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Abstract— This work presents an efficient and implementable
solution to the problem of joint task allocation and path
planning in a multi-UAV platform. The sensing requirement
associated with the task gives rise to an uncanny variant of
the traditional vehicle routing problem with coverage/sensing
constraints. As is the case in several multi-robot path-planning
problems, our problem reduces to an mTSP problem. In
order to tame the computational challenges associated with the
problem, we propose a hierarchical solution that decouples the
vehicle routing problem from the target allocation problem.
As a tangible solution to the allocation problem, we use a
clustering-based technique that incorporates temporal uncer-
tainty in the cardinality and position of the robots. Finally, we
implement the proposed techniques on our multi-quadcopter
platforms.

I. INTRODUCTION

In the past decade, there has been a widespread deploy-
ment of unmanned aerial vehicles (UAVs) for surveillance
in civilian as well as military applications [1] that require
exploration of interest points [2] for situational awareness.
Although UAVs have been effective in wide-area surveillance
operations involving tracking of salient entities, their capa-
bilities are encumbered by the amount of onboard power;
fuelling the need for energy-efficient trajectory planning.
This accompanies several challenges due to the close cou-
pling between the low-level continuous-time optimal control
problem involving the dynamics of the individual UAV and
the discrete-time combinatorial optimization problems that
arise at the team level. In this work, we address a joint
allocation and path planning problem that arises when a team
of UAVs is deployed to collect biometric/phenotypic data.

In general, vehicle routing problems reduce to some vari-
ant of the famous Travelling Salesman Problem (TSP) [3],
[4], [5], [6]. In this paper, we deal with a TSP variant called
as mTSP where m salesmen are initially located at a depot.
Given a set of cities, and a cost metric, the goal is to calculate
a set of routes for the m salesmen so that the total sum of
the cost of the m routes is minimized. Thought mTSP is
an NP-hard problem [7], approximation techniques for TSP
(e.g. [3], [4], [5], [6], [8], [9] exists since mTSP can be
reduced to a standard TSP.

Minimizing the energy consumption of a network to
increase its average lifetime is a well-studied problem [10].
In robotic networks, this often translates to solving an
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optimal control problem for minimizing a metric related to
the energy expended by the robot, for example, distance
traveled [11], time required for task completion [12], wheel
rotation [13], to name a few. In the past, researchers have
studied energy-optimal trajectory generation for quadcopters
[14] [15] [16] [17]. For time-optimal motion planning of
quadcopters, a commonly used analytical technique is the
Pontryagin Minimum Principle [18] [19] [20]. This approach
provides the motion primitives of the optimal trajectory. The
challenge here is to use the motion primitives for synthesis of
the complete optimal trajectory between an initial and a final
state. Non-linear programming-based approaches [21] [22]
[23] first generate the control points, and then parameterize
the generated path in time such that the dynamic constraints
are enforced. Moreover, for generating smooth flight path,
strategies on minimum snap trajectory planning have been
proposed in [24] [25] [26].

The contributions of this paper are as follows: (i) We
present a methodology to develop trajectory generation algo-
rithms that can be implemented on aerial vehicles deployed
in applications related to surveillance based data collection.
(i) We present a clustering approach to the UAV-target
allocation problem that is scalable in the number of targets
and UAVs (iii) The allocation approach presented in this
paper can incorporate temporal uncertainties in the number
and position of targets. (iv) The proposed techniques are
implementable on a multi-UAV platform as demonstrated by
the experiments.

The paper is organized as follows. Section II presents
the problem formulation. Section III presents the solution
approach. Section IV proposes a clustering-based technique
for target allocation. Section V presents efficient trajec-
tory generation technique for the quadcopter that take into
account the sensing requirements and vehicle dynamics.
Section VI presents the experimental set up and associated
results. Section VII presents the conclusion along with the
future work.

II. PROBLEM FORMULATION

We consider a problem in which a team of robots equipped
with a vision sensor surveils a region with the objective of
acquiring a 360° view of each target. Since we assume that
the robots are fewer in number compared to the targets, each
robot has to visit multiple targets.

