
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a
Sparse Left-Looking Integer-Preserving LU Factorization∗

CHRISTOPHER LOURENCO, United States Naval Academy, USA

JINHAO CHEN, Texas A&M University, USA

ERICK MORENO-CENTENO, Texas A&M University, USA and Instituto Tecnológico Autónomo de México,

México

TIMOTHY A. DAVIS, Texas A&M University, USA

SPEX Left LU is a software package for exactly solving unsymmetric sparse linear systems. As a component of the sparse exact
(SPEX) software package, SPEX Left LU can be applied to any input matrix, A, whose entries are integral, rational, or decimal, and
provides a solution to the system Ax = b which is either exact or accurate to user-specified precision. SPEX Left LU preorders the
matrix A with a user-specified fill-reducing ordering and computes a left-looking LU factorization with the special property that each
operation used to compute the L and U matrices is integral. Notable additional applications of this package include benchmarking the
stability and accuracy of state-of-the-art linear solvers, and determining whether singular-to-double-precision matrices are indeed
singular. Computationally, this paper evaluates the impact of several novel pivoting schemes in exact arithmetic, benchmarks the
exact iterative solvers within Linbox, and benchmarks the accuracy of MATLAB sparse backslash. Most importantly, it is shown that
SPEX Left LU outperforms the exact iterative solvers in run time on easy instances and in stability as the iterative solver fails on a
sizeable subset of the tested (both easy and hard) instances. The SPEX Left LU package is written in ANSI C, comes with a MATLAB
interface, and is distributed via GitHub, as a component of the SPEX software package, and as a component of SuiteSparse.

CCS Concepts: • Mathematics of computing → Solvers; Computations on matrices; Mathematical software performance;

Additional Key Words and Phrases: exactly solving linear systems, sparse linear systems, sparse matrix algorithms, roundoff errors,

exact matrix factorization

ACM Reference Format:
Christopher Lourenco, Jinhao Chen, Erick Moreno-Centeno, and Timothy A. Davis. 2022. Algorithm 1XXX: SPEX Left LU, Exactly
Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving LU Factorization. ACM Trans. Math. Softw. 1, 1, Article 1
(July 2022), 28 pages.
https://doi.org/0000001.0000001

∗This paper is dedicated to the memory of René Mario Montante-Pardo

Authors’ addresses: Department of Mathematics, US Naval Academy, Annapolis MD, email: lourenco@usna.edu; Department of Industrial and Systems
Engineering, Texas A&MUniversity, College Station TX, email: emc@tamu.edu; Department of Computer Science and Engineering, Texas A&MUniversity,
College Station TX, email: jinhchen@tamu.edu, davis@tamu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/0000001.0000001
e.moreno
Text Box
Please cite as:

Christopher Lourenco, Jinhao Chen, Erick Moreno-Centeno, and Timothy A. Davis. 2022. Algorithm 1021:
SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-looking Integer-preserving LU Factorization.
ACM Trans. Math. Softw. 48, 2, Article 20 (May 2022), 23 pages.
https://doi.org/10.1145/3519024

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

1 OVERVIEW

Exactly solving sparse systems of linear equations (SLEs) is a key subroutine of algorithms used to solve problems
arising in various fields including number theory [Dixon 1982; Wiedemann 1986], mathematical proofs [Hales 2005],
computational geometry [Burton and Ozlen 2012; Gärtner 1999], and exact linear/integer programming [Gleixner 2015;
Steffy 2011]. Moreover, solving a sparse SLE may require extended precision due to numerical instability [Higham 2002;
Klotz 2014] or a poorly scaled or highly ill-conditioned input matrix [Golub and Van Loan 2012; Horn and Johnson
2012]. Lourenco et al. [2019] derived the sparse left-looking integer-preserving (SLIP) LU factorization, which exactly
solves the sparse SLE, Ax = b exclusively using integer-arithmetic; thereby ensuring that the final solution to the
system is roundoff-error-free.

1.1 Contributions

We develop the Sparse Exact (SPEX) Left LU software package which implements the SLIP LU factorization in ANSI C
along with a MATLAB interface. The package performs all internal operations on full-precision integers (via the GNU
Multiple Precision Arithmetic (GMP) Library [Granlund et al. 2015]). SPEX Left LU either gives the exact solution to
the input linear system exactly (as a rational vector via the GMP library) or to any user defined precision (either double
or variable precision floating point via the GNU Multiple Precision Floating-Point Reliable (MPFR) library [Fousse
et al. 2007]). In the case of (double precision) floating point input, the input is scaled to integers by multiplying by 1016

(which is chosen, as explained briefly below, due to the fact that machine precision is 2.2204 ∗ 10−16); then, the solution
is exact to the scaled system. This makes sense as, given two numbers, whose magnitudes differ by ≈ 1016 or more, the
smaller number is, effectively, zero (i.e., x = 1018, y = 1, x +y == x ; and likewise, x = 1, y = 10−18, x +y == x .) In order
to obtain higher precision (i.e., to preserve the precision of all the matrix’s entries regardless of how relatively tiny they
are compared to the other matrix’s entries), the user can use MPFR input which allows (floating-point) numbers of
arbitrary digits of precision with “exact” conversion (thus, the exact number of digits are preserved).

The software package presented in this paper provides the first, commercial quality implementation of a direct
method to exactly solve sparse linear systems solely using integer arithmetic. The software is extremely reliable in two
aspects: (1) the code itself has undergone 100% test coverage along with scaffolding code to test loop invariants and
data sanity and (2) in terms of algorithmic reliability, as it guarantees to provide, with probability 1, an exact solution
unlike competitor approaches as further discussed in the computational results. To improve usability, the API of the
code was completely redesigned, the vast majority of the functions were rewritten since the publication of [Lourenco
et al. 2019], and an easy to use MATLAB interface is provided so that users can solve the linear system Ax = b and
obtain output in either double precision, variable precision, or a string of numerators and denominators through a
single line of MATLAB code, x = SPEX_Left_LU_backslash(A,b). Additionally, all user visible functions within the
code have been extensively documented. As a component of the SPEX software package, we envision SPEX Left LU to
be the first in a line of forthcoming codes to solve any sparse linear system exactly.

Moreover, an extra improvement contained in our package has ramifications beyond exactly solving sparse linear
systems. As mentioned above, SPEX Left LU is based on the GNU GMP [Granlund et al. 2015] and GNU MPFR [Fousse
et al. 2007] libraries, which are two of the most robust and widely used libraries for arbitrary bit-length integer, rational,
and extended floating point operations. However, despite the widespread use of these libraries, they handle memory
errors in an extremely low-level manner: for instance, when either library runs out of memory when performing
arithmetic operations (such as a = b × c), they will either segmentation fault or abort. While this approach is valid for

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 3

some software, other packages such as MATLAB and CPLEX require more robust error handling; thus, due to this issue,
GMP and MPFR are unsuitable to be used (or included within) this type of software packages. To alleviate this issue, we
developed generic wrappers for all GNU GMP/MPFR functions so that errors such as out of memory do not lead to
segmentation fault or abort. When coupled with our wrappers, GMP and MPFR (and thus any software that uses our
interface to GMP/MPFR) will simply indicate the memory issue and close cleanly. Note that, if a developer desires to use
our GMP/MPFR wrappers in other applications, they can be used independently of the SPEX factorization framework.

The paper concludes with a robust trio of computational studies. First, we show that our exact factorization performs
best when using a counter-intuitive partial pivoting scheme in which the kth pivot element is selected as the entry of
lowest magnitude in the kth column. This is in contrast to floating-point left-looking algorithms such as Gilbert and
Peierls [Gilbert and Peierls 1988] or KLU [Davis and Palamadai Natarajan 2010] which must perform partial pivoting on
entries with large magnitude in order to maintain floating-point numerical stability. Second, we utilize SPEX Left LU to
benchmark the accuracy of the state-of-the-art sparse matrix solver within MATLAB, illustrating that this commercial
solver may produce inaccurate solutions for about 3% of real world “well behaved” instances, and up to 37% of real world,
singular-to-double-precision instances. Third, we compare SPEX Left LU to an alternate method of exactly solving
sparse linear systems, iterative black-box approaches. These tests show that our factorization outperforms in run time
the iterative methods for easy instances while the iterative methods outperform SPEX Left LU on the hard instances.
As a result, this paper presents evidence that SPEX Left LU is among the state-of-the-art methods to exactly, efficiently,
and reliably solve sparse linear systems; specifically, on small and medium sized instances without an abundance of fill.

1.2 Organization

The remainder of this paper is organized as follows. Section 2 gives a brief overview of the underlying algorithms
used in the SPEX Left LU package. Section 3 describes the implementation of the SPEX Left LU package. Section 4
computationally compares pivoting schemes for the exact factorization, benchmarks the accuracy of MATLAB sparse
backslash, and compares SPEX Left LU to alternate iterative exact methods for solving sparse linear systems. Finally,
Section 5 concludes the work.

2 THE SLIP LU FACTORIZATION

This section provides a brief overview of the SLIP LU factorization, the basis of SPEX Left LU. For simplicity, the
description below assumes that no row and column permutations are applied to the matrix A, an assumption that is
removed for the remainder of the paper. See [Lourenco et al. 2019] for an in-depth discussion and theoretical derivation
of the factorization.

Based on integer-preserving Gaussian elimination (IPGE) [Bareiss 1968; Edmonds 1967; Montante-Pardo and Méndez-
Cavazos 1977], its improvements [Lee and Saunders 1995], and left-looking LU factorization [Gilbert and Peierls 1988],
the SLIP LU factorization expands the (dense) roundoff-error-free (REF) LU factorization [Escobedo andMoreno-Centeno
2015] to the sparse case. Given an input matrix, A ∈ Zn×n , and right hand side vector, b ∈ Zn×1, SLIP LU computes
the sparse factorization A = LDU , where L,U ∈ Zn×n and D is a diagonal matrix. Note that, if A is rational or decimal,
the SLIP LU package makes A integral by multiplying its entries by the least common multiple or appropriate power
of 10, respectively. Then, using specialized sparse integer-preserving forward and backward substitution algorithms,
the SLIP LU factorization solves the system LDU x = b, where x ∈ Qn×1, using only integer-arithmetic. The key
property of SLIP LU is that, in the bit-complexity model, it solves the linear system Ax = b in time proportional
to the arithmetic work. This means that all of the overhead related to data structures and ancillary operations is

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

asymptotically dominated by the cost of the arithmetic operations required to compute the factorization. Notably, this
property is not trivial in sparse-matrix algorithms; indeed, to the best of our knowledge, there are only two other sparse
factorizations that achieve this asymptotically efficient complexity bound (when implemented with any fixed precision
type): Gilbert and Peierls’ left-looking LU factorization [Gilbert and Peierls 1988] and Liu’s up-looking Cholesky
factorization [Liu 1991]. In contrast, exact factorization approaches based on arbitrary precision rational arithmetic
(opposed to our factorization which is based on arbitrary precision integer arithmetic) for solving sparse linear systems
cannot achieve such asymptotic efficiency due to their usage of ancillary, computationally expensive greatest common
divisor operations.

