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1 OVERVIEW

Exactly solving sparse systems of linear equations (SLEs) is a key subroutine of algorithms used to solve problems
arising in various fields including number theory [Dixon 1982; Wiedemann 1986], mathematical proofs [Hales 2005],
computational geometry [Burton and Ozlen 2012; Gartner 1999], and exact linear/integer programming [Gleixner 2015;
Steffy 2011]. Moreover, solving a sparse SLE may require extended precision due to numerical instability [Higham 2002;
Klotz 2014] or a poorly scaled or highly ill-conditioned input matrix [Golub and Van Loan 2012; Horn and Johnson
2012]. Lourenco et al. [2019] derived the sparse left-looking integer-preserving (SLIP) LU factorization, which exactly
solves the sparse SLE, Ax = b exclusively using integer-arithmetic; thereby ensuring that the final solution to the

system is roundoff-error-free.

1.1 Contributions

We develop the Sparse Exact (SPEX) Left LU software package which implements the SLIP LU factorization in ANSI C
along with a MATLAB interface. The package performs all internal operations on full-precision integers (via the GNU
Multiple Precision Arithmetic (GMP) Library [Granlund et al. 2015]). SPEX Left LU either gives the exact solution to
the input linear system exactly (as a rational vector via the GMP library) or to any user defined precision (either double
or variable precision floating point via the GNU Multiple Precision Floating-Point Reliable (MPFR) library [Fousse
et al. 2007]). In the case of (double precision) floating point input, the input is scaled to integers by multiplying by 1016
(which is chosen, as explained briefly below, due to the fact that machine precision is 2.2204 * 10719); then, the solution

0% or more, the

is exact to the scaled system. This makes sense as, given two numbers, whose magnitudes differ by ~ 1
smaller number is, effectively, zero (i.e., x = 1018, y =1,x+y == x;and likewise, x = 1,y = 10718, x + y == x.) In order
to obtain higher precision (i.e., to preserve the precision of all the matrix’s entries regardless of how relatively tiny they
are compared to the other matrix’s entries), the user can use MPFR input which allows (floating-point) numbers of
arbitrary digits of precision with “exact” conversion (thus, the exact number of digits are preserved).

The software package presented in this paper provides the first, commercial quality implementation of a direct
method to exactly solve sparse linear systems solely using integer arithmetic. The software is extremely reliable in two
aspects: (1) the code itself has undergone 100% test coverage along with scaffolding code to test loop invariants and
data sanity and (2) in terms of algorithmic reliability, as it guarantees to provide, with probability 1, an exact solution
unlike competitor approaches as further discussed in the computational results. To improve usability, the API of the
code was completely redesigned, the vast majority of the functions were rewritten since the publication of [Lourenco
et al. 2019], and an easy to use MATLAB interface is provided so that users can solve the linear system Ax = b and
obtain output in either double precision, variable precision, or a string of numerators and denominators through a
single line of MATLAB code, x = SPEX_Left_LU_backslash(A,b). Additionally, all user visible functions within the
code have been extensively documented. As a component of the SPEX software package, we envision SPEX Left LU to
be the first in a line of forthcoming codes to solve any sparse linear system exactly.

Moreover, an extra improvement contained in our package has ramifications beyond exactly solving sparse linear
systems. As mentioned above, SPEX Left LU is based on the GNU GMP [Granlund et al. 2015] and GNU MPFR [Fousse
et al. 2007] libraries, which are two of the most robust and widely used libraries for arbitrary bit-length integer, rational,
and extended floating point operations. However, despite the widespread use of these libraries, they handle memory
errors in an extremely low-level manner: for instance, when either library runs out of memory when performing

arithmetic operations (such as a = b X c), they will either segmentation fault or abort. While this approach is valid for
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some software, other packages such as MATLAB and CPLEX require more robust error handling; thus, due to this issue,
GMP and MPFR are unsuitable to be used (or included within) this type of software packages. To alleviate this issue, we
developed generic wrappers for all GNU GMP/MPER functions so that errors such as out of memory do not lead to
segmentation fault or abort. When coupled with our wrappers, GMP and MPFR (and thus any software that uses our
interface to GMP/MPFR) will simply indicate the memory issue and close cleanly. Note that, if a developer desires to use
our GMP/MPER wrappers in other applications, they can be used independently of the SPEX factorization framework.

The paper concludes with a robust trio of computational studies. First, we show that our exact factorization performs
best when using a counter-intuitive partial pivoting scheme in which the kth pivot element is selected as the entry of
lowest magnitude in the k'™ column. This is in contrast to floating-point left-looking algorithms such as Gilbert and
Peierls [Gilbert and Peierls 1988] or KLU [Davis and Palamadai Natarajan 2010] which must perform partial pivoting on
entries with large magnitude in order to maintain floating-point numerical stability. Second, we utilize SPEX Left LU to
benchmark the accuracy of the state-of-the-art sparse matrix solver within MATLAB, illustrating that this commercial
solver may produce inaccurate solutions for about 3% of real world “well behaved” instances, and up to 37% of real world,
singular-to-double-precision instances. Third, we compare SPEX Left LU to an alternate method of exactly solving
sparse linear systems, iterative black-box approaches. These tests show that our factorization outperforms in run time
the iterative methods for easy instances while the iterative methods outperform SPEX Left LU on the hard instances.
As a result, this paper presents evidence that SPEX Left LU is among the state-of-the-art methods to exactly, efficiently,

and reliably solve sparse linear systems; specifically, on small and medium sized instances without an abundance of fill.

1.2 Organization

The remainder of this paper is organized as follows. Section 2 gives a brief overview of the underlying algorithms
used in the SPEX Left LU package. Section 3 describes the implementation of the SPEX Left LU package. Section 4
computationally compares pivoting schemes for the exact factorization, benchmarks the accuracy of MATLAB sparse
backslash, and compares SPEX Left LU to alternate iterative exact methods for solving sparse linear systems. Finally,

Section 5 concludes the work.

2 THESLIP LU FACTORIZATION

This section provides a brief overview of the SLIP LU factorization, the basis of SPEX Left LU. For simplicity, the
description below assumes that no row and column permutations are applied to the matrix A, an assumption that is
removed for the remainder of the paper. See [Lourenco et al. 2019] for an in-depth discussion and theoretical derivation
of the factorization.

Based on integer-preserving Gaussian elimination (IPGE) [Bareiss 1968; Edmonds 1967; Montante-Pardo and Méndez-
Cavazos 1977], its improvements [Lee and Saunders 1995], and left-looking LU factorization [Gilbert and Peierls 1988],
the SLIP LU factorization expands the (dense) roundoff-error-free (REF) LU factorization [Escobedo and Moreno-Centeno
2015] to the sparse case. Given an input matrix, A € Z™", and right hand side vector, b € 71 SLIP LU computes
the sparse factorization A = LDU, where L,U € Z™" and D is a diagonal matrix. Note that, if A is rational or decimal,
the SLIP LU package makes A integral by multiplying its entries by the least common multiple or appropriate power
of 10, respectively. Then, using specialized sparse integer-preserving forward and backward substitution algorithms,
the SLIP LU factorization solves the system LDUx = b, where x € Q™*!, using only integer-arithmetic. The key
property of SLIP LU is that, in the bit-complexity model, it solves the linear system Ax = b in time proportional

to the arithmetic work. This means that all of the overhead related to data structures and ancillary operations is
Manuscript submitted to ACM
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4 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

asymptotically dominated by the cost of the arithmetic operations required to compute the factorization. Notably, this
property is not trivial in sparse-matrix algorithms; indeed, to the best of our knowledge, there are only two other sparse
factorizations that achieve this asymptotically efficient complexity bound (when implemented with any fixed precision
type): Gilbert and Peierls’ left-looking LU factorization [Gilbert and Peierls 1988] and Liu’s up-looking Cholesky
factorization [Liu 1991]. In contrast, exact factorization approaches based on arbitrary precision rational arithmetic
(opposed to our factorization which is based on arbitrary precision integer arithmetic) for solving sparse linear systems
cannot achieve such asymptotic efficiency due to their usage of ancillary, computationally expensive greatest common
divisor operations.

Prior to reviewing the factorization, we introduce the following notation:

Definition 2.1 (IPGE Algorithm). Let AK) denote the k' iteration IPGE matrix, for 0 < k < n, with A0 = 4
Additionally, let ag.kj) denote the individual entries of A%) for 1 < i < n,1<j<n,and 0 < k < n. At iteration k, the

IPGE algorithm computes entry a®) as follows:
2%
(k) agkj_l) ifi=k
a;; =19 koD gk _ gk jk-1) (1)
bJ L "J(k_z) kj ik otherwise.
Ar-1,k-1

Definition 2.2. Let pt%) denote the kth pivot element chosen during the SLIP LU factorization, for 0 < k < n, with
(k=1)
kk

>

p(o) = 1. In terms of IPGE entries p(k) =a

Definition 2.3. Let L) and D) be the kth left-looking L and D matrices, respectively, for k = 0, . .., n. Specifically,
L) and D) are the first k completed columns of L and D augmented by the last n — k columns of I and (1/p(k))I,

respectively.
Definition 2.4. Let A(:, k) denote the k™ column of the matrix A, for 1 < k < n.

The SLIP LU factorization is a left-looking LU factorization algorithm; thus, at iteration k, it computes the kM column

of the matrices L and U. To do so, it solves partial lower triangular linear systems of the form L*k-Dpk=Dx = A(;, k)

for k = 1, ..., n. Formally, the solution to Equation (2) yields the k™ column of L and U.
1
S50 0 0
b1 1
o 0 0 0 ©
. X1 al, k
I x2 a¥
k-1) (k=1 k-1.1 1 2,k
Loy TSN ' :
6 N N (k-2) ,(k-1) 0
P A IS
: D g
ln_,l ln,k—l
I = P ()

In order to solve Equation (2), a sparse REF lower triangular solve algorithm, Algorithm 1, was derived. Algorithm 1
solves this system in two phases: symbolic and numeric.
Symbolically, Algorithm 1 first computes the nonzero pattern of x, denoted X, via a graph search algorithm.

Specifically, this algorithm operates on a graph of n nodes where a directed edge (i, j) exists if [; ; is nonzero. It performs
Manuscript submitted to ACM
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a sequence of depth first searches, each rooted on each of the nonzeros in A(:, k). Consequently, this algorithm is
referred to as obtaining the reach of the k™ column of A on the graph of L and is denoted X = Reachg, (A(:, k)). This
algorithm outputs the nonzeros in topological order, which is sufficient for traditional lower triangular solve algorithms
[Gilbert and Peierls 1988]. However, in order to preserve integrality, SLIP LU requires that this nonzero pattern is sorted
with respect to the row indices.

