X = ReachGL
(A(:, k)).202

After X is computed, it is sorted prior to numeric computation.203

Numerically, this system is solved via a sequence of two operations. The first,204

referred to as a History Update, involves multiplying the entry xj by the current pivot205

and dividing it by a previous pivot which is an essential operation in order to exploit206

sparsity in IPGE. The second operation is referred to as an IPGE Update (Equation207

(1)). For completeness, this algorithm is given below as Algorithm 1.208

Algorithm 1 Sparse REF Triangular Solve

1: x = A(:, k)
2: X = ReachGL

(A(:, k))
3: sort(X )
4: Initialize history vector: hj = 0 ∀j ∈ X
5: for j ∈ X do
6: if j < k then
7: if hj < j − 1 then

8: History update: xj =
xjρ

j−1

ρhj

9: end if
10: for i > j and li,j 6= 0 do
11: if hi < j − 1 then

12: History update: xi = xiρ
j−1

ρhi

13: end if
14: IPGE update: xi =

ρjxi−li,jxj

ρj−1

15: History vector update: hi = j
16: end for
17: else
18: if hj < k − 1 then

19: History update: xj =
xjρ

k−1

ρhj

20: end if
21: end if
22: end for

Applied n times, Algorithm 1 factors the matrix A ∈ Zn×n by performing only209

This manuscript is for review purposes only.



EXACT SOLUTION OF SPARSE SPD SLES 7

the indispensable number of full-precision operations. This is in contrast to rational210

factorization, for example, which must perform ancillary greatest common divisor211

operations to limit bit-growth. To date, SLIP LU is the only sparse exact factorization212

method for solving unsymmetric linear systems in time proportional to the arithmetic213

work using the bit-complexity model [33] subject to the same caveat as (floating-point)214

up-looking Cholesky factorization, namely that the row/column ordering is fixed.215

3. Sparse REF Cholesky Factorizations. This section formally defines the216

two new sparse REF Cholesky factorizations, which can be applied to any rational217

SPD input matrix. Both factorizations are computed by repeatedly solving sparse218

lower triangular linear systems. Thus, in order to derive each factorization, we derive219

two new REF triangular solve algorithms which modify Algorithm 1 to exploit sym-220

metry. Subsection 3.1 derives Algorithm 2, the basis of the up-looking REF Cholesky221

factorization, and Subsection 3.2 derives Algorithm 3, the basis of the left-looking222

REF Cholesky factorization. Notice that, unlike the floating-point case, the left-223

looking REF Cholesky factorization requires solving lower triangular systems in order224

to guarantee integrality when computing the factorization (due to the interrelation of225

consecutive pivots in IPGE). Henceforth, all matrices are assumed to be SPD, and226

thus, ρk = ak−1k,k for all 1 ≤ k ≤ n with ρ0 = 1.227

3.1. Up-Looking REF Cholesky Factorization. Given an SPD matrix A,228

the up-looking REF Cholesky factorization computes a sparse version of the REF229

Cholesky factorization, A = LDLT , one row at a time. At iteration k, the up-looking230

REF Cholesky factorization accesses the first k − 1 rows and columns of L and D231

and computes the kth row of the REF Cholesky L matrix. Prior to presenting this232

factorization, we define the following notation:233

Definition 3.1. Let L
(k)
U and D

(k)
U denote the kth up-looking REF L and D ma-234

trices. Specifically, L
(k)
U and D

(k)
U are the first k completed rows and columns of L235

and D, respectively.236

Theorem 3.2 gives the up-looking REF Cholesky factorization.237

Theorem 3.2. The REF Cholesky factorization can be obtained in an up-looking238

fashion as follows. Initialize ρ1 = a01,1. Then, for k = 2, . . . , n, solve Equation (2)239

and subsequently apply Equation (3).240

(2) L
(k−1)
U D

(k−1)
U x = A(1 : k − 1, k),241

242

(3) ρk = ρk−1(a0k,k −
k−1∑
i=1

l2k,i
ρiρi−1

)243

Prior to proving this theorem, we present and prove the following Lemma.244

Lemma 3.3. For any k ∈ {2, . . . , n} suppose that L
(k−1)
U D

(k−1)
U is correct. Then245

solving Equations (2) and (3) yields the kth row of L. Specifically, x = L(k, 1 : k−1)T246

and ρk = L(k, k).247

Proof. To prove this Lemma, we will first derive an expression for entries 1 : k−1248

of the kth row of L and the pivot element using the first k rows and columns of the249

REF Cholesky factorization, that is LkU and Dk
U (notice that the first k − 1 rows250

and columns of this factor are Lk−1U Dk−1
U ). We will then show that these derived251
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8 C. LOURENCO AND E. MORENO-CENTENO

expressions are equivalent to Equations (2) and (3), respectively. The REF Cholesky252

factorization of A(1 : k, 1 : k) is given as:253

L
(k)
U D

(k)
U (L

(k)
U )T = A(1 : k, 1 : k)254

Let lk−1 and ak−1 denote entries 1 : k − 1 of the kth column of (L
(k)
U )T and A,255

respectively. Then, a 2× 2 block decomposition of the above factorization is:256 [
L
(k−1)
U D

(k−1)
U 0

lTk−1D
(k−1)
U L(k, k)D(k, k)

] [
(L

(k−1)
U )T lk−1

0 L(k, k)

]
=

[
A(1 : k − 1, 1 : k − 1) ak−1

aTk−1 a0k,k

]
257

Performing the matrix multiplication in the above decomposition, yields the fol-258

lowing two equations:259

(4) L
(k−1)
U D

(k−1)
U lk−1 = ak−1260

261

(5) lTk−1D
(k−1)
U lk−1 + L(k, k)D(k, k)L(k, k) = a0k,k262

Notice that Equation (4) is identical to Equation (2) thus x = lk−1.263

Likewise, recall that D = diag(ρ0ρ1, ρ1ρ2, . . . , ρn−1ρn)−1; thus D(k, k) = 1
ρkρk−1 ,264

