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Abstract— We consider the problem of generating a fixed
path for a mobile observer in a polygonal environment that
can maintain a line-of-sight with an unpredictable target. In
contrast to purely off-line or on-line techniques, we propose
a hierarchical tracking strategy in which an off-line path
generation technique based on a RRT is coupled with an on-
line feedback-control technique to generate trajectories for the
mobile observer.

I. INTRODUCTION

Motion planning in the presence of uncertainty is a
challenging problem [1]. Significant theoretical [2], [3] and
technological [4], [5] advances have been made in past
three decades to model and control the uncertainty arising
from sensor and actuator noise in robotic systems. However,
dealing with uncertainty arising from strategic decision-
making involving other selfish agents in the environment
is still an open area of research [6]. In this work, we
address such a scenario which arises in surveillance prob-
lems which involve persistently tracking an unpredictable
target. Traditional planning considers a joint solution to
the problem of minimizing uncertainty and fulfilling the
task-level objective. In this work, we consider an alternate
approach that decouples the uncertainty (arising from the
future actions of the intruder) from the task-level objective
(persistent surveillance) for planning the trajectory of the
mobile robot. Specifically, we propose a hierarchical tracking
strategy in which an off-line sampling-based method [7] is
integrated with an on-line feedback-control technique [8] to
ensure persistent tracking.

Target-tracking refers to the problem of planning the
motion of a mobile observer that tries to track another
mobile entity, referred to as the target, in an environment
containing obstacles. In the past, techniques in differential
games [9] have been used to develop feedback-control tech-
niques for guiding the motion of the observer. However,
guarantees on persistence of tracking do not scale nicely
as the environments become more complex. There have
been efforts [10], [11] to provide necessary conditions for
persistent tracking based on geometric characteristics of the
environment. However, quantifying the observer parameters
sufficient for persistent tracking in general environments is
still an open problem. For that reason we have decided
to address a constrained version of the general problem in
which the observer is constrained to move along a fixed path.

Department of Mechanical Engineering1, Department of Computer
Science2, Iowa State University, Ames, IA-50011.

This work was in part supported by NSF IIS award 1816343.

A necessary condition for persistent tracking is coverage.
A closed path which covers the entire region when a mobile
observer is constrained to move along it called a watchman’s
route [12], [13], [14]. The problem of computing minimum
length watchman’s route is referred to as the watchman’s
route problem. The watchman’s route problem can be solved
in polynomial time when the region to be guarded is a
simple polygon but it is NP-hard for polygons with holes
[15]. In [16], we use properties of a watchman route in
closed polygonal environments to construct a fixed route
for a mobile observer to persistently track an unpredictable
target (called the paparazzi route or p-route). Additionally,
we prove the existence of a tree on which the observer
can minimize its tracking speed. This motivates our current
work which explores sampling-based techniques, specifically
Rapidly exploring Random Trees (RRT) in constructing a p-
route. The advantage of using RRTs is threefold; (1) The
basic RRT can be modified to rapidly generate a tree that
can cover an environment (2) Sampling based planners can
generate paths in high-dimensional configuration spaces [17],
[18] (3) Kinodynamic planners can handle systems with
dynamics [19]. Although, the focus of our current work is
(1), (2) and (3) render the proposed technique appealing for
extensions in future.

The main contributions of this work are as follows:
(i) Given a closed polygonal environment, we propose a
sampling-based strategy to build a p-route. (ii) Given the
initial p-route, we propose a strategy to modify it in order
to reduce the speed required by the observer for tracking.
This provides a specification of the observer parameters for
the tracking task in real scenarios. To summarize, the overall
contribution of this work lies in building a bridge between
sampling-based techniques [19] and art-gallery problems
[20] to address problems in vision-based pursuit.

The paper is organized as follows. In Section II, we
present the problem formulation. In Section III, we present a
sampling-based technique to construct the p-route. In Section
V, we present the motion strategy for the observer on the p-
route. In Section VI, we define a metric to find a non-trivial
upper bound for the minimum speed required by the observer
to guarantee persistent tracking. In Section VII, we propose
a method to simplify the path obtained in Section III. Finally,
we present the conclusions and future research directions in
Section VIII.
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II. PROBLEM FORMULATION

