
STRAINS: A Big Data Method for Classifying Cellular Response to Stimuli at the
Tissue Scale

Jingyang Zheng, Thomas Wyse Jackson, Lisa A. Fortier, Lawrence J. Bonassar, Michelle L. Delco, and Itai Cohen
Cornell University

(Dated: June 29, 2022)

Cellular response to stimulation governs tissue scale processes ranging from growth and develop-
ment to maintaining tissue health and initiating disease. To determine how cells coordinate their
response to such stimuli, it is necessary to simultaneously track and measure the spatiotemporal
distribution of their behaviors throughout the tissue. Here, we report on a novel SpatioTemporal
Response Analysis IN Situ (STRAINS) tool that uses fluorescent micrographs, cell tracking, and
machine learning to measure such behavioral distributions. STRAINS is broadly applicable to any
tissue where fluorescence can be used to indicate changes in cell behavior. For illustration, we use
STRAINS to simultaneously analyze the mechanotransduction response of 5000 chondrocytes—over
20 million data points—in cartilage during the 50 ms to 4 hours after the tissue was subjected to
local mechanical injury, known to initiate osteoarthritis. We find that chondrocytes exhibit a range
of mechanobiological responses indicating activation of distinct biochemical pathways with clear
spatial patterns related to the induced local strains during impact. These results illustrate the
power of this approach.

I. MAIN

To sustain tissue function, cells must coordinate their
response to external stimuli. In mechanically sensitive
tissues, for example, cells sense their environment us-
ing cytoskeletal elements, ion channels, and other mech-
anisms to initiate such coordinated behaviors [1, 2].
Changes in fluid pressure in vascular systems affect
mechanosensitive ion channels, driving cell migration and
muscle development [3]. Altered mechanosensing in can-
cer cells makes them unable to sense stiffness, potentially
playing a role in metastasis, migration, and disease pro-
gression [4]. And, in cartilage, tendon, and bone, cell
mechanosensing pathways regulate growth and develop-
ment during normal function or promote disease during
aberrant loading [5–7]. Pioneering studies furthered our
understanding of which mechanotransduction pathways
are activated in single cells in response to various pertur-
bations [8]. Studies using pillar arrays [9–11], traction
force microscopy [12], magnetic tweezers [13], or opti-
cal traps [14] for example, have demonstrated the role
of substrate rigidity in stem cell differentiation [15], the
alignment of cellular microfilaments in the direction of
force [16], and the highly varying force profiles of mi-
grating cells [8, 17]. Such cellular responses must be co-
ordinated at the tissue scale to sustain mechanical func-
tion, direct resources to regions in need of repair, or initi-
ate healing [18–20]. This coordination, however, remains
poorly understood because few techniques are available
for imaging, analyzing, and sorting the in situ collec-
tive response of thousands of cells over thousands of time
points throughout the tissue.

Here, we introduce a SpatioTemporal Response Anal-
ysis IN Situ (STRAINS) tool that uses new experimental
methods and a big data analysis technique to investi-
gate tissue scale coordination of the cellular responses.
STRAINS tracks thousands of cells within tissue during
and after an applied stimulation, extracts their individ-

ual fluorescence traces, and analyzes their spatiotemporal
behavior patterns. This technique makes use of newly
developed protocols to stain and image processes such
as Ca2` signaling, mitochondrial depolarization, and nu-
clear membrane permeability in situ over sub-second to
hour time scales. The advances we report here entail
tracking responses in thousands of cells that are mov-
ing, visualizing millions of data points with an intuitive
graphical user interface (GUI), and using new custom
sorting and machine learning algorithms to classify and
map a wide range of cellular behaviors throughout the
tissue.