Let T = {t1,...,t,} denote the team of n targets and
R ={r1,...,mm} denote the team of m robots. We assume
that all the robots start at a point called a depot denoted as
s. Let ds : T'— R denote the distance traveled by the robot
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between the depot and the target. Let d : T'x T — R denote
the distance traveled by the robot between targets. A robot
r; is tasked with a sequence m; of k; targets K; such that
\J K; =T. Let II be the ordered set of permutations such
;Ielz}:f IT = {m;|i € R}. In order to capture a 360° scan of the
target, the robot rotates a full circle around it before visiting
the next target. The radius of the circle is determined by
two factors - 1) the safe distance from the target, 2) distance
between the camera and the target; required to capture a
high quality image. Therefore, the total distance traveled by

r;, denoted as C}, to follow a sequence of targets in 7; is :
ki—1 k;
Ci(ms) = do(mi(1))+ D d(mi(j), m(i+1)+Y_ h(mi(5)),
j=1 j=1
where h denotes the distance traveled by the robot around
a target to acquire a 360° scan. The total cost incurred by the
team of robots associated with an ordered set of permutation
II is given as follows:
C() =Y Ci(m) (1)
i€R
In order to minimize the energy spent in the surveillance
task, we pose the joint allocation and path planning problem
for the robots as an optimization problem of minimizing the
total distance covered by the team of robots. In other words,
the objective is to find the permutation II* defined as follows:

IT* = arg ml_iln C(1) )

In this work, we assume that the robots are quadcopters.
For a target modeled as a point and robot modeled as a holo-
nomic vehicle, the problem in (2) is an mTSP problem. Our

problem is a variant of the mTSP problem with additional
constraints of target loitering and vehicle dynamics.

III. HIERARCHICAL PLANNING

Mission Planner

Quadcopter

Quadcopter Location
Target
Allocation
Vehicle State
3
. Dynamic Allocation
Local Planner Target Location * Generation Sequence

I — -

Local Controller Trajectories

Control
Signal(PWM)

Motors

Trajectory
Generation

Fig. 1: Planner

Figure 1 shows our proposed solution. The overall planner

can be divided into two major components:

1) Mission Planning: This module is tasked with the
generation of the route along with the supported tra-
jectory for the system using the current location of
the targets as input. Target Allocation processes the
incoming data and generates the allocation and visiting

sequence(interchangeably called path in this paper) for
each quadcopter periodically. Trajectory Generation
receives the output from the target allocation module
and generates the trajectories based on the dynamic
model of the quadcopter which is fed back to the
target allocation module to re-allocate the targets for
the incoming/moving targets in a dynamic scenario.
This is a part of the ground station. The majority of
our work is focused on this mission planning algorithm
itself.

2) Quadcopter : This module serves as an actuator for
the algorithm and is a part of every quadcopter. The
Quadcopter uses the generated trajectory as its flight
plan. Local planner combines the trajectory and the
current state of the quadcopter in order to compute
the desired motion. Finally, Local controller sends the
control signal (PWM) directly to the motors to follow
the trajectory and complete the task. The hardware
components include:

a) Sensors : They are responsible for keeping track
of the current system states

b) Quadcopter Location : This refers to the GPS
module on-board which keeps track of the phys-
ical location of the quadcopter

The hierarchical nature of the planner stems from the two-
step trajectory generation strategy with the first stage being
path generation followed by its upgradation to a minimum
time trajectory at the end of the two stages. As described this
can be broken down into separate modules which together
form the Mission Planning Algorithm:

1) Clustering-Based Target Allocation - Generates a path
connecting a subset of the targets for each of the quad-
copters such that all the targets are covered without
overlap using the location of targets as input.

2) Trajectory Generation - Converts the path (or order
of visitation) for the targets generated by the previous
module and converts it into a trajectory. This module is
responsible for generating the minimum time trajectory
between all pairs of targets in a given path. Once a
trajectory is generated for all the paths provided by the
previous module, this can be send to the quadcopter to
begin its surveillance.

The next two sections describe in detail the working of
each of the aforementioned modules.

IV. CLUSTERING-BASED TARGET ALLOCATION

In this section, we address the allocation problem where a
team of quadcopters(salesmen) are allocated to a pack of tar-
gets(cities). The original problem as posed in (2) is an mTSP
problem which is well-known to be NP-hard [7]. Current
known solutions to the mTSP problem involve heuristic [27]
and approximation [28]. Since the space in our problem is
metrizable, we can reduce it to a standard A-T'S P problem.
In A-T'SP, there are n cities with a distance function in the
form of d : [n] x [n] — R where d is set in a metric space.
The objective is to find a permutation 7 which minimizes the
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total distance D = 37" d(m;(j), mi (j +1) +d(m (1), w(n)).
Therefore, problem (2) is equivalent to solving a multi-
variate version of the standard A-T'SP.