Interestingly, unlike floating-point left-looking LU, the cost of the integer-arithmetic operations dominate the sort;
thus, as per Theorem 4.8 of [Lourenco et al. 2019], this sort does not impact the asymptotic efficiency of SLIP LU.

With the nonzero pattern X in hand, Algorithm 1 next computes the numeric values of x. This is done via a sequence
of two operations referred to as a History update and IPGE update. A History update consists of multiplying x; by the
the current pivot and dividing it by a previous pivot; an operation which is essential to exploiting sparsity in IPGE. An
IPGE update consists of a single step of IPGE (i.e., Equation 1) applied to entry x;. This algorithm is the basis of the

numeric factorization of SLIP LU; thus, it is presented below for completeness.

Algorithm 1 Sparse REF Lower Triangular Solve

1 x = A, k)
2 X = Reachg, (A(;, k))
3: sort(X)
4: Initialize history vector: h; = 0 Vj € X
5. for j € X do
6: if j < k then
7: if hj <j—-1then

) _ x;pU
8 History update: x; = B
9: end if
10: for i > jandl;; # 0do
11: if h; <j—1then
12: History update: x; = %
13: end if "
14: IPGE update: x; = %ilf)’jxj
15: History vector update: h; = j
16: end for
17: else
18: if hj <k—1then

. xjp(k—l)
19: History update: x; = P
20: end if
21: end if
22: end for

3 FEATURES OF THE SPEX LEFT LU PACKAGE

This section gives a brief overview of the features of SPEX Left LU. For an in-depth discussion of the C and MATLAB
interfaces to this package, we refer the reader to the user guide included with the software package.
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3.1 Software Dependencies

Both the C and MATLAB implementation of SPEX Left LU require the installation of four external software libraries.
The first two libraries, the GNU multiple precision arithmetic library (GMP) [Granlund et al. 2015] and GNU multiple
precision floating-point reliable library (MPFR) [Fousse et al. 2007], are distributed independently from SPEX Left
LU. The other two libraries, the approximate minimum degree (AMD) ordering [Amestoy et al. 2004], and column
approximate minimum degree (COLAMD) ordering [Davis et al. 2004], are distributed along with SPEX Left LU; however,
they may also be independently obtained via SuiteSparse [Davis et al. 2014].

3.2 Functionality of SPEX Left LU

Using the SPEX Left LU package to exactly solve a sparse linear system Ax = b comprises five phases: input, column
preordering, factorization, forward/backward substitution, and output.

The input phase of SPEX Left LU creates a scaled (if necessary) copy of the user’s input matrix to use for all further
routines. This copy is stored in sparse compressed column form and its numeric entries are full precision integers via
GMP’s big integer (mpz_t) data structure. The user’s input matrix may be stored in either triplet, sparse compressed
column, or dense format. The numeric entries in the user’s matrix may be read from: GMP big integer (mpz_t), GMP
rational numbers (mpg_t), MPFR variable precision floating-point numbers (mpfr_t), double precision numbers, or 64
bit integers (int64_t). For all of the inexact input data types, the values in the matrix are assumed to be accurate to the
defined precision. All matrices in this package are stored in a SPEX_matrix struct.

The column preordering phase of SPEX Left LU reorders the columns of the matrix A in order to reduce the number
of nonzeros in the ensuing L and U factors. By default SPEX Left LU uses the COLAMD ordering [Davis et al. 2004];
however, AMD [Amestoy et al. 2004] can be used, or the matrix can be factorized with no column reordering, instead.

The third phase of SPEX Left LU is the integer-preserving factorization. It computes the factorization LDU = PAQ
by performing n iterations of the sparse REF lower triangular solve, Algorithm 1, described in Section 2. By default, the

pivot matrix P is selected via a partial pivoting scheme in which the kth

pivot is the diagonal entry if its magnitude
is smallest in column k, otherwise it is the smallest entry in column k. SPEX Left LU allows various other pivoting
schemes; refer to the user guide for details.

The forward/backward substitution phase of SPEX Left LU uses the integral factorization to solve the linear system
Ax = b. This is done via REF forward substitution [Escobedo and Moreno-Centeno 2015; Lourenco et al. 2019], which
entails solving the system LDy = Pb, and backward substitution which entails solving the system Uz = det(A)y, where
det(A) is the determinant of the A matrix (which is the n® pivot of the factorization). After completing backward
substitution, the exact rational solution of the system Ax = b is given as x = z/det(A). At this point, x is rational and
guaranteed to be exact.

The output phase of SPEX Left LU returns the solution vector(s) x to the user. In C, the user can obtain x in rational
form (via GMP mpqg_t data type) or it can be rounded to either double precision or a user specified floating point
precision (via the MPFR mpfr_t data type). In MATLAB, the user can obtain x in either double precision, extended
precision via MATLAB vpa, or a cell array of rational strings. Note that roundoff error in floating-point types is only
accrued in this final conversion from rational arithmetic. SPEX Left LU utilizes higher precision for this conversion;
thus, double precision output is accurate to machine roundoff (approximately 272 ~ 2.22 * 1071° [Kahan 1996]), while

multiple precision output is accurate to the user’s specified precision.
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3.3 Improvements to GMP and MPFR made in SPEX

The GMP and MPFR libraries may suffer from run-time errors due to lack of memory or invalid user input. By default,
both of these libraries abort the user’s application if any internal routine fails, which is not acceptable in a robust
end-user application. Thus, to improve the stability of these two libraries, we developed a set of wrappers for all
utilized GMP and MPFR functions which properly handle out of memory conditions or errors due to user input via
the ANSI C longjmp function and a global memory heap manager. As a result, the SPEX package will not crash due
to memory issues or invalid user input. Our wrapper class for all utilized GMP and MPFR functions is described in
SPEX/SPEX_Util/Source/SPEX_gmp.c and Include/SPEX_Util.h. Our implementation can be extended to any other
GMP or MPFR function, by following the template given in those two files. Moreover, these wrapper functions can be
used independently of the SPEX factorization routines; for this, a developer only needs to include SPEX_Util.h in their
code to use out GMP/MPFR wrappers in their applications.

4 COMPUTATIONAL TESTS

This section presents a computational study of the SPEX Left LU package. Section 4.1 describes the computing
environment used. Section 4.2 discusses the set of instances used for testing. Section 4.3 computationally compares
various pivoting schemes within SPEX Left LU. Section 4.4 benchmarks the accuracy of MATLAB sparse backslash.
Finally, Section 4.5 compares the SPEX Left LU factorization to the (exact) iterative methods within Linbox [Dumas
et al. 2002].

4.1 Computing Environment

The experiments conducted in Sections 4.3 and 4.5.2 measure run time and were coded in C and performed on a
computing node running CentOS 7 with 192GB of RAM shared by two 2.0 GHz Intel Xeon 6138 processors with 20 cores.
The experiments conducted in Sections 4.4 and 4.5.1 measure accuracy and were performed on both the aforementioned
computing node as well as in MATLAB R2020a on a computer running Ubuntu 18.04 with 32GB of RAM using a 3.7
GHz Intel Core i9-10900K CPU with 20 cores.

Throughout these computational tests, we use Dolan and MorAl [Dolan and Moré 2002] performance profiles when
comparing competing algorithms/approaches. Briefly, a performance profile is a tool which takes into account both
the number of instances solved as well as the cost required to solve each instance. The performance of each algorithm
corresponds to a curve on a graph, where each point on the curve is what percentage of instances (y-axis) the algorithm
solved within a time-multiple (x-axis) of the fastest solution time (among all algorithms) for each instance. An important
property of performance profiles is that they are insensitive to the relative difficulty among different instances (i.e., they
are not biased toward easy or hard instances). This is because given an instance, all solution times are relative to the
fastest solver on that instance. The simplest way to interpret performance profiles is that the highest curve on the graph

corresponds to the best performing algorithm. Note that, as is common practice, all times were shifted by 1 second.

4.2 Set of Test Instances

We tested the factorization on 441 matrices arising from the BasisLIB_INT (available at either [Steffy 2010a] or [Steffy
2010b] and the San Jose State University Singular Matrix repositories (available at [Foster and Botev 2009] and within
MATLARB via the SJget interface).
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8 Lourenco, C., Chen, J., Moreno-Centeno, E, and Davis, Timothy

The BasisLIB_INT repository is a collection of 276 integral real world LP basis matrices and right hand side
vectors obtained as output from the QSopt_ex solver [Applegate et al. 2007a,b]. The matrices within the BasisLIB_INT
repository were used as a test bed for exact rational factorization algorithms within linear programming [Cook and
Steffy 2011; Gleixner 2015; Steffy 2011]; thus are a strong test set for the SPEX Left LU factorization.

The San Jose State University Singular Matrix database contains 700 matrices arising from real world applications;
these matrices are highly ill-conditioned and claimed to be numerically singular to double precision. This database
of matrices was used in [Foster and Davis 2013] to evaluate the accuracy of SPQR_RANK, a library for computing
accurate solutions of nearly singular linear systems, and computations on rank deficient matrices such as estimating the
numerical rank and computing null space bases. It is based on a sparse QR factorization using conventional floating-point
arithmetic. For nearly singular matrices, SPQR_RANK is far more accurate than the MATLAB backslash, but it is only
intended for computing highly-accurate solutions, not exact ones, which is the purpose of SPEX Left LU. Of the 700
matrices within the database, 480 are square. We printed the square matrices to 16 decimal digits of precision and
attempted to factorize them with SPEX Left LU. Of these matrices, SPEX Left LU determined that 165 were nonsingular,
228 were singular, and the remaining 87 could not be classified after 24 hours of run time. Henceforth, these 165
nonsingular matrices will be referred to as the SJ database. For convenience, the 165 printed to 16 decimal digits matrices
can be found at [Foster and Botev 2022].

4.3 Pivoting Schemes in SPEX Left LU

Lourenco et al. [2019] used a partial pivoting scheme in which the smallest nonzero entry in each column is selected as
the pivot element with the conjecture that this pivoting scheme would reduce the bit-length of entries in the ensuing
submatrix (consequently reducing the factorization time). However, no extensive computational tests were performed
to test this conjecture. In this section, we set all parameters to their default values and computationally compare several
pivoting schemes to test their impact on the factorization time.