We demonstrate the utility of this approach by using
STRAINS to investigate the complex relationships be-
tween mechanical strain and chondrocyte responses in
articular cartilage, identifying distinct patterns of cell be-
haviors and mapping their spatiotemporal distribution.
Macroscale joint injury, specifically rapid cartilage over-
loading, is known to precipitate osteoarthritis. For ex-
ample, previous work has demonstrated that articular
impact injury triggers tissue scale catabolic responses in
situ and in vivo [21–25]. During impact, chondrocytes
use mechanosensors like integrins [26, 27], the primary
cilium [28–31], and various mechanosensitive ion channels
[9, 32–35] to convert mechanical signals into biochemical
responses ranging from the synthesis of extracellular ma-
trix proteins for maintaining tissue integrity to apoptosis
and matrix degradation.

Signaling within and between cells in cartilage post
impact occurs on multiple timescales. Within seconds,
activation of mechanosensors on the cellular membrane
enables calcium and other force-sensitive signaling [32,
36]. In the ensuing hours, the initial cellular response
affects mitochondrial polarization [23], cell viability [22],
and subsequent signaling cascade, leading to distinct out-
comes based on the initial local strain experienced by the
cell. By measuring both short (sub-second to second)
and long (minutes to hours) term signaling, STRAINS
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FIG. 1. Sample processing, imaging, tracking, and intensity analysis procedure. a) Biopsy punches of condylar articular cartilage
are collected and bisected. b) Hemicylinders are cultured and stained for calcium concentration, mitochondrial polarization,
and nuclear membrane permeability (stand in for cell death). c) Samples are mounted side-by-side to the back plate of impactor.
One half of the sample impacted once, with the other serving as an unimpacted control. d) Imaging occurs during impact at site
1 and after impact at sites 1-5. e) Individual cells are tracked through all time points and their stain intensities extracted. f)
Temporal patterns of strain intensities are classified by STRAINS into distinct categories of cell behaviors, which are identified
and mapped onto tissue location.

enabled us to make connections between signaling events
and paint a fuller picture of the signaling landscape after
injury.

Additionally, the complex structure of articular carti-
lage matrix causes local strain within the tissue to vary
with location and depth, which in turn can lead to dif-
ferent cellular behaviors. For example, cells directly be-
low the impact site primarily experience compression. In
contrast, cells to the sides of the impact site experience
greater shear stresses. In single cells, these distinct me-
chanical deformation modes are known to trigger differ-
ent responses in the chondrocytes [37]. Whether cells
maintain these individual behaviors based solely on the
local deformations they experience or coordinate their
response more globally is poorly understood.

Collectively, cartilage’s depth-dependent spatial het-
erogeneity, the complex load distribution within the tis-
sue during impact, and the broad range of timescales for
chondrocyte responses makes it an ideal tissue for show-
casing the power of this method. Importantly, however,
STRAINS can be applied to any system where it is rel-
evant to study the collective spatiotemporal response of
large numbers of cells to external stimuli.

II. RESULTS

A. Experimental system and in situ imaging
procedure

We have developed a microscale impacting system to
assess the real-time multichannel cellular response to me-
chanical stimulus. A custom-built confocal-mounted im-
pactor was used to injure and image fluorescently stained
bovine cartilage samples [21]. Specifically, 6 mm plugs
were sterilely extracted from the condyles of neonatal
bovids (Fig. 1a). Each plug was bisected into two hemi-
cylinders, cultured for stabilization [24] and stained for
simultaneous measurement of Ca2` concentration (Cal-
bryte 520 AM), mitochondrial depolarization (tetram-
ethylrhodamine, TMRM), and nuclear membrane per-
meability (Sytox Blue) (Fig. 1b, and Methods). To im-
age the tissue response, two hemicylinders from the same
plug were glued onto the fixed backplate of the confocal-
mounted impactor (Fig. 1c). One sample was used as a
control while the second sample was impacted to induce
injury. The impactor was calibrated to deliver to the ar-
ticular surface a 5-10 ms impact with a peak stress of „1
MPa, which produced superphysiologic strains and strain
rates encompassing the wide range of strains observed in
joints with traumatic injury within a small field of view
[22, 23].
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FIG. 2. Timelapse of cartilage response. Images are shown at the impact site (region 1), with the impact location labeled
with an orange arrow. a) High speed imaging of calcium concentration in the minute after impact showed a wave of calcium
uptake in cells moving outward from the impact site. Inset shows the area experiencing mostly shear strain, with a more
muted and delayed response in comparison with areas experiencing compressive strain. b) Long term imaging of all three
stains (mitochondrial polarization, calcium concentration, nuclear membrane permeability). As time progressed, mitochondrial
polarization and calcium concentration slowly decreased while nuclear membrane permeability progressively increased with
greatest intensity at the impact site.