L(k, k) = ρk and265

lTk−1D
(k−1)
U lk−1 =

k−1∑
i=1

L(k, i)2

ρiρi−1
266

Substituting the above expressions into Equation (5) and simplifying we obtain:267

k−1∑
i=1

l2k,i
ρiρi−1

+
ρk

ρk−1
= a0k,k268

Solving for ρk we obtain:269

ρk = ρk−1(a0k,k −
k−1∑
i=1

l2k,i
ρiρi−1

)270

The above equation is the same as Equation (3), which completes the proof.271

Now we prove the correctness of Theorem 3.2.272

Proof. This proof will use induction on k to show that solving Equations (2) and273

(3), for k = 1, . . . , n, correctly obtains the REF Cholesky factorization of A in an274

up-looking fashion.275

Base Case: k = 1. At step 1, we initialize ρ1 = l1,1 = a01,1. This is the correct276

first row of L.277

Induction Hypothesis: For all j < k assume that the solution of Equations (2)278

and (3) give the correct kth row of L. Then, for row k, the induction hypothesis279

tells us that L(k−1)D(k−1) is correct. Lemma 3.3 showed that since L(k−1)D(k−1) is280

correct, then Equations (2) and (3) correctly compute the kth row of L. Since this is281

true for an arbitrary k it is true for all k.282
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EXACT SOLUTION OF SPARSE SPD SLES 9

Theorem 3.2 shows how to compute the up-looking REF Cholesky factorization283

by solving a sequence of lower triangular systems (Equation 2). However, note that,284

solving this system directly via a traditional (floating-point) lower triangular solve285

algorithm would introduce roundoff errors (this is easily noticed in Equation (3)).286

In order to solve these systems without roundoff errors, one could simply use SLIP287

LU’s triangular solve algorithm (i.e., Algorithm 1). However, while avoiding roundoff288

errors, this approach would be inefficient for the following reasons: (1) Algorithm289

1 assumes that the system is lower trapezoidal not strictly lower triangular (since290

it is for left-looking LU), (2) Algorithm 1 performs its symbolic analysis without291

exploiting the special structure of SPD instances, and (3) Algorithm 1 computes the292

entire row/column which would double the work for Cholesky factorization. Thus,293

we modify Algorithm 1 to both exploit the properties of SPD matrices and symmetry294

(while maintaining its integer-preserving property) as follows:295

First, we modify the symbolic analysis. Since Equation (2) is a lower triangular296

system of the form L(k−1)D(k−1)x = A(1 : k − 1, k), the conditions for a nonzero297

entry in x are identical to those in the unsymmetric case, specifically: xj is nonzero298

if aj,k is nonzero or if both li,k and lj,i are nonzero for some i. Thus, it is valid to299

compute the nonzero pattern of x as the reach of the kth column of A on the graph of300

L. However, since the input matrix is SPD, the graph reachability can be computed301

more efficiently than in the unsymmetric case. Specifically, some of the conditions for302

a nonzero xj discussed above are redundant for an SPD matrix [39]; thus, instead of303

analyzing the graph of L as described in Subsection 2.6, a simpler graph, referred to304

as the elimination tree, can be used. As its name suggests, the elimination tree of305

the k − 1× k − 1 matrix L
(k−1)
U is an in-tree of k − 1 nodes (i.e., a directed tree with306

edges directed towards the root node), where node j is the parent of node i if the first307

off-diagonal nonzero in column i appears in row j. Then the nonzero pattern of x,308

denoted X , is given as the set of indices of all nodes reachable while traversing (up)309

the elimination tree beginning at each node j in which aj,k 6= 0 [30]. Consequently,310

this algorithm is referred to as obtaining the reach of the kth column of A on the311

elimination tree of A, and is denoted as X = ReachTA
(A(1 : k − 1, k)). Note that312

this algorithm is identical to the symbolic analysis step performed in traditional up-313

looking Cholesky factorization [31] due to the fact that the nonzero patterns of the314

REF and traditional Cholesky factorizations are identical [17].315

Second, we modify the numeric routines to improve efficiency as follows. The316

matrices L
(k−1)
U and D

(k−1)
U are of dimension k− 1× k− 1, thus this system is indeed317

lower triangular and not lower trapezoidal (as is the system solved by Algorithm (1)).318

As a result, the up-looking triangular solve does not have to determine whether a319

nonzero lies above or below the current pivot element (as is done in line 6 of Algorithm320

1). In addition, notice that computing Equation (3) directly is inefficient, as it requires321

access to previously computed entries in the kth row. Moreover, computing the pivot322

directly as shown is not guaranteed to preserve integrality. To remedy this issue, we323

note that Equation (3) is of the same format as Equation (8) of [33]; thus, as argued324

in that paper, it can be computed via a sequence of IPGE and History updates. To325

perform these operations, we update the value of ρk after obtaining the final value of326

each xj (since each xj = lk,j). These numeric modifications result in performing half327

the number of operations as the unsymmetric variant. Taken together, the symbolic328

and numeric improvements lead to Algorithm 2, an efficient and exact method to329

compute the kth row of the integer preserving Cholesky factor L.330
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10 C. LOURENCO AND E. MORENO-CENTENO

Algorithm 2 Symmetric Sparse REF Triangular Solve (Up-Looking)

1: Initialization: x = A(1 : k − 1, k)
2: Nonzero Pattern: X = ReachTL

(A(1 : k − 1, k))
3: sort(X )
4: Initialize history vector: hj = 0 ∀j ∈ X
5: Initialize pivot history value: h′ = 0
6: for j ∈ X : j 6= k do
7: if hj < j − 1 then

8: History Update: xj =
xjρ

j−1

ρhj

9: end if
10: for i > j do
11: if hi < j − 1 then

12: History Update: xi = xiρ
j−1

ρhi

13: end if
14: IPGE Update: xi =

ρjxi−li,jxj

ρj−1

15: History Vector Update: hi = j
16: end for
17: if h′ < j − 1 then

18: History Update: ρk = ρkρj−1

ρh′

19: end if
20: IPGE Update: ρk =

ρjρk−xjxj

ρj−1

21: History Vector Update: h′ = j
22: end for
23: if h′ < k − 1 then
24: History Update: ρk = ρkρk−1

ρhk

25: end if

3.2. Left-Looking REF Cholesky Factorization. Given an SPD matrix A,331

the left-looking REF Cholesky factorization computes a sparse version of the REF332