Consider a closed environment represented as a simple
polygon P . An intruder moves inside P with bounded speed.
The intruder is assumed to be unpredictable, i.e., there is no
prior knowledge about its future actions. A mobile observer,
referred to as the guard, tries to maintain a line-of-sight
(LOS) with the intruder as it moves around in P . In this
work, we assume that the guard has an omni-directional field-
of-view with infinite range. Let xI = xI(t) ∈ P and 0 ≤
vI(t) ≤ vI <∞ denote the instantaneous location and speed
of the intruder at time t, respectively, where vI denotes the
maximum speed of the intruder. The instantaneous location
and speed of the guard at time t are denoted by xg = xg(t) ∈
P and 0 ≤ vg(t) ≤ vg < ∞ respectively, where vg is the
maximum speed of g. Additionally, we assume that guard
is constrained to move along a pre-specified path inside P ,
called a p-route which is computed off-line. Given xI(0)
and vI , we investigate the problem of finding a p-route γ,
the initial location of the guard xg(0) ∈ γ and a motion
strategy for the guard using techniques from sampling-based
methods.

III. CONSTRUCTION OF A P−ROUTE

A. Relevant Concepts and Results from Previous Work [16]

In this section, we mention the relevant results from [16]
regarding the design of a p−route and introduce terminology
used in the rest of the analysis.

Let V (P ) be the vertex set of P and V rf (P ) ⊂ V (P ) the
subset of reflex vertices. A star region (of a reflex vertex)
R(vi) ⊂ P , where vi ∈ V rf (P ), is the set of points in
P visible from vi that lie inside the region obtained by
extending the two edges of E(P ) (edge set of P ) that have
vi as an endpoint. The extended edges are called cuts [14].
Any route that visits a specific subset of cuts of a given
environment, called essential cuts, is a watchman’s route
[14]. Thus, any route that visits all the essential cuts is a
candidate p−route [16]. In Figure 1 (a), an environment with
two reflex vertices vi and vj is shown along with their star
region R(vi) and R(vj), respectively.

In [16], it is shown that γ (p-route) consists of a set of line
segments. As an abstraction, a connected graph G = G(γ)
can be used to represent γ, where each line segment of γ
corresponds to an edge in E(G) (edge set of G), and the
endpoints of those segments correspond to the vertices in
V (G) (vertex set of G). Additionally, it is shown in [16]
that there exists a tree on which the guard can achieve
the minimum speed for persistent tracking. Therefore, we
consider the case in which G is a tree. The following
terminology is introduced: si,γ = R(vi) ∩ γ is the set of
points in γ inside R(vi), SV (P ),γ is the collection of all si,γ
sets, where each i corresponds to vi ∈ V rf (P ). Moreover,
Sp,γ ⊂ SV (P ),γ is a set of representative points, i.e., for each
pi ∈ Sp,γ , there is a si,γ ∈ SV (P ),γ , such that pi ∈ si,γ and
|Sp,γ ∩si,γ |= 1, which means that it is a collection of points
in γ such that each one of them is inside a different region
R(vi).

There exists an optimal set of representative points S∗p,γ ,
such that the minimum speed required to guarantee persistent
tracking vi∗,j∗ when g moves along γ is equal to the
minimum speed required to guarantee persistent tracking
when g is forced to reach a representative point pi ∈ S∗p,γ
to prevent I from breaking the LOS when it approaches vi.
Thus, building a p−route is equivalent to construct a tree in
P such that it has one vertex for each point in Sp,γ [16]. Such
a minimum speed is denoted by vimax,jmax(S∗p,γ) = vi∗,j∗ =
vI max{z(γi,j) : (i, j) ∈ Zγ}, where γi,j is the path between
pi and pj , Zγ = {(i, j) ∈ Z2 : γi,j ⊆ γ and pi, pj ∈ S∗p,γ}
is the set of all pairs of indexes of reflex vertices and
z(γi,j) =

d(pi,pj)
d(Ri,j(pi),Ri,j(pj))

, is the “cost” associated to
γi,j . d(Ri,j(pi), Ri,j(pj)) is the distance between the regions
Ri,j(pi) and Ri,j(pj), which are defined as the regions such
that when xg ∈ γi,j , xI ∈ Ri,j(pi) (or xI ∈ Ri,j(pj)),
the LOS between I and g is lost, unless xg = pi with
pi ∈ γ∩R(vi) (or xg = pj with pj ∈ γ∩R(vj), analogously).

(a)

(b)

Fig. 1: (a) svi and svj are obtained from different points
along the path, (b) Representation of the Ri,j(pi) and
Ri,j(pj) regions.