First, we test the hypothesis that small pivoting dominates large pivoting by testing these two schemes: small, the
(first) smallest entry in column k is selected as the k™ pivot and large, the largest entry in column k is selected as the
k™ pivot. Across the 441 instances, small pivoting lead to a faster factorization on 86% of the matrices while being
approximately two times faster on average (note that large pivoting timed out on 5 instances from the SJ database; thus
its run time was set to the upper bound of 24 hours). Graphically, we illustrate the clear superiority of small pivoting
via the performance profile given in Figure 1. In this profile, we see that small pivoting completely dominates large

pivoting.

Fig. 1. Small Pivoting Dominates Large Pivoting on All Matrices
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Fig. 2. Comparison of Small Pivoting Schemes

Since small pivoting dominated large pivoting, we next determined what version of small partial pivoting works best.
To do so, we tested four pivoting schemes: the small pivoting scheme, as well as 3 additional schemes that select the
diagonal element if it is within some tolerance of the smallest pivot. The three new methods select the k! pivot as
follows: diag: if it is nonzero, the diagonal entry is selected as the k™ pivot, otherwise the smallest entry in the column
is the pivot element, tol 0: the diagonal entry is selected as the pivot if it has the same magnitude as the smallest entry,
otherwise the smallest entry is selected, and tol 0.1: the diagonal entry is selected as the pivot if its magnitude is within
10% of the smallest entry, otherwise the smallest entry is selected. Numerically, the run times of small, tol 0, and tol 0.1
were very similar; thus, we compare these pivoting schemes via a sequence of performance profiles. First, we show that
diag is the worst of these four pivoting schemes via Figure 2a. In this performance profile, we notice that each of small,
tol 0, and tol 0.1 dominate diag pivoting across all instances. It also appears from this figure that small is the superior
pivoting scheme. In order to verify this, we perform two pairwise comparisons which compare small, tol 0, and tol 0.1.
Figure 2b indicates that small dominates tol 0.1 and Figure 2c indicates that small slightly outperforms tol 0; however,
the magnitudes of run times difference is so slight (note the scale of the x-axis) that practically speaking these three

pivoting schemes are identical on this data set.
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4.4 Accuracy of MATLAB Sparse Backslash

This section utilizes SPEX Left LU to benchmark the accuracy of MATLAB sparse backslash, the state-of-the-art solver
for sparse linear systems. To benchmark the MATLAB backslash, we compute the exact solution of the linear system
using SPEX Left LU and report this solution to double precision. Then, we compare the solution obtained from SPEX
Left LU to the solution obtained from MATLAB. Note that, for a sparse unsymmetric input matrix A, MATLAB sparse
backslash utilizes the unsymmetric multifrontal package (UMFPACK) [Davis 2004] to compute its LU factorization,
sometimes followed by one or more steps of iterative refinement.

Table 1 shows the forward and backward error of both methods on the BasisLIB_INT repository. Note that xg refers
to the exact solution obtained from SPEX Left LU. From this table, we see that our trust in the accuracy of commercial
sparse solvers is mostly justified. Namely, backslash produces a nearly exact solution (i.e., error less than 10~1%) for
over 95% of the matrices in the collection and only fails to find a suitable solution (i.e., error more than 1072) for less
than 3% of the matrices. We also note that both backslash and SPEX Left LU do not meet a strong relative forward error
bound (|[Ax — b||/||b||) for approximately 5% of instances, illustrating those matrices which are so poorly conditioned,

the matrix vector multiply Ax induces large roundoff error.

Table 1. Accuracy of Commercial Solvers Computing x (BasisLIB)

Method
Threshold Error SPEX Left LU | Backslash
ooz | s =Tl NA | 95.65%
- [|Ax = b]||/ |5l 93.12% 92.75%
<10-6 | s = xll/llxsll N/A 96.74%
- [|1Ax = b]|/||]| 94.57% 94.20%
<10-2 | s = xll/lxsl N/A 97.10%
- [|1Ax = b]||/ |5l 94.93% 94.57%

Likewise, Table 2 shows the accuracy of these solvers on the 165 identified nonsingular matrices from the SJ database.
For these tests, we utilize a right hand side vector, b, as a vector of all ones. For this repository, we see that backslash
produces a nearly exact solution (i.e., error less than 10712) for only 31% of the matrices, a decent solution (i.e., error
less than 107°) for 46% of the matrices, but produces a poor solution (i.e., error more than 1072) for 28% of the matrices.
These results, though dramatic, are not surprising, based on the fact that the error bound on ||Ax — b||/||?|| for both
SPEX Left LU and backslash is poor for all measured thresholds, indicating this collection is incredibly ill-conditioned.
In general, one would expect error bounds more similar to those of Table 1; however, the SJ database represents a
collection of matrices in which exactness is required in order to obtain solutions to linear systems which are flagged as

numerically singular.

4.5 Comparison to Iterative Exact Methods

The purpose of this section is illustrate the relevance of our approach by presenting our contributions in the light of a
broader context and compare our methods to the state-of-the-art in terms of both algorithmic aspects and software
implementations. In addition to direct methods (which were the focus of the paper up to this section), iterative methods
are a widely-used alternative to direct (e.g., factorization based) approaches to solve sparse linear systems. Iterative
methods have notably been extended to exactly solve (with high-probability) sparse linear systems; two of the approaches

at the forefront of these efforts make use of either Chinese remaindering or p-adic lifting [Dixon 1982] on top of either
Manuscript submitted to ACM
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Table 2. Accuracy of Commercial Solvers Computing x (S) database)

Method
Threshold Error SPEX Left LU | Backslash
< q0-12 | s = xll/llxsll N/A|  3091%
= lAx = bIl/11Bll 1151% 10.91%
<10-6 | s = xll/llxsll N/A | 46.06%
= lAx — ||/ 10| 39.39% 45.45%
<102 | Ixs = xll/lxsl N/A 72.12%
= lAx = BII/ 115l 67.72% | 67.88%

Wiedemann’s [Wiedemann 1986] algorithm or block Lanczos iterations [Eberly and Kaltofen 1997; Hovinen 2004; Simon
1984].

We compare our exact factorization to the exact iterative routines within LinBox [Dumas et al. 2002] for the following
reasons: (1) LinBox is extremely comprehensive: it includes tools for exact linear algebra computations over integers,
rational numbers, and finite fields and rings; it can solve linear systems, and compute several matrix invariants, such as
minimal and characteristic polynomials, rank, determinant, Smith normal form; it can find least-norm, least-squares
solutions to singular and inconsistent systems. (2) Most importantly, LinBox is primarily designed to handle sparse
matrices, and it contains implementations of both the Wiedemann and Lanczos approaches over finite fields. This
in contrast to other exact solvers over finite fields such as NTL [Shoup et al. 2001], Magma [Bosma et al. 1997] and
FLINT [Hart 2010]. Specifically, we compare to the most current stable releases of LinBox (and its dependencies),
namely: LinBox 1.6.3 (iterative algorithms) [Dumas et al. 2002], Givaro 4.1.1 (modular arithmetic) [Dumas et al. 2008a],
fflas-fipack 2.4.3 (linear algebra over finite fields) [Dumas et al. 2008b].

Altogether, as further explained below, iterative methods had some advantages; specifically in the case where the
inputs were large and the iterative methods correctly solved the linear system. However, the major issue is that these
routines suffered from a lack of reliability. Specifically, across the 441 instances, both Wiedemann and Lanczos failed
for 37 matrices (approx 8%): 9 segmentation faults and 28 incorrect solutions (due to the 9 segmentation faults, where
appropriate, the comparisons below refer to 432 instances instead of 441 instances). This issue provides evidence that
these exact iterative routines within LinBox are not appropriate for exactly solving all sparse linear systems (it is out of
the scope of this paper to determine if the issue stems from the algorithms or the implementation).

That said, with respect to the run-times, the results are in line with the literature. Specifically, SPEX Left LU
outperformed LinBox for about 86% of easy instances (i.e., quick to solve) while LinBox outperformed SPEX Left LU for
about 84% of hard instances (i.e., longer run times for both). Then again, LinBox produced incorrect solutions on 24% of
the tested hard instances (in addition to 8 segmentation faults). Thus, though LinBox can be significantly faster on some
instances, there is no guarantee that an exact solution is returned, which could be problematic for some applications.

Altogether, it is likely that the best approach for exactly solving a sparse linear system is hybrid in nature. For
completeness, we give a rough sketch of such a hybrid algorithm, but ironing out the details of such approach is out
of the scope of this paper. If the given instance is solved quickly by SPEX (say, within 1 minute), which comprised
the majority of problems in our test case, then utilize our exact factorization. Otherwise, use Linbox and check the
correctness of the returned solution. If the solution were to be incorrect, then SPEX would need to be used.

Below, Subsections 4.5.1 and 4.5.2 further analyze the accuracy results and run times, respectively.
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4.5.1 Reliability. In terms of reliability and stability, we present the results for the BasisLIB and SJ Databases
separately due to the fact that the SJ Database specifically contains numerically challenging matrices. In order to
determine the accuracy of each algorithm, we solve the linear system Ax = b exactly using each of SPEX Left LU,
Wiedemann, and Lanczos (the latter two via LinBox). Then this solution is converted to double precision and the relative
errors are computed.

Across the 276 BasisLIB instances, the 2-norm error between the three algorithms was 0. This means that Lanczos,
Wiedemann, and SPEX Left LU all returned the same (exact solution). Thus, using any of these three algorithms, the
solution vector x can be obtained either exactly or to any user-specified level of precision.

From the 165 SJ database instances, both the Wiedemann and Lanczos code suffered segmentation faults on nine of
the instances. Due to these segmentation faults, where appropriate, the comparisons below refer to 156 instances instead
of 165 instances. On the remaining instances, 127 were solved correctly (i.e., 2-norm error of 0) and 28 were solved
incorrectly (2-norm error > 0); notably, Linbox returned no warning or error when returning an incorrect solution.
Importantly, we are certain that these incorrect solutions were not the result of conversion errors or any other reason
extraneous to the algorithms/implementation, because for both SPEX and LinBox, the input was the identical integer
matrices (after scaling) and the output was formed utilizing identical GMP functions; this is evident by the fact that,

when the solutions were correct, the two-norm difference was exactly zero.

4.5.2  Run Time. In terms of run times, we consider 432 instances (thereby excluding the 9 instances which LinBox
suffered a segmentation fault). In our tests, the Lanczos algorithm nearly uniformly outperformed Wiedemann (was
faster for 89% of instances with an average and geoemetric mean run time 8% and 40% smaller respectively); thus, for
the sake of simplicity we restrict our comparison to the Lanczos algorithm. Across the 432 instances, SPEX Left LU
exactly solved the linear system Ax = b faster than Lanczos for 74.8% of instances.