Prior to reviewing the factorization, we introduce the following notation:

Definition 2.1 (IPGE Algorithm). Let A(k) denote the kth iteration IPGE matrix, for 0 ≤ k ≤ n, with A(0) = A.
Additionally, let a(k)i, j denote the individual entries of A

(k) for 1 ≤ i ≤ n, 1 ≤ j ≤ n, and 0 ≤ k ≤ n. At iteration k , the

IPGE algorithm computes entry a(k)i, j as follows:

a
(k)
i, j =


a
(k−1)
i, j if i = k,
a(k−1)k,k a(k−1)i, j −a(k−1)k, j a(k−1)i,k

a(k−2)k−1,k−1
otherwise.

(1)

Definition 2.2. Let ρ(k) denote the kth pivot element chosen during the SLIP LU factorization, for 0 ≤ k ≤ n, with
ρ(0) = 1. In terms of IPGE entries ρ(k) = a

(k−1)
k,k .

Definition 2.3. Let L(k) and D(k) be the kth left-looking L and D matrices, respectively, for k = 0, . . . ,n. Specifically,
L(k) and D(k) are the first k completed columns of L and D augmented by the last n − k columns of I and (1/ρ(k))I ,
respectively.

Definition 2.4. Let A(:,k) denote the kth column of the matrix A, for 1 ≤ k ≤ n.

The SLIP LU factorization is a left-looking LU factorization algorithm; thus, at iteration k , it computes the kth column
of the matrices L andU . To do so, it solves partial lower triangular linear systems of the form L(k−1)D(k−1)x = A(:,k)
for k = 1, . . . ,n. Formally, the solution to Equation (2) yields the kth column of L andU .

L(k−1)D(k−1)x =



1
ρ (0) 0 0 0

0
l2,1
ρ (1)

1
ρ (1) 0 0

...
. . .

lk−1,1
ρ (1) 1

ρ (k−2)

lk,1
ρ (1)

lk,k−1
ρ (k−2)ρ (k−1)

1
ρ (k−1) I...

...
ln,1
ρ (1)

ln,k−1
ρ (k−2)ρ (k−1)





x1

x2
...

xn


=



a
(0)
1,k

a
(0)
2,k
...

a
(0)
n,k


. (2)

In order to solve Equation (2), a sparse REF lower triangular solve algorithm, Algorithm 1, was derived. Algorithm 1
solves this system in two phases: symbolic and numeric.

Symbolically, Algorithm 1 first computes the nonzero pattern of x, denoted X, via a graph search algorithm.
Specifically, this algorithm operates on a graph of n nodes where a directed edge (i, j) exists if lj,i is nonzero. It performs
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 5

a sequence of depth first searches, each rooted on each of the nonzeros in A(:,k). Consequently, this algorithm is
referred to as obtaining the reach of the kth column of A on the graph of L and is denoted X = ReachGL (A(:,k)). This
algorithm outputs the nonzeros in topological order, which is sufficient for traditional lower triangular solve algorithms
[Gilbert and Peierls 1988]. However, in order to preserve integrality, SLIP LU requires that this nonzero pattern is sorted
with respect to the row indices.

Interestingly, unlike floating-point left-looking LU, the cost of the integer-arithmetic operations dominate the sort;
thus, as per Theorem 4.8 of [Lourenco et al. 2019], this sort does not impact the asymptotic efficiency of SLIP LU.

With the nonzero pattern X in hand, Algorithm 1 next computes the numeric values of x. This is done via a sequence
of two operations referred to as a History update and IPGE update. A History update consists of multiplying x j by the
the current pivot and dividing it by a previous pivot; an operation which is essential to exploiting sparsity in IPGE. An
IPGE update consists of a single step of IPGE (i.e., Equation 1) applied to entry x j . This algorithm is the basis of the
numeric factorization of SLIP LU; thus, it is presented below for completeness.

Algorithm 1 Sparse REF Lower Triangular Solve

1: x = A(:,k)
2: X = ReachGL (A(:,k))
3: sort(X)
4: Initialize history vector: hj = 0 ∀j ∈ X

5: for j ∈ X do
6: if j < k then
7: if hj < j − 1 then

8: History update: x j =
x j ρ (j−1)

ρ (hj)

9: end if
10: for i > j and li, j , 0 do
11: if hi < j − 1 then
12: History update: xi =

xi ρ (j−1)

ρ (hi)

13: end if
14: IPGE update: xi =

ρ (j)xi−li, jx j
ρ (j−1)

15: History vector update: hi = j
16: end for
17: else
18: if hj < k − 1 then

19: History update: x j =
x j ρ (k−1)

ρ (hj)

20: end if
21: end if
22: end for

3 FEATURES OF THE SPEX LEFT LU PACKAGE

This section gives a brief overview of the features of SPEX Left LU. For an in-depth discussion of the C and MATLAB
interfaces to this package, we refer the reader to the user guide included with the software package.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

3.1 Software Dependencies

Both the C and MATLAB implementation of SPEX Left LU require the installation of four external software libraries.
The first two libraries, the GNU multiple precision arithmetic library (GMP) [Granlund et al. 2015] and GNU multiple
precision floating-point reliable library (MPFR) [Fousse et al. 2007], are distributed independently from SPEX Left
LU. The other two libraries, the approximate minimum degree (AMD) ordering [Amestoy et al. 2004], and column
approximate minimum degree (COLAMD) ordering [Davis et al. 2004], are distributed along with SPEX Left LU; however,
they may also be independently obtained via SuiteSparse [Davis et al. 2014].

3.2 Functionality of SPEX Left LU

Using the SPEX Left LU package to exactly solve a sparse linear system Ax = b comprises five phases: input, column
preordering, factorization, forward/backward substitution, and output.

The input phase of SPEX Left LU creates a scaled (if necessary) copy of the user’s input matrix to use for all further
routines. This copy is stored in sparse compressed column form and its numeric entries are full precision integers via
GMP’s big integer (mpz_t) data structure. The user’s input matrix may be stored in either triplet, sparse compressed
column, or dense format. The numeric entries in the user’s matrix may be read from: GMP big integer (mpz_t), GMP
rational numbers (mpq_t), MPFR variable precision floating-point numbers (mpfr_t), double precision numbers, or 64
bit integers (int64_t). For all of the inexact input data types, the values in the matrix are assumed to be accurate to the
defined precision. All matrices in this package are stored in a SPEX_matrix struct.

The column preordering phase of SPEX Left LU reorders the columns of the matrix A in order to reduce the number
of nonzeros in the ensuing L and U factors. By default SPEX Left LU uses the COLAMD ordering [Davis et al. 2004];
however, AMD [Amestoy et al. 2004] can be used, or the matrix can be factorized with no column reordering, instead.

The third phase of SPEX Left LU is the integer-preserving factorization. It computes the factorization LDU = PAQ

by performing n iterations of the sparse REF lower triangular solve, Algorithm 1, described in Section 2. By default, the
pivot matrix P is selected via a partial pivoting scheme in which the kth pivot is the diagonal entry if its magnitude
is smallest in column k , otherwise it is the smallest entry in column k . SPEX Left LU allows various other pivoting
schemes; refer to the user guide for details.

The forward/backward substitution phase of SPEX Left LU uses the integral factorization to solve the linear system
Ax = b. This is done via REF forward substitution [Escobedo and Moreno-Centeno 2015; Lourenco et al. 2019], which
entails solving the system LDy = Pb, and backward substitution which entails solving the system U z = det(A)y, where
det(A) is the determinant of the A matrix (which is the nth pivot of the factorization). After completing backward
substitution, the exact rational solution of the system Ax = b is given as x = z/det(A). At this point, x is rational and
guaranteed to be exact.

The output phase of SPEX Left LU returns the solution vector(s) x to the user. In C, the user can obtain x in rational
form (via GMP mpq_t data type) or it can be rounded to either double precision or a user specified floating point
precision (via the MPFR mpfr_t data type). In MATLAB, the user can obtain x in either double precision, extended
precision via MATLAB vpa, or a cell array of rational strings. Note that roundoff error in floating-point types is only
accrued in this final conversion from rational arithmetic. SPEX Left LU utilizes higher precision for this conversion;
thus, double precision output is accurate to machine roundoff (approximately 2−52 ≈ 2.22 ∗ 10−16 [Kahan 1996]), while
multiple precision output is accurate to the user’s specified precision.

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 7

3.3 Improvements to GMP and MPFR made in SPEX

The GMP and MPFR libraries may suffer from run-time errors due to lack of memory or invalid user input. By default,
both of these libraries abort the user’s application if any internal routine fails, which is not acceptable in a robust
end-user application. Thus, to improve the stability of these two libraries, we developed a set of wrappers for all
utilized GMP and MPFR functions which properly handle out of memory conditions or errors due to user input via
the ANSI C longjmp function and a global memory heap manager. As a result, the SPEX package will not crash due
to memory issues or invalid user input. Our wrapper class for all utilized GMP and MPFR functions is described in
SPEX/SPEX_Util/Source/SPEX_gmp.c and Include/SPEX_Util.h. Our implementation can be extended to any other
GMP or MPFR function, by following the template given in those two files. Moreover, these wrapper functions can be
used independently of the SPEX factorization routines; for this, a developer only needs to include SPEX_Util.h in their
code to use out GMP/MPFR wrappers in their applications.

4 COMPUTATIONAL TESTS

This section presents a computational study of the SPEX Left LU package. Section 4.1 describes the computing
environment used. Section 4.2 discusses the set of instances used for testing. Section 4.3 computationally compares
various pivoting schemes within SPEX Left LU. Section 4.4 benchmarks the accuracy of MATLAB sparse backslash.
Finally, Section 4.5 compares the SPEX Left LU factorization to the (exact) iterative methods within Linbox [Dumas
et al. 2002].

4.1 Computing Environment

The experiments conducted in Sections 4.3 and 4.5.2 measure run time and were coded in C and performed on a
computing node running CentOS 7 with 192GB of RAM shared by two 2.0 GHz Intel Xeon 6138 processors with 20 cores.
The experiments conducted in Sections 4.4 and 4.5.1 measure accuracy and were performed on both the aforementioned
computing node as well as in MATLAB R2020a on a computer running Ubuntu 18.04 with 32GB of RAM using a 3.7
GHz Intel Core i9-10900K CPU with 20 cores.

Throughout these computational tests, we use Dolan and MorÃľ [Dolan and Moré 2002] performance profiles when
comparing competing algorithms/approaches. Briefly, a performance profile is a tool which takes into account both
the number of instances solved as well as the cost required to solve each instance. The performance of each algorithm
corresponds to a curve on a graph, where each point on the curve is what percentage of instances (y-axis) the algorithm
solved within a time-multiple (x-axis) of the fastest solution time (among all algorithms) for each instance. An important
property of performance profiles is that they are insensitive to the relative difficulty among different instances (i.e., they
are not biased toward easy or hard instances). This is because given an instance, all solution times are relative to the
fastest solver on that instance. The simplest way to interpret performance profiles is that the highest curve on the graph
corresponds to the best performing algorithm. Note that, as is common practice, all times were shifted by 1 second.

4.2 Set of Test Instances

We tested the factorization on 441 matrices arising from the BasisLIB_INT (available at either [Steffy 2010a] or [Steffy
2010b] and the San Jose State University Singular Matrix repositories (available at [Foster and Botev 2009] and within
MATLAB via the SJget interface).

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

The BasisLIB_INT repository is a collection of 276 integral real world LP basis matrices and right hand side
vectors obtained as output from the QSopt_ex solver [Applegate et al. 2007a,b]. The matrices within the BasisLIB_INT
repository were used as a test bed for exact rational factorization algorithms within linear programming [Cook and
Steffy 2011; Gleixner 2015; Steffy 2011]; thus are a strong test set for the SPEX Left LU factorization.