Cholesky factorization, A = LDLT , one column at a time. At iteration k, the left-333

looking REF Cholesky factorization accesses the first k − 1 columns of L and D and334

computes the kth column of L. Prior to presenting this factorization, we introduce335

the following notation.336

Definition 3.4. Let L
(k)
L and D

(k)
L denote the kth left-looking L and D matrices337

for k = 0, . . . , n. Specifically, L
(k)
L and D

(k)
L are the first k columns of L and D338

augmented by I and 1/ρk−1I, respectively.339

Theorem 3.5 formally introduces the left-looking REF Cholesky factorization.340

Theorem 3.5. The REF Cholesky factorization can be obtained in a left-looking341

fashion by solving Equation 6 for k = 1, . . . , n.342

(6) L
(k−1)
L D

(k−1)
L x = A(:, k)343

Theorem 3.5 follows directly from applying Theorem 3.1 and Lemma 3.2 of [33]344

to an SPD matrix. However, since the left-looking REF Cholesky factorization is345

algorithmically different than traditional left-looking Cholesky factorization, below346

we present an alternate proof of Theorem 3.5. This proof illustrates that computing347

x via the traditional approach (using a matrix-vector multiplication) does not preserve348
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EXACT SOLUTION OF SPARSE SPD SLES 11

integrality because it breaks the interrelation of consecutive pivots in IPGE; thus a349

specially-designed REF triangular solve algorithm must be used.350

Proof. We prove Theorem 3.5 via a 3× 3 block matrix decomposition. The REF351

Cholesky factorization of an SPD matrix A is given as A = LDLT . Let Li,j , Di,j ,352

and Ai,j , be the i,j block of L, D, and A, respectively. At iteration k, we decompose353

this factorization as follows:354 L1,1 0 0
L2,1 L2,2 0
L3,1 L3,2 L3,3

D1,1 0 0
0 D2,2 0
0 0 D3,3

LT1,1 LT2,1 LT3,1
0 LT2,2 LT3,2
0 0 LT3,3

 =

A1,1 AT2,1 AT3,1
A2,1 A2,2 AT3,2
A3,1 A3,2 A3,3

355

where the first row and column of the above matrices represent rows/columns 1 to356

k − 1, the second row and column represent row/column k, and the last row/column357

represent rows/columns k + 1 to n, respectively.358

Since this is a left-looking algorithm, we want to compute the kth column of L359

(i.e., L2,2 and L3,2). Via matrix multiplication, we obtain the following two equations:360

(7) L2,1D1,1L
T
2,1 + L2,2D2,2L

T
2,2 = A2,2,361

362

(8) L3,1D1,1L
T
2,1 + L3,2D2,2L

T
2,2 = A3,2.363

Since L2,2 = ρk and D2,2 = 1/(ρkρk−1), the expression L2,2D2,2L
T
2,2 is equivalent364

to ρk/ρk−1. Thus, we can solve Equation (7) for ρk as:365

ρk = ρk−1(A2,2 − L2,1D1,1L
T
2,1).366

Since A2,2 = a0k,k and L2,1D1,1L
T
2,1 =

∑k−1
i=1

l2i,k
ρi−1ρi , the above equation becomes:367

(9) ρk = ρk−1(a0k,k −
k−1∑
i=1

l2i,k
ρi−1ρi

).368

Next, since D2,2L
T
2,2 = 1/ρk−1, Equation (8) can be solved for L3,2 as:369

(10) L3,2 = ρk−1(A3,2 − L3,1D1,1L
T
2,1).370

Expanding the expression L3,1D1,1L
T
2,1, we obtain:371

L3,1D1,1L
T
2,1 =


∑k−1
i=1

lk+1,ilk,i

ρi−1ρi

...∑k−1
i=1

ln,ilk,i

ρi−1ρi

372

Finally, substituting the above expression into Equation (10) and solving for an373

arbitrary lj,k ∈ L3,2, we obtain:374

(11) lj,k = ρk−1(a0j,k −
j−1∑
i=1

lj,ilk,i
ρi−1ρi

) for j = k + 1, . . . , n.375

Note that Equations (9) and (11) are of the same format as Equation (8) from376

[33] (with ui,k = lTi,k = lk,i due to symmetry). Thus, as argued in that paper, in order377

to maintain integrality, these equations must be solved with a lower triangular solve378

function.379
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12 C. LOURENCO AND E. MORENO-CENTENO

Theorem 3.5 shows how to compute the left-looking REF Cholesky factorization380

by solving a sequence of lower trapezoidal systems (Equation 6). Similar to the381

discussion in Section 3.1, directly applying either a floating-point algorithm or SLIP382

LU’s triangular solve would be inexact or inefficient, respectively. Thus, we modify383

Algorithm 1 to both exploit the properties of SPD matrices and symmetry (while384

maintaining its integer-preserving property) as follows:385

Symbolically, the major difference is how the nonzero pattern X is computed.386

Computing the reach on the elimination tree (as described in Subsection 3.1) would387

only give the indices of the nonzeros located in the first k− 1 rows of the kth column388

of L. It is also possible to compute the reach directly as is done for LU factorization;389

but this is overly inefficient. Instead, as is done in other modern left-looking Cholesky390

factorizations, we preallocate the matrix L prior to factorization [8]. Essentially, this391

consists of analyzing the elimination tree to compute the entire nonzero pattern of L392

prior to the factorization; then, the unsorted X is given as input to the left-looking393

factorization.394

Numerically, we avoid half of the operations of the unsymmetric left-looking REF395

triangular solve. Specifically, the first k− 1 entries of x are given as the kth row of L396

(which has already been computed). Thus the first k − 1 entries are not recomputed397

and are only used to update the nonzeros located in rows k : n of x. This modification,398

along with the aforementioned symbolic analysis changes, lead to Algorithm 3, an399

efficient method to compute the kth column of the REF Cholesky factor L.400

Algorithm 3 Symmetric Sparse REF Triangular Solve (Left-Looking)

1: Initialization: x(1 : k − 1) = L(k, :), x(k : n) = A(k : n, :)
2: sort(X )
3: Initialize history vector: hj = 0 ∀j ∈ X
4: for j ∈ X do
5: if j < k then
6: for i > j : i ≥ k do
7: if hi < j − 1 then