In Figure 1(a), there is a polygon with two reflex vertices.
The red shaded path is a valid p−route since it is an
open path that visits the two star regions. Assume that
Sp,γ = {pi, pj}. Thus, xg = pi to prevent I from using
vi to break the LOS (analogously, xg = pj prevents I
from using vj to break the LOS). From [16], for any
pa ∈ γi,j and a reflex vertex vi, svig is defined as the
longest line segment in P that passes through vi ∈ svig
and which has pa and pi(pa) ∈ δP\{vi} as its endpoints.
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Thus, svi(pa) ⊂ svig is the directed segment from vi to
pi(pa). In Figure 1(a), svi(pa) and svj (pa) are illustrated
as green shaded segments. Moreover, svi(pb) and svj (pb)
are illustrated as purple segments. Notice that if xg = pa,
as long as I is outside the green and gray shaded regions,
the LOS between I and g is not broken (analogously, if
xg = pb, as long as I is outside the purple and gray shaded
regions the LOS between I and g is not broken). Since the
orientation, and consequently, the distance between svi and
svj depend on the location along γi,j [16], Ri,j(pi) and
Ri,j(pj) are usually unknown. When V rf (P ) = {vi, vj}
and d(xI , Ri,j(pi)) = min{d(xI , qi) : qi ∈ Ri,j(pi)},
vg ≥ vI d(xg,pi)

d(xI ,Ri,j(pi))
and vg ≥ vI d(xg,pj)

d(xI ,Ri,j(pj))
are sufficient

conditions to guarantee persistent tracking. Hence, tracking
may be lost if xg ∈ γi,j ⊂ γ, and it needs to move towards
pi ∈ R(vi) ∩ γ and pj ∈ R(vj) ∩ γ at the same time, which
happens when,

vg < vI
d(pi, pj)

d(Ri,j(pi), Ri,j(pj))
, (1)

where d(Ri,j(pi), Ri,j(pj)) = min{d(qi, qj) : qi ∈
Ri,j(pi) and qj ∈ Ri,j(pj)}, d(qi, qj) is the length of the
shortest path inside P between qi and qj , and d(pi, pj)
is the distance along γ between pi and pj . Consequently,
vg ≥ vI

d(pi,pj)
d(Ri,j(pi),Ri,j(pj))

, guarantees that g is able to
persistently track I . Although we do not know the exact
definition of such Ri,j(pi) regions, it suffices to assume
that they are given to provide guarantees for the minimum
speed required by g when following the motion strategy from
Section V. In Figure 1 (b) the Ri,j(pi) and Ri,j(pj) regions
that correspond to vi and vj are illustrated.

IV. A SAMPLING BASED P−ROUTE

Based on the discussion in Section III-A, we propose a
technique to construct a p−route which (we believe) is an
improvement over the approach presented in [16]. Since the
construction of the p−route has been reduced to the problem
of constructing a tree that visits all the essential cuts of P , we
use a sampling-based approach to construct γ. Specifically,
we use a variation of the standard Rapidly Exploring Random
Tree (RRT) [21] to construct the tree. Algorithm 1 provides a
pseudo-code of our technique. It starts from an arbitrary point
along an essential cut, and ends when the tree has reached
all the remaining essential cuts. Moreover, a vertex of the
tree is assigned to each star region which guarantees that we
have a set of representative points visited along the traversal
of the tree. Figure 2 (a) illustrates the output generated by
Algorithm 1. The red segments represent the cuts in the set
of essential cuts, and the gray dashed lines represent the
boundaries of the star regions.

Let Sc be the set of essential cuts, B(P ) be a two-
dimensional bounding box containing P , cr > 0 be an
arbitrary maximum distance between two points in the path
generated by the RRT and Steer(xnearest, xrand) be a func-
tion that returns a point along the segment snear (defined in
line 13 of Algorithm 1) whose distance to xnearest (defined

in line 11 of Algorithm 1) is less than cr,

Steer(xnearest, xrand) ={
xnearest +

snear
‖snear‖ , ‖snear‖ < cr

xrand, otherwise
,

(2)

where ‖·‖ stands for the Euclidean norm in R2.
We are interested in the tree Gprun ⊆ G that contains the

paths γi,j between each pair of representative points in Sp,γ .
Thus, Sp,γ ⊆ V (Gprun) and every leaf in Gprun corresponds
to a point in Sp,γ (see Figure 2 (b)). Algorithm 2 details
the procedure to generate Gprun. It takes O(n) time, where
n = |V (G)| is the cardinality of V (G). Some of the vertices
that are not in Sp,γ correspond to points in γ where different
branches of the tree intersect while others are necessary to
avoid trajectories that lead to collision with the boundary of
P .