The San Jose State University Singular Matrix database contains 700 matrices arising from real world applications;
these matrices are highly ill-conditioned and claimed to be numerically singular to double precision. This database
of matrices was used in [Foster and Davis 2013] to evaluate the accuracy of SPQR_RANK, a library for computing
accurate solutions of nearly singular linear systems, and computations on rank deficient matrices such as estimating the
numerical rank and computing null space bases. It is based on a sparse QR factorization using conventional floating-point
arithmetic. For nearly singular matrices, SPQR_RANK is far more accurate than the MATLAB backslash, but it is only
intended for computing highly-accurate solutions, not exact ones, which is the purpose of SPEX Left LU. Of the 700
matrices within the database, 480 are square. We printed the square matrices to 16 decimal digits of precision and
attempted to factorize them with SPEX Left LU. Of these matrices, SPEX Left LU determined that 165 were nonsingular,
228 were singular, and the remaining 87 could not be classified after 24 hours of run time. Henceforth, these 165
nonsingular matrices will be referred to as the SJ database. For convenience, the 165 printed to 16 decimal digits matrices
can be found at [Foster and Botev 2022].

4.3 Pivoting Schemes in SPEX Left LU

Lourenco et al. [2019] used a partial pivoting scheme in which the smallest nonzero entry in each column is selected as
the pivot element with the conjecture that this pivoting scheme would reduce the bit-length of entries in the ensuing
submatrix (consequently reducing the factorization time). However, no extensive computational tests were performed
to test this conjecture. In this section, we set all parameters to their default values and computationally compare several
pivoting schemes to test their impact on the factorization time.

First, we test the hypothesis that small pivoting dominates large pivoting by testing these two schemes: small, the
(first) smallest entry in column k is selected as the kth pivot and large, the largest entry in column k is selected as the
kth pivot. Across the 441 instances, small pivoting lead to a faster factorization on 86% of the matrices while being
approximately two times faster on average (note that large pivoting timed out on 5 instances from the SJ database; thus
its run time was set to the upper bound of 24 hours). Graphically, we illustrate the clear superiority of small pivoting
via the performance profile given in Figure 1. In this profile, we see that small pivoting completely dominates large
pivoting.

Fig. 1. Small Pivoting Dominates Large Pivoting on All Matrices

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 9

(a) Small Dominates Diagonal Pivoting

(b) Small dominates tol 0.1 (c) Small dominates tol 0

Fig. 2. Comparison of Small Pivoting Schemes

Since small pivoting dominated large pivoting, we next determined what version of small partial pivoting works best.
To do so, we tested four pivoting schemes: the small pivoting scheme, as well as 3 additional schemes that select the
diagonal element if it is within some tolerance of the smallest pivot. The three new methods select the kth pivot as
follows: diag: if it is nonzero, the diagonal entry is selected as the kth pivot, otherwise the smallest entry in the column
is the pivot element, tol 0: the diagonal entry is selected as the pivot if it has the same magnitude as the smallest entry,
otherwise the smallest entry is selected, and tol 0.1: the diagonal entry is selected as the pivot if its magnitude is within
10% of the smallest entry, otherwise the smallest entry is selected. Numerically, the run times of small, tol 0, and tol 0.1
were very similar; thus, we compare these pivoting schemes via a sequence of performance profiles. First, we show that
diag is the worst of these four pivoting schemes via Figure 2a. In this performance profile, we notice that each of small,
tol 0, and tol 0.1 dominate diag pivoting across all instances. It also appears from this figure that small is the superior
pivoting scheme. In order to verify this, we perform two pairwise comparisons which compare small, tol 0, and tol 0.1.
Figure 2b indicates that small dominates tol 0.1 and Figure 2c indicates that small slightly outperforms tol 0; however,
the magnitudes of run times difference is so slight (note the scale of the x-axis) that practically speaking these three
pivoting schemes are identical on this data set.

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

4.4 Accuracy of MATLAB Sparse Backslash

This section utilizes SPEX Left LU to benchmark the accuracy of MATLAB sparse backslash, the state-of-the-art solver
for sparse linear systems. To benchmark the MATLAB backslash, we compute the exact solution of the linear system
using SPEX Left LU and report this solution to double precision. Then, we compare the solution obtained from SPEX
Left LU to the solution obtained from MATLAB. Note that, for a sparse unsymmetric input matrix A, MATLAB sparse
backslash utilizes the unsymmetric multifrontal package (UMFPACK) [Davis 2004] to compute its LU factorization,
sometimes followed by one or more steps of iterative refinement.

Table 1 shows the forward and backward error of both methods on the BasisLIB_INT repository. Note that xs refers
to the exact solution obtained from SPEX Left LU. From this table, we see that our trust in the accuracy of commercial
sparse solvers is mostly justified. Namely, backslash produces a nearly exact solution (i.e., error less than 10−12) for
over 95% of the matrices in the collection and only fails to find a suitable solution (i.e., error more than 10−2) for less
than 3% of the matrices. We also note that both backslash and SPEX Left LU do not meet a strong relative forward error
bound (∥Ax − b∥/∥b∥) for approximately 5% of instances, illustrating those matrices which are so poorly conditioned,
the matrix vector multiply Ax induces large roundoff error.

Table 1. Accuracy of Commercial Solvers Computing x (BasisLIB)

Threshold Error Method
SPEX Left LU Backslash

≤ 10−12 ∥xs − x ∥/∥xs ∥ N/A 95.65%
∥Ax − b∥/∥b∥ 93.12% 92.75%

≤ 10−6 ∥xs − x ∥/∥xs ∥ N/A 96.74%
∥Ax − b∥/∥b∥ 94.57% 94.20%

≤ 10−2 ∥xs − x ∥/∥xs ∥ N/A 97.10%
∥Ax − b∥/∥b∥ 94.93% 94.57%

Likewise, Table 2 shows the accuracy of these solvers on the 165 identified nonsingular matrices from the SJ database.
For these tests, we utilize a right hand side vector, b, as a vector of all ones. For this repository, we see that backslash
produces a nearly exact solution (i.e., error less than 10−12) for only 31% of the matrices, a decent solution (i.e., error
less than 10−6) for 46% of the matrices, but produces a poor solution (i.e., error more than 10−2) for 28% of the matrices.
These results, though dramatic, are not surprising, based on the fact that the error bound on ∥Ax − b∥/∥b∥ for both
SPEX Left LU and backslash is poor for all measured thresholds, indicating this collection is incredibly ill-conditioned.
In general, one would expect error bounds more similar to those of Table 1; however, the SJ database represents a
collection of matrices in which exactness is required in order to obtain solutions to linear systems which are flagged as
numerically singular.

4.5 Comparison to Iterative Exact Methods

The purpose of this section is illustrate the relevance of our approach by presenting our contributions in the light of a
broader context and compare our methods to the state-of-the-art in terms of both algorithmic aspects and software
implementations. In addition to direct methods (which were the focus of the paper up to this section), iterative methods
are a widely-used alternative to direct (e.g., factorization based) approaches to solve sparse linear systems. Iterative
methods have notably been extended to exactly solve (with high-probability) sparse linear systems; two of the approaches
at the forefront of these efforts make use of either Chinese remaindering or p-adic lifting [Dixon 1982] on top of either
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 11

Table 2. Accuracy of Commercial Solvers Computing x (SJ database)

Threshold Error Method
SPEX Left LU Backslash

≤ 10−12 ∥xs − x ∥/∥xs ∥ N/A 30.91%
∥Ax − b∥/∥b∥ 11.51% 10.91%

≤ 10−6 ∥xs − x ∥/∥xs ∥ N/A 46.06%
∥Ax − b∥/∥b∥ 39.39% 45.45%

≤ 10−2 ∥xs − x ∥/∥xs ∥ N/A 72.12%
∥Ax − b∥/∥b∥ 67.72% 67.88%

Wiedemann’s [Wiedemann 1986] algorithm or block Lanczos iterations [Eberly and Kaltofen 1997; Hovinen 2004; Simon
1984].

We compare our exact factorization to the exact iterative routines within LinBox [Dumas et al. 2002] for the following
reasons: (1) LinBox is extremely comprehensive: it includes tools for exact linear algebra computations over integers,
rational numbers, and finite fields and rings; it can solve linear systems, and compute several matrix invariants, such as
minimal and characteristic polynomials, rank, determinant, Smith normal form; it can find least-norm, least-squares
solutions to singular and inconsistent systems. (2) Most importantly, LinBox is primarily designed to handle sparse
matrices, and it contains implementations of both the Wiedemann and Lanczos approaches over finite fields. This
in contrast to other exact solvers over finite fields such as NTL [Shoup et al. 2001], Magma [Bosma et al. 1997] and
FLINT [Hart 2010]. Specifically, we compare to the most current stable releases of LinBox (and its dependencies),
namely: LinBox 1.6.3 (iterative algorithms) [Dumas et al. 2002], Givaro 4.1.1 (modular arithmetic) [Dumas et al. 2008a],
fflas-ffpack 2.4.3 (linear algebra over finite fields) [Dumas et al. 2008b].

Altogether, as further explained below, iterative methods had some advantages; specifically in the case where the
inputs were large and the iterative methods correctly solved the linear system. However, the major issue is that these
routines suffered from a lack of reliability. Specifically, across the 441 instances, both Wiedemann and Lanczos failed
for 37 matrices (approx 8%): 9 segmentation faults and 28 incorrect solutions (due to the 9 segmentation faults, where
appropriate, the comparisons below refer to 432 instances instead of 441 instances). This issue provides evidence that
these exact iterative routines within LinBox are not appropriate for exactly solving all sparse linear systems (it is out of
the scope of this paper to determine if the issue stems from the algorithms or the implementation).

That said, with respect to the run-times, the results are in line with the literature. Specifically, SPEX Left LU
outperformed LinBox for about 86% of easy instances (i.e., quick to solve) while LinBox outperformed SPEX Left LU for
about 84% of hard instances (i.e., longer run times for both). Then again, LinBox produced incorrect solutions on 24% of
the tested hard instances (in addition to 8 segmentation faults). Thus, though LinBox can be significantly faster on some
instances, there is no guarantee that an exact solution is returned, which could be problematic for some applications.

Altogether, it is likely that the best approach for exactly solving a sparse linear system is hybrid in nature. For
completeness, we give a rough sketch of such a hybrid algorithm, but ironing out the details of such approach is out
of the scope of this paper. If the given instance is solved quickly by SPEX (say, within 1 minute), which comprised
the majority of problems in our test case, then utilize our exact factorization. Otherwise, use Linbox and check the
correctness of the returned solution. If the solution were to be incorrect, then SPEX would need to be used.

Below, Subsections 4.5.1 and 4.5.2 further analyze the accuracy results and run times, respectively.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

4.5.1 Reliability. In terms of reliability and stability, we present the results for the BasisLIB and SJ Databases
separately due to the fact that the SJ Database specifically contains numerically challenging matrices. In order to
determine the accuracy of each algorithm, we solve the linear system Ax = b exactly using each of SPEX Left LU,
Wiedemann, and Lanczos (the latter two via LinBox). Then this solution is converted to double precision and the relative
errors are computed.