8: History Update: xi = xiρ
j−1

ρhi

9: end if
10: IPGE Update: xi =

ρjxi−li,jxj

ρj−1

11: History Vector Update: hi = j
12: end for
13: else
14: if hj < j − 1 then

15: History Update: xj =
xjρ

j−1

ρhj

16: end if
17: end if
18: end for

4. Computational Complexity. This section derives the computational com-401

plexity of the up-looking and left-looking REF Cholesky factorizations. Prior to402

deriving these complexities, we introduce the following lemma.403

Lemma 4.1. Based on the best known fast Fourier transform algorithm, the cost404

of performing multiplications and divisions on two integers of bit length β is given by405

O(β log β log log β) [28, 41].406
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Also, given an SPD matrix A ∈ Zn×n with largest initial entry, σ, Lemma 2.2407

implies that the maximum bit-length required to store any entry in the REF Cholesky408

factorizations, denoted βmax, is:409

βmax ≤ n log σ.410

Prior to discussing the complexities of the sparse REF Cholesky factorizations,411

we note that, in contrast to the dense case, there are three special considerations412

common to all sparse matrix factorization complexity analyses:413

1. Most sparse algorithms preorder the input matrix, A. In the pre-ordering pro-414

cess, A is analyzed and its columns/rows are ordered to reduce fill/operations.415

Critically, this problem is NP-Hard; consequently, it is solved via heuristics.416

Most importantly, sparse factorization complexity analysis assumes that the417

order of the rows and columns of A is fixed (that is, the cost of symbolic418

preordering is never included in the complexity analysis of a sparse factoriza-419

tion).420

2. Sparse algorithms rely more heavily on manipulating intricate data struc-421

tures; indeed, poor data manipulation or failure to exploit special objects like422

the elimination tree can cause the algorithm to have the same asymptotic423

complexity as a dense algorithm [19, 8, 13].424

3. The number of arithmetic operations required to factorize a sparse matrix,425

A, does not depend exclusively on the matrix’ dimension, n, but it heav-426

ily depends on the number and structure of nonzeros in A. For example,427

in floating-point arithmetic, if A is tridiagonal it requires O(n) arithmetic428

operations; however, if A is dense it requires O(n3) arithmetic operations.429

Thus, in order to better capture the amount of work, and, more precisely, in order430

to better distinguish between the (sparsity-specific) overhead of data structure and the431

necessary (arithmetic) work, the complexity of sparse matrix algorithms is typically432

given in terms of the number of indispensable floating-point arithmetic operations433

performed, denoted f [8, 13]. For the examples above f = n if A is tridiagonal and434

f = n3 if A is dense. Thus, f is a convenient term to encapsulate the number of435

arithmetic operations performed by a sparse matrix algorithm (each of which, in the436

floating-point case, require O(1) work).437

Sparse matrix algorithms whose complexity depends solely on the cost of the arith-438

metic operations are called “proportional to arithmetic work” meaning that the cost439

of all ancillary operations is asymptotically dominated by the cost of the indispensable440

arithmetic work. For example, both Gilbert and Peierl’s left LU [19] and up-looking441

Cholesky [31] have complexities of O(f) meaning that the cost of the arithmetic work442

asymptotically dominates the cost of all other operations. Conversely, an algorithm443

such as right-looking factorization performs ancillary data manipulation which is not444

asymptotically dominated by the cost of the arithmetic operations. Lastly, though445

floating-point left-looking LU and up-looking Cholesky are asymptotically efficient,446

their rational-arithmetic counterparts are not due to their usage of ancillary greatest447

common divisor operations that are required to limit the bit-length growth of entries.448

To keep with this convention, we define two new terms: IU and IL which denote449

the total number of integer-arithmetic operations required to compute the sparse up-450

looking and left-looking REF Cholesky factorizations, respectively. Subsection 4.1451

presents and proves the computational complexities of both factorizations using these452

terms. Then, Subsection 4.2 provides bounds on IL and IU to provide intuition behind453

the meaning of these terms.454
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14 C. LOURENCO AND E. MORENO-CENTENO

4.1. Sparse REF Cholesky Complexities. Theorems 4.2 and 4.3 formally455

give the computational complexity of each factorization.456

Theorem 4.2. The computational complexity of the sparse up-looking REF Cholesky457

factorization is458

O(IU [βmax log βmax log log βmax]).459

Theorem 4.3. The computational complexity of the sparse left-looking REF Cholesky460

factorization is461

O(IL[βmax log βmax log log βmax]).462

Below, we prove Theorem 4.2. Since the proof of Theorem 4.3 is very similar, it is463

omitted for brevity. Prior to proving Theorem 4.2, we present and prove the following464

Lemma.465

Lemma 4.4. Let ÎU denote the total number of integer-arithmetic operations per-466

formed by the up-looking REF triangular solve, Algorithm 2. The computational467

complexity of this algorithm is468

O(ÎU [βmax log βmax log log βmax]).469

Proof. For Cholesky factorization, the nonzero pattern, X , is obtained by ana-470

lyzing the elimination tree; thus lines 1, 2, 3, and 4 have complexities O(|A(:, k)|),471

O(|X |), O(|X | log |X |), and O(|X |), respectively. Thus, the total cost of lines 1-4 is472

O(|X | log |X |). Note that |X | ≤ n because the vector is reused in between iterations473

and thus stays a constant size n throughout the factorization.474

Now, we analyze lines 5-24. As argued in Subsection 3.1 and in [19, 33], each475

IPGE operation corresponds to an equivalent Gaussian elimination operation and the476

triangular solve performs only the necessary number of operations, making these lines477

require O(ÎU ) total operations. Thus, the complexity for these lines is the total num-478

ber of operations multiplied by their cost, which is O(ÎU [βmax log βmax log log βmax]).479

To conclude the proof, we now show that the cost O(|X | log |X |) is dominated480

by the cost of operations O(ÎU [βmax log βmax log log βmax]). Since βmax = n log σ, we481

have:482

O(ÎU [βmax log βmax log log βmax]) = O(ÎU [n log σ log(n log σ) log log(n log σ)]).483