This entire apparatus was loaded onto a fast confocal
microscope that enabled imaging of the cells throughout
the impact and relaxation process. Each region corre-
sponding to the field of view for our 10X objective was

660 μm x 660 μm in size. We assessed multiple regions
to understand the influence of a wide range of local tis-
sue strains on the behaviors of cells (Fig. 1d). On the
impacted sample, we imaged directly at the impact site
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(region 1), to the side of the impact site (region 2), and
directly below the impact site (region 3). On the unim-
pacted control, we imaged two sites (regions 4 and 5) at
the same tissue depths as the impacted sample in order to
compare cells of similar phenotype. From this imaging
process, we obtained the fluorescent intensities of each
cell (expanded image in Fig. 1d). For region 1 we im-
aged the Ca2` response at 40 frames per second over 1.5
min during and immediately after the impact. Subse-
quently, we imaged all 5 regions and all three color chan-
nels every 10 seconds over a 4 hour period. Collectively,
we obtained the time-dependent fluorescent response of
each channel for „5000 cells corresponding to „20 mil-
lion data points (Fig. 1e). Each cell exhibited a pattern
of intensity responses with time for the three fluorescent
channels. Once classified, the location and frequency of
these distinct temporal response patterns within the tis-
sue were mapped (Fig. 1f).

B. Strain-dependent cellular response

The strain field resulting from impact and the asso-
ciated cell response had complex behaviors that varied
spatiotemporally. Specifically, we observed complex pat-
terns in the immediate post-impact Ca2` response and
hours-long cellular responses for all three measured sig-
nals. In the milliseconds after impact trauma, increased
calcium concentration can be observed in cells proximal
to the impact site. However, on the seconds timescale,
we observed differences in total intensity between chon-
drocytes experiencing shear and compression (Green in
Fig. 2a). On longer time scales, we found that mito-
chondrial polarity rapidly diminished at the impact site
in the minutes after injury, with calcium concentration
following the same pattern but with some cells exhibit-
ing transients on the scale of minutes (Supplementary
Video). Conversely, nuclear membrane permeability ini-
tially showed a very low intensity throughout the region
and reached higher intensities in a fraction of the cells in
regions extending below the impact site on a time scale of
hours. Consistent with the short time calcium response,
this pattern of cell death did not extend to areas of the
tissue which experienced primarily shear strains.

Collectively, these distinct spatiotemporal patterns of
cell response indicated that multiple mechanobiological
pathways may have been activated in response to local
strain. Developing an understanding of how such pro-
cesses are related requires identifying distinct cellular sig-
natures and mapping out where in the tissue they are
localized. To obtain these maps, however, we must first
identify each cell, track its movement and multi-channel
fluorescence response over time (Fig. 1e), and classify its
cellular signature (Fig. 1f).

C. Enhanced particle tracking captures behaviors
of moving cells

In order to measure tissue-level cellular behaviors, we
must first track each cell individually, over time and
through movement, to obtain the fluorescence intensities
of each channel. To track the cells, we summed the in-
tensities from all three fluorescent channels at each time
step such that the composite image showed bright iso-
lated regions corresponding to the cells. We then applied
a modified version of Crocker and Grier’s particle track-
ing algorithm to filter the image and obtain trajectories
for each cell centroid (Fig. 1e) [38]. Using this method,
we obtained the fluorescent time traces of over 5000 cells
for the five imaged regions yielding over 20 million mea-
surements.
Importantly, the sheer scale of data made was not

amenable to typical statistical analyses, which are un-
able to pick out specific cellular responses in the time
series data. In order to interpret our data, however, we
needed to categorize cellular signatures, relate each cells’
response to its location within the tissue, and determine
whether the cellular signals from multiple cells were spa-
tiotemporally clustered.

