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Abstract—In this paper, we consider the refuel scheduling
problem for a team of ground robots deployed in ‘aisle-
like” environments wherein the robots are constrained to move
along rows. In order to maintain a minimum service rate or
throughput for the ground robots, we investigate the problem
of scheduling a team of mobile charging stations deployed to
replace the batteries on-board the ground robots without any
interruption in their task. We propose two scheduling schemes
for the mobile chargers to serve the ground robots for long-
term service, and derive the parameters associated with the
system required for persistent uninterrupted operation.

I. INTRODUCTION

In the last two decades, there has been a growing
interest in designing and developing multi-robot systems
for societal needs [1], [2]. Some features of multi-robot
systems that make them more effective compared to a
single robot are time-efficiency demonstrated in complex
task implementation, less susceptibility to single-points of
failure, and demonstration of multiple capabilities [3]. Multi-
robot systems have been successfully deployed in large-
scale surveillance tasks related to environmental monitoring
[4], long-duration geographic mapping [5], and agricultural
data collection [6]. These applications usually require robots
to operate in open spaces and cover a large area wherein
persistence and long-term autonomy are key requirements.
Access to a reliable external power source is an absolute
necessity in such scenarios. In this work, we address a
scheduling problem that arises when a team of mobile
chargers is deployed to replace the on-board battery of a
team of mobile robots.

Existing literature on recharging robots deployed in the
field requires them to pause their tasks and either get
recharged in the field or exit the workspace and visit the
charging docks. In [7], authors propose a scheduling strategy
for long-term persistent operations that allows aerial robots to
return to their docking stations for recharging. In [8], authors
introduce an energy-aware control policy that combines a
robot’s mission objective with its desire to reach a charging
dock to recharge. In [9], authors consider the charging dock
itself as an autonomous robot that attempts to incrementally
improve recharging efficiency. [10] proposes a method that
replaces the discharged robots with fully charged robots to
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eliminate interruption and round-trip cost (fuel and time)
associated with visiting a charger. However, such a technique
significantly increases the number of robots. In [11], authors
formulate the problem of assigning chargers to robots as
a non-cooperative game. In [12], authors propose a graph-
based approach for recharging multi-robot systems deployed
in persistent tasks. The aforementioned approaches either
require the robots to travel to the charging station or stop
their task to recharge for long-term operations.

Autonomous battery charging can be substituted by au-
tonomous battery swapping [13]. The discharged battery cells
on a robot can be replaced by fully charged batteries without
halting the operation [14]. Autonomous battery swapping
mechanisms for UAVs and robots have already been pro-
posed and developed in [15], [16]. Our current work explores
the scheduling problems that arise out of a similar set up
being developed in our lab to replace batteries on-board
ground robots deployed in agricultural applications [6].

Scheduling problems in robotic systems represent special
cases of the general scheduling problem which often refers
to the problem of arranging a set of tasks on a set of
processors [17]. Collision avoidance and deadlock prevention
are important issues in scheduling [18]. In [19], we studied
a refuel scheduling problem for a team of autonomous grain
carts that serves a team of combines without any interruption.
The objective was to find the relation between the capacities
of the autonomous ground vehicles for persistent operation
without any collaboration between the vehicles. Our current
work is in a similar vein. In this work, we investigate
the extent to which the server (aerial chargers) and clients
(ground robots) need to collaborate in order to ensure that
the resulting schedule has no tardiness.

The contributions of this work are as follows. (1) We
present scheduling schemes for a team of chargers that peri-
odically replenishes the battery in a team of robots deployed
to work in aisle-like environments without interruption. (2)
The schedule can handle arbitrary number of chargers and
robots i.e, the technique scalable in terms of the number of
robots deployed in the entire operation. (3) We explore the
coordination needed between the two teams to achieve zero
tardiness in both scheduling schemes.

The paper is organized as follows. In Section II, we
present the problem formulation. In Section III, we analyze
the scheduling problem for one charger serving an arbitrary
number of robots. In Section IV, we generalize our previ-
ous analysis for an arbitrary number of chargers serving
an arbitrary number of robots in a round robin schedule.
In Section IV, we address the scheduling problem for an
arbitrary number of chargers and robots based on a load-
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balancing scheme. Finally, we present the conclusions along
with some future directions of research in Section V.