Thus, since |X | log |X | ≤ n log n, the complexity of Algorithm 2 is indeed:484

O(ÎU [βmax log βmax log log βmax]).485

We now prove Theorem 4.2.486

Proof. This complexity follows from Lemma 4.4. Specifically, the overall factor-487

ization consists of repeated triangular solves; thus, the complexity of its arithmetic488

operations is equal to the total number of operations performed, IU , multiplied by489

their cost. In addition, prior to factorization, the vectors X , h, and x are initialized490

requiring O(n). This leads to a complexity of O(n+ IU [βmax log βmax log log βmax]).491

(Note that the cost of creating the elimination tree of A is asymptotically dominated492

by using the tree in the triangular solve [8]).493

The proof is completed by noting that O(n) ⊂ O(IU ) since the factorization must494

perform at least one operation on each diagonal entry (lines 6-8 in Algorithm 2).495
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In a bit-complexity model, these complexities mean that both the up-looking and496

left-looking REF Cholesky factorizations solve the SPD linear system, Ax = b, in497

time proportional to integer-arithmetic work. To date, these are the only exact fac-498

torizations specifically tuned for SPD linear systems with this asymptotically efficient499

bound.500

4.2. Intuition on IU and IL. The complexities discussed above depend on501

the terms IU and IL which are the total number of integer-arithmetic operations502

required for up-looking and left-looking factorization, respectively. However, much503

like the term f in floating-point arithmetic, these terms can be quite vague. In this504

subsection, we discuss some bounds on these terms in order to both relate them to505

the dimension of the matrix and gain some intuition.506

First, note that each of these terms is lower bounded by n. Consider the case507

where A is diagonal. In this case, both the up-looking and left-looking algorithms must508

perform one multiplication and one division on each diagonal entry in rows/columns509

2 : n (lines 6-8 of Algorithm 2 and 14-16 of Algorithm 3, respectively). Thus, for a510

diagonal matrix, either algorithm must perform 2(n− 1) operations showing that IL511

and IU are both lower bounded by O(n).512

For an upper bound, consider the case where A is dense. In this case, there is513

no sparsity to be exploited and operations must be performed on every entry in the514

matrix. As a result, O(n3) operations are performed.515

This dramatic difference between the lower and upper bound provides further516

intuition as to why the complexity of sparse matrix algorithms are not given in terms517

of n. That said, for most sparse input matrices, it has been shown that the number518

of operations required in Cholesky factorization is in the range of [O(n3/2),O(n2)]519

[20, 19, 21].520

5. Computational Results. This section computationally analyzes the two521

new factorizations and is organized as follows. Subsection 5.1 describes the speci-522

fications of the computational study. Subsection 5.2 compares the two sparse REF523

Cholesky algorithms. Subsection 5.3 compares our sparse REF Cholesky factoriza-524

tions to a rational-arithmetic Bunch-Parlett LDL factorization [6] as well as the un-525

symmetric SLIP LU factorization. Lastly, Subsection 5.4 benchmarks the relative526

forward error of MATLAB sparse backslash on real world SPD systems.527

Throughout these computational tests, we use Dolan and Moré [11] performance528

profiles when comparing competing algorithms/approaches. Briefly, a performance529

profile is a tool which takes into account both the number of instances solved as well530

as the cost required to solve each instance. The performance of each algorithm cor-531

responds to a curve on a graph, where each point on the curve is what percentage of532

instances (y-axis) the algorithm solved within a time-multiple (x-axis) of the fastest533

solution time (among all algorithms) for each instance. An important property of per-534

formance profiles is that they are insensitive to the relative difficulty among different535

instances (i.e., they are not biased toward easy or hard instances). This is because536

given an instance, all solution times are relative to the fastest solver on that instance.537

The simplest way to interpret performance profiles is that the highest curve on the538

graph corresponds to the best performing algorithm. Lastly, as is common practice,539

all times in the performance profiles are shifted by 1 second, thereby precluding dra-540

matic yet potentially misleading results from instances with insignificant run time541

differences.542

5.1. Specifications.543
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5.1.1. Competitor Algorithms. Our first set of tests evaluate the run times of544

the sparse REF Cholesky factorizations. To date, direct methods could exactly solve545

SPD linear systems in one of two ways: rational-arithmetic Bunch-Parlett LDL fac-546

torization or exact unsymmetric LU factorization. In [33] it was shown that the SLIP547

LU factorization dramatically outperforms rational LU factorization. Thus, we com-548

pare our sparse REF Cholesky factorizations to rational-arithmetic LDL factorization549

and the SLIP LU factorization. The code for SLIP LU [32] was obtained from https:550

//github.com/clouren/SLIP LU and is also hosted at www.suitesparse.com. However,551

since we could not find a readily available, commercial-quality rational-arithmetic LDL552

factorization, we used the GNU Multiple Precision Artithmetic (GMP) [22] Library553

rational-arithmetic data type as a class template argument for the Eigen [26] solver’s554

LDL factorization routines. Henceforth, this rational LDL factorization is referred to555

as Q-LDL.556

5.1.2. Computing Environment. The experiments conducted in Subsections557

5.2 and 5.3 measure run time and were coded in C and performed on a computing558

node running CentOS 7.6.1810 which has 22 GB of RAM shared by two 2.8 GHz559

quad core Intel Xeon 5560 processors. The experiments conducted in Subsection 5.4560

measure the accuracy of MATLAB sparse backslash and were performed in MATLAB561

R2020a on a computer running Ubuntu 18.04 with 16 GB of RAM using a 4.0 GHz562

Intel Core i7-8550U CPU. As mentioned in the previous subsection, all full precision563

integer and rational arithmetic operations were performed with the GMP library.564

5.1.3. Chosen Instances. We tested our algorithms on a subset of the SuiteS-565

parse Matrix Collection [9], a collection of over 2800 real-world matrices arising from a566

vast array of applications. To obtain the subset of SPD instances from this collection,567

we first selected the instances which MATLAB flagged as SPD, and then verified if568

they were indeed SPD using our sparse REF Cholesky factorizations. We kept a total569

of 104 instances: all those which were both verified to be SPD and could be factor-570

ized within 24 hours. Appendix A includes the comprehensive results along with the571

indices of each selected matrix from this collection.572

5.1.4. Symbolic Analysis. Cholesky factorization algorithms are almost al-573

ways preceded by a symbolic analysis phase in which a permutation matrix P is574

chosen so that the Cholesky factorization of the matrix PAPT requires less work to575

compute than the direct factorization of A. Finding a permutation which minimizes576

the number of nonzeros in the Cholesky factor is NP-Complete [46]; similarly, finding577

a permutation which minimizes the total work required to perform a (floating-point)578