Across the 276 BasisLIB instances, the 2-norm error between the three algorithms was 0. This means that Lanczos,
Wiedemann, and SPEX Left LU all returned the same (exact solution). Thus, using any of these three algorithms, the
solution vector x can be obtained either exactly or to any user-specified level of precision.

From the 165 SJ database instances, both the Wiedemann and Lanczos code suffered segmentation faults on nine of
the instances. Due to these segmentation faults, where appropriate, the comparisons below refer to 156 instances instead
of 165 instances. On the remaining instances, 127 were solved correctly (i.e., 2-norm error of 0) and 28 were solved
incorrectly (2-norm error > 0); notably, Linbox returned no warning or error when returning an incorrect solution.
Importantly, we are certain that these incorrect solutions were not the result of conversion errors or any other reason
extraneous to the algorithms/implementation, because for both SPEX and LinBox, the input was the identical integer
matrices (after scaling) and the output was formed utilizing identical GMP functions; this is evident by the fact that,
when the solutions were correct, the two-norm difference was exactly zero.

4.5.2 Run Time. In terms of run times, we consider 432 instances (thereby excluding the 9 instances which LinBox
suffered a segmentation fault). In our tests, the Lanczos algorithm nearly uniformly outperformed Wiedemann (was
faster for 89% of instances with an average and geoemetric mean run time 8% and 40% smaller respectively); thus, for
the sake of simplicity we restrict our comparison to the Lanczos algorithm. Across the 432 instances, SPEX Left LU
exactly solved the linear system Ax = b faster than Lanczos for 74.8% of instances.

That said, the instances within BasisLIB and the SJ Database are mostly biased towards instances with small run
times. Thus, to provide a more detailed analysis, we further partition the set into easy instances (those requiring less
than 1 minute of run time by at least one of the algorithms) and hard instances (those requiring at least one minute
of run time for both algorithms). Figure 3a gives a performance profile for the 362 easy instances showing that SPEX
Left LU outperformed Lanczos for 85.6% of these matrices and Figure 3b gives a performance profile of the 70 hard
instances showing that Lanczos outperformed SPEX Left LU for 84.4% of these hard matrices (that said, 8 of the 9
segmentation faults would be a part of this hard set). At first glance, these results are in line with the literature; namely
direct methods are generally preferable when instances are smaller/sparser (thus suffering less fill-in) while iterative
methods are generally faster on larger/denser instances. However, it is important to contextualize these results: a
key caveat of Lanczos/LinBox is that it produced incorrect solutions for 17 of the 70 hard instances (in addition to 8
segmentation faults) and for 11 of the 352 easy instances (in addition to 1 segmentation fault). In short, Lanczos/LinBox
failed (returned an incorrect solution or a segmentation fault) in approximately 3% of the easy instances and 32% of
the hard instances. The Appendix gives a table containing the comprehensive results for all instances, along with the
estimated condition number and norm of each matrix.

5 CONCLUSION

This paper presents the SPEX Left LU software package for exactly solving sparse linear systems. In addition to being
submitted to the Collected Algorithms of the ACM, the SPEX Left LU package is hosted and kept up-to-date as a
component of SPEX [Lourenco et al. 2022] and as a component of SuiteSparse [Davis et al. 2016].
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 13

(a) SPEX Left LU runtime outperforms Lanczos in the 362 easy
instances.

(b) Lanczos runtime outperforms SPEX Left LU in 70 hard in-
stances.

Fig. 3. SPEX Left LU vs Lanczos: It is important to contextualize the run time results. Specifically, Lanczos/LinBox returned an
incorrect solution in 11 (≈3%) of the easy instances and 17 (≈24%) of the hard instances. (In addition, this results and performance
profiles exclude the 9 instances (1 easy and 8 hard) where Lanczos/Linbox returned a segmentation fault.)

In order to showcase the performance of SPEX Left LU, the paper includes a robust set of computational results,
from which we draw the following conclusions:

• For exact factorizations, choosing the smallest column entry as a pivot substantially outperforms choosing the
largest entry. In short, choosing small pivots flattens the growth curve of the entries’ sizes, and thus, improves
the run-time. This is counter-intuitive as choosing large pivots is better for traditional elimination algorithms.

• The trust in commercial solvers is mostly justified as MATLAB sparse backslash provides solutions of high
accuracy for the vast majority of our instances; however, exact arithmetic is necessary for highly ill-conditioned
matrices and especially for matrices flagged as numerically singular.

• When comparing SPEX Left LU to exact iterative methods (Wiedemann’s [Wiedemann 1986] and block Lanczos
[Eberly and Kaltofen 1997; Hovinen 2004; Simon 1984], the results are in line with the literature. Specifically:
– Direct methods, like SPEX Left LU, are generally preferable for those sparse matrices without substantial fill-in,
as SPEX Left LU outperforms the iterative methods for a majority of these easy instances. Thus conclusion is
in agreement with previous studies: (1) in the context of linear programming basis validation, Cook and Steffy
[2011] state that “We found Wiedemann’s method to not be attractive for our LP test instances [...] as the
LU factorizations for these very sparse problems can be computed very quickly”; (2) current exact LP solvers
such as QSopt [Applegate et al. 2007a] and SoPLEX [Gleixner et al. 2017; Wunderling 1997], use rational (not
iterative) linear system solvers as a building block.

– Iterative methods, like Wiedemann and Lanczos, are generally preferable for those sparse matrices in which,
if factorized, substantial fill-in would occur. This is evidenced by the fact that the iterative approaches
outperformed SPEX for the majority of these hard instances. This too is in line with the literature as Cook and
Steffy [2011] states “For other classes of sparse matrices for which LU factorizations are not possible without
significant fill-in, we would expect Wiedemann’s method to perform more competitively.”

• In terms of implementation, LinBox failed (returned an incorrect solution or a segmentation fault) in approximately
3% of the easy instances and 32% of the hard instances. Thus, our software package would be required to correctly
solve these instances as well, regardless of their size, fill-in, or run time. Altogether, the best approach for exactly
solving a sparse linear system is likely to be hybrid in nature, utilizing a direct solver like SPEX for those easy

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

instances while iterative methods are used for hard instances—though the details of such an algorithm is outside
the scope of this paper.

In short, we feel confident saying that our approach and implementation is among the state-of-the-art for exactly
solving sparse linear systems. Specifically, even for troublesome matrices; barring an out-of-memory condition (which
is properly detected, reported, and safely handled), due to the deterministic nature of our algorithms, the solution
obtained from SPEX Left LU is guaranteed to be exact.

ACKNOWLEDGMENTS

The work is partially supported by the National Science Foundation under Grant No OAC-1835499. Additionally, the first
author was supported by the Texas A&M Graduate Merit Fellowship, the Texas A&M Graduate Teaching Fellowship,
and the USNA Junior NARC.

REFERENCES
Patrick R Amestoy, Timothy A Davis, and Iain S Duff. 2004. Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Transactions

on Mathematical Software (TOMS) 30, 3 (2004), 381–388.
DL Applegate, W Cook, S Dash, and DG Espinoza. 2007a. QSopt ex. World Wide Web. http://www. dii. uchile. cl/˜ daespino/QSoptExact_doc/main. html

(2007).
David L Applegate, William Cook, Sanjeeb Dash, and Daniel G Espinoza. 2007b. Exact solutions to linear programming problems. Operations Research

Letters 35, 6 (2007), 693–699.
Erwin H Bareiss. 1968. SylvesterâĂŹs identity and multistep integer-preserving Gaussian elimination. Mathematics of computation 22, 103 (1968),

565–578.
Wieb Bosma, John Cannon, and Catherine Playoust. 1997. The Magma algebra system I: The user language. Journal of Symbolic Computation 24, 3-4

(1997), 235–265.
Benjamin A Burton and Melih Ozlen. 2012. Computing the crosscap number of a knot using integer programming and normal surfaces. ACM Transactions

on Mathematical Software (TOMS) 39, 1 (2012), 4.
William Cook and Daniel E Steffy. 2011. Solving very sparse rational systems of equations. ACM Transactions on Mathematical Software (TOMS) 37, 4

(2011), 39.
Tim Davis, WW Hager, and IS Duff. 2014. SuiteSparse. htt p://faculty. cse. tamu. edu/davis/suitesparse. html (2014).
Timothy A Davis. 2004. Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software

(TOMS) 30, 2 (2004), 196–199.
Timothy A Davis, John R Gilbert, Stefan I Larimore, and Esmond G Ng. 2004. Algorithm 836: COLAMD, a column approximate minimum degree ordering

algorithm. ACM Transactions on Mathematical Software (TOMS) 30, 3 (2004), 377–380.
Timothy A Davis and Ekanathan Palamadai Natarajan. 2010. Algorithm 907: KLU, a direct sparse solver for circuit simulation problems. ACM Transactions

on Mathematical Software (TOMS) 37, 3 (2010), 1–17.
Timothy A Davis, Sivasankaran Rajamanickam, and Wissam M Sid-Lakhdar. 2016. A survey of direct methods for sparse linear systems. Acta Numerica

25 (2016), 383–566.
John D Dixon. 1982. Exact solution of linear equations using P-adic expansions. Numer. Math. 40, 1 (1982), 137–141.
Elizabeth D Dolan and Jorge J Moré. 2002. Benchmarking optimization software with performance profiles. Mathematical programming 91, 2 (2002),

201–213.
Jean-Guillaume Dumas, Thierry Gautier, Mark Giesbrecht, Pascal Giorgi, Bradford Hovinen, Erich Kaltofen, B David Saunders, Will J Turner, Gilles

Villard, et al. 2002. LinBox: A generic library for exact linear algebra. In Proceedings of the 2002 International Congress of Mathematical Software, Beijing,
China. 40–50.

Jean-Guillaume Dumas, Thierry Gautier, Pascal Giorgi, Jean-Louis Roch, and Gilles Villard. 2008a. Givaro-3.2. 13rc1: C++ library for arithmetic and
algebraic computations. (2008).

Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. 2008b. Dense linear algebra over word-size prime fields: the FFLAS and FFPACK packages.
ACM Transactions on Mathematical Software (TOMS) 35, 3 (2008), 1–42.

Wayne Eberly and Erich Kaltofen. 1997. On randomized Lanczos algorithms. In Proceedings of the 1997 international symposium on Symbolic and algebraic
computation. 176–183.

Jack Edmonds. 1967. Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Standards Sect. B 71 (1967), 241–245.
Adolfo R Escobedo and Erick Moreno-Centeno. 2015. Roundoff-Error-Free Algorithms for Solving Linear Systems via Cholesky and LU Factorizations.

INFORMS Journal on Computing 27, 4 (2015), 677–689.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 15

Leslie Foster and NB Botev. 2009. San Jose State University singular matrix database (stored in matrix-market format in binary floating-point). (2009).
http://www.math.sjsu.edu/singular/matrices

Leslie Foster and NB Botev. 2022. San Jose State University singular matrix database (stored in text to 16 decimal digits). (2022). https://github.com/
clouren/SJ_16_Digits

Leslie V. Foster and Timothy A. Davis. 2013. Algorithm 933: Reliable Calculation of Numerical Rank, Null Space Bases, Pseudoinverse Solutions, and Basic
Solutions Using SuitesparseQR. ACM Trans. Math. Softw. 40, 1, Article 7 (Oct. 2013), 23 pages. https://doi.org/10.1145/2513109.2513116

Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann. 2007. MPFR: A multiple-precision binary floating-point
library with correct rounding. ACM Transactions on Mathematical Software (TOMS) 33, 2 (2007), 13.