D. A MATLAB graphical user interface enables
identification of cell behaviors

To address this challenge, we built a graphical user
interface (GUI) in MATLAB to allow researchers to di-
rectly make comparisons between images and time series
signatures (Fig. 3). A built-in video player allows the
user to scan through and select image frames for analy-
sis. Individual cells within any frame can be selected by
clicking on the image, entering the cell ID (the number
assigned by the particle tracking algorithm), or providing
its x-y pixel coordinate (the program will find the nearest
cell). The program then plots the three color intensity
versus time curves for that cell on the right side of the
GUI. To enable the analysis of multiple cells, our GUI
allows a user to select a rectangular region within any
frame, and the program will plot the fluorescence curves
for all the cells within the region. Directly clicking on a
time series in one of the plots will bold the selected line
in each color and circle the selected cell within the image
(Fig. 3). Finally, the cell ID of all observed cells can be
saved to a text file before exiting the program for record
keeping. This GUI allowed for targeted investigations of
cellular behaviors in different regions of the tissue.
Using this GUI, we found specific repeating patterns

in the intensity curves related to observed peaks (tran-
sients), intensity jumps, decay time scales, plateaus, and
the temporal locations of such features. For example,
cell death was identified as a sudden increase in nuclear
membrane permeability (see for example bold blue chan-
nel in Fig. 3). This behavior often followed a peak in the
calcium concentration (green channel in Fig. 3). We also
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FIG. 3. A MATLAB GUI for image processing. Shown on the left is a panel of controls for video selection and scanning,
single cell analysis, and multi cell analysis. Shown in the center is the video player which allows for choosing specific frames or
time points using a slider. The GUI allows selecting and displaying data for either individual cells or regions within the frame.
On the right are the resulting plots showing channel intensities. The plots can also be clicked on to highlight cells of interest
within a group (which will draw a circle around the cell in the image). In addition, time points can be selected to generate
cross-sectional histograms for each stain. A full video detailing GUI functionality can be found in the SI.

used the GUI to distinguish between seemingly similar
curves. While numerous cells showed a rapid increase in
nuclear membrane permeability within half an hour of
impact, in some cells this signal plateaued and remained
high, while in others it slowly decayed to a lower plateau.
These differences in time series shape are subtle but dis-
tinct. Collectively, this GUI and the analysis features it
enabled provided a pathway for sorting the millions of
data points in an intuitive fashion, enabling the user to
quickly identify categories of cell behaviors and develop
an intuition for where each behavior tends to localize.

Making use of the GUI analysis features, we identified
twelve distinct behaviors across all cells within an im-
pacted tissue and mapped their location relative to the
impact site (Fig. 4). We observed eight different behav-
iors where chondrocytes showed a high level or a rapid in-
crease in their nuclear membrane permeability, likely re-
lated to cell death (Fig. 4a-g, l). Additionally, two behav-
iors were related to distinct calcium transients (Fig. 4h,
i). Finally, we identified two behaviors where cells main-
tained low nuclear membrane permeability throughout
the experiment (Fig. 4j, k).