Cholesky factorization is NP-Hard [34]. Exact factorization differs from these prob-579

lems in that the total work to be performed is not only a function of the number of580

operations but also the cost of each operation (which is not constant). As a result,581

it is nearly certain that finding a permutation which minimizes the total work for582

these exact factorizations is also NP-Hard. Thus, for the symbolic analysis phase, we583

utilize the approximate minimum degree (AMD) ordering [1, 2], the state-of-the-art584

approach to efficiently reduce fill-in in the Cholesky factor. Specifically, we preordered585

all matrices with AMD prior to executing the exact REF or LDL factorizations.586

5.2. Comparison of Sparse REF Cholesky Algorithms. This subsection587

compares the performance of the left-looking and up-looking REF Cholesky factoriza-588

tions. Across all 104 instances the algorithms are essentially identical; the up-looking589

factorization’s average run-time was about 0.5% smaller than the left-looking’s run590

time, while the left-looking factorization’s geometric-mean run-time was about 1%591
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smaller than that of up-looking. Figure 3 confirms graphically that both algorithms592

perform almost identically. Specifically, Figure 3a is a performance profile showing593

that, for all of the instances, both algorithms’ run-times are within 7% of each other.594

Indeed, even though the profile appears to show that up-looking factorization is supe-595

rior, notice that the magnitude of differences between the two algorithms (i.e., the x596

axis) is practically insignificant. Figure 3b further illustrates this via a scatter plot of597

the run-time of both algorithms for each instance. Therein, any dot lying below the598

line corresponds to a matrix in which left-looking required more run-time, and vice599

versa. Note how the only minor performance differences occurred in instances where600

both algorithms ran in less than 1 second.601

(a) Left and Up-looking Perform Similarly

(b) Our sparse REF Cholesky factorizations are Nearly Identical

Fig. 3: Comparison of Left-looking and Up-looking Cholesky

5.3. Sparse REF Cholesky vs Alternate Direct Methods. This subsec-602

tion compares the performance of the sparse REF Cholesky factorizations to both603

the unsymmetric SLIP LU factorization and the rational LDL factorization (Q-LDL).604

Since the up-looking and left-looking REF Cholesky factorizations have similar per-605

formance; for simplicity, this subsection only compares the left-looking algorithm to606

the alternate direct methods.607

First, we compare left-looking REF Cholesky factorization to the SLIP LU fac-608
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torization. Since SLIP LU is an unsymmetric algorithm, we would expect it to require609

about double the run time of the left-looking REF Cholesky factorization. Across the610

104 instances, REF Cholesky was faster than SLIP LU for 85% of the instances with611

an average and geometric mean run time 1.70 and 1.86 times smaller, respectively.612

Note that these results are slightly biased in favor of SLIP LU as it could not factor613

6 of the instances within a 24 hour time period; thus its run time was set to this up-614

per bound. Graphically, we see these results via figure 4a which gives a performance615

profile comparing these two algorithms which shows that left-looking Cholesky fac-616

torization clearly outperforms SLIP LU. Fix. Similarly, Figure 4b, which is a scatter617

plot of the algorithm’s run-times, illustrates that Cholesky left-looking factorization618

outperforms SLIP LU on over 80% of the instances.619

While REF Cholesky outperforms SLIP LU, its dominance is not uniform as ex-620

pected. Specifically, SLIP LU outperforms REF Cholesky in about 15% of the test in-621

stances, a counter-intuitive result which would not occur in floating-point arithmetic.622

This behavior can be attributed to the interplay between the fundamental nature of623

SPD instances and the properties of integer-arithmetic factorization algorithms:624

1. The majority of SPD instances are diagonally dominant [21] meaning that625

the magnitudes of their diagonal entries are larger than the sum of all other626

entries in their respective row/column.627

2. Lourenco et al. [32] showed that IPGE-based algorithms, such as SLIP LU628

and REF Cholesky, perform best when small pivots are selected (specifically,629

in the unsymmetric case, selecting small pivots is about 4 times faster than630

selecting large pivots).631

3. Cholesky is bound to select the (large in magnitude) diagonal entries as pivots,632

while SLIP LU has the freedom to select (relatively smaller) off-diagonal633

pivots.634

Consequently, even though SLIP LU generally performs about twice as many op-635

erations as REF Cholesky, in a small subset of instances, the smaller cost of the636

operations in SLIP LU allows it to negate this disadvantage. Indeed, this result pro-637

vides motivation for the eventual development of an integral LDL factorization in the638

vein of [12] which would allow symmetric, off diagonal (thus smaller in magnitude)639

pivoting.640

We next compare left-looking REF Cholesky factorization to rational-arithmetic641

LDL factorization. Across the 104 instances, REF Cholesky is faster than rational642

LDL on 83% of the tested instances, and its average and geometric mean run-times are643

2.04 and 2.22 times smaller, respectively. Moreover, like SLIP LU, these results are644

slightly biased in favor of rational LDL, as this method could not factorize 8 instances645

within 24 hours; thus the run times for these matrices were set to this upper bound.646

These result support the following important observations:647

1. Rational-arithmetic is incredibly slow. Notably, this can be almost exclu-648

sively attributed to the rational-arithmetic operations (and, specifically to649

their intrinsic GCD operations) because both REF Cholesky and rational650

LDL return matrices with the same nonzero pattern (both utilize AMD as a651

preordering and pivot along the diagonal). Conversely, the savings of REF652

Cholesky over rational LDL can be almost entirely attributed to its use of653

fast integer-arithmetic.654

2. Sparse REF Cholesky factorization outperforms Q-LDL for over 80% of in-655

stances including every instance that requires more than two minutes except656

for one matrix (index 43). In contrast, the vast majority of the instances657

where Q-LDL is faster than left-looking REF Cholesky have insignificant run658
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(a) Left-looking Cholesky Outperforms SLIP LU

(b) Left-looking Cholesky Outperforms SLIP LU

Fig. 4: Comparison of Left-looking Cholesky with SLIP LU

times for both methods (less than 1 second).659

Graphically, the performance profile in Figure 5a and the scatter plot of the run-660

times in Figure 5b depict the superiority of REF Cholesky over rational LDL.661

We conclude this subsection with the following interesting note: Rational LDL662

factorization performs so poorly in general that it is slower than even the unsymmetric663