Even though A-T'SP is known to be NP-Hard [29], the
Christofides’ algorithm provides a % approximation algo-
rithm for A-T'SP [30]. Leveraging on Christofides’ algo-
rithm, Algorithm 2 presents a hierarchical approach to the
allocation problem using a clustering technique. The crucial
part of the solution is to first partition the cities into m
clusters using a K-means clustering algorithm [31] (where
m is the number of quadcopters) and then compute a tour
for each of these m clusters using Christofides algorithm. In
Line 2, the targets are divided into m clusters. It may be
noted that the K-means algorithm may be replaced by any
other clustering algorithm. An advantage of this approach
is its flexibility in accommodating additional targets in the
environment without recomputing the clusters. Line 3 is
an optional optimization step for decreasing the number
of targets for surveillance. The central idea here is to use
hierarchical clustering [32] to represent targets which are
really close to each other as a single target. In Lines 5-
8, we run Christofides Algorithm on each of the above
mentioned clusters. Finally, once the tours are constructed
for each of the clusters, the tours are forwarded to the
trajectory generation algorithm. The distribution using K-
means does not consider equal distribution of the targets to
all the quadcopters since K-means enforces spatially close
targets to cluster together. We allow this behavior to persist
since if equal distribution was somehow enforced, it could
result in a target that is quite distant to a quadcopter to be
assigned to it. This would increase the overall path cost.

Algorithm 1 Assigning n targets to m quadcopters

Input: m quadcopters (), depot location s, n starting targets
with their locations 7', distance functions d, and d
Output: Targets assignment A - m ordered sets with each

set representing the order of targets visited by that
quadcopter

1: function TARGETASSIGNMENT(Q, T, s,d, d)

2 AK _means < K-MEANS(m,T)

3: e means < TRUNCATE-TARGETS(AK _means)

4 foreachset ¢ € Ty, uns dO

5 Construct graph G, from 7" using g and d

6 A4 < CHRISTOFIDES(Gy)  /* A, contains the
ordered set of targets visited in the TSP tour */

7: Find the closest point in A, from s and set it as
the beginning of the tour

8: Append A, to A

9: end for

10: return A

11: end function

Since the trajectories of the quadcopter are obtained from
numerical optimal control, it is challenging to obtain a
theoretical gap between the cost incurred by the team when
the quadcopters are approximated by a holonomic vehicle.
Figure 3 shows the average, maximum and minimum ratio

Fig. 2: Figure shows the trajectory (solid lines) of the
quadcopters based on the numerical optical control proposed
in Section V, and the (dashed lines) trajectory generated by
Algorithm 2.

between the minimum time required by a holonomic vehicle
and a quadcopter for the transition phase for different initial
position of the vehicles. From the simulation results, we
can conclude that the distance traveled by quadcopters is
at most 3 times that of a holonomic vehicle. For an mTSP
problem, [28] shows that if the number of paths is m then the
overall approximation factor can be further reduced to %— %
Combining the 2 — L approximate bound of christofides with
the empirically obtained bound of 3 from simulation results
leads to an overall 4.5 — % approximation factor for the cost
incurred by the quadcopters relative to the optimal route for
holonomic vehicles using the allocation technique proposed

in Algorithm 2.

3

Time ratio between a holonomic vehicle and a quadcopter
n
—

0 1 22 33 44 55 66 77 88 99
Distance (m) between a target and the initial position of a vehicle

emin Wmid ®max

Fig. 3: Avg-Max-Min time radio between holonomic vehicle
without motion constraint and our result.

A. Incorporating Variable and Mobile Targets

Since the overall motivation is to build a deployable multi-
quadcopter platform for real-time surveillance, the system
should be able to adapt to uncertainties in the number
and location of the targets. The technique proposed in the
previous section for static targets can be considered as a
snapshot of the dynamic scenario regarding the state of the
targets. In this section, we extend the static algorithm to
address situations in which new targets may appear or old
targets may disappear from the surveillance region.