Importantly, the precision with which we measure the
cell intensities and correlations in cell signatures allowed
for distinguishing between these behaviors, even when
the accompanying curves were quite similar. For exam-
ple, in some cells the calcium transients were not asso-
ciated with an increase in nuclear membrane permeabil-
ity (Fig. 4i) while in others, the calcium transient oc-
curred immediately before a rise in nuclear membrane
permeability (Fig. 4h) or at some time after the nuclear
membrane permeability rose (Fig. 4g). The differences
in how these two channels interacted, along with the dis-
tinct spatial distributions associated with each behavior,
indicated that separate biochemical processes associated
with activation of calcium channels may have taken place,
illustrating the power of our approach for generating a
comprehensive map of the tissue scale multi-channel cel-
lular response to an applied perturbation.
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FIG. 4. Cell behavior categories and their distributions. For each category, a representative time series for a single cell (top, with
blue representing nuclear membrane permeability, green representing calcium concentration, and red representing mitochondrial
polarity) along with a heat map of cell counts indicating relative frequency at different locations are shown. Colorbar maxima
vary between categories to resolve spatial distributions for categories with fewer cells. Regions 1-3 are on the impacted sample,
with 1 as the site of impact. Regions 4-5 are on the control sample. a) The nuclear membrane permeability starts out elevated
and decays. b) The nuclear membrane permeability increases within 30 min of impact and plateaus or continues increasing. c)
The nuclear membrane permeability increases within 30 min of impact and then decays. d) The nuclear membrane permeability
increases after 30 min after impact but no prior signaling event is observed. e) The nuclear membrane permeability increases
despite the mitochondria being polarized. f) The nuclear membrane permeability increases after the calcium concentration
drops after a period of sustained elevation. g) Transient calcium signaling is observed after the nuclear membrane permeability
has already increased. h) The nuclear membrane permeability increases after calcium transient(s). i) Calcium transient(s)
are observed with no increase in nuclear membrane permeability. j) No calcium transients or increases in nuclear membrane
permeability. k) All three signals are very low. i) The nuclear membrane permeability increases multiple times.

E. Implementing automated sorting algorithms to
identify cell behavior and category

While this analysis framework is clearly very useful for
identifying distinct categories of behaviors, it required ex-

tensive manual sorting, which is cumbersome for the scale
of data acquired from our technique. This burden, how-
ever, was lightened by implementing an augmented strat-
egy which combined the manually sorted categories with
custom feature extraction algorithms and supervised ma-
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chine learning to quickly classify thousands of cellular
responses in subsequent experiments. While such algo-
rithms are invariably somewhat system specific, it is nev-
ertheless instructive to illustrate their implementation in
our system.

1. Programmed feature extraction of time series
characteristics

Our first approach to implement cellular behavior clas-
sification employed a custom feature extraction and de-
cision tree algorithm. In our system, sudden signaling
events like calcium transients (peaks) or sharp changes
to cell nuclear membrane permeability (changepoints)
played an important role in dictating which category a
cell belongs to. These events, however, can occur at ran-
dom times during the imaging process, making it difficult
to search for specific features using automated machine
learning methods like clustering or classification. Here,
we made use of peak and changepoint detection algo-
rithms in MATLAB alongside extraction of basic time
series statistics (minima, maxima, mean, variance, range,
etc.) to find the identifying features of each behavior cat-
egory. The relationship between these specific features
and other time series characteristics could then be used
to create a ”fingerprint” for each behavior, which could
be searched for en masse.

Once these features were identified, the fluorescence re-
sponse for each cell was categorized using a decision tree.
The tree started by establishing if a cell has a certain
feature, such as a step in the nuclear membrane perme-
ability channel or a calcium transient and then branches
to more specific criteria based on the relationships be-
tween them. For example, if a cell had a changepoint in
nuclear membrane permeability, then the tree moved to
more specific criteria such as whether the fluorescence in
this channel rose and fell or remained high. In order to
distinguish between these possibilities, we searched for
peaks in the blue nuclear membrane permeability signal.
If the nuclear membrane permeability showed a peak,
then the cell was classified as shown in Fig. 4c. A sim-
ilar process was applied to classify all twelve manually
identified behaviors (See Methods).