SLIP LU factorization. Altogether, these results present compelling evidence of the664

superiority of our sparse REF Cholesky factorizations over both the best available665

exact LU factorization (SLIP LU) and rational-arithmetic LDL factorization.666

5.4. Relative Forward Error of MATLAB Sparse Backslash. As dis-667

cussed in the introduction, Cholesky factorization is known to be normwise backward668

stable [45] meaning that the relative residual ||Ax − b||/(||A||||x||) is guaranteed to669

be in the neighborhood of machine precision. That said, a small relative residual does670

not necessarily mean that the solution x is close to the exact solution of the system671

[21]. In this section, we use our sparse REF Cholesky factorizations to benchmark672

the relative forward error of MATLAB backslash on our set of SPD matrices. For673

this purpose, we solve the linear system Ax = 1 in both MATLAB and with our674

sparse REF Cholesky factorization. Our exact solution is then converted to double675
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(a) Left-looking Cholesky Outperforms Q-LDL

(b) Left-looking Cholesky Outperforms Q-LDL in Run Time

Fig. 5: Comparison of Left-looking Cholesky with Q-LDL

precision (note that internally, this conversion is done in higher precision; thus this676

solution from REF Cholesky is accurate to machine precision). Finally, we compare677

this rounded-to-double exact solution, x(e), to the solution returned by MATLAB, x,678

by computing the relative forward error ||x(e) − x||/||x(e)|| using the 2-norm within679

MATLAB.680

Table 1 gives the relative forward error of MATLAB sparse backslash on the681

tested linear systems. Overall, the Cholesky routines produce nearly exact solutions682

(relative forward error less than 10−12) for 69% of tested instances and solutions with683

6 to 12 digits, 2-5, or fewer than 2 digits of precision for 23%, 5% and 3% of instances,684

respectively. While these results may seem troubling, it is important to contextualize685

them. Specifically, it is important to note that: (1) the majority of the instances686

in which the MATLAB solution was not accurate have a smallest singular value in687

the neighborhood of machine precision (as approximately computed with MATLAB688

dense SVD)—thereby meeting Demmel’s [10] criterion for floating-point Cholesky to689

fail; and (2) unlike the LU routines, the Cholesky routines within MATLAB sparse690

backslash do not perform any iterative refinement to fine tune the solutions.691

From these results we draw two conclusions. First, enabling iterative refinement692
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within MATLAB Cholesky routines would likely increase the accuracy of the solutions693

returned. Second, exact methods are necessary for a modest subset of real world694

problems in which finite-precision Cholesky factorizations are not adequate.695

Table 1: Relative Forward Error of MATLAB on SPD Linear Systems

Relative Forward Error Threshold Percentage of Instances
≤ 10−12 69.23%
≤ 10−6 92.31%
≤ 10−2 97.12%

6. Conclusion. This paper derives two new factorization algorithms which ex-696

actly solve sparse SPD linear systems exclusively using integer-arithmetic. Applied to697

a sparse matrix with a fixed row and column ordering, both derived algorithms have698

the property that their worst-case time complexity is proportional to the cost of the699

necessary integer-arithmetic work. Our derived sparse REF Cholesky factorizations700

require no square roots, thus they can be applied to any SPD linear system.701

Computationally, we show that the derived algorithms dramatically outperform702

both exact LU factorization and rational LDL factorization. Specifically, REF Cholesky703

outperforms the unsymmetric SLIP LU factorization and the rational LDL factoriza-704

tion on average by a factor of 1.7 and 2.04, respectively. Surprisingly, this shows705

that rational LDL is even outperformed by SLIP LU. Interestingly, SLIP LU outper-706

formed REF Cholesky on 15% of instances despite requiring twice the operations. We707

attribute this counter-intuitive result to the complex interplay between the number708

of operations performed and the cost of these operations. Specifically, unlike REF709

Cholesky which must select diagonal pivot elements (typically large in SPD matri-710

ces), SLIP LU is able to select pivots of small bit-length thereby reducing the cost of711

the exact operations. Additionally, we measured the relative forward error of MAT-712

LAB sparse backslash, showing that, as expected from the literature, it produced713

solutions of low accuracy on those instances which are highly ill-conditioned and/or714

have extremely small singular values.715

Altogether, these results (1) show REF Cholesky is the best among competing716

factorization approaches for exactly solving SPD linear systems, (2) provide evidence717

that fixed precision floating-point Cholesky factorization can fail on real world highly718

ill-conditioned systems which do not meet the stability bounds proposed by [45, 10,719

24], and (3) illustrate that commercial Cholesky routines would likely benefit from720

iterative refinement—a technique that is currently used in modern LU factorization721

routines.722

In conclusion, the derived sparse REF Cholesky factorizations provide a robust723

framework to exactly solve SPD linear systems. The code associated with these724

factorizations is hosted at https://github.com/clouren/IP Chol.725
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Appendix A. Comprehensive Computational Results.827

Tables 2, 3, and 4 present exhaustive computational results for all 104 tested828

instances sorted based on their run times. The first three columns of each table give829

the name (i.e., matrix index from SuiteSparse collection), dimension, and number of830

nonzeros of each matrix. Column 4 gives the run time of the left-looking Cholesky831

factorization. Finally columns 5, 6, and 7 give the run times of up-looking Cholesky,832