Algorithm 1 Initial RRT

1: Input: P , Sc, cr
2: Output: γ, G, Sp,γ
3: E(G)← ∅, Sc ← Sc
4: sinit ← randomly chosen segment from Sc
5: xinit ← randomly selected location along sinit
6: Sc ← Sc\{sinit}, V (G)← {v(xinit)}
7: update γ
8: Sp,γ ← {xinit}
9: while Sc 6= ∅ do

10: xrand ← random sample in B(P )
11: xnearest ← point in V (G) closest to xrand
12: xnew ← Steer(xnearest, xrand)
13: snear ← xrand − xnearest
14: if snear ⊂ P then
15: if snear intersects a segment sess ∈ Sc then
16: xnew ← snear ∩ sess
17: Sp,γ ← Sp,γ ∪ {xnew}
18: Sc ← Sc\{sess}
19: end if
20: V (G) ← V (G) ∪ {v(xnew)}, E(G) ← E(G) ∪
{(v(xnearest), v(xnew))}

21: end if
22: end while
23: return γ,G,Sp,γ

V. TRACKING STRATEGY

In this section, we present present algorithms to determine
the initial position of the guard, and its subsequent tracking
strategy. Let γ, Sp,γ and xI(0) ∈ P be given. We define Sγ
as the set of all paths γi,j = γj,i such that pi, pj ∈ Sp,γ
and i 6= j. From (1), the minimum speed that guarantees
persistent tracking when the intruder follows the shortest
path between Ri,j(pi) and Ri,j(pj) (xg = pi when xI ∈
Ri,j(pi) and xg = pj when xI ∈ Ri,j(pj)) is vi,j =

vI
d(pi,pj)

d(Ri,j(pi),Ri,j(pj))
. Let vi∗,j∗ = max

pi,pj∈Sp,γ
{vi,j}.

Algorithm 3 finds an initial location of the guard (xg(0))
visible to the initial location of the intruder (xI(0)). The
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Algorithm 2 Pruning Strategy

1: Input: G
2: Output: Gprun, γ
3: Gprun ← G
4: Vleaves(Gprun)← leaves of Gprun
5: while Vleaves(Gprun) ∩ (V (Gprun)\Sp,γ) 6= ∅ do
6: v ← vertex in Vleaves(Gprun) ∩ (V (Gprun)\Sp,γ)
7: V (Gprun)← V (Gprun)\{v}
8: update E(Gprun),Vleaves(Gprun)
9: end while

10: update γ
11: return Gprun,γ

(a)

(b)

Fig. 2: (a) Initial path obtained through a Algorithm 1. (b)
Path obtained after Algorithm 2.

number of representative points is O(n) (n be the number
of vertices of P ) and the number of γi,j paths is O(n2).
Consequently, Algorithm 3 takes O(n3) time. Figure 3(a)
shows an environment with three reflex vertices, the initial
location of the intruder, γ and its representative points
p1, p2 and p3. γ2,3 is shown in green along with the
Ri,j(pi) and Ri,j(pj) regions. Figure 3(b) illustrates the
case where p1 is also considered, its corresponding region
R1,3(p1) is shown since the figure represents the step to
determine S(p1) = {p ∈ γ1,3 : d(p, p1) ≤ d1,3(p1)}, where
d1,3(p1) =

vi∗,j∗

vI
d(R1,3(p1), xI(0)). Algorithm 3 finds a

location of the guard on γ from where the intruder is visible
initially. In Figure 4(a), the subpath enclosed by the red circle
represents a location where the aforementioned inequalities
are satisfied, and xI(0) is visible from xg(0). However, there
may be cases in which no initial position of the guard exists
from where the intruder is visible. Figure 4(b) illustrates a
case where not all the inequalities are satisfied (d1,3(p3)
is shorter) and consequently S(xg(0)) = ∅. Figure 4(c)
illustrates another case in which the path enclosed by the
red circle represents a location where the inequalities are
satisfied but xI(0) is not visible is shown. Therefore, both the
visibility constraints and reachability constraints (to Ri,j(p˙i)
and Ri,j(p˙j)) need to be satisfied at the initial location of
the guard.