That said, the instances within BasisLIB and the SJ Database are mostly biased towards instances with small run
times. Thus, to provide a more detailed analysis, we further partition the set into easy instances (those requiring less
than 1 minute of run time by at least one of the algorithms) and hard instances (those requiring at least one minute
of run time for both algorithms). Figure 3a gives a performance profile for the 362 easy instances showing that SPEX
Left LU outperformed Lanczos for 85.6% of these matrices and Figure 3b gives a performance profile of the 70 hard
instances showing that Lanczos outperformed SPEX Left LU for 84.4% of these hard matrices (that said, 8 of the 9
segmentation faults would be a part of this hard set). At first glance, these results are in line with the literature; namely
direct methods are generally preferable when instances are smaller/sparser (thus suffering less fill-in) while iterative
methods are generally faster on larger/denser instances. However, it is important to contextualize these results: a
key caveat of Lanczos/LinBox is that it produced incorrect solutions for 17 of the 70 hard instances (in addition to 8
segmentation faults) and for 11 of the 352 easy instances (in addition to 1 segmentation fault). In short, Lanczos/LinBox
failed (returned an incorrect solution or a segmentation fault) in approximately 3% of the easy instances and 32% of
the hard instances. The Appendix gives a table containing the comprehensive results for all instances, along with the

estimated condition number and norm of each matrix.

5 CONCLUSION

This paper presents the SPEX Left LU software package for exactly solving sparse linear systems. In addition to being
submitted to the Collected Algorithms of the ACM, the SPEX Left LU package is hosted and kept up-to-date as a
component of SPEX [Lourenco et al. 2022] and as a component of SuiteSparse [Davis et al. 2016].
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Fig. 3. SPEX Left LU vs Lanczos: It is important to contextualize the run time results. Specifically, Lanczos/LinBox returned an
incorrect solution in 11 (*3%) of the easy instances and 17 (¥24%) of the hard instances. (In addition, this results and performance
profiles exclude the 9 instances (1 easy and 8 hard) where Lanczos/Linbox returned a segmentation fault.)

In order to showcase the performance of SPEX Left LU, the paper includes a robust set of computational results,

from which we draw the following conclusions:

o For exact factorizations, choosing the smallest column entry as a pivot substantially outperforms choosing the
largest entry. In short, choosing small pivots flattens the growth curve of the entries’ sizes, and thus, improves
the run-time. This is counter-intuitive as choosing large pivots is better for traditional elimination algorithms.

o The trust in commercial solvers is mostly justified as MATLAB sparse backslash provides solutions of high
accuracy for the vast majority of our instances; however, exact arithmetic is necessary for highly ill-conditioned
matrices and especially for matrices flagged as numerically singular.

e When comparing SPEX Left LU to exact iterative methods (Wiedemann’s [Wiedemann 1986] and block Lanczos
[Eberly and Kaltofen 1997; Hovinen 2004; Simon 1984], the results are in line with the literature. Specifically:
— Direct methods, like SPEX Left LU, are generally preferable for those sparse matrices without substantial fill-in,

as SPEX Left LU outperforms the iterative methods for a majority of these easy instances. Thus conclusion is
in agreement with previous studies: (1) in the context of linear programming basis validation, Cook and Steffy
[2011] state that “We found Wiedemann’s method to not be attractive for our LP test instances [...] as the
LU factorizations for these very sparse problems can be computed very quickly”; (2) current exact LP solvers
such as QSopt [Applegate et al. 2007a] and SoPLEX [Gleixner et al. 2017; Wunderling 1997], use rational (not
iterative) linear system solvers as a building block.

— Iterative methods, like Wiedemann and Lanczos, are generally preferable for those sparse matrices in which,
if factorized, substantial fill-in would occur. This is evidenced by the fact that the iterative approaches
outperformed SPEX for the majority of these hard instances. This too is in line with the literature as Cook and
Steffy [2011] states “For other classes of sparse matrices for which LU factorizations are not possible without
significant fill-in, we would expect Wiedemann’s method to perform more competitively””

o Interms of implementation, LinBox failed (returned an incorrect solution or a segmentation fault) in approximately
3% of the easy instances and 32% of the hard instances. Thus, our software package would be required to correctly
solve these instances as well, regardless of their size, fill-in, or run time. Altogether, the best approach for exactly
solving a sparse linear system is likely to be hybrid in nature, utilizing a direct solver like SPEX for those easy
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instances while iterative methods are used for hard instances—though the details of such an algorithm is outside

the scope of this paper.

In short, we feel confident saying that our approach and implementation is among the state-of-the-art for exactly
solving sparse linear systems. Specifically, even for troublesome matrices; barring an out-of-memory condition (which
is properly detected, reported, and safely handled), due to the deterministic nature of our algorithms, the solution

obtained from SPEX Left LU is guaranteed to be exact.
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A  COMPREHENSIVE COMPUTATIONAL RESULTS

Tables 3, 4, 5, and 6 present exhaustive computational results for large (those requiring > 1 hour of run time), medium
(those requiring between 1 hour and 1 minute of run time), small (those requiring between 1 minute and 0.1 seconds of
run time) and tiny (those requiring less than 0.1 seconds) instances, respectively. In each table, the first five columns
give the name (or index from SJ database), dimension, number of nonzeros, MATLAB estimated condition number,
and MATLAB estimated sparse norm in each matrix. Column 6 gives the run time of SPEX Left LU using the selected
pivoting scheme tol 0. Lastly, columns 7 and 8 give the relative run time of Wiedemann and Lanczos, respectively. Note
that those instances in which these algorithms seg-fault are indicated with SF and those instances whose solutions

were incorrect are indicated with bold red text.

Relative Run Time
Matrix Name n nnz Cond norm SPEX Left LU time (hr) | Wiedemann | Lanczos
366 20640 97353 | 2.03E+15 | 7.69E+05 24.00 SF SF
400 10964 | 233741 | 1.29E+15 | 1.99E+01 21.14 0.05 0.04
365 20545 85537 | 4.05E+21 | 3.38E+09 18.90 SF SF
388 11532 44206 | 5.88E+12 | 2.90E+08 17.01 SF SF
369 10000 49699 | 6.90E+20 | 4.31E+04 16.72 0.02 0.03
385 10672 | 232633 | 2.34E+14 | 1.89E+01 15.92 SF SF
367 7337 | 156508 | 7.64E+13 | 1.83E+01 8.05 0.06 0.05
359 13436 71594 | 3.82E+15 | 1.41E+04 7.75 SF SF
695 14454 | 147972 | 3.10E+12 | 5.31E+03 7.74 0.12 0.11
696 14454 | 147972 | 2.96E+12 | 5.31E+03 7.72 0.11 0.11
368 7337 | 154660 | 1.87E+24 | 1.83E+01 7.38 0.06 0.05
350 6774 33744 | 7.68E+13 | 1.26E+06 7.13 0.02 0.02
352 5773 71701 | 8.73E+12 | 1.29E+08 5.42 0.04 0.04
336 5005 20033 | 6.90E+16 | 6.76E+06 5.35 0.02 0.01
88 4875 | 315891 | 3.70E+16 | 3.47E-10 5.31 *0.05 *0.04
344 3363 99471 | 4.08E+13 | 3.79E+09 5.07 0.04 0.03
119 3251 65875 | 2.62E+16 | 1.27E+07 4.85 0.02 0.02
213 3402 | 130371 | 2.67E+16 | 3.98E+14 4.70 0.03 0.03
117 3973 79077 | 2.94E+19 | 1.28E+02 4.66 0.03 0.03
337 5321 65693 | 2.10E+13 | 4.68E+06 4.66 0.03 0.03
346 7055 30082 | 1.65E+12 | 4.02E+02 4.38 SF SF
347 7055 30082 | 6.34E+17 | 4.02E+02 4.24 *0.03 *0.03
140 3937 25407 | 1.04E+17 | 3.27E+11 3.88 0.02 0.02
120 2163 74464 | 4.36E+16 | 8.16E+01 3.49 0.02 0.01
142 3937 25407 | 1.04E+17 | 3.27E+11 3.45 0.02 0.02
222 4257 37465 | 2.52E+16 | 1.46E+02 3.21 *0.03 *0.02
221 4257 37465 | 2.52E+16 | 1.46E+02 3.21 *0.02 *0.02
364 13935 63307 | 2.35E+18 | 1.26E+05 3.20 SF SF
223 4257 37465 | 1.74E+19 | 1.46E+02 3.10 *0.02 *0.02
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833

834 Relative Run Time
8%5 Matrix Name n nnz Cond norm SPEX Left LU time (hr) | Wiedemann | Lanczos
z; 341 2880 | 18229 | 9.74E+13 | 1.39E+04 2.62 0.01 0.01
838 349 4101 | 82682 | 1.44E+13 | 1.34E+01 2.60 0.06 0.05
839 130 2880 | 18229 | 5.98E+18 | 1.33E+07 2.25 0.01 0.01
o 138 4101 | 81057 | 1.80E+24 | 1.34E+01 2.17 0.06 0.05
:Z pilot87.pre 1540 | 30916 Inf Inf 1.70 0.02 0.02
843 118 2568 | 75628 | 4.01E+15 | 1.26E+10 1.57 0.07 0.06
844 pilot87 1625 | 3139 Inf Inf 1.14 0.02 0.02
z: 156 4800 | 102252 | 3.46E+61 | 3.63E+05 1.06 0.13 0.12