Using this decision tree, we found that the best clas-
sified categories reached „85% accuracy, defined as the
true positives divided by the total number of cells man-
ually identified for that category (Table I). Using this
decision tree were were able to correctly classify the vast
majority of cells (4331 out of 5347) with a total accu-
racy of 81%. Most importantly, while such decision trees
must be determined individually for each system, once
established, they can be used repeatedly and with high
fidelity.

2. Time series classification of chondrocyte signaling using
sktime library

A second strategy we used to identify cell signatures
was time series classification, a type of supervised ma-
chine learning where a model system learns to assign la-
bels to objects based on training examples. In our sys-
tem, relevant information for our data was embedded as
a multi-channel time series, so we made use of multivari-
ate time series classifiers from the Python sktime library
[39, 40]. Here, we randomly split the data into train-
ing and testing sets and optimized the classifiers over a
range of parameters. For example, for the Canonical In-
terval Forest (CIF) classifier [41], we found that the accu-
racy plateaued once we used more than 1000 estimators.
Similarly, for the RandOm Convolutional KErnel Trans-
form (ROCKET) classifier we found that the accuracy
plateaued when we used more than 100000 kernels [42].
For detailed list of parameters, see Methods. Finally,
we determined what percentage of cells were labeled cor-
rectly by the classifier (Table II).

We found that classifiers worked better at detect-
ing certain categories. Our system was an imbalanced
multi-label classification problem where there were mul-
tiple categories of behaviors with unevenly distributed
numbers of objects between categories. Since classifiers
are much better trained on categories with more cells,
the heavily populated behavior categories were identified
with much higher accuracy. Also, when cells had specific
features that were not temporally consistent, (e.g. cal-
cium transients or changes in nuclear membrane perme-
ability that occurred in varying numbers, with different
amplitudes, and at varying time points) classifiers strug-
gled because no two signals were exactly the same. Con-
sequently, we found that higher scores could be achieved
when we split the cells with calcium transients from the
data set and classified them separately. When combined
with the decision tree algorithm described above, these
supervised time series classifiers achieved accuracy values
of up to 89%.

These results speak to the vast potential for automated
sorting in future studies [43]. In particular, since the al-
gorithms used here were only recently developed, it is
likely that as new more powerful classifiers become avail-
able such supervised machine learning approaches will
produce greater sorting accuracy. One could even imag-
ine future implementations where unsupervised machine
learning is used to extract the most impactful features of
the data and cluster cell behaviors with minimal human
effort. More broadly, these results demonstrated that
a strategy combining automated feature extraction with
various machine learning techniques could effectively sort
complex cellular data in a streamlined and automated
process.
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Category Accuracy Total Cells

Nuclear membrane permeability starts elevated (Fig. 4a) 0.85 313
Nuclear membrane permeability increases (Fig. 4b) 0.56 151

Nuclear membrane permeability increases and decreases (Fig. 4c) 0.84 748
Nuclear membrane permeability increases late (Fig. 4d) 0.18 11

Mitochondria polarized but nuclear membrane permeability increases (Fig. 4e) 0.06 63
Calcium concentration drops, then nuclear membrane permeability increases (Fig. 4f) 0.62 60

Nuclear membrane permeability elevated, but calcium transient occurs afterwards (Fig. 4g) 0.44 41
Calcium transient, then nuclear membrane permeability increases (Fig. 4h) 0.73 73

Calcium transient, then no changes to nuclear membrane permeability (Fig. 4i) 0.85 524
Normal cells, polarized mitochondria (Fig. 4j) 0.84 3244

All signals low, depolarized mitochondria (Fig. 4k) 0.34 101
Nuclear membrane permeability has multiple levels (Fig. 4l) 0 18

TABLE I. Category based accuracy of decision tree classification

Classifier Accuracy

Canonical Interval Forest (CIF) [41] 0.889
Diverse Representation Canonical Interval Forest (DrCIF) [41] 0.887

RandOm Convolutional KErnel Transform (ROCKET) [42] 0.852
Arsenal Ensemble [41] 0.854

TABLE II. Time series classification methods with details on classifier types and their corresponding scores.