Bernd Gärtner. 1999. Exact arithmetic at low cost–a case study in linear programming. Computational Geometry 13, 2 (1999), 121–139.
John R Gilbert and Tim Peierls. 1988. Sparse partial pivoting in time proportional to arithmetic operations. SIAM J. Sci. Statist. Comput. 9, 5 (1988),

862–874.
Ambros Gleixner, Leon Eifler, Tristan Gally, Gerald Gamrath, Patrick Gemander, Robert Lion Gottwald, Gregor Hendel, Christopher Hojny, Thorsten

Koch, Matthias Miltenberger, et al. 2017. The SCIP optimization suite 5.0. (2017).
Ambros M Gleixner. 2015. Exact and fast algorithms for mixed-integer nonlinear programming. (2015).
Gene H Golub and Charles F Van Loan. 2012. Matrix computations. Vol. 3. JHU Press.
Torbjrn Granlund et al. 2015. GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media Limited.
Thomas C Hales. 2005. A proof of the Kepler conjecture. Annals of mathematics (2005), 1065–1185.
William B Hart. 2010. Fast library for number theory: an introduction. In International Congress on Mathematical Software. Springer, 88–91.
Nicholas J Higham. 2002. Accuracy and Stability of Numerical Algorithms. Vol. 80. SIAM.
Roger A Horn and Charles R Johnson. 2012. Matrix Analysis. Cambridge University Press.
Bradford Hovinen. 2004. Blocked lanczos-style algorithms over small finite fields. Ph.D. Dissertation. Citeseer.
William Kahan. 1996. IEEE standard 754 for binary floating-point arithmetic. Lecture Notes on the Status of IEEE 754, 94720-1776 (1996), 11.
Ed Klotz. 2014. Identification, assessment, and correction of ill-conditioning and numerical instability in linear and integer programs. In Bridging Data

and Decisions. INFORMS, 54–108.
Hong R Lee and B David Saunders. 1995. Fraction free Gaussian elimination for sparse matrices. Journal of symbolic computation 19, 5 (1995), 393–402.
Joseph WH Liu. 1991. A generalized envelope method for sparse factorization by rows. ACM Transactions on Mathematical Software (TOMS) 17, 1 (1991),

112–129.
Christopher Lourenco, Jinhao Chen, Erick Moreno-Centeno, and Timothy Davis. 2022. SParse EXact software for solving linear systems. (2022).

https://github.com/clouren/spex
Christopher Lourenco, Adolfo R Escobedo, Erick Moreno-Centeno, and Timothy A Davis. 2019. Exact Solution of Sparse Linear Systems via Left-Looking

Roundoff-Error-Free LU Factorization in Time Proportional to Arithmetic Work. SIAM J. Matrix Anal. Appl. 40, 2 (2019), 609–638.
René M Montante-Pardo and Marco A Méndez-Cavazos. 1977. Un método númerico para cálculo matricial. Revista Técnico-Científica de Divulgación 2

(1977), 1–24.
Victor Shoup et al. 2001. NTL: A library for doing number theory. (2001).
Horst D Simon. 1984. The Lanczos algorithm with partial reorthogonalization. Mathematics of computation 42, 165 (1984), 115–142.
Dan Steffy. 2010a. BasisLIB INT. (2010). http://hpac.imag.fr/Matrices/BasisLIB/
Dan Steffy. 2010b. BasisLIB INT. (2010). https://github.com/clouren/BasisLIB_INT
Daniel E Steffy. 2011. Topics in exact precision mathematical programming. Ph.D. Dissertation. Georgia Institute of Technology.
Douglas Wiedemann. 1986. Solving sparse linear equations over finite fields. IEEE transactions on information theory 32, 1 (1986), 54–62.
Roland Wunderling. 1997. SoPlex: The sequential object-oriented simplex class library. (1997).

Manuscript submitted to ACM

http://www.math.sjsu.edu/singular/matrices
https://github.com/clouren/SJ_16_Digits
https://github.com/clouren/SJ_16_Digits
https://doi.org/10.1145/2513109.2513116
https://github.com/clouren/spex
http://hpac.imag.fr/Matrices/BasisLIB/
https://github.com/clouren/BasisLIB_INT

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

A COMPREHENSIVE COMPUTATIONAL RESULTS

Tables 3, 4, 5, and 6 present exhaustive computational results for large (those requiring ≥ 1 hour of run time), medium
(those requiring between 1 hour and 1 minute of run time), small (those requiring between 1 minute and 0.1 seconds of
run time) and tiny (those requiring less than 0.1 seconds) instances, respectively. In each table, the first five columns
give the name (or index from SJ database), dimension, number of nonzeros, MATLAB estimated condition number,
and MATLAB estimated sparse norm in each matrix. Column 6 gives the run time of SPEX Left LU using the selected
pivoting scheme tol 0. Lastly, columns 7 and 8 give the relative run time of Wiedemann and Lanczos, respectively. Note
that those instances in which these algorithms seg-fault are indicated with SF and those instances whose solutions
were incorrect are indicated with bold red text.

Relative Run Time
Matrix Name n nnz Cond norm SPEX Left LU time (hr) Wiedemann Lanczos
366 20640 97353 2.03E+15 7.69E+05 24.00 SF SF
400 10964 233741 1.29E+15 1.99E+01 21.14 0.05 0.04
365 20545 85537 4.05E+21 3.38E+09 18.90 SF SF
388 11532 44206 5.88E+12 2.90E+08 17.01 SF SF
369 10000 49699 6.90E+20 4.31E+04 16.72 0.02 0.03
385 10672 232633 2.34E+14 1.89E+01 15.92 SF SF
367 7337 156508 7.64E+13 1.83E+01 8.05 0.06 0.05
359 13436 71594 3.82E+15 1.41E+04 7.75 SF SF
695 14454 147972 3.10E+12 5.31E+03 7.74 0.12 0.11
696 14454 147972 2.96E+12 5.31E+03 7.72 0.11 0.11
368 7337 154660 1.87E+24 1.83E+01 7.38 0.06 0.05
350 6774 33744 7.68E+13 1.26E+06 7.13 0.02 0.02
352 5773 71701 8.73E+12 1.29E+08 5.42 0.04 0.04
336 5005 20033 6.90E+16 6.76E+06 5.35 0.02 0.01
88 4875 315891 3.70E+16 3.47E-10 5.31 *0.05 *0.04
344 3363 99471 4.08E+13 3.79E+09 5.07 0.04 0.03
119 3251 65875 2.62E+16 1.27E+07 4.85 0.02 0.02
213 3402 130371 2.67E+16 3.98E+14 4.70 0.03 0.03
117 3973 79077 2.94E+19 1.28E+02 4.66 0.03 0.03
337 5321 65693 2.10E+13 4.68E+06 4.66 0.03 0.03
346 7055 30082 1.65E+12 4.02E+02 4.38 SF SF
347 7055 30082 6.34E+17 4.02E+02 4.24 *0.03 *0.03
140 3937 25407 1.04E+17 3.27E+11 3.88 0.02 0.02
120 2163 74464 4.36E+16 8.16E+01 3.49 0.02 0.01
142 3937 25407 1.04E+17 3.27E+11 3.45 0.02 0.02
222 4257 37465 2.52E+16 1.46E+02 3.21 *0.03 *0.02
221 4257 37465 2.52E+16 1.46E+02 3.21 *0.02 *0.02
364 13935 63307 2.35E+18 1.26E+05 3.20 SF SF
223 4257 37465 1.74E+19 1.46E+02 3.10 *0.02 *0.02

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 17

Relative Run Time
Matrix Name n nnz Cond norm SPEX Left LU time (hr) Wiedemann Lanczos
341 2880 18229 9.74E+13 1.39E+04 2.62 0.01 0.01
349 4101 82682 1.44E+13 1.34E+01 2.60 0.06 0.05
130 2880 18229 5.98E+18 1.33E+07 2.25 0.01 0.01
138 4101 81057 1.80E+24 1.34E+01 2.17 0.06 0.05
pilot87.pre 1540 30916 Inf Inf 1.70 0.02 0.02
118 2568 75628 4.01E+15 1.26E+10 1.57 0.07 0.06
pilot87 1625 31396 Inf Inf 1.14 0.02 0.02
156 4800 102252 3.46E+61 3.63E+05 1.06 0.13 0.12

Table 3. Comprehensive Results: Large Instances

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (min) Wiedemann Lanczos
217 4720 20042 3.51E+48 1.89E+02 52.61 0.08 0.08
gen4 375 8919 8.43E+236 Inf 47.79 0.02 0.02
gen4.pre 367 9322 Inf Inf 43.30 0.02 0.02
self 924 157411 1.20E+07 1.57E+11 41.18 0.03 0.03
slptsk 2315 34430 4.35E+185 NaN 35.48 0.27 0.29
260 1000 1000000 1.15E+14 5.36E-01 33.21 *0.49 *0.47
335 6747 29195 2.22E+18 5.41E+08 33.12 0.23 0.21
gen1 329 11016 Inf Inf 28.96 0.04 0.04
57 3008 20698 2.37E+28 8.44E+09 19.43 0.09 0.09
207 1919 32399 2.10E+18 2.92E+00 19.40 0.06 0.07
155 3200 68026 1.78E+47 1.61E+05 19.16 0.20 0.18
55 3008 20715 1.94E+27 7.90E+08 18.24 0.08 0.08
87 2500 12349 4.35E+17 9.83E+03 17.91 0.07 0.07
154 1280 47906 9.87E+24 7.94E+04 16.28 0.06 0.05
122 1651 49062 8.22E+27 4.49E+02 13.93 0.13 0.11
329 5308 22680 1.67E+14 2.99E+06 11.09 0.52 0.45
330 5308 22592 1.66E+14 2.99E+06 11.08 0.51 0.44
159 1050 26198 9.00E+15 2.10E+07 10.58 0.06 0.06
pla8_sig185 39835 196256 4.29E+09 1.04E+03 10.43 0.27 0.25
355 1409 42760 2.28E+13 2.67E+05 9.31 0.18 0.16
pilot 1132 16624 1.12E+175 NaN 6.88 0.05 0.05
320 1733 22189 1.20E+13 1.18E+11 6.02 0.25 0.25
maros-r7 1350 31923 7.43E+06 3.99E+10 5.89 0.05 0.04
236 1000 1000000 1.46E+19 3.23E+00 5.49 *3.00 *2.88
340 8765 42471 6.15E+14 1.00E+15 5.10 SF SF