In Algorithm 2, the quadcopters return to the depot after
completing their original tours. Algorithm 2 doesn’t allow
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the quadcopters to return to the depot but instead initiates
a new tour (Line 7-9) of the updated cluster (Line 4). The
algorithm includes a target absorption phase where a new
target is absorbed by the existing clusters based on their
distance from their cluster centers (Line 4). An additional
step includes re-evaluating the TSP circuit for each cluster
once the previous iteration of drone surveillance is finished
(Line 7-9). Once the TSP circuits are evaluated the drones
need to be send on these circuits to survey the targets. This is
done by the TRIP procedure (Line 10). The method allows
us to absorb new targets to the original clusters overtime.
However, a downside to this is once too many new targets are
absorbed the cluster might differ significantly in comparison
with a freshly calculated K-means cluster leading to a drop
in efficiency overtime. This can be rectified by reevaluating
the cluster after r; iterations. The reevaluation time 7; sets
the number of iterations after which the clusters will be
reevaluated. For our simulation we keep r, = oo. i.e. it
never reevaluates. One more assumption we make is the
surveillance targets need to be constantly surveyed in a loop
overtime i.e. if a target is surveyed at time ¢, it must be
resurveyed at sometime ¢ + A.

Algorithm 2 Dynamic target assignment to n quadcopters

Input: m quadcopters (), depot location s, n targets along
with their locations 7', distance functions dy and d,
reevaluation timer 7

1: function DYNAMIC ASSIGNMENT(Q, T, s,d, d)
Ak —means < K-MEANS(M) /+Call K-means and
store assignment in Agx _meqns*/
Move all quads to the nearest target in their clusters
Asynchronously assign new targets to nearest cluster
e means < TRUNCATE-TARGETS(AK _means)
for each set ¢ € A%, ... do /+*Run in parallelx/
Construct graph G, from 7" using g and d
A, < CHRISTOFIDES(G,) /*A, contains the
ordered set of targets visited in the TSP tourx/

9: Find the closest point in A, from s and set it as
the beginning of the tour if this is the first iteration

10: Execute TRIP(A,) /«This signifies executing the
trip assigned to quadcopter ¢ asynchronouslyx/

11: end for

12: Reset after r; iterations.

13: end function

e A

Given a scenario where a set of n original targets exist
and r new targets are introduced, there are two ways of
solving the surveillance problem. The first method is to use
Algorithm 1 to finish surveillance of the original targets.
After the new targets are introduced, complete a fresh
execution of Algorithm 1 on the updated set of targets. The
second method is to use Algorithm 2 to complete surveillance
of the original targets. After the new targets are introduced,
they are absorbed by the existing clusters, and Algorithm
2 completes surveillance of the new clusters in its second
iteration.

Figure 5 demonstrates the procedures when new targets
are introduced in the environment. We can see that Procedure
1 relies on completing the tour and returning to the depot
where as Procedure 2 completes the tour and stays on the
final target waiting for the new iteration. This creates a
difference in terms of the total path cost.

H r (number of target) ‘ 32 ‘ 64 ‘ 100 ‘ 150 H
| p (ratio of path lengths) [ 1.22 [ 1.20 [ 1.19 [ 1.18 ||

Fig. 4: Comparing the ratio (p) of the path lengths in
Procedure 1 and Procedure 2 when r new targets are added,
where n = 100, m = 8 and number of simulations = 30000

(b) Algorithm 1 - Run 2 with

(a) Algorithm 1 - Run 1 new targets

(d) Algorithm 2 - Iteration 2
(c) Algorithm 2 - Iteration 1 with new targets

Fig. 5: Figure shows the two procedures applied to the
dynamic scenario where new targets (represented by black
triangles) arrive. The orange triangle represents the depot.

Figure 4 shows the results for the simulation where
new targets are introduced after the old targets have been
processed. The simulation is initiated with 100 targets (n)
and 8 quadcopters (m). Once the first round of processing
is completed, r new targets are introduced. After the second
round of processing, the path lengths generated from the
two procedures are compared and analysed. The ratio (p =
ﬁgiﬁiiggiﬁi recedurel) s the metric for the comparison. We
see the results for the above mentioned simulation for r =
32,64, 150. We see that the path lengths for Procedure 2 is
less than that for Procedure 1 even after 150 new targets
are introduced. This clearly demonstrates how Algorithm 2
outperforms Algorithm 1 at handling dynamic scenarios.

The simulations in Figure 5 were created in java using the
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StdDraw library to generate random points over a space of
X : [-1000,1000]Y : [—1000,1000]. Needless to say, the
figure shows only 10 targets but this can be scalable to 100
or more targets. It was infact test with upto 150 targets.

Once the TSP circuits for each of the quadcopter have been
generated, they can be sent to the next module for generating
the minimum-time trajectory.

V. TRAJECTORY GENERATION

In this section, we describe the different phases of the
quadcopter’s proposed trajectory.
1) Loitering Phase: In the loitering phase, the quadcopter
scans a target while traversing a circular trajectory at its
maximum speed at a constant.