II. PROBLEM FORMULATION

In this section, we describe the workspace, deployment
strategy and parameters relevant to the scheduling problem.
For the sake of clarity, we use the term worker for the robots
deployed in the field, and charger for the ground/aerial robots
used for battery replacement. Since our problem is motivated
from agricultural applications, we consider workers that
move in a row as shown in Figure 1. As the robot moves
along a row, there is vegetation on both sides. Moreover,
the space in which the robot moves is just wide enough to
accommodate at most one robot at a time!. The worker can
change rows only when it is at either end of the row. Such
“aisle-like” environments [20] are encountered in warehouses
and retail stores [21] in addition to farmlands.

We assume each worker is powered by a battery bank
composed of m battery cells. The capacity of each battery
cell is C,.;;. All the workers have the same battery capacity
C =mC,, and a discharging rate r;. In the beginning, the
workers enter the rows sequentially as shown in Figure 1.
A charger replaces the discharged battery cells from the
worker’s battery bank using the swapping method described
in the previous section. In order to prevent any interruption
in the worker’s task, the charger moves with the worker (in
case of a ground vehicles) or lands on the worker (in case of
an aerial vehicle) to perform the swapping operation. Since
the charger can carry multiple battery packs, it can charge
multiple workers before making the next visit to the charging
station.

When a charger runs out of all its fully charged battery
cells, it travels to the depot/charging station to recharge
the swapped battery cells. We assume that all the chargers
have the same charging rate r. = rg.4pCeerr, Where ryyqp is
the swapping rate (number of cells per second) for all the
chargers. We introduce the following notations to denote the
pertinent time intervals during this operation:

1) T: Time for each charger to move between two adja-
cent workers.

2) Ty(= %) Time for a worker to get fully discharged.

3) T(= ;5
worker.

): Time for a charger to fully charge a

In the rest of the paper, we make the following as-
sumptions. (i) The analysis is for the simple case of a
rectangular space (ii) The chargers serve the workers to
ensure that the robots are fully charged at the beginning
of a new row. Given the above constraints associated with
deployment, we want to analyze scheduling schemes for the
chargers to replace battery on-board the workers that can
ensure persistent operation without any stoppage. In the next
section, we present our first scheduling scheme.

IPlanters try to minimize the empty space between two rows of vegetation
to maximize the yield

", Charger
iy 8

o=  Worker
#F Plant

Fig. 1: Figure shows 3 workers and 2 chargers deployed in
the field

III. ROUND ROBIN SCHEDULING STRATEGY

A. Round-robin scheme for a Single charger with Arbitrary
Capacity

We consider the case in which a charger carries sufficient
supply of cells to serve multiple workers before returning
to the charging station. Initially, N labelled workers enter
the work space as shown in Figure 2. They enter the work
space sequentially with time gap AT. This prevents any two
workers from getting fully discharged at the same time. We
assume that all worker robots are identical. A single charger
(M = 1) serves them following the First-Come-First-Serve
order i.e., priority is given to the worker that gets discharged
first

B. Charging > N workers

First, we analyze the case in which the charger carries a
supply of cells sufficient enough to charge n=N+k (1 <
k < N,k € Z) workers before it returns to the depot. We
define a round as the time during which N 4k workers get
served once. A cycle? is defined as the number of rounds
after which the charger starts a round from the same worker.

The workers need to collaborate (adjust their discharging
rate i.e., moving speed) with the charger so that the worker
at which the charger arrives after visiting the depot is just out
of power. In any round, a worker can get charged at most
twice. We assume that the discharging rate of worker i in
round r for the 1" time is r}’;, (t € 1,2). The discharging
time for the worker i in round r to get fully discharged for
the ' time is Tdrf The charging time of each worker is T,
which is a constant. During the time in which a worker runs
out of power Trj;, the charger serves all the other workers
and may or may not visit the depot. For any round r, the
first worker that will be run out of power is worker w, =
[(r=1)(N+k)] mod N+ 1.