47 Table 3. Comprehensive Results: Large Instances

848
849

850

g5 Relative Run Time
852 Matrix Name n nnz Cond Norm | SPEX Left LU time (min) | Wiedemann | Lanczos
853 217 4720 | 20042 | 3.51E+48 | 1.89E+02 52.61 0.08 0.08
o gen4 375 | 8919 | 8.43E+236 Inf 47.79 0.02 0.02
e gend.pre 367 9322 Inf Inf 43.30 0.02 0.02
857 self 924 | 157411 | 1.20E+07 | 1.57E+11 41.18 0.03 0.03
838 slptsk 2315 34430 | 4.35E+185 NaN 35.48 0.27 0.29
- 260 1000 | 1000000 | 1.15E+14 | 5.36E-01 33.21 049 | *0.47
o 335 6747 | 29195 | 2.22E+18 | 5.41E+08 33.12 0.23 0.21
862 genl 329 11016 Inf Inf 28.96 0.04 0.04
863 57 3008 20698 | 2.37E+28 | 8.44E+09 19.43 0.09 0.09
:": 207 1919 | 32399 | 2.10E+18 | 2.92E+00 19.40 0.06 0.07
s 155 3200 | 68026 | 1.78E+47 | 1.61E+05 19.16 0.20 0.18
867 55 3008 | 20715 | 1.94E+27 | 7.90E+08 18.24 0.08 0.08
868 87 2500 | 12349 | 4.35E+17 | 9.83E+03 17.91 0.07 0.07
Zzz 154 1280 | 47906 | 9.87E+24 | 7.94E+04 16.28 0.06 0.05
o 122 1651 | 49062 | 8.22E+27 | 4.49E+02 13.93 0.13 0.1
872 329 5308 | 22680 | 1.67E+14 | 2.99E+06 11.09 0.52 0.45
873 330 5308 | 22592 | 1.66E+14 | 2.99E+06 11.08 0.51 0.44
:Z;‘ 159 1050 | 26198 | 9.00E+15 | 2.10E+07 10.58 0.06 0.06
e pla8_sig185 39835 | 196256 | 4.29E+09 | 1.04E+03 10.43 0.27 0.25
877 355 1409 | 42760 | 2.28E+13 | 2.67E+05 9.31 0.18 0.16
78 pilot 1132 | 16624 | 1.12E+175 NaN 6.88 0.05 0.05
::z 320 1733 | 22189 | 1.20E+13 | 1.18E+11 6.02 0.25 0.25
. maros-7 1350 | 31923 | 7.43E+06 | 3.99E+10 5.89 0.05 0.04
862 236 1000 | 1000000 | 1.46E+19 | 3.23E+00 5.49 300 | *2.88
883 340 8765 42471 | 6.15E+14 | 1.00E+15 5.10 SF SF

884
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885 Relative Run Time

86 Matrix Name n nnz Cond Norm | SPEX Left LU time (min) | Wiedemann | Lanczos
ZZ; jendrecl 1779 34196 | 9.54E+217 NaN 5.08 2.76 2.66
889 stato6v4 3139 | 23752 | 9.62E+17 | 1.63E+21 485 0.23 0.22
890 58 3083 | 11767 | 2.30E+21 | 1.21E+09 478 0.34 031
. plag5900.n0v21 | 40304 | 230558 | 5.46E+08 | 9.76E+02 477 0.67 0.65
:;: momentum3 3254 15159 Inf Inf 4.25 0.38 0.36
894 153 765 | 24382 | 1.67E+14 | 1.35E+17 4.20 0.14 0.13
895 232 1000 | 1000000 | 4.50E+21 | 8.11E-01 4.02 *4.16 | *3.84
& 54 3268 | 20712 | 1.27E+27 | 2.50E+12 3.26 0.58 0.55
:Z 240 1000 | 1000000 | 1.44E+22 | 6.46E+00 3.11 *547 |  *5.46
899 296 1258 7682 | 1.03E+13 | 2.05E+07 2.68 0.13 0.12
900 256 1000 | 1000000 | 1.06E+23 | 2.99E+00 2.65 *6.45 |  *6.05
. 56 3268 | 20963 | 1.27E+27 | 2.50E+12 2.54 0.86 0.76
sz contl1_1 58936 | 179556 | 3.65E+26 | 7.37E+00 2.46 0.01 0.01
904 264 1000 | 1000000 | 8.23E+21 | 4.47E-01 2.19 *711|  *6.86
905 mod2.pre 4422 | 12914 | 3.72E+246 NaN 2.18 1.48 1.40
(”06 brd14051 16360 | 180847 | 2.96E+08 | 2.74E+02 2.14 0.60 0.58
:;; world 4261 | 12190 | 5.65E+241 NaN 2.10 1.30 1.23
909 157 4800 | 27520 | 1.03E+14 | 2.20E+00 2.05 1.75 1.61
910 fome13 24884 | 70839 | 7.99E+15 | 4.02E+11 1.94 0.58 0.53
. 121 1159 | 11047 | 1.57E+19 | 1.17E+02 1.85 0.21 0.20
:i mod2 4435 | 12985 | 1.38E+223 NaN 1.78 1.74 1.65
o4 160 1374 8588 | 4.11E+15 | 1.10E+03 1.69 0.24 0.24
915 309 2837 | 10967 | 5.85E+12 | 7.41E+05 1.64 0.97 0.90
e 314 2836 | 10965 | 5.85E+12 | 7.41E+05 1.64 0.96 0.88
:; 130 2492 | 12653 | 1.73E+08 | 2.61E+09 1.56 0.33 0.30
919 259 500 | 250000 | 1.15E+14 | 5.36E-01 1.24 *171 | *1.69
920 scfxm1-2r-256 | 11812 | 44985 | 3.12E+12 | 2.84E+08 1.15 2.95 2.65
:2 332 4101 | 36879 | 6.70E+20 | 2.02E+06 1.11 2.93 2.53

023 Table 4. Comprehensive Results: Medium Instances

924
925

926

027 Relative Run Time

928 Matrix Name n nnz Cond Norm SPEX Left LU time (s) | Wiedemann | Lanczos
929 gen2 328 8894 | 1.84E+11 | 4.51E+18 54.10 0.10 0.07
:T 310 3200 | 18316 | 2.02E+13 | 2.20E+00 48.00 2.24 2.07
032 128 760 | 5739 | 1.12E+16 | 3.10E+08 43.91 0.19 0.18
933 129 760 | 5816 | 9.93E+19 | 3.10E+08 42.15 0.19 0.18
934 nemswrld 2205 | 13323 NaN Inf 39.39 0.54 0.49

935
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937

938 Relative Run Time
0 Matrix Name n nnz Cond Norm SPEX Left LU time (s) | Wiedemann | Lanczos
Zi? 210 1484 | 6110 | 5.57E+17 | 1.26E+16 31.32 0.87 0.81
o2 contd 2802 | 11862 | 3.85E+05 | 3.98E+03 30.32 051 0.48
943 nug30 14681 | 45627 | 1.06E+06 | 7.88E+00 30.07 0.88 0.79
™ nug20 7733 | 31455 | 8.84E+07 | 7.26E+00 28.82 0.40 0.34
:( rat5 902 | 12026 | 4.19E+06 | 7.48E+05 26.66 0.17 0.16
047 stat96v1 5013 | 20325 | 6.35E+32 | 8.22E+20 25.24 0.66 0.62
948 51 1813 | 11246 | 3.82E+14 | 1.22E+00 20.19 *1.63 | *1.52
” stato6v2 12928 | 48009 | 1.06E+13 | 1.32E+10 20.04 1.87 1.79
;? nug15 5486 | 24736 | 2.41E+07 | 7.73E+00 19.96 0.31 0.28
952 141 511 | 2796 | 6.37E+15 | 4.21E+10 19.26 0.20 0.18
953 pilot.ja 567 | 3781 Inf Inf 19.14 0.43 0.39
o 231 500 | 250000 | 8.37E+20 | 8.11E-01 18.84 *6.80 | *6.79
ZZZ 144 511 | 2796 | 6.37E+15 | 4.21E+10 18.83 0.22 0.18
957 235 500 | 250000 | 4.74E+18 | 3.23E+00 18.57 *7.28 | *7.10
958 pla33810 18940 | 123445 | 1.05E+08 | 2.20E+02 17.15 2.94 2.69
> stat96v3 13485 | 49917 | 3.93E+12 | 6.98E+09 16.99 221 2.07
;ZT model10 1341 | 6403 | 1.71E+164 Inf 15.92 0.90 0.77
952 d2q06¢ 1047 | 5717 | 1.82E+188 Inf 14.96 0.73 0.63
963 239 500 | 250000 | 4.54E+20 | 6.46E+00 14.81 *9.17 | *9.20
ot d15112 9197 | 47335 | 2.33E+18 | 2.25E+11 14.53 3.10 2.92
:fz watson_1 5729 | 14544 | 7.98E+58 | 9.72E+55 13.98 6.80 6.40
967 315 2053 | 18447 | 6.71E+16 | 2.03E+04 13.37 3.73 3.44
968 rat7a 641 | 10542 | 1.38E+20 | 5.06E+05 13.18 0.20 0.18
7 progas 1167 | 6500 | 8.15E+103 | 6.78E+100 12.63 1.19 1.09
ZZT scfxm1-2b-64 5966 | 22682 | 1.30E+12 | 2.84E+08 12.57 4.12 3.82
972 255 500 | 250000 | 1.07E+22 | 2.99E+00 12.47 *10.58 | *10.36
973 scfxm1-2r-128 5671 | 21943 | 1.64E+12 | 2.84E+08 12.27 3.96 3.73
o stat96v5s 812 | 3795 | 1.42E+63 | 3.93E+64 12.08 1.33 1.20
Z: qap12 2740 | 12014 | 2.46E+07 | 6.84E+00 11.79 0.14 0.12
977 124 1220 | 5892 | 2.24E+34 | 2.87E+00 10.16 1.66 1.53
978 NSRSK 5387 | 46157 | 2.64E+07 | 2.06E+03 9.91 0.93 0.81
o watson_1.pre 4642 | 12991 | 3.44E+58 | 9.72E+55 9.83 7.13 6.72
Zz? 09 2087 | 13481 | 2.32E+49 | 1.56E+42 9.68 1.58 1.42
982 301 1650 | 7419 | 5.63E+12 | 5.15E+02 9.65 2.84 2.58
983 130.pre 1199 | 6030 | 1.79E+06 | 2.61E+09 8.49 0.49 0.46
o 127 1220 | 5855 | 6.25E+14 | 3.70E+02 8.48 1.97 1.74
i:: 291 1220 | 5860 | 1.80E+13 | 8.78E+00 8.35 1.98 1.85
987 126 1220 | 5884 | 1.06E+14 | 9.34E+00 8.33 2.00 1.78