(a) (b)

Fig. 3: (a) Path γ2,3 and its regions R2,3(p2) and R2,3(p3),
(b) p1 is considered.

Algorithm 3 Computation of xg(0)

1: Input: Sγ ,γ,xI(0),P
2: Output: xg(0)
3: for each path γi,j ∈ Sγ do
4: di,j(pi)←

vi∗,j∗

vI
d(Ri,j(pi), xI(0))

5: di,j(pj)←
vi∗,j∗

vI
d(Ri,j(pj), xI(0))

6: S(xg(0)) ← {p ∈ γi,j : d(p, pi) ≤
di,j(pi) and d(p, pj) ≤ di,j(pj)}

7: S′i,j ← S′p,γ\{pi, pj}
8: for each pk ←∈ S′i,j do
9: di,k(pk)←

vi∗,j∗

vI
d(Ri,k(pk), xI(0))

10: S(pk)← {p ∈ γi,k : d(p, pk) ≤ di,k(pk)}
11: dj,k(pk)←

vi∗,j∗

vI
d(Rj,k(pk), xI(0))

12: S(pk) ← S(pk) ∩ {p ∈ γj,k : d(p, pk) ≤
dj,k(pk)}

13: S(xg(0))← S(xg(0)) ∩ S(pk)
14: end for
15: if S(xg(0)) 6= ∅ then
16: xg(0)← arbitrary location in S(xg(0))
17: Go to 20
18: end if
19: end for
20: return xg(0)

After a feasible xg(0) is obtained from Algorithm 3,
tracking requires an update in the location of the guard for
t > 0 depending on the motion of the intruder. Algorithm 4
is a polynomial time algorithm to compute of the location
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(a) (b)

(c)

Fig. 4: Example of: (a) A region S(xg(0)) 6= ∅, (b) d1,3(p3)
is shorter so S(xg(0)) = ∅, (c) Impossible case where
S(xg(0)) 6= ∅ and xI(0) is not visible from S(xg(0)).

Algorithm 4 Update of xg(t)

1: Input: xI(t+),Sγ(xg(t)),Sp,γ
2: Output: xg(t+)
3: Spathγ ← ∅
4: for each pi ∈ Sp,γ do
5: Scandγ ← ∅
6: for each γi,j ∈ Sγ(xg(t)) do
7: if d(xI(t), Ri,j(pi)) > d(xI(t

+), Ri,j(pi)) then
8: Scandγ ← Scandγ ∪ {γi,j}
9: end if

10: end for
11: γcand ← argminγi,j∈Scandγ

{d(xI(t+), Ri,j(pi))}
12: Spathγ ← Spathγ ∪ {γcand}
13: end for
14: γimax,jmax ← argmaxγi,j∈Spathγ

{d(xI(t), Ri,j(pi)) −
d(xI(t

+), Ri,j(pi))}
15: xg(t

+) ← location along γimax,jmax such that
d(xg(t

+), pimax) =
vi∗,j∗

vI
d(xI(t

+), Rimax,jmax(pimax))
16: return xg(t+)

of guard at the next instant, xg(t+). Figure 5(a) shows a
guard located at xg(t) when the intruder is located at xI(t).
From that location, the intruder can try to reach R2,3(p2)
or R2,3(p3). In Figure 5(b), the intruder moves towards
R2,3(p3) so the guard reacts accordingly by following Al-
gorithm 4, which guarantees that when xI(t

+) ∈ R2,3(p3),
xg(t

+) = p3 (refer to Figure 5(c)).

VI. APPROXIMATION OF Ri,j(pi)

In the previous sections, we assumed the regions Ri,j(pi)
for each γi,j ∈ Sγ were known and that such regions were
“the optimal” ones, in the sense that the speeds vi,j =

vI
d(pi,pj)

d(Ri,j(pi),Ri,j(pj))
were the minimum speeds that guar-

antee persistent tracking when the intruder moves between
Ri,j(pi) and Ri,j(pj) while the guard moves between pi

(a) (b)

(c)

Fig. 5: (a) Location of intruder and guard at time t, (b)
xg(t

+) when I approaches R2,3(p3), (c) xg(t+) = p3.