As shown in Figure 2, each round can be divided into two
parts: the duration for which the first N workers get charged
and the duration for which the last k workers get charged.
In the first round, all the workers move at their maximum
speed with discharging rate r4,, before they run out of power
for the first time. Therefore, the discharging time for the first
N workers in the first round is % For the last k workers
in the first round, the charger needs to travel back from the
last worker to the first and then visit all the other workers.

2Therefore, in each cycle, there are ﬁ rounds, where [ is the lowest
common multiple of N+k and N.
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W Power level of the 1t worker in the round
W Power Level of the k' worker in the round
| Power Level of the N* worker in the round

charge

N+1 N+k

1. kN time
Fig. 2: Load variation of workers when n =N +k
Therefore, we obtain the following relation:
12 C C
Tai = 12 = M
’ le (N_I)Tc“!‘(N_l)T“FTback

From round two, the workers will no longer move with
their maximum speed. For any r > 2, the discharging time for
the first N workers, which are workers 1 to N in this round is
shown in Figure 2, Tdrjz contains N — I charging time 7., N —2
traveling time between adjacent workers, travel time from the
last worker to the first, and a round-trip between the workers
and the depot T,44. Assuming identical parameters for all
workers, the workers will travel the same distance till they get
fully discharged. Therefore, the travel time between adjacent
workers as well as the travel time from the last worker to
the first will always be a constant regardless of the variation
in their speeds. Let T be the travel time between adjacent
workers and Ty, be the time required by the charger to
travel from the last worker to the first.

For the first N workers in a round r within a cycle, the
following relation holds:

71 C C
Tai= 1= 2)
Ty (N=1)T:+ (N—=2)T + Tpgq + Tpack

)

The last k workers, workers N+ 1 to N +k in Figure 2, this
is the second time they get served in the round. The working
time for them contains N — 1 times of charging time 7;,, N — 1
times of traveling between adjacent workers 7 and one time
of traveling from the last worker to the first worker 7p,.. The
charger doesn’t visit the depot during this period. Therefore,
for the last k workers in a round, we obtain the following
relation:

rr,2 _ i _ C (3)
di = T;’iz B (N_ 1)TL+(N_ 1)T+Tback

At the end of any cycle ¢ > 1, the charger replaces its
discharged cells with fully charged cells at the depot after
charging the last worker N. This implies that the travel time
from the last worker to the first will be replaced by T,;44. In
this case, the initial discharging time of the first N workers
in the first round in a cycle ¢+ 1 is given by the following
expression:

7l C C
Tdi= 1 = “)
’ Td?i (N*l)TC‘F(Nfl)T‘FTadd

This will repeat for the remaining cycles.

C. Charging < N workers

Next, we consider the case when the charger charges k <
N workers before it visits the depot. In the first cycle, all
the workers enter the field sequentially with time gap AT.
However, only the first kK workers move with maximum rate
since the charger goes to the depot after the first round. The
remaining workers need to slow down so that the charger
arrives, just when the workers run out of power. For any
round r > 2, the first worker that runs out of power is the
worker ¢, = k(r— 1) mod N+ 1. From round [%]+1 (when
all the workers get charged at least once), the workers can
be divided into two groups in each round: the first N mod k
workers and the remaining k — N mod k workers. Since there
are N workers, the discharging time for the first N mod k
workers in a group contains an additional T,,;. Figure 3
depicts the aforementioned scenario.

Discharging time of the 1* part of workers

[ !
| 1.k 1.k | ------ | 1...Nmodk ‘Nmodkﬂ k|

Tadd
Discharging time of the 2"¢ part of workers

Fig. 3: Discharging time of the workers in a round
For any worker, during the time in which it moves, the
charger needs to charge all the other workers once and charge
itself multiple times.

u
W Power Level of the ki
W Power Level of the previous groups

charge

c

! 1. Nmodk..k time

Fig. 4: Power level variation of workers when n =k
Figure 4 shows the power level variation of the workers
for an arbitrary round. For the first N mod k workers in a
round, the charging time contains [%1 times of Tygq, N —1
times of 7., one time of traveling from the last worker to
the first Ty and N —1— [%] times of 7. In this case, the
discharging time is given as follows:

C C
(N=DTo+ Tpae + (N = 1= [ENT + [ Tuaa

-
Tai = 77
T

For the remaining kK — N mod k workers, during their dis-
charging time, the charger visits the depot one time less than
the first N mod k workers. Instead, it incurs an additional
travel between adjacent workers. In this case, the discharging
time can be expressed as follows:

oo c C

di= mr =

YT (N= DT+ Tyaek + (N = [EDT + [ ¥ Toaa
In any cycle, the discharging rate of the workers is given
by the above expressions to satisfy the constraint that the
worker is fully discharged when a charger reaches it.
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After completing a cycle, the charger moves from the
depot to the first worker to start a new cycle. However, the
discharging rate for the first N workers will change since
there is no travel back from the last worker to the first in this
case. Tp,ex 18 replaced by T,4,. Therefore, from the second
cycle, the discharging rate of the first N workers being served
can be obtained as follows: For the first N mod k workers in
a round:

C C
T = = N N &)
T (N=DT+(N=T3 DT + [ % 1Tada
For the remaining kK — N mod k workers in a round:
C C
d = (6)

T T NS )T+ (N = [ XDT + [ Toaa

From the second cycle, the same procedure will be repeated.

IV. ROUND-ROBIN SCHEME FOR MULTIPLE CHARGERS
WITH ARBITRARY CAPACITY

In this section, we present the routing plan for arbitrary
number of workers and chargers for the round-robin scheme.
There are N workers and M chargers. Each charger recharges
itself after charging n workers. We define a round as the
period during which N workers get charged once. In each
round, the charging order is from worker 1 to N. For any
worker i in round k (worker (i,k)), we need to know the
discharging time 7T;(i,k). In round-robin scheme, a worker
will be charged by a different charger each time. For worker
(i,k), let m;, denote the charger that charges it.

mi, = ((k—1)N+i—1) mod M + 1 7

Since the charger goes to the depot regularly, whether the
charger m;, was at the depot or another worker just before
visiting worker (i,k) can be determined by the following
rule:

{U(_I)NA;H_m”‘ mod n= 0= m;,_ at depot )

(k=1)N+i—m;,

i mod n # 0 = m;,_ at another worker

We let the previous worker served by charger m;, be worker
(i',k"). (k') is M workers prior to worker (i,k). Since M <
N, (i,k) may or may not be in the same round.

(k—1ON+i—M

i =((k—1)N+i—M) mod N, N

K= 1

i'=i—M

K=k

. P=N+i—M
i<M=
K=k—1

,i>M¢{

Figure 5 shows the power level variation of worker (i,k)
and (/',k"). From the figure, the discharging time Ty (i, k) can
be given by the following expression:

T4 AT k) VT od =0

Td(l,k ==
Ty + AT (i k) mod n#0
where Ty; is the traveling time for the charger from worker

(i',k") to (i,k), T is the recharging time of the charger at the
depot and AT (/,k') is the time difference between worker

(k, 1 )N‘(‘i*mik
M

Power level of the 1% worker in the round
M Power Level of the k mod N worker in the round

charge AT(', k") Teagor Ty

AT k' — 1)

! k-1 k-1 ik ik time

Fig. 5: Power level variation workers with general round-
robin scheme

(I',k') and worker (i,k— 1) getting fully discharged. The
workers enter the workspace sequentially with time gap AT.
As shown in Figure 5, before coming to a worker, the charger
may be at the depot or another worker. The non-uniform
travel times between the workers needs cooperation between
the workers and the chargers in order to eliminate any
tardiness. Therefore, for a different worker (i,k), AT (i',k')
may be different. The expression for the time difference is
given by the following expression:

AT (i K) =Ty(i' k) + AT (I K —1) = Ty(i,k—1)  (9)