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (min) Wiedemann Lanczos
jendrec1 1779 34196 9.54E+217 NaN 5.08 2.76 2.66
stat96v4 3139 23752 9.62E+17 1.63E+21 4.85 0.23 0.22
58 3083 11767 2.30E+21 1.21E+09 4.78 0.34 0.31
pla85900.nov21 40304 230558 5.46E+08 9.76E+02 4.77 0.67 0.65
momentum3 3254 15159 Inf Inf 4.25 0.38 0.36
153 765 24382 1.67E+14 1.35E+17 4.20 0.14 0.13
232 1000 1000000 4.50E+21 8.11E-01 4.02 *4.16 *3.84
54 3268 20712 1.27E+27 2.50E+12 3.26 0.58 0.55
240 1000 1000000 1.44E+22 6.46E+00 3.11 *5.47 *5.46
296 1258 7682 1.03E+13 2.05E+07 2.68 0.13 0.12
256 1000 1000000 1.06E+23 2.99E+00 2.65 *6.45 *6.05
56 3268 20963 1.27E+27 2.50E+12 2.54 0.86 0.76
cont11_l 58936 179556 3.65E+26 7.37E+00 2.46 0.01 0.01
264 1000 1000000 8.23E+21 4.47E-01 2.19 *7.11 *6.86
mod2.pre 4422 12914 3.72E+246 NaN 2.18 1.48 1.40
brd14051 16360 180847 2.96E+08 2.74E+02 2.14 0.60 0.58
world 4261 12190 5.65E+241 NaN 2.10 1.30 1.23
157 4800 27520 1.03E+14 2.20E+00 2.05 1.75 1.61
fome13 24884 70839 7.99E+15 4.02E+11 1.94 0.58 0.53
121 1159 11047 1.57E+19 1.17E+02 1.85 0.21 0.20
mod2 4435 12985 1.38E+223 NaN 1.78 1.74 1.65
160 1374 8588 4.11E+15 1.10E+03 1.69 0.24 0.24
309 2837 10967 5.85E+12 7.41E+05 1.64 0.97 0.90
314 2836 10965 5.85E+12 7.41E+05 1.64 0.96 0.88
l30 2492 12653 1.73E+08 2.61E+09 1.56 0.33 0.30
259 500 250000 1.15E+14 5.36E-01 1.24 *1.71 *1.69
scfxm1-2r-256 11812 44985 3.12E+12 2.84E+08 1.15 2.95 2.65
332 4101 36879 6.70E+20 2.02E+06 1.11 2.93 2.53

Table 4. Comprehensive Results: Medium Instances

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (s) Wiedemann Lanczos

gen2 328 8894 1.84E+11 4.51E+18 54.10 0.10 0.07
310 3200 18316 2.02E+13 2.20E+00 48.00 2.24 2.07
128 760 5739 1.12E+16 3.10E+08 43.91 0.19 0.18
129 760 5816 9.93E+19 3.10E+08 42.15 0.19 0.18
nemswrld 2205 13323 NaN Inf 39.39 0.54 0.49

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 19

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (s) Wiedemann Lanczos

210 1484 6110 5.57E+17 1.26E+16 31.32 0.87 0.81
cont4 2802 11862 3.85E+05 3.98E+03 30.32 0.51 0.48
nug30 14681 45627 1.06E+06 7.88E+00 30.07 0.88 0.79
nug20 7733 31455 8.84E+07 7.26E+00 28.82 0.40 0.34
rat5 902 12026 4.19E+06 7.48E+05 26.66 0.17 0.16
stat96v1 5013 20325 6.35E+32 8.22E+20 25.24 0.66 0.62
51 1813 11246 3.82E+14 1.22E+00 20.19 *1.63 *1.52
stat96v2 12928 48009 1.06E+13 1.32E+10 20.04 1.87 1.79
nug15 5486 24736 2.41E+07 7.73E+00 19.96 0.31 0.28
141 511 2796 6.37E+15 4.21E+10 19.26 0.20 0.18
pilot.ja 567 3781 Inf Inf 19.14 0.43 0.39
231 500 250000 8.37E+20 8.11E-01 18.84 *6.80 *6.79
144 511 2796 6.37E+15 4.21E+10 18.83 0.22 0.18
235 500 250000 4.74E+18 3.23E+00 18.57 *7.28 *7.10
pla33810 18940 123445 1.05E+08 2.20E+02 17.15 2.94 2.69
stat96v3 13485 49917 3.93E+12 6.98E+09 16.99 2.21 2.07
model10 1341 6403 1.71E+164 Inf 15.92 0.90 0.77
d2q06c 1047 5717 1.82E+188 Inf 14.96 0.73 0.63
239 500 250000 4.54E+20 6.46E+00 14.81 *9.17 *9.20
d15112 9197 47335 2.33E+18 2.25E+11 14.53 3.10 2.92
watson_1 5729 14544 7.98E+58 9.72E+55 13.98 6.80 6.40
315 2053 18447 6.71E+16 2.03E+04 13.37 3.73 3.44
rat7a 641 10542 1.38E+20 5.06E+05 13.18 0.20 0.18
progas 1167 6500 8.15E+103 6.78E+100 12.63 1.19 1.09
scfxm1-2b-64 5966 22682 1.30E+12 2.84E+08 12.57 4.12 3.82
255 500 250000 1.07E+22 2.99E+00 12.47 *10.58 *10.36
scfxm1-2r-128 5671 21943 1.64E+12 2.84E+08 12.27 3.96 3.73
stat96v5 812 3795 1.42E+63 3.93E+64 12.08 1.33 1.20
qap12 2740 12014 2.46E+07 6.84E+00 11.79 0.14 0.12
124 1220 5892 2.24E+34 2.87E+00 10.16 1.66 1.53
NSR8K 5387 46157 2.64E+07 2.06E+03 9.91 0.93 0.81
watson_1.pre 4642 12991 3.44E+58 9.72E+55 9.83 7.13 6.72
co9 2287 13481 2.32E+49 1.56E+42 9.68 1.58 1.42
301 1650 7419 5.63E+12 5.15E+02 9.65 2.84 2.58
l30.pre 1199 6030 1.79E+06 2.61E+09 8.49 0.49 0.46
127 1220 5855 6.25E+14 3.70E+02 8.48 1.97 1.74
291 1220 5860 1.80E+13 8.78E+00 8.35 1.98 1.85
126 1220 5884 1.06E+14 9.34E+00 8.33 2.00 1.78

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (s) Wiedemann Lanczos

293 1220 5892 1.58E+13 8.37E+00 8.21 2.05 1.91
newman2 468 7917 1.39E+225 Inf 8.10 0.39 0.37
125 1220 5892 1.58E+17 2.88E+00 8.08 2.07 1.82
289 1220 5884 1.42E+13 4.95E+00 7.85 2.13 1.99
292 1220 5888 3.45E+13 2.02E+01 7.84 2.11 1.95
287 1220 5888 4.14E+13 1.63E+01 7.60 2.17 1.93
288 1220 5852 2.74E+13 1.23E+01 7.60 2.17 2.02
stormg2_1000.pre 13926 32547 2.13E+11 2.59E+05 7.43 12.82 12.77
212 882 3354 7.98E+16 6.69E+12 7.20 1.33 1.12
209 415 2779 8.19E+17 6.47E+00 7.14 0.41 0.34
294 1220 5892 2.74E+13 1.23E+01 7.12 2.54 2.63
158 416 8562 2.42E+25 2.54E+03 7.02 0.60 0.57
263 500 250000 2.57E+21 4.47E-01 6.97 *17.74 *18.10
momentum2 2113 6516 2.52E+39 1.88E+37 6.95 1.61 1.40
pilotnov 549 3337 2.82E+264 NaN 6.53 0.95 0.80
nug12 2736 12037 2.25E+07 6.97E+00 6.48 0.32 0.22
stormg2_1000 14075 32597 3.77E+09 1.05E+04 6.46 15.44 14.78
295 3562 3562 1.81E+13 1.02E+06 6.23 17.41 15.82
perold 440 2584 4.45E+256 NaN 6.16 0.84 0.72
scfxm1-2r-96 4504 17205 1.35E+12 2.84E+08 6.03 4.92 4.51
53 1089 4144 6.05E+14 2.91E+04 5.77 2.02 1.95
dbic1 4795 23403 1.04E+11 4.53E+06 5.59 1.75 1.47
pilot4 289 2805 Inf Inf 5.19 0.87 0.81
211 768 2934 1.29E+17 1.36E+13 4.95 1.53 1.27
cont1_l 1070 4649 1.22E+09 2.51E+05 4.55 0.88 0.79
model11 2039 7606 1.40E+32 3.38E+29 4.12 1.82 1.56
pcb3038 3588 46560 2.00E+06 1.55E+02 3.98 1.22 1.17
nemspmm2 949 6478 2.61E+222 Inf 3.72 1.55 1.36
fome12 12652 35969 8.93E+05 4.65E+01 2.69 5.44 4.74
nl 890 2919 5.83E+293 Inf 2.62 4.09 3.34
scfxm1-2r-64 1870 11122 8.23E+11 2.84E+08 2.28 5.91 5.35
fnl4461 5044 46977 4.12E+06 2.35E+02 2.27 3.26 2.87
152 180 2659 3.59E+17 2.04E+19 2.09 0.66 0.50
d18512 10815 55880 8.61E+05 2.09E+02 1.77 9.57 8.41
rl11849 6769 40885 1.21E+08 1.92E+02 1.75 5.34 4.65
nemspmm1 982 5023 4.94E+23 1.59E+20 1.75 2.20 2.01
co5 928 6173 3.86E+185 Inf 1.69 3.78 3.46
pla7397 5059 42683 8.55E+06 3.36E+02 1.58 4.01 3.57

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 21

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (s) Wiedemann Lanczos

model6 790 3425 5.17E+63 4.11E+61 1.56 2.30 2.12
258 200 40000 1.84E+14 5.36E-01 1.54 *4.96 *4.49
rail4284 2463 11802 3.58E+04 7.23E+00 1.45 0.88 0.74
pilot.we 554 2367 5.11E+137 4.03E+133 1.43 3.02 2.73
342 10001 49999 4.17E+18 5.00E+03 1.39 SF SF
qap10 1510 6381 4.45E+06 6.13E+00 1.30 0.45 0.29
cq9 1187 5786 4.94E+165 Inf 1.30 4.77 4.31
ge 1675 4758 3.29E+130 7.56E+127 1.26 8.59 7.28
de080285 368 1493 1.06E+78 1.36E+79 1.24 2.08 1.55
dano3mip.pre 1091 5239 3.46E+10 1.36E+05 1.05 0.87 0.55
dano3mip 1135 5390 2.47E+10 1.36E+05 0.99 0.78 0.60
238 200 40000 3.00E+20 6.46E+00 0.94 7.94 7.79
newman 334 2156 6.20E+233 Inf 0.93 1.82 1.44
230 200 40000 5.72E+19 8.11E-01 0.86 *8.79 *8.79
rat1 452 2893 3.93E+27 2.26E+30 0.85 1.15 0.89
254 200 40000 1.83E+20 2.99E+00 0.81 *10.55 *9.39
t0331-4l 520 5034 2.75E+04 1.10E+01 0.77 0.72 0.35
rl5915 3853 28829 3.43E+06 1.03E+02 0.77 4.62 4.65
nesm 279 895 1.01E+127 1.12E+125 0.68 4.43 3.21
grow22 434 4711 2.09E+17 4.39E+16 0.68 2.28 1.98
fome11 6226 17749 6.31E+05 5.09E+01 0.65 5.73 5.77
234 200 40000 3.18E+18 3.23E+00 0.64 *11.86 *11.54
model9 902 4361 3.90E+23 6.53E+20 0.63 4.69 3.28
model7 646 2850 2.89E+137 2.87E+134 0.61 3.98 3.20
rl5934 3773 23917 2.94E+06 1.11E+02 0.60 4.77 4.48
model5 492 2247 7.35E+109 1.03E+108 0.57 4.24 3.46
orna1 810 2842 2.66E+13 2.55E+15 0.57 4.06 3.45
lp22.pre 1811 13146 3.89E+05 1.27E+01 0.56 1.93 1.77
132 216 812 8.10E+14 1.39E+00 0.55 1.35 0.94
179 430 1544 7.36E+26 2.00E+06 0.54 4.49 4.05
169 430 1544 6.57E+15 2.00E+06 0.54 4.37 4.14
168 430 1544 3.20E+15 2.00E+06 0.53 4.48 4.20
167 430 1544 1.91E+16 2.00E+06 0.53 4.55 4.16
164 430 1544 3.56E+16 2.00E+06 0.53 5.52 4.24
163 430 1544 1.90E+20 2.00E+06 0.53 4.78 4.23
176 430 1544 1.00E+15 2.00E+06 0.53 5.03 4.23
siena1 1265 11573 6.40E+05 7.85E+02 0.52 2.12 1.03
model4 409 1898 9.08E+213 NaN 0.52 3.78 3.11