988
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989 Relative Run Time

%0 Matrix Name n nnz Cond Norm SPEX Left LU time (s) | Wiedemann | Lanczos
ZZ; 293 1220 | 5892 | 1.58E+13 | 8.37E+00 8.21 2.05 1.91
993 newman2 468 7917 | 1.39E+225 Inf 8.10 0.39 0.37
994 125 1220 | 5892 | 1.58E+17 | 2.88E+00 8.08 2.07 1.82
> 289 1220 | 5884 | 1.42E+13 | 4.95E+00 7.85 2.13 1.99
;;; 292 1220 | 5888 | 3.45E+13 | 2.02E+01 7.84 2.11 1.95
908 287 1220 | 5888 | 4.14E+13 | 1.63E+01 7.60 2.17 1.93
999 288 1220 | 5852 | 2.74E+13 | 1.23E+01 7.60 2.17 2.02
1000 stormg2_1000.pre | 13926 | 32547 | 2.13E+11 | 2.59E+05 7.43 12.82 12.77
izzi 212 882 | 3354 | 7.98E+16 | 6.69E+12 7.20 1.33 1.12
1003 209 415 | 2779 | 8.19E+17 | 6.47E+00 7.14 0.41 0.34
1004 294 1220 | 5892 | 2.74E+13 | 1.23E+01 7.12 2.54 2.63
1009 158 416 | 8562 | 2.42E+25 | 2.54E+03 7.02 0.60 0.57
1222 263 500 | 250000 | 2.57E+21 | 4.47E-01 6.97 *17.74 | *18.10
1008 momentum?2 2113 6516 2.52E+39 1.88E+37 6.95 1.61 1.40
1009 pilotnov 549 | 3337 | 2.82E+264 NaN 6.53 0.95 0.80
1o nug12 2736 | 12037 | 2.25E+07 | 6.97E+00 6.48 0.32 0.22
12: stormg2_1000 14075 | 32597 | 3.77E+09 | 1.05E+04 6.46 15.44 14.78
1013 295 3562 | 3562 | 1.81E+13 | 1.02E+06 6.23 17.41 15.82
1014 perold 440 | 2584 | 4.45E+256 NaN 6.16 0.84 0.72
o scfxm1-2r-96 4504 | 17205 | 1.35E+12 | 2.84E+08 6.03 4.92 451
:i: 53 1089 | 4144 | 6.05E+14 | 2.91E+04 5.77 2.02 1.95
1018 dbicl 4795 | 23403 | 1.04E+11 | 4.53E+06 5.59 1.75 1.47
1019 pilot4 289 | 2805 Inf Inf 5.19 0.87 0.81
o 211 768 | 2934 | 1.29E+17 | 1.36E+13 4.95 1.53 1.27
122 contl_1 1070 | 4649 | 1.22E+09 | 2.51E+05 455 0.88 0.79
1023 model11 2039 | 7606 | 1.40E+32 | 3.38E+29 4.12 1.82 1.56
1024 pcb3038 3588 | 46560 | 2.00E+06 | 1.55E+02 3.98 1.22 1.17
- nemspmm2 949 | 6478 | 2.61E+222 Inf 3.72 155 136
12; fome12 12652 | 35969 | 8.93E+05 | 4.65E+01 2.69 5.44 474
1028 nl 890 | 2919 | 5.83E+293 Inf 2.62 4.09 334
1029 scfxm1-2r-64 1870 | 11122 | 8.23E+11 | 2.84E+08 2.28 5.91 5.35
o fnl4461 5044 | 46977 | 4.12E+06 | 2.35E+02 2.27 3.26 2.87
:Zi 152 180 | 2659 | 3.59E+17 | 2.04E+19 2.09 0.66 0.50
1033 d18512 10815 | 55880 | 8.61E+05 | 2.09E+02 1.77 9.57 8.41
1034 1111849 6769 | 40885 | 1.21E+08 | 1.92E+02 1.75 5.34 4.65
105 nemspmm1 982 | 5023 | 4.94E+23 | 1.59E+20 1.75 2.20 2.01
iZj: co5 928 | 6173 | 3.86E+185 Inf 1.69 3.78 3.46
1038 pla7397 5059 | 42683 | 8.55E+06 | 3.36E+02 1.58 4.01 3.57
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1041

1042 Relative Run Time
1043 Matrix Name n nnz Cond Norm SPEX Left LU time (s) | Wiedemann | Lanczos
Ej: model6 790 | 3425 | 5.17E+63 | 4.11E+61 1.56 2.30 2.12
1046 258 200 | 40000 | 1.84FE+14 | 5.36E-01 1.54 *4.96 |  *4.49
1047 rail4284 2463 | 11802 | 3.58E+04 | 7.23E+00 1.45 0.88 0.74
o pilot.we 554 | 2367 | 5.11E+137 | 4.03E+133 1.43 3.02 2.73
jﬁj; 342 10001 | 49999 | 4.17E+18 | 5.00E+03 1.39 SF SF
1051 qap10 1510 | 6381 | 4.45E+06 | 6.13E+00 1.30 0.45 0.29
1052 cq9 1187 | 5786 | 4.94E+165 Inf 1.30 477 431
o ge 1675 | 4758 | 3.29E+130 | 7.56E+127 1.26 8.59 7.28
1254 de080285 368 | 1493 | 1.06E+78 | 1.36E+79 1.24 2.08 1.55
1056 dano3mip.pre 1091 | 5239 | 3.46E+10 | 1.36E+05 1.05 0.87 0.55
1057 dano3mip 1135 | 5390 | 2.47E+10 | 1.36E+05 0.99 0.78 0.60
10 238 200 | 40000 | 3.00E+20 | 6.46E+00 0.94 7.94 7.79
12:3 newman 334 2156 | 6.20E+233 Inf 0.93 1.82 1.44
1061 230 200 | 40000 | 5.72E+19 | 8.11E-01 0.86 *8.79 | *8.79
1062 rat1 452 | 2893 | 3.93E+27 | 2.26E+30 0.85 1.15 0.89
e 254 200 | 40000 | 1.83E+20 | 2.99E+00 0.81 *10.55 |  *9.39
12: t0331-41 520 | 5034 | 2.75E+04 | 1.10E+01 0.77 0.72 0.35
1066 115915 3853 | 28829 | 3.43E+06 | 1.03E+02 0.77 4.62 4.65
1067 nesm 279 895 | 1.01E+127 | 1.12E+125 0.68 4.43 321
1008 grow22 434 | 4711 | 2.09E+17 | 4.39E+16 0.68 2.28 1.98
:i: fome11 6226 | 17749 | 6.31E+05 | 5.09E+01 0.65 5.73 5.77
1071 234 200 | 40000 | 3.18E+18 | 3.23E+00 0.64 *11.86 | *11.54
1072 model9 902 | 4361 | 3.90E+23 | 6.53E+20 0.63 4.69 3.28
10 model7 646 | 2850 | 2.89E+137 | 2.87E+134 0.61 3.98 3.20
12;: 115934 3773 | 23917 | 2.94E+06 | 1.11E+02 0.60 477 4.48
1076 model5 492 | 2247 | 7.35E+109 | 1.03E+108 0.57 4.24 3.46
1077 ornal 810 | 2842 | 2.66E+13 | 2.55E+15 0.57 4.06 3.45
e Ip22.pre 1811 | 13146 | 3.89E+05 | 1.27E+01 0.56 1.93 1.77
EZZ 132 216 812 | 8.10E+14 | 1.39E+00 0.55 1.35 0.94
1081 179 430 | 1544 | 7.36E+26 | 2.00E+06 0.54 4.49 4.05
1082 169 430 | 1544 | 6.57E+15 | 2.00E+06 0.54 437 4.14
108 168 430 | 1544 | 3.20E+15 | 2.00E+06 0.53 4.48 4.20
:Z:: 167 430 | 1544 | 1.91E+16 | 2.00E+06 0.53 455 4.16
1086 164 430 | 1544 | 3.56E+16 | 2.00E+06 0.53 5.52 4.24
1087 163 430 | 1544 | 1.90E+20 | 2.00E+06 0.53 478 4.23
1088 176 430 | 1544 | 1.00E+15 | 2.00E+06 0.53 5.03 4.23
izzz sienal 1265 | 11573 | 6.40E+05 | 7.85E+02 0.52 2.12 1.03
1091 model4 409 | 1898 | 9.08E+213 NaN 0.52 3.78 3.11
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1093 Relative Run Time

10 Matrix Name n nnz Cond Norm SPEX Left LU time (s) | Wiedemann | Lanczos
12:2 165 430 | 1544 | 2.49E+14 | 2.00E+06 0.52 4.60 4.29
1097 166 430 | 1544 | 2.22E+14 | 2.00E+06 0.51 4.66 445
1098 188 430 | 1544 | 5.30E+18 | 2.00E+06 0.51 5.05 437
10 177 430 | 1544 | 3.78E+26 | 2.00E+06 0.51 5.16 4.40
EZT 194 430 | 1544 | 3.20E+19 | 2.00E+06 0.51 5.07 454
102 180 430 | 1544 | 9.05E+19 | 2.00E+06 0.51 4.92 445
1103 184 430 | 1544 | 2.88E+17 | 2.00E+06 0.50 4.97 4.42
ot 182 430 | 1544 | 2.88E+17 | 2.00E+06 0.50 5.06 441
jisf 186 430 | 1544 | 2.88E+17 | 2.00E+06 0.50 4.87 4.44
1107 187 430 | 1544 | 2.88E+17 | 2.00E+06 0.50 5.04 4.43
1108 196 430 | 1544 | 8.14E+19 | 2.00E+06 0.50 5.14 4.47
1o 185 430 | 1544 | 2.88E+17 | 2.00E+06 0.50 4.87 4.47
ii? 202 430 | 1544 | 8.00E+19 | 2.00E+06 0.50 5.12 4.44
12 204 430 | 1544 | 7.96E+19 | 2.00E+06 0.50 5.01 450
113 205 430 | 1544 | 8.08E+19 | 2.00E+06 0.49 4.84 4.48
e 197 430 | 1544 | 1.15E+20 | 2.00E+06 0.49 5.06 451
11; 203 430 | 1544 | 7.92E+19 | 2.00E+06 0.49 5.04 457
117 175 430 | 1544 | 4.81E+14 | 2.00E+06 0.49 5.04 455
118 189 430 | 1544 | 2.34E+20 | 2.00E+06 0.49 5.20 454
e 181 430 | 1544 | 2.88E+17 | 2.00E+06 0.49 5.30 4.69
:Z) de063155 313 | 1233 | 1.09E+95 | 6.12E+69 0.48 4.07 3.18
122 190 430 | 1544 | 2.31E+20 | 2.00E+06 0.48 5.15 4.61
1123 192 430 | 1544 | 4.12E+20 | 2.00E+06 0.48 5.31 4.62
e 193 430 | 1544 | 2.35E+20 | 2.00E+06 0.48 5.28 4.62
EZ 191 430 | 1544 | 4.43E+20 | 2.00E+06 0.48 5.25 459
1127 195 430 | 1544 | 4.66E+20 | 2.00E+06 0.48 5.30 479
1128 172 430 | 1544 | 2.28E+19 | 2.00E+06 0.48 5.15 4.62
n 198 430 | 1544 | 8.24E+19 | 2.00E+06 0.48 5.37 4.68
1:? 183 430 | 1544 | 2.88E+17 | 2.00E+06 0.48 5.36 474
1132 170 430 | 1544 | 2.93E+14 | 2.00E+06 0.48 5.15 4.67
1133 199 430 | 1544 | 8.03E+19 | 2.00E+06 0.47 5.36 473
e 200 430 | 1544 | 7.86E+19 | 2.00E+06 0.47 5.23 4.71
j:f 201 430 | 1544 | 8.03E+19 | 2.00E+06 0.47 5.21 471
1137 173 430 | 1544 | 7.05E+19 | 2.00E+06 0.46 5.31 4.82
1138 171 430 | 1544 | 6.24E+15 | 2.00E+06 0.46 5.77 4.86
1 280 430 | 1544 | 2.91E+13 | 2.00E+06 0.46 5.51 4.57
i:? 178 430 | 1544 | 2.17E+26 | 2.00E+06 0.46 5.61 4.93
1142 174 430 | 1544 | 2.33E+14 | 2.00E+06 0.46 5.36 491
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Relative Run Time