For every cycle, each charger starts with the same serving
order, the last phase in the cycle in which all the workers visit
the depot is at the end of a round. For all the chargers to run
out of cells, nM workers are charged and we assume each
charger visits the depot o, € Z™ times in a cycle. Since
the end of a cycle is also the end of a round, we assume that
there are 8,8 € Z™" rounds in a cycle. Since the number of
workers that get charged in a cycle is constant, we obtain
the following expression:

anM = BN (10)
To have the smallest number of rounds in a cycle,
LCM (nM,N
anM = BN = LCM(nM,N) = B = % (11)
where LCM stands for least common multiple. Therefore, in
each cycle, there are p = %MN) rounds.
Lemma 1. For any worker (i,k), the discharging time
T,(i,k) = Ty(i,k+ p) where p = w

V. SCHEDULING WITH PARTITIONING SCHEMES

The battery capacity of the workers is dictated by the
frequency at which it can be served by the chargers. As the
distance traveled by the charger increases, the frequency at
which the workers get served decreases. In order to alleviate
this problem, we propose partitioning schemes that allocate
a smaller group of workers to individual chargers so that the
distance traveled by the chargers is minimized compared to
the round-robin scheme proposed in the previous subsection.
A distinct characteristic of the partitioning strategy is that the
minimum battery capacity of the workers depends on the
ratio between N and M instead of their actual values which
is the case with the round-robin scheme.

As in the round-robin scheme, N workers start moving
with a time gap AT. However, instead of serving all the
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workers together, each charger is allocated a specific group
of workers to serve. Let n = % If n is an integer, then the
workers are divided in M groups, Gi,...,Gy. G; contains
all the workers from worker (i — 1)n+ 1 till worker ni. In
each group, the charger will follow the round-robin strategy
proposed in Section III-A. After serving every vehicle in the
group, the charger goes to the depot to recharge itself before
starting a new round. Based on the values of N and M, the
following scenarios arise:

If n(= ) is an integer, no workers need to be shared
between two groups. All chargers serve the same number of
workers, and the scheduling strategy for each charger and
the workers in its corresponding group can be given by the
round-robin strategy proposed in Section III-A.

If n is not an integer, we call it the Load Balancing without
Integer Constraints. N workers are divided into M groups. A
shared worker is served by two chargers, i.e., it is assumed to
belong to two groups. Based on this assumption, each group
contains [2] or [%]+1 workers and £/C amount of power
need to be charged. If a group contains (%] + 1 workers, we
call it a large group. With LB/IC, each charger charges its
own group. The chargers start charging a shared worker only
after both have arrived at the worker. We define a round to
be the time in which all the workers get served once. During
the time in which a worker is working, the charger charges
other workers in its group and may go to the depot and
recharge itself. We assume M and N are co-prime, otherwise
the workers and chargers can be divided into several groups
with exactly the same number of vehicles. In this case, with
LB/IC, the first and last worker in a group (except the first
and the last group) need to be shared between two groups.
Since the chargers in the two groups may not reach the shared
worker at the same time, the one which arrives first needs to
wait for the other charger to arrive, and subsequently, wait
till the worker gets fully discharged. In LB/IC, there are M
groups and M — 1 shared workers. Since each charger charges
%C amount of power, from worker 1 to the last worker in
any group g, %C amount of power is charged. The last
worker in group g needs to be shared with the next group.
Therefore, we can conclude that worker i is a shared worker
when | = [%L where 1 < g <M, g € Z. Since a shared
worker belongs to both groups, worker i is the last worker
in group g and the first worker in group g+ 1.

" Pow vious group
W Power Level of the i* worker in the round
W Power Level of the shared worker with next group

Ty (i, k)
Ll R N E ot e Y

charge Tc

! k-1 ik time

Fig. 6: Power level variation of a worker with general LB/IC
scheme

Figure 6 shows the load variation of an arbitrary worker
(i,k) which is not shared. For an unshared worker i, we let
it belong to group g. Since i is in between the last worker
of group g— 1 and g, we can obtain g from the following

inequality:

(g— DN

. &N
S 7
v 1<l<fM1,g€

[ (12)
After charging it in round k — 1, the charger goes to charge
all the other workers in the group. It may need to wait at the
shared workers or visit the depot. The discharging time can
be expressed as follows:

. N ;
Td(lﬂk) = MTC+ tlravel(k_ lvk) +wa(g,k)+ng(g7k— l)’

where %TC is the total charging time in a round in a group.
T! ./(k—1,k) is the total travel time of charger between
serving worker i in round k — 1 and round k. T,,;(g,k) and
Tve(g,k — 1) are the waiting times the charger of group g
takes at the first and the last worker in the round.