Fig. 6: Minimum-time trajectories for three different initial
states of the quadcopter for five equi-spaced terminal points
on the semicircle. The target circle is shown in light blue
color.

2) Transition Phase: In this phase, the quadcopter leaves the
circle around one target and arrives on the circle around the
next target. The state it leaves a circle is where it entered
the circle earlier. The minimum-time control problem of
the quadcopter can be formulated as the following Bolza

problem [33]:
ty
J= / Lt 3)
0

where ¢ denotes the time at which the quadcopter reaches
the circle. Due to the non-linearity in the dynamics of the
quadcopter, (3) is solved using Optimtraj library [34]. Since
the non-linear optimization is a two-point boundary value
problem, the final circle is discretized to determine the values
of the state to enter the circle. At the final state, the direction
of rotation of the quadcopter around the target can be
clockwise or anti-clockwise. This leads to two optimization
problems that need to be solved for a given final state. Fig. 6
shows the minimum-time trajectory for three different initial
distance from the circle for five equispaced terminal points
on the semicircle. Algorithm 3 shows the process to generate
the minimum-time trajectory.

VI. EXPERIMENTS

The strategy proposed in this paper is implemented on a
multi-UAV testbed developed in our lab called Cy-Eye [35].
Figure 7 shows the communication architecture.

We deployed the quadcopters to encircle 8 targets in
an open space (50x50m). The ground control allocates the

Algorithm 3 Trajectory Generation between Targets (s — )

Input: Point p where a quadcopter leaves target s, Target ¢,
radius r
Output: Trajectory T’
1: function TRAJECTORY GENERATOR(p, t)
2: Discretize points on circles ¢
3 Sample entry points S on circle ¢
4 for each entry points ¢ € S do
5 Calculate the time-optimal trajectory between p
and e using Non-linear optimizer
6 end for
7: Find the trajectory T that has the shortest time
8 return T’
9: end function

Internet Module

«

Internet
Rabots
—,
/ \
4-
~, e

External Network
Control Station (UDP)
[ /4 3 ”
------ dnd Wi-Fi /I o) v
| N~ Router % ;
H Local Network
Control Station
(UDP) de
. [ /4 wiFi
vj e Booster |
- ~ |
b A
e T s e
v v
Base Station
P
Cy-Eye / \

----- Wi-Fi Wireless (Maylink, UDP) Coaxial Cable |

Fig. 7: Communication architecture of Cy-Eye.

targets for each quadcopter by using Algorithm 1. The trajec-
tories generated by Algorithm 3 are sent to each quadcopter
through UDP/MAVLink protocol. The parameters in the dy-
namic model (Inertial, propulsion, air density, thrust, etc.) are
measured based on our custom-build quadcopter (450mm).
In the experiment, we set the flying altitude between Im and
2m. Once the trajectories are received, the quadcopters start
their task automatically by following the trajectories.

Figure 8 shows the path traversed by three quadcopters
using our proposed algorithm. The actual flight paths (shown
with dashed line) are longer than the trajectories generated
by Algorithm 1. In the experiment, the three drones take 120
seconds to complete the task. Comparing to the flying time
(113s) from the simulation, a longer path leads to a longer
flying time, the result shows that the system could success-
fully complete the task of encircling the targets. A video
accompanying the submission provides details regarding the
experiments.

VII. CONCLUSION AND FUTURE WORK

In this work, we present a strategy to generate trajectories
that can be implemented on aerial robots deployed in a
surveillance application. The problem is well-known to be
NP-hard. The hierarchical approach that we proposed divides
this problem into 2 sub-problems (Targets allocation and
trajectories generation). We present a clustering approach
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Fig. 8: Figure shows the paths generated from Algorithm 3
(solid), and the actual paths (dashed) traversed by the quad-
copters during the experiment.

to the allocation problem that is scalable in the number of
targets and robots. A non-linear programming-based trajec-
tories generation approach is presented. We investigate the
proposed strategies through extensive simulation. Finally, the
same strategy was applied on a multi-UAV platform in the
outdoor environment.

As a future research direction, we plan to investigate the
performance of the system for several applications. Of partic-
ular interest, are applications related to intruder identification
and livestock phenotyping. An ongoing research direction
is the detection of face masks for preventing respiratory
infections diseases in humans. We are specifically interested
in implementing real-time machine learning algorithms in
the quadcopter perception loop.
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