Matrix Name n nnz Cond Norm SPEX Left LU time (s) | Wiedemann | Lanczos
van 7417 21681 4.24E+04 7.23E+00 0.45 9.41 7.86
scfxm1-2r-32 1447 5658 2.93E+11 2.84E+08 0.45 8.52 7.46
Ip22 1796 13076 1.32E+05 1.29E+01 0.42 3.11 2.45
281 430 1544 8.60E+13 2.00E+06 0.42 5.78 4.99
206 430 1544 8.02E+19 2.00E+06 0.41 6.00 5.44
161 261 1500 1.17E+15 1.04E+03 0.39 3.88 2.29
262 200 40000 6.36E+20 4.47E-01 0.38 *19.86 *18.88
stocfor3 1782 4562 2.03E+31 3.50E+27 0.37 20.56 17.77
arki001 160 893 | 4.46E+299 Inf 0.34 6.07 5.10
momentum1 932 2792 | 1.18E+146 | 2.49E+141 0.34 9.83 8.78
usal3509 3595 19919 2.89E+08 1.70E+02 0.34 10.07 8.84
large000 823 2282 1.39E+31 1.02E+34 0.33 14.58 13.28
dfloo1 3271 9276 4.54E+05 4.33E+01 0.28 4.20 3.48
277 183 1069 2.69E+13 1.15E+09 0.28 *2.47 *1.44
complex 327 10738 9.05E+04 5.39E+01 0.26 1.54 0.70
growl5 297 3614 1.65E+13 4.24E+16 0.25 4.03 2.82
de063157 282 1102 1.10E+97 6.45E+77 0.24 7.11 5.34
t1717 549 3657 1.89E+04 7.40E+00 0.24 1.55 0.48
greenbeb 713 3278 1.17E+25 9.16E+21 0.24 7.42 6.31
dfloo1.pre 2097 6501 4.10E+05 3.99E+01 0.24 2.86 2.02
scfxm1-2r-27 1222 4753 5.08E+10 2.84E+08 0.23 13.51 10.82
ulevimin 697 1879 | 8.89E+103 5.41E+96 0.22 8.97 7.26
pcb3000 3058 27446 5.01E+04 6.24E+01 0.21 7.81 7.44
stair 324 3431 1.27E+19 4.02E+15 0.19 2.99 1.98
newman3 369 3662 1.58E+23 3.91E+19 0.18 4.03 3.11
stp3d 10642 25936 4.12E+05 4.28E+00 0.18 36.40 31.20
nemsemm2 789 2440 | 1.78E+124 | 1.79E+123 0.18 17.00 14.18
trentol 1070 10010 1.54E+05 6.57E+02 0.18 2.77 1.51
cr42 304 608 1.52E+35 1.86E+84 0.17 24.88 23.23
car4 122 4384 1.30E+14 4.51E+15 0.15 4.24 2.45
nug08 732 3004 2.49E+05 5.71E+00 0.14 2.66 0.46
greenbea 664 2706 2.17E+38 2.38E+32 0.14 9.91 8.49
cq5 570 2615 | 1.05E+164 Inf 0.13 12.16 9.62
dcil 851 5171 1.68E+05 9.70E+02 0.13 4.29 1.30
plddooob 537 1448 9.92E+18 1.27E+22 0.12 14.54 10.57
watson_2 1011 2703 7.02E+42 1.78E+40 0.11 19.40 16.26
25fv47 416 2061 1.42E+35 7.33E+32 0.11 7.98 5.00
237 100 10000 1.26E+19 6.46E+00 0.10 12.46 9.43
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1197 Relative Run Time

18 Matrix Name n nnz Cond Norm SPEX Left LU time (s) | Wiedemann | Lanczos
o gran 284 | 1958 | 7.38E+32 | 1.25E+27 0.10 9.30 6.60
1201 delf000 593 1606 1.27E+18 1.44E+20 0.10 18.79 16.49
1202 ds 647 12193 1.01E+04 2.08E+01 0.10 5.62 3.50

1203 -

Table 5. Comprehensive Results: Small Instances
1204
1205

1206

1207 Relative Run Time

zzz Matrix Name n nnz Cond Norm SPEX Left LU time (ms) | Wiedemann | Lanczos
1210 scfxm1-2r-16 752 | 2962 | 1.94E+10 | 2.84E+08 9.41 1426 | 1081
211 dolom1 806 | 5681 | 3.47E+05 | 2.27E+03 9.25 7.08 1.43
:ji delc 808 | 4698 | 1.26E+06 | 9.63E+02 9.05 5.48 1.55
s dgo12142 892 | 3627 | 9.32E+07 | 2.13E+04 9.02 9.05 5.38
215 scfxm1-2b-16 784 | 2975 | 3.37E+10 | 2.84E+08 9.00 1452 | 11.49
1216 279 261 | 2319 | 7.54E+16 | 2.03E+04 8.81 13.00 | 10.74
12; 233 100 | 10000 | 2.98E+18 | 3.23E+00 8.73 1251 | 1148
o 257 100 | 10000 | 2.48E+14 | 5.36E-01 8.36 *13.03 | *11.51
w0 | pf2177 406 | 1772 | 9.40E+03 | 4.65E+00 8.25 419 0.53
1221 253 100 | 10000 | 3.95E+19 | 2.99E+00 8.18 *15.20 | *11.84
:i 229 100 | 10000 | 6.28E+19 | 8.11E-01 8.10 *13.69 | *11.49
s 143 131 | 536 | 1.49E+15| 9.77E+09 7.06 7.22 2.73
1225 261 100 | 10000 | 1.04E+20 | 4.47E-01 6.12 *19.19 | *14.65
1226 ch 393 | 1304 | 4.36E+110 | 3.12E+106 6.05 21.43 17.07
tj; aa01 630 | 4187 | 1.29E+04 | 8.67E+00 5.96 7.46 1.42
. 139 131 | 536 | 149E+15 | 9.77E+09 5.63 8.76 3.43
1230 air04 630 | 4187 | 1.29E+04 | 8.67E+00 5.48 6.20 1.56
1231 stormg2-125 1886 | 4372 | 2.63E+07 | 2.26E+03 5.41 4110 | 36.68
Z: model3 310 | 1417 | 3.11E+95 | 6.44E+93 5.33 11.84 7.72
e stormg2-125.pre | 1780 | 4138 | 1.96E+09 | 5.43E+04 4.91 4532 | 36.03
1235 msc98-ip 2897 | 10006 | 1.63E+07 | 4.26E+02 472 4180 | 37.10
123 df2177 414 | 1825 | 4.61E+03 | 4.74E+00 432 6.32 3.06
2T | nugo7 450 | 1780 | 5.45E+04 | 5.28E+00 4.09 4.86 3.13
e | biellal 813 | 5726 | 2.72E+04 | 1.18E+01 3.83 11.68 452
20| peb1000 1156 | 9955 | 2.28E+04 | 4.37E+01 3.62 9.28 6.30
1241 aa03 562 | 3420 | 1.07E+04 | 9.00E+00 3.56 9.70 1.42
oo | protfold 574 | 2562 | 8.36E+03 | 6.50E+00 3.42 10.66 1.67
| pds-100 8377 | 17555 | 1.79E+04 | 5.48E+00 3.38 121.91 | 114.99
1265 rosen10 989 | 6916 | 2.01E+03 | 1.35E+03 3.34 4093 | 17.40
1246 Ipl1 2692 | 7211 | 8.18E+08 | 1.02E+04 3.31 76.13 30.93
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Matrix Name n nnz Cond Norm SPEX Left LU time (ms) | Wiedemann | Lanczos
grow7 138 1744 8.45E+12 3.53E+16 3.29 11.67 5.16
air06 562 3420 1.07E+04 9.00E+00 3.13 7.97 1.60
pds-80 9225 | 19432 1.12E+04 5.66E+00 2.88 195.69 166.12
pds-90 7914 | 16673 1.48E+04 4.13E+00 2.84 144.91 129.57
pds-70 7822 | 16545 1.11E+04 5.84E+00 2.76 155.28 134.17
model2 149 757 | 1.15E+112 | 4.60E+108 2.74 27.60 6.74
19 241 1381 7.65E+21 1.74E+19 2.68 14.93 7.46
pds-60 7586 | 16067 8.18E+03 4.48E+00 2.61 133.01 122.99
degen3 744 5431 1.66E+04 2.00E+01 2.48 14.50 3.15
bg512142 560 2140 6.92E+06 1.95E+03 2.21 21.17 8.41
scfxm1-2r-8 403 1608 7.45E+09 2.84E+08 2.01 24.88 14.95
bas1lp 502 6651 9.77E+04 9.80E+01 1.95 23.29 6.54
gosh 379 1379 8.05E+27 4.51E+24 1.90 38.08 20.26
pilot4i 134 1220 1.50E+33 4.19E+28 1.88 20.85 8.11
rosen2 431 4143 | 7.85E+02 3.19E+02 1.86 46.94 9.46
pds-50 5962 | 12592 1.04E+04 3.49E+00 1.83 100.82 95.64
rail507 413 2005 5.39E+03 6.85E+00 1.48 21.31 7.85
scsd8 247 655 9.59E+18 1.58E+17 1.40 32.29 16.27
air05 323 1789 2.79E+04 6.94E+00 1.40 13.34 3.16
30_70_4.5_0.95_100 | 2754 8381 6.12E+03 4.34E+00 1.38 70.03 54.02
décube 223 1424 9.56E+05 4.24E+02 1.38 4.18 8.83
mitre 801 2466 4.18E+05 2.81E+03 1.28 71.92 37.51
fome21 3291 7240 9.21E+03 3.18E+00 1.24 70.06 50.55
modszk1 263 765 1.52E+21 1.25E+20 1.23 92.27 15.12
10teams 177 885 1.12E+03 5.63E+00 1.17 9.16 4.62
pds-40 4028 8478 6.64E+03 3.02E+00 1.14 84.03 54.20
fast0507 401 1908 3.72E+03 6.99E+00 1.13 22.27 5.28
south31 112 460 | 1.68E+265 Inf 1.10 90.21 12.86
qiulp 603 1717 8.25E+10 1.31E+09 1.09 32.35 16.01
qiu 603 1717 5.99E+10 1.31E+09 1.09 55.15 16.11
ganges 344 1123 4.19E+26 3.03E+25 1.09 47.32 23.96
cycle 284 878 1.46E+79 3.19E+75 1.06 47.12 19.64
maros 289 1143 2.76E+14 2.54E+11 0.97 39.30 11.16
30_70_4.5_0.95_98 2451 7364 7.84E+03 4.35E+00 0.94 90.63 61.09
scagr7-2r-864 680 1697 6.99E+06 3.42E+03 0.84 87.19 44.41
po5 919 2717 4.06E+04 3.06E+01 0.82 58.18 14.21
rentacar 327 1080 3.64E+05 1.01E+03 0.81 38.50 49.30
bnl2 459 1488 1.22E+15 1.10E+12 0.81 87.01 32.92
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1301 Relative Run Time