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (s) Wiedemann Lanczos

165 430 1544 2.49E+14 2.00E+06 0.52 4.60 4.29
166 430 1544 2.22E+14 2.00E+06 0.51 4.66 4.45
188 430 1544 5.30E+18 2.00E+06 0.51 5.05 4.37
177 430 1544 3.78E+26 2.00E+06 0.51 5.16 4.40
194 430 1544 3.20E+19 2.00E+06 0.51 5.07 4.54
180 430 1544 9.05E+19 2.00E+06 0.51 4.92 4.45
184 430 1544 2.88E+17 2.00E+06 0.50 4.97 4.42
182 430 1544 2.88E+17 2.00E+06 0.50 5.06 4.41
186 430 1544 2.88E+17 2.00E+06 0.50 4.87 4.44
187 430 1544 2.88E+17 2.00E+06 0.50 5.04 4.43
196 430 1544 8.14E+19 2.00E+06 0.50 5.14 4.47
185 430 1544 2.88E+17 2.00E+06 0.50 4.87 4.47
202 430 1544 8.00E+19 2.00E+06 0.50 5.12 4.44
204 430 1544 7.96E+19 2.00E+06 0.50 5.01 4.50
205 430 1544 8.08E+19 2.00E+06 0.49 4.84 4.48
197 430 1544 1.15E+20 2.00E+06 0.49 5.06 4.51
203 430 1544 7.92E+19 2.00E+06 0.49 5.04 4.57
175 430 1544 4.81E+14 2.00E+06 0.49 5.04 4.55
189 430 1544 2.34E+20 2.00E+06 0.49 5.20 4.54
181 430 1544 2.88E+17 2.00E+06 0.49 5.30 4.69
de063155 313 1233 1.09E+95 6.12E+69 0.48 4.07 3.18
190 430 1544 2.31E+20 2.00E+06 0.48 5.15 4.61
192 430 1544 4.12E+20 2.00E+06 0.48 5.31 4.62
193 430 1544 2.35E+20 2.00E+06 0.48 5.28 4.62
191 430 1544 4.43E+20 2.00E+06 0.48 5.25 4.59
195 430 1544 4.66E+20 2.00E+06 0.48 5.30 4.79
172 430 1544 2.28E+19 2.00E+06 0.48 5.15 4.62
198 430 1544 8.24E+19 2.00E+06 0.48 5.37 4.68
183 430 1544 2.88E+17 2.00E+06 0.48 5.36 4.74
170 430 1544 2.93E+14 2.00E+06 0.48 5.15 4.67
199 430 1544 8.03E+19 2.00E+06 0.47 5.36 4.73
200 430 1544 7.86E+19 2.00E+06 0.47 5.23 4.71
201 430 1544 8.03E+19 2.00E+06 0.47 5.21 4.71
173 430 1544 7.05E+19 2.00E+06 0.46 5.31 4.82
171 430 1544 6.24E+15 2.00E+06 0.46 5.77 4.86
280 430 1544 2.91E+13 2.00E+06 0.46 5.51 4.57
178 430 1544 2.17E+26 2.00E+06 0.46 5.61 4.93
174 430 1544 2.33E+14 2.00E+06 0.46 5.36 4.91

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 23

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (s) Wiedemann Lanczos

van 7417 21681 4.24E+04 7.23E+00 0.45 9.41 7.86
scfxm1-2r-32 1447 5658 2.93E+11 2.84E+08 0.45 8.52 7.46
lp22 1796 13076 1.32E+05 1.29E+01 0.42 3.11 2.45
281 430 1544 8.60E+13 2.00E+06 0.42 5.78 4.99
206 430 1544 8.02E+19 2.00E+06 0.41 6.00 5.44
161 261 1500 1.17E+15 1.04E+03 0.39 3.88 2.29
262 200 40000 6.36E+20 4.47E-01 0.38 *19.86 *18.88
stocfor3 1782 4562 2.03E+31 3.50E+27 0.37 20.56 17.77
arki001 160 893 4.46E+299 Inf 0.34 6.07 5.10
momentum1 932 2792 1.18E+146 2.49E+141 0.34 9.83 8.78
usa13509 3595 19919 2.89E+08 1.70E+02 0.34 10.07 8.84
large000 823 2282 1.39E+31 1.02E+34 0.33 14.58 13.28
dfl001 3271 9276 4.54E+05 4.33E+01 0.28 4.20 3.48
277 183 1069 2.69E+13 1.15E+09 0.28 *2.47 *1.44
complex 327 10738 9.05E+04 5.39E+01 0.26 1.54 0.70
grow15 297 3614 1.65E+13 4.24E+16 0.25 4.03 2.82
de063157 282 1102 1.10E+97 6.45E+77 0.24 7.11 5.34
t1717 549 3657 1.89E+04 7.40E+00 0.24 1.55 0.48
greenbeb 713 3278 1.17E+25 9.16E+21 0.24 7.42 6.31
dfl001.pre 2097 6501 4.10E+05 3.99E+01 0.24 2.86 2.02
scfxm1-2r-27 1222 4753 5.08E+10 2.84E+08 0.23 13.51 10.82
ulevimin 697 1879 8.89E+103 5.41E+96 0.22 8.97 7.26
pcb3000 3058 27446 5.01E+04 6.24E+01 0.21 7.81 7.44
stair 324 3431 1.27E+19 4.02E+15 0.19 2.99 1.98
newman3 369 3662 1.58E+23 3.91E+19 0.18 4.03 3.11
stp3d 10642 25936 4.12E+05 4.28E+00 0.18 36.40 31.20
nemsemm2 789 2440 1.78E+124 1.79E+123 0.18 17.00 14.18
trento1 1070 10010 1.54E+05 6.57E+02 0.18 2.77 1.51
cr42 304 608 1.52E+35 1.86E+84 0.17 24.88 23.23
car4 122 4384 1.30E+14 4.51E+15 0.15 4.24 2.45
nug08 732 3004 2.49E+05 5.71E+00 0.14 2.66 0.46
greenbea 664 2706 2.17E+38 2.38E+32 0.14 9.91 8.49
cq5 570 2615 1.05E+164 Inf 0.13 12.16 9.62
dc1l 851 5171 1.68E+05 9.70E+02 0.13 4.29 1.30
pldd000b 537 1448 9.92E+18 1.27E+22 0.12 14.54 10.57
watson_2 1011 2703 7.02E+42 1.78E+40 0.11 19.40 16.26
25fv47 416 2061 1.42E+35 7.33E+32 0.11 7.98 5.00
237 100 10000 1.26E+19 6.46E+00 0.10 12.46 9.43

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (s) Wiedemann Lanczos

gran 284 1958 7.38E+32 1.25E+27 0.10 9.30 6.60
delf000 593 1606 1.27E+18 1.44E+20 0.10 18.79 16.49
ds 647 12193 1.01E+04 2.08E+01 0.10 5.62 3.50

Table 5. Comprehensive Results: Small Instances

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (ms) Wiedemann Lanczos

scfxm1-2r-16 752 2962 1.94E+10 2.84E+08 9.41 14.26 10.81
dolom1 806 5681 3.47E+05 2.27E+03 9.25 7.08 1.43
dc1c 808 4698 1.26E+06 9.63E+02 9.05 5.48 1.55
dg012142 892 3627 9.32E+07 2.13E+04 9.02 9.05 5.38
scfxm1-2b-16 784 2975 3.37E+10 2.84E+08 9.00 14.52 11.49
279 261 2319 7.54E+16 2.03E+04 8.81 13.00 10.74
233 100 10000 2.98E+18 3.23E+00 8.73 12.51 11.48
257 100 10000 2.48E+14 5.36E-01 8.36 *13.03 *11.51
pf2177 406 1772 9.40E+03 4.65E+00 8.25 4.19 0.53
253 100 10000 3.95E+19 2.99E+00 8.18 *15.20 *11.84
229 100 10000 6.28E+19 8.11E-01 8.10 *13.69 *11.49
143 131 536 1.49E+15 9.77E+09 7.06 7.22 2.73
261 100 10000 1.04E+20 4.47E-01 6.12 *19.19 *14.65
ch 393 1304 4.36E+110 3.12E+106 6.05 21.43 17.07
aa01 630 4187 1.29E+04 8.67E+00 5.96 7.46 1.42
139 131 536 1.49E+15 9.77E+09 5.63 8.76 3.43
air04 630 4187 1.29E+04 8.67E+00 5.48 6.20 1.56
stormg2-125 1886 4372 2.63E+07 2.26E+03 5.41 41.10 36.68
model3 310 1417 3.11E+95 6.44E+93 5.33 11.84 7.72
stormg2-125.pre 1780 4138 1.96E+09 5.43E+04 4.91 45.32 36.03
msc98-ip 2897 10006 1.63E+07 4.26E+02 4.72 41.80 37.10
df2177 414 1825 4.61E+03 4.74E+00 4.32 6.32 3.06
nug07 450 1780 5.45E+04 5.28E+00 4.09 4.86 3.13
biella1 813 5726 2.72E+04 1.18E+01 3.83 11.68 4.52
pcb1000 1156 9955 2.28E+04 4.37E+01 3.62 9.28 6.30
aa03 562 3420 1.07E+04 9.00E+00 3.56 9.70 1.42
protfold 574 2562 8.36E+03 6.50E+00 3.42 10.66 1.67
pds-100 8377 17555 1.79E+04 5.48E+00 3.38 121.91 114.99
rosen10 989 6916 2.01E+03 1.35E+03 3.34 40.93 17.40
lpl1 2692 7211 8.18E+08 1.02E+04 3.31 76.13 30.93