and pj . Let svig = svig (xg(t)) be the longest line segment
lying entirely in P such that vi ∈ svig and xg(t) is an
endpoint of svig . We define pi(xg) ∈ δP\{vi} as the opposite
endpoint of svig . Next, we define svi = svi(xg(t)) ⊂
svig as the directed segment from vi to pi(xg). As long
as the intruder lies to the left of (or at) svi , the LOS
between the intruder and the guard is not broken by vi.
Visibility is lost as soon as the intruder lies to the right
of svi . Preventing the intruder from breaking the LOS is
equivalent to prevent it from reaching the right side of
any svi . Let Avi(xg(t)) ⊂ P denote the region located
to the right of svi(xg(t)). Since svi(xg(t)) and Avi(xg(t))
depend on xg(t), we define R′i,j(pi) =

⋃
pk∈γi,j Avi(xg(t)),

and R′i,j(pj) =
⋃
pk∈γi,j Avj (xg(t)) as approximations of

Ri,j(pi) and Ri,j(pj), respectively. Regardless of the lo-
cation of the guard along γi,j , the intruder cannot use vi
to break the LOS as long as xI(t) /∈ Ri,j(pj). Therefore,
these are valid approximations. However, since they are ap-
proximations, d(R′i,j(pi), R

′
i,j(pj)) ≤ d(Ri,j(pi), Ri,j(pj)).

Hence we define v′i∗,j∗ = vI
d(pi,pj)

d(R′i,j(pi),R
′
i,j(pj))

instead of
vi∗,j∗ . Clearly, v′i∗,j∗ ≥ vi∗,j∗ .

VII. SIMPLIFICATION OF γ

In this section, we present a procedure to simplify Gprun
returned by Algorithm 2. For every path γi,j in Gprun,
we use R′i,j(pi) and R′i,j(pj) as defined in Section VI.
Algorithm 5 details such a procedure. It visits every vertex
in V (Gprun) that does not correspond to a representative
point in Sp,γ , so the algorithm takes linear time. Since
all the leaves in V (Gprun) correspond to representative
points, every vertex in V (Gprun)\Sp,γ has at least degree
2. Let deg(v(pi)) denote the degree of vertex v(pi). If
deg(v(pi)) > 2, the point pi ∈ γ is an intersection point
in the path γ and therefore, not deleted from Gsim. If
deg(v(pi)) = 2, v(pj) and v(pk) are the neighbors of v(pi).
By definition, γj,k consists of two connected line segments
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γj,i and γi,k. Since pi is not a representative point, γj,k is
simplified by replacing it with a line segment between pj and
pk. Algorithm 5 checks if such a line segment lies inside P ,
and if that is the case, the path and its corresponding graph
Gsim are modified. Figure 6 illustrates an approximate p-
route obtained from Algorithm 5 in a polygonal environment.

Algorithm 5 Simplify Strategy

1: Input: Gprun, P ,Sγ
2: Output: Gsim, γ,Sγ
3: Gsim ← Gprun
4: for each v(pi) ∈ V (Gsim)\Sp,γ do
5: if deg(vi) = 2 then
6: v(pj)← first neighboring vertex of vi
7: v(pk)← second neighboring vertex of vi
8: if γj,k ∈ P then
9: V (Gsim) ← V (Gsim)\{v(pi)}, Sγ ←
Sγ\{pi}

10: E(Gsim) ←
E(Gsim)\{(v(pj), v(pi)), (v(pi), v(pk))}

11: E(Gsim)← E(Gsim) ∪ {(v(pj), v(pk))}
12: update γ
13: end if
14: end if
15: end for
16: return Gsim,γ,Sγ

Fig. 6: Path obtained after using Algorithm 5.

VIII. CONCLUSION

In this work, we considered the problem of generating
path for a mobile observer in a polygonal environment that
can maintain a line-of-sight with an unpredictable target.
In contrast to purely off-line or on-line techniques, we
proposed a hybrid tracking strategy in which an off-line path
generation technique based on a sampling-based method is
coupled with an on-line feedback-control technique to ensure
persistent tracking. Finally, we proved that the proposed
tracking strategy leads to a constant-factor of approximation
for the observer’s speed from its optimal. As part of our
future research, we plan to extend our current technique to
observers having higher-order dynamics which will lead to
planning in high-dimensional configuration spaces. Addition-
ally, we plan to explore the challenges in implementation
as well as evaluate the efficacy of our proposed technique

in practical settings with real robots. For that, we need to
tackle the problem of uncertainty in sensing and actuation
in addition to lack of information about the future actions of
the target.
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