In LB/IC, a group contains [47] or [4:]+ 1 workers if N —
1 is a multiple of M. We let group g contain [%] + j workers
where j =0 or 1 is a group size variable. From worker
1 to the last worker in group g, % workers are charged.
Therefore, the number of workers in group g N, is given by

the following expression:

Ne= 1801 4y (13)
if N, :[%]:H':o, if N, z[%ul;sj:l

If the charger doesn’t go to the depot, T . (k—1,k) =
([%1 =14 j)T + Tpaex Where T is the traveling time between
any two adjacent workers and Tj, is the traveling time
from the last worker to the first in the group. When the
charger needs to go to the depot, some of the traveling time
between the workers will be replaced by travel time to the
depot. From the beginning of the task, assume g workers
have been charged before worker(i,k) in its group. ¢ =
(k=) ([H]1+7)+i— [Wl + 1. Traver can be determined
with the following criterion:

=

Lq—f W—jj

S =

if 1=

k= 1K) = (151 +j—1-
[+

+ [T‘le+Tback (14)
.. 4 N . N
if L;J = aLCM(n, [M1 +j),where o € N* =
tlravel(k_ lak) = ({M] +j— "#W)T_’_ {%—l’ra’

The waiting time 7,5, and T, are the time difference of the
two chargers in the two group reaching the shared workers.
For worker 1, T,,, = 0 and for worker N, T,, = 0. For a
shared worker (i,k) where i # 1 or N, its discharging time
can be calculated from the perspective of the chargers in the
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previous and the next group:

. N
Td(lak)pre: Mrc"'];mvel'f'Twh(g_lak_l) (15)
. N
T;!(lak)nexr = Mrc + Tiravel + Twe(g"‘ 1k— 1)
Td(iak) = max(Td(iak)prea Td(iak)next)v

where T;(i,k),r is the discharging time associated with
the previous group, and Ty (i,k)n.y is the discharging time
associated with the next group. The waiting times can be
obtained as the difference between the two discharging times:

if Td(lak pre > Td<l k)next =

Tive(8,k) = . 16)
b(gak) Td(l k)pre Td(lak)next
if Td(lvk)pre < Td(l k)next =
(g7k) Td i k)next Td(izk)pre (17)
TWb(gvk) = 0

From (13) and (15), the discharging time of any worker
in any round can be calculated. Simulation result of the
scheduling scheme is shown as follows. We assume that
T,4q = 6 time units, T, = 1 time unit, AT = 1 time unit and
T = 1.5 time units. In Figure 7, nine workers are charged by
four chargers where each charger goes to depot after fully
charging four workers. The discharging time of each worker
is almost the same in every round, so the curves are stacked
together.

[1]

[2]

[3]

[6]

[8]

[9]

[10]

[11]

— [12]
T Worker1
Worker 2
Worker 4
Worker 5
2 Wtk | [13]
£ Worker 8
Y Worker 9 ||
2 | [14]
[15]
10 20 30 40 50 60 70 80 90 100
Working time(rounds)
Fig. 7: Variation of discharging time for nine workers and (16]
four chargers [17]
VI. CONCLUSION
In this paper, we considered the scheduling planning 3]
problem for multiple autonomous (aerial) chargers serving
multiple ground robots. Two different scheduling schemes  [19]
were investigated based on the allocation of the ground
robots to the chargers. As a part of our future work, we [y
plan to address the problem of uncertainty and explore the
possibility of non-cooperation between the ground robots and
aerial chargers for the task. The theoretical foundations of the 55
framework will be based on ideas from queuing theory and
game theory. Based on the theoretical results, a planner will
be developed for a heterogenous multi-robot systems with
self charging capabilities for persistent operation.
5830
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