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 25

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (ms) Wiedemann Lanczos

grow7 138 1744 8.45E+12 3.53E+16 3.29 11.67 5.16
air06 562 3420 1.07E+04 9.00E+00 3.13 7.97 1.60
pds-80 9225 19432 1.12E+04 5.66E+00 2.88 195.69 166.12
pds-90 7914 16673 1.48E+04 4.13E+00 2.84 144.91 129.57
pds-70 7822 16545 1.11E+04 5.84E+00 2.76 155.28 134.17
model2 149 757 1.15E+112 4.60E+108 2.74 27.60 6.74
l9 241 1381 7.65E+21 1.74E+19 2.68 14.93 7.46
pds-60 7586 16067 8.18E+03 4.48E+00 2.61 133.01 122.99
degen3 744 5431 1.66E+04 2.00E+01 2.48 14.50 3.15
bg512142 560 2140 6.92E+06 1.95E+03 2.21 21.17 8.41
scfxm1-2r-8 403 1608 7.45E+09 2.84E+08 2.01 24.88 14.95
bas1lp 502 6651 9.77E+04 9.80E+01 1.95 23.29 6.54
gosh 379 1379 8.05E+27 4.51E+24 1.90 38.08 20.26
pilot4i 134 1220 1.50E+33 4.19E+28 1.88 20.85 8.11
rosen2 431 4143 7.85E+02 3.19E+02 1.86 46.94 9.46
pds-50 5962 12592 1.04E+04 3.49E+00 1.83 100.82 95.64
rail507 413 2005 5.39E+03 6.85E+00 1.48 21.31 7.85
scsd8 247 655 9.59E+18 1.58E+17 1.40 32.29 16.27
air05 323 1789 2.79E+04 6.94E+00 1.40 13.34 3.16
30_70_4.5_0.95_100 2754 8381 6.12E+03 4.34E+00 1.38 70.03 54.02
d6cube 223 1424 9.56E+05 4.24E+02 1.38 4.18 8.83
mitre 801 2466 4.18E+05 2.81E+03 1.28 71.92 37.51
fome21 3291 7240 9.21E+03 3.18E+00 1.24 70.06 50.55
modszk1 263 765 1.52E+21 1.25E+20 1.23 92.27 15.12
10teams 177 885 1.12E+03 5.63E+00 1.17 9.16 4.62
pds-40 4028 8478 6.64E+03 3.02E+00 1.14 84.03 54.20
fast0507 401 1908 3.72E+03 6.99E+00 1.13 22.27 5.28
south31 112 460 1.68E+265 Inf 1.10 90.21 12.86
qiulp 603 1717 8.25E+10 1.31E+09 1.09 32.35 16.01
qiu 603 1717 5.99E+10 1.31E+09 1.09 55.15 16.11
ganges 344 1123 4.19E+26 3.03E+25 1.09 47.32 23.96
cycle 284 878 1.46E+79 3.19E+75 1.06 47.12 19.64
maros 289 1143 2.76E+14 2.54E+11 0.97 39.30 11.16
30_70_4.5_0.95_98 2451 7364 7.84E+03 4.35E+00 0.94 90.63 61.09
scagr7-2r-864 680 1697 6.99E+06 3.42E+03 0.84 87.19 44.41
p05 919 2717 4.06E+04 3.06E+01 0.82 58.18 14.21
rentacar 327 1080 3.64E+05 1.01E+03 0.81 38.50 49.30
bnl2 459 1488 1.22E+15 1.10E+12 0.81 87.01 32.92

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (ms) Wiedemann Lanczos

30_70_4.5_0.5_100 2098 6197 1.98E+03 4.28E+00 0.75 88.59 54.45
pds-30 2643 5641 3.27E+03 3.04E+00 0.74 95.40 51.03
bandm 122 609 1.12E+27 1.05E+26 0.74 45.42 9.74
r05 919 2717 4.06E+04 3.06E+01 0.73 39.90 16.78
fome20 1718 3811 5.39E+03 3.14E+00 0.67 68.02 29.74
scfxm1-2b-4 233 965 5.92E+09 2.84E+08 0.66 49.39 14.98
scfxm1-2r-4 233 965 5.92E+09 2.84E+08 0.66 87.60 14.92
scfxm1-2c-4 233 965 5.92E+09 2.84E+08 0.66 51.71 15.03
baxter.pre 470 1274 3.55E+94 8.48E+88 0.64 94.20 41.38
nug06 267 1007 1.04E+04 4.81E+00 0.57 8.39 10.57
neos 2342 5098 3.29E+04 5.88E+00 0.56 110.87 46.57
capri 138 507 3.72E+68 3.01E+65 0.54 79.61 23.11
rail582 384 1387 4.55E+03 5.10E+00 0.53 22.83 22.75
danoint 196 790 2.11E+07 6.31E+03 0.53 45.87 5.47
neos.pre 2080 4578 1.60E+04 5.86E+00 0.48 161.55 45.24
p010 839 2486 3.96E+04 3.06E+01 0.48 81.81 21.01
rosen1 217 2528 1.23E+03 5.80E+02 0.48 65.13 11.27
rosen8 264 1850 2.53E+02 8.87E+01 0.47 88.81 10.78
seymour 537 1881 5.24E+03 5.81E+00 0.44 77.87 8.98
bnl1 223 824 3.34E+23 2.35E+20 0.44 135.85 25.00
mzzv11 1098 3189 8.92E+05 2.46E+02 0.42 83.45 39.75
scfxm3 262 1005 1.67E+17 7.58E+13 0.42 85.35 29.35
scrs8-2r-512 992 1984 1.92E+01 9.13E+00 0.38 114.47 51.21
rail516 268 936 1.31E+03 5.64E+00 0.37 15.38 20.34
sp97ar 271 2400 2.40E+04 3.93E+01 0.37 126.44 37.75
neos7 590 1434 1.46E+08 1.00E+06 0.34 234.47 53.01
stocfor2 224 576 3.54E+26 1.50E+24 0.33 174.61 36.69
dbir1 154 845 4.54E+06 1.42E+06 0.32 180.07 24.27
small000 140 383 6.77E+19 5.59E+23 0.32 122.40 31.55
neos6 174 1580 3.33E+03 7.20E+01 0.32 25.32 30.72
sp98ar 223 1782 1.69E+04 4.43E+01 0.31 59.23 62.01
woodw 168 589 1.44E+12 3.80E+10 0.29 282.23 27.99
80bau3b 154 396 3.31E+46 1.75E+45 0.29 146.51 35.63
manna81 1392 2784 3.00E+00 2.00E+00 0.29 119.16 34.38
roll3000 177 1101 2.19E+06 1.47E+03 0.28 47.75 23.19
disctom 192 565 5.92E+02 3.41E+00 0.28 11.65 14.21
dbir2.pre 281 1879 5.86E+06 1.10E+05 0.28 151.55 17.77
scfxm2 178 658 1.67E+17 7.58E+13 0.27 87.07 20.94

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Algorithm 1XXX: SPEX Left LU, Exactly Solving Sparse Linear Systems via a Sparse Left-Looking Integer-Preserving
LU Factorization 27

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (ms) Wiedemann Lanczos

neos11 365 1116 3.06E+03 5.06E+00 0.26 40.09 64.46
mzzv42z 787 2124 5.68E+05 2.01E+02 0.26 103.11 33.88
route 339 1290 7.27E+08 2.03E+07 0.26 95.47 38.07
degen2 217 1138 2.58E+03 1.15E+01 0.25 11.23 31.76
dsbmip 220 568 3.06E+46 2.19E+41 0.24 191.73 31.08
nsct1 120 595 4.25E+06 7.67E+05 0.23 257.58 270.62
stormg2-27 449 1019 3.67E+06 1.77E+03 0.23 311.75 40.18
baxter 256 697 3.06E+21 6.81E+15 0.23 201.24 30.85
neos1 309 944 8.24E+02 4.83E+00 0.22 13.85 9.92
crew1 127 861 7.82E+02 8.18E+00 0.22 3.32 4.40
blp-ar98 148 876 3.94E+03 9.40E+01 0.18 33.94 77.04
nsct2.pre 156 1140 3.84E+06 3.22E+05 0.16 106.01 127.32
sgpf5y6 787 1870 6.24E+02 3.37E+00 0.15 146.43 83.92
pds-20.pre 370 851 1.07E+03 3.38E+00 0.13 51.60 61.08
sgpf5y6.pre 755 1744 1.20E+02 3.22E+00 0.12 295.60 56.57
p19 117 555 4.13E+05 4.37E+04 0.12 156.17 98.19
iiasa 113 262 6.06E+18 6.37E+17 0.12 304.00 46.43
scrs8-2r-256 416 832 1.92E+01 9.13E+00 0.12 214.69 32.78
UMTS 268 828 4.40E+20 3.24E+18 0.11 100.90 103.26
neos818918 265 678 4.29E+02 3.22E+00 0.10 30.12 24.17
rd-rplusc-21 148 454 7.35E+16 4.38E+13 0.10 237.73 239.83
neos4 454 944 2.63E+08 5.59E+06 0.10 176.16 225.01
rosen7 127 649 8.23E+01 5.75E+01 0.10 45.33 155.96
ceria3d 130 647 2.40E+04 1.09E+01 0.10 19.26 32.27
dbir2 157 784 1.71E+06 7.27E+04 0.10 41.07 78.17
scrs8-2r-64 256 512 1.60E+05 1.41E+05 0.10 263.03 68.37
boeing1 122 415 7.36E+10 6.29E+07 0.09 134.16 136.24
scrs8 109 280 2.97E+27 8.93E+24 0.09 233.86 124.79
gesa3_o 148 365 1.73E+29 1.19E+26 0.09 457.90 48.61
neos19 228 487 7.19E+04 5.23E+01 0.09 49.19 126.88
pp08aCUTS 131 332 1.44E+04 4.27E+02 0.08 65.16 41.73
scorpion 131 507 7.19E+06 2.00E+05 0.08 119.88 332.56
gesa3 134 336 1.73E+29 1.19E+26 0.08 169.82 183.58
neos823206 220 547 3.15E+05 2.24E+03 0.08 129.95 97.29
sc205 184 487 1.18E+04 2.10E+01 0.08 105.17 103.36
nsct2 107 544 2.74E+06 2.40E+05 0.07 34.50 48.16
nug05 107 362 1.14E+03 4.15E+00 0.06 5.64 9.54
lpl3 212 461 3.06E+02 2.61E+00 0.06 84.57 80.55

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

Relative Run Time
Matrix Name n nnz Cond Norm SPEX Left LU time (ms) Wiedemann Lanczos

scrs8-2r-128 192 384 1.92E+01 9.13E+00 0.06 35.22 42.63
scrs8-2c-64 168 336 4.80E+01 2.66E+01 0.06 75.68 94.17
stormg2-8 117 263 4.82E+05 1.77E+03 0.05 96.96 70.89
dcmulti 120 303 7.03E+03 6.26E+02 0.05 92.34 80.35
mkc1 106 250 1.27E+06 2.89E+04 0.05 25.26 32.34
mkc 106 250 1.27E+06 2.89E+04 0.04 26.44 12.39
gesa2_o 102 214 6.47E+09 4.13E+08 0.04 110.27 465.18
scrs8-2r-32 128 256 4.16E+01 3.54E+01 0.04 85.14 90.84
bienst1 102 253 7.61E+02 6.09E+00 0.03 11.11 16.36

Table 6. Comprehensive Results: Tiny Instances

Manuscript submitted to ACM

	Abstract
	1 Overview
	1.1 Contributions
	1.2 Organization

	2 The SLIP LU Factorization
	3 Features of the SPEX Left LU Package
	3.1 Software Dependencies
	3.2 Functionality of SPEX Left LU
	3.3 Improvements to GMP and MPFR made in SPEX

	4 Computational Tests
	4.1 Computing Environment
	4.2 Set of Test Instances
	4.3 Pivoting Schemes in SPEX Left LU
	4.4 Accuracy of MATLAB Sparse Backslash
	4.5 Comparison to Iterative Exact Methods

	5 Conclusion
	Acknowledgments
	References
	A Comprehensive Computational Results