1902 Matrix Name n nnz Cond Norm SPEX Left LU time (ms) | Wiedemann | Lanczos
222 30_70_4.5_0.5_100 | 2098 | 6197 | 1.98E+03 | 4.28E+00 0.75 88.59 | 5445
1305 pds-30 2643 | 5641 | 3.27E+03 | 3.04E+00 0.74 9540 |  51.03
1306 bandm 122 | 609 | 1.12E+27 | 1.05E+26 0.74 45.42 9.74
T ros 919 | 2717 | 4.06E+04 | 3.06E+01 0.73 39.90 | 1678
j:ﬁjj fome20 1718 | 3811 | 5.39E+03 | 3.14E+00 0.67 68.02 | 2974
1310 scfxm1-2b-4 233 | 965 | 5.92E+09 | 2.84E+08 0.66 4939 | 1498
1311 scfxm1-2r-4 233 | 965 | 5.92E+09 | 2.84E+08 0.66 87.60 |  14.92
o scfxm1-2c-4 233 | 965 | 5.92E+09 | 2.84E+08 0.66 51.71 15.03
fi baxter.pre 470 | 1274 | 3.55E+94 | 8.48E+88 0.64 9420 | 4138
1315 nugo6 267 | 1007 | 1.04E+04 | 4.81E+00 0.57 839 | 1057
1316 neos 2342 | 5098 | 3.29E+04 | 5.88E+00 0.56 11087 | 46.57
B capri 138 | 507 | 3.72E+68 | 3.01E+65 0.54 79.61 23.11
:i rail582 384 | 1387 | 4.55E+03 | 5.10E+00 0.53 2283 | 2275
1320 danoint 196 790 2.11E+07 6.31E+03 0.53 45.87 5.47
1321 neos.pre 2080 | 4578 | 1.60E+04 | 5.86E+00 0.48 161.55 45.24
P poto 839 | 2486 | 3.96E+04 | 3.06E+01 0.48 81.81 | 2101
:Z rosenl 217 | 2528 | 1.23E+03 | 5.80E+02 0.48 6513 | 1127
1325 rosen8 264 | 1850 | 253E+02 | 8.87E+01 0.47 88.81 10.78
1326 seymour 537 | 1881 | 5.24E+03 | 5.81E+00 0.44 77.87 8.98
P balt 223 | 824 | 334E+23 | 235E+20 0.4 135.85 | 25.00
:zi mzzvil 1098 | 3189 | 8.92E+05 | 2.46E+02 0.42 8345 | 3975
1330 scfxm3 262 | 1005 | 1.67E+17 | 7.58E+13 0.42 8535 | 2935
1531 scrs8-2r-512 992 | 1984 | 1.92E+01 | 9.13E+00 0.38 11447 | 51.21
1 rail516 268 | 936 | 1.31E+03 | 5.64E+00 0.37 1538 | 20.34
Z: sp97ar 271 | 2400 | 2.40E+04 | 3.93E+01 0.37 12644 | 37.75
1335 neos? 500 | 1434 | 1.46E+08 | 1.00E+06 0.34 23447 | 53.01
1336 stocfor2 224 576 | 3.54E+26 | 1.50E+24 0.33 174.61 36.69
o dbir1 154 | 845 | 4.54E+06 | 1.42E+06 0.32 180.07 | 24.27
1:2 small000 140 | 383 | 6.77E+19 | 5.59E+23 0.32 12240 | 31.55
1340 neos6 174 | 1580 | 3.33E+03 | 7.20E+01 0.32 2532 | 3072
1341 sp98ar 223 | 1782 | 1.69E+04 | 4.43E+01 0.31 59.23 | 62.01
o woodw 168 | 589 | 1.44E+12 | 3.80E+10 0.29 28223 | 27.99
i: 80bau3b 154 | 396 | 3.31E+46 | 1.75E+45 0.29 14651 |  35.63
1345 manna81 1392 | 2784 | 3.00E+00 | 2.00E+00 0.29 119.16 | 34.38
1346 roll3000 177 | 1101 | 2.19E+06 | 1.47E+03 0.28 4775 | 23.19
o disctom 192 | 565 | 5.92E+02 | 3.41E+00 0.28 11.65 14.21
:i dbir2.pre 281 | 1879 | 5.86E+06 | 1.10E+05 0.28 15155 | 17.77
1350 scfxm2 178 | 658 | 1.67E+17 | 7.58E+13 0.27 87.07 | 2094
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Matrix Name n nnz Cond Norm SPEX Left LU time (ms) | Wiedemann | Lanczos
neosll 365 1116 3.06E+03 5.06E+00 0.26 40.09 64.46
mzzv42z 787 2124 5.68E+05 2.01E+02 0.26 103.11 33.88
route 339 1290 7.27E+08 2.03E+07 0.26 95.47 38.07
degen2 217 1138 2.58E+03 1.15E+01 0.25 11.23 31.76
dsbmip 220 568 3.06E+46 2.19E+41 0.24 191.73 31.08
nsctl 120 595 4.25E+06 7.67E+05 0.23 257.58 270.62
stormg2-27 449 1019 3.67E+06 1.77E+03 0.23 311.75 40.18
baxter 256 697 3.06E+21 6.81E+15 0.23 201.24 30.85
neosl 309 944 8.24E+02 4.83E+00 0.22 13.85 9.92
crewl 127 861 7.82E+02 8.18E+00 0.22 3.32 4.40
blp-ar98 148 876 3.94E+03 9.40E+01 0.18 33.94 77.04
nsct2.pre 156 1140 3.84E+06 3.22E+05 0.16 106.01 127.32
sgpf5y6 787 1870 6.24E+02 3.37E+00 0.15 146.43 83.92
pds-20.pre 370 851 1.07E+03 3.38E+00 0.13 51.60 61.08
sgpf5y6.pre 755 1744 | 1.20E+02 | 3.22E+00 0.12 295.60 56.57
p19 117 555 4.13E+05 4.37E+04 0.12 156.17 98.19
iiasa 113 262 6.06E+18 6.37E+17 0.12 304.00 46.43
scrs8-2r-256 416 832 1.92E+01 9.13E+00 0.12 214.69 32.78
UMTS 268 828 4.40E+20 3.24E+18 0.11 100.90 103.26
neos818918 265 678 4.29E+02 3.22E+00 0.10 30.12 24.17
rd-rplusc-21 148 454 7.35E+16 4.38E+13 0.10 237.73 239.83
neos4 454 944 2.63E+08 5.59E+06 0.10 176.16 225.01
rosen?7 127 649 8.23E+01 5.75E+01 0.10 45.33 155.96
ceria3d 130 647 2.40E+04 1.09E+01 0.10 19.26 32.27
dbir2 157 784 1.71E+06 7.27E+04 0.10 41.07 78.17
scrs8-2r-64 256 512 1.60E+05 1.41E+05 0.10 263.03 68.37
boeing1 122 415 7.36E+10 6.29E+07 0.09 134.16 136.24
scrs8 109 280 2.97E+27 8.93E+24 0.09 233.86 124.79
gesa3_o 148 365 1.73E+29 1.19E+26 0.09 457.90 48.61
neos19 228 487 7.19E+04 5.23E+01 0.09 49.19 126.88
pp08aCUTS 131 332 1.44E+04 4.27E+02 0.08 65.16 41.73
scorpion 131 507 7.19E+06 2.00E+05 0.08 119.88 332.56
gesa3 134 336 1.73E+29 1.19E+26 0.08 169.82 183.58
neos823206 220 547 3.15E+05 2.24E+03 0.08 129.95 97.29
sc205 184 487 1.18E+04 2.10E+01 0.08 105.17 103.36
nsct2 107 544 2.74E+06 2.40E+05 0.07 34.50 48.16
nug05 107 362 1.14E+03 4.15E+00 0.06 5.64 9.54
Ipl3 212 461 3.06E+02 2.61E+00 0.06 84.57 80.55
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1405 Relative Run Time
1406 Matrix Name n nnz Cond Norm SPEX Left LU time (ms) | Wiedemann | Lanczos
o1 [sarssar128 192 | 384 | 1.92E+01 | 9.13E+00 0.06 3522 | 42.63
1409 scrs8-2c-64 168 336 4.80E+01 2.66E+01 0.06 75.68 94.17
1410 stormg2-8 117 263 | 4.82E+05 | 1.77E+03 0.05 96.96 70.89
M demulti 120 | 303 | 7.03E+03 | 6.26E+02 0.05 9234 |  80.35
iz: mkcl 106 250 1.27E+06 2.89E+04 0.05 25.26 32.34
1414 mkc 106 250 1.27E+06 2.89E+04 0.04 26.44 12.39
1415 gesaz_o 102 214 6.47E+09 4.13E+08 0.04 110.27 465.18
e scrs8-2r-32 128 | 256 | 4.16E+01 | 3.54E+01 0.04 85.14 | 90.84
iji; bienst1 102 253 7.61E+02 6.09E+00 0.03 11.11 16.36
1419 Table 6. Comprehensive Results: Tiny Instances
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