SLIP LU, and Q-LDL relative to left-looking Cholesky, respectively. Note that N/A833

in relative run times indicates that the algorithm could not factorize this instance834

within 24 hours. Lastly, any matrix whose solution had less than 2 digits of precision835

is bolded and colored red and any instance whose solution had between 2 and 6 digits836

of precision is italicized and colored blue.837

Relative Run Time
Matrix Index n nnz Left-Looking (hr) Up-Looking SLIP LU Q-LDL
888 9801 87025 21.89 1 N/A N/A
1330 7102 340200 20.14 0.99 N/A N/A
760 4704 104756 18.50 1 N/A N/A
887 9604 85264 17.68 0.99 N/A N/A
50 4410 219024 14.69 1 N/A N/A
46 3562 159910 12.92 1 1.23 N/A
791 8205 125567 12.28 0.99 N/A N/A
35 2003 83883 8.78 1.01 N/A N/A
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Relative Run Time
Matrix Index n nnz Left-Looking (hr) Up-Looking SLIP LU Q-LDL
360 4515 97707 8.57 0.99 1.61 1.93
413 6867 98671 5.20 0.99 1.22 3.51
2211 2000 41906 4.83 0.98 0.44 N/A
759 2910 174296 3.92 0.99 3.93 5.85
1214 4098 72356 2.16 1 N/A 3.17
758 2146 72250 2.00 0.99 1.33 4.74
440 3363 99471 1.85 1.02 3.97 3.66
43 3600 26600 1.31 0.99 3.38 0.58
36 1806 63454 1.25 1 1.56 5.39

Table 2: Results for Instances Greater than 1 Hour

Relative Run Time
Matrix Index n nnz Left-Looking (min) Up-Looking SLIP LU Q-LDL
359 1440 44998 57.61 1 2.05 6.09
357 726 34518 37.09 1 0.75 7.58
757 1824 39208 36.34 1 4.74 6.60
411 2568 75628 33.60 1 3.89 2.85
1437 19998 99982 26.24 0.95 2.31 8.12
889 9801 87025 24.47 1 0.12 3.65
31 1083 18437 16.26 0.99 0.95 6.79
228 1919 32399 14.33 1 2.36 2.16
48 1922 30336 14.28 1 6.87 3.74
34 1473 34241 13.70 1 1.34 3.67
33 1473 34241 13.66 1 1.36 3.77
427 1821 52685 13.58 0.99 2.87 2.97
1331 7102 170134 13.19 1 3.40 1.28
408 2548 57308 11.39 1 3.21 1.16
1439 19994 79966 10.27 0.93 4.41 3.89
407 2410 54840 10.20 1.01 3.54 1.26
49 1224 56126 9.00 1 1.68 6.51
30 1074 12960 7.51 1 10.54 4.19
1911 1282 30644 6.84 1 1.14 1.61
339 588 21418 4.48 1 1 5.90
430 1733 22189 3.49 1 2.38 1.71
219 960 15844 3.22 0.99 1.44 2.10
358 1050 26198 2.30 1 5.36 3.08
223 729 4617 1.89 1.06 3.06 2.01
67 1473 19659 1.71 0.99 3.01 0.76
2210 700 12654 1.61 1 0.36 13.32
32 1086 22070 1.22 0.98 2.60 2.80
1328 500 28726 1.01 0.98 4.03 4.58

Table 3: Results for Instances Between 1 Min and 1 Hour
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Relative Run Time
Matrix Index n nnz Left-Looking (s) Up-Looking SLIP LU Q-LDL
221 468 5172 58.150 1 1.99 0.31
28 420 7860 21.426 0.98 1.83 3.17
29 420 7860 21.025 0.99 1.86 3.23
2209 500 8478 19.073 1.01 0.56 14.42
62 420 7252 12.991 1 1.61 5.64
41 817 6853 12.838 0.98 2.47 3.31
222 675 3255 7.336 1 2.21 2.07
229 362 5786 5.094 1 1.33 3.62
929 415 2779 2.289 0.99 3.74 3.81
1401 2541 7361 2.173 0.92 7.65 0.01
4 685 3249 2.010 0.98 5.26 2.17
2208 300 4678 1.616 1 0.55 15.65
1 1138 4054 1.516 1.22 6.31 0.70
42 485 3135 1.219 1 2.12 3.61
75 15439 15439 1.014 1 1.36 0.02
875 306 2018 1.004 1 3.11 2.98
3 662 2474 0.991 0.96 6.40 2.20
876 306 2018 0.898 1.05 3.54 3.28
26 132 3648 0.649 0.81 1.73 5.12
1425 10001 49999 0.567 0.91 1.82 0.09
878 289 1377 0.538 1.12 1.97 4.38
206 147 2449 0.492 0.99 2.18 3.83
159 900 7744 0.450 0.98 0.40 5.86
27 153 2423 0.375 1.11 2.14 8.02
207 147 2441 0.348 1.03 2.32 5.13
2206 199 2873 0.241 1.12 0.93 17.23
2207 200 2890 0.240 1.16 0.83 16.42
2 494 1666 0.193 1.09 5.34 1.69
315 416 2312 0.104 1.13 3.02 0.09
1506 124 12068 0.101 0.94 1.46 11.35
2205 150 2040 0.097 1.02 1.20 14.99
73 3134 3134 0.094 0.76 0.88 0.06
24 66 4356 0.084 1.41 1.68 12.71
44 138 696 0.042 0.71 2.25 4.82
218 957 4137 0.028 1.22 2.64 0.26
76 1922 1922 0.028 1.04 1.08 0.10
220 100 594 0.021 0.63 2.56 5.74
23 48 400 0.015 1.70 2.02 7.97
63 1074 1074 0.014 1.04 0.74 0.15
66 1473 1473 0.012 1.64 1.26 0.22
873 48 306 0.009 0.96 0.87 5.97
877 289 1377 0.008 1.21 0.96 10.29
25 112 640 0.007 1.70 2.69 5.92
874 48 306 0.006 1.01 2.18 5.44
872 48 306 0.005 0.93 2.09 7.72
71 3600 3600 0.005 1.15 1.49 1.03
69 817 817 0.005 2.07 1.48 0.24
70 485 485 0.003 0.73 1.83 0.35
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Relative Run Time
Matrix Index n nnz Left-Looking (s) Up-Looking SLIP LU Q-LDL
1939 3240 3240 0.002 0.83 1.39 2.74
61 420 420 0.002 1.28 0.72 0.30
436 27 279 0.001 1.17 1.98 8.15
217 237 1017 0.001 1.52 3.37 1.44
60 153 153 0.001 0.36 1.41 0.34
1438 18 82 0.001 1.04 1.03 4.66
57 66 66 0.000 0.50 1.37 0.30
1440 14 46 0.000 0.84 0.52 3.06
2204 20 158 0.000 1.45 2.05 3.01
2203 19 147 0.000 1.42 2.11 5.54
72 138 138 0.000 0.94 2.06 1.36

Table 4: Results for Instances Less than 1 Minute
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