III. DISCUSSION

Using STRAINS to monitor cellular behaviors in situ,
categorize them, and determine where in the tissue they
occur enabled novel observations about mechanotrans-
duction in articular cartilage that could not have been
obtained from single cell experiments. For example, high
levels of compressive strain and transiently high hydro-
static pressure are known to dominate close to the im-
pact site [44] and previous work in our group has demon-
strated that microscale local strain exceeding 8% causes
cell death [22]. However, by using STRAINS to continu-
ously collect cell behavior data after impact, we were able
to observe nine categories of behavior associated with in-
creased nuclear membrane permeability, which suggested
different pathways to cell death (Fig. 4a-h,l). Here, the
nuclear membrane permeability increased and decreased
(Fig. 4c), or increased and plateaued (Fig. 4c), indicative
of cell death due to superphysiologic strain. Further from
the impact site we observed multiple behaviors related
to elevated nuclear membrane permeability, but with ad-
ditional signals suggesting other biological mechanisms
at work. For example, a subset of cells displayed mul-
tiple levels of nuclear membrane permeability (Fig. 4l),
which may reflect multiple inputs or different stages of
cell death processes. Collectively, such results open the
door to analyzing how cellular responses are coordinated
at the tissue scale.

A powerful application of this technique is the sharpen-
ing of novel observations into hypotheses related to spe-
cific signaling pathways. For example, previous work has
suggested that the mechanosensitive ion channels Piezo

1/2 are activated by superphysiologic loading and induce
catabolic cellular responses leading to tissue degrada-
tion and pathologies like osteoarthritis[32, 33, 36, 45].
Using the STRAINS tool, we identified cells below the
impact site which experienced compression and demon-
strated calcium transient(s) in the milliseconds after im-
pact followed by increased nuclear membrane permeabil-
ity in the subsequent hours (Fig. 4h), a behavior likely
dominated by Piezo 1/2 signaling. STRAINS would al-
low us to probe this hypothesis in future experiments, for
examples by using Piezo 1/2 agonists and antagonists to
determine how these interventions change cellular behav-
ior patterns. Relating how a given intervention mitigates
or exacerbates existing behavior categories, or establishes
new behaviors would thus enable us to test mechanistic
hypotheses related to known signaling pathways, along-
side observing downstream effects. In contrast, TRPV4
is an ion channel known to be activated during physio-
logic loading and to initiate beneficial anabolic cellular
responses [9, 46]. Away from the impact site, where tis-
sue strains were more moderate, we identified cells that
experienced calcium transient(s) without an increase in
nuclear membrane permeability, a behavior likely domi-
nated by TPRV4 signaling. While TRPV4 is known to be
activated by physiologic loading, how the chondrocytes
coordinate their responses in space and time is not fully
understood; neighboring cells can differ dramatically in
their responses, despite existing in very similar microen-
vironments. Using STRAINS, we can quickly examine
and probe these behaviors within the tissue, opening the
door to understanding how cell behaviors are related to
stimuli and the tissue environment.
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More broadly, STRAINS is customizable for analyz-
ing many other tissue systems, and scales well for large
numbers of cells. In particular, while the data shown here
relate to investigating mechanotransduction in articular
cartilage, the described techniques can be applied to any
tissue scale system where cell response can be quanti-
fied using fluorescence. For example, traumatic brain
injury is caused by large mechanical forces on brain tis-
sue [47], with cellular mechanotransduction playing an
important role in pathology [48]. Similar staining pro-
tocols could enable application of STRAINS to this sys-
tem. In cardiac tissue, the role of mechanotransduction
in determining cardiac myocyte behavior has been stud-
ied in single cells, but STRAINS can be applied to ad-
dress these questions on a tissue scale [49]. In tumors,
drug diffusion is hampered by various tissue-scale com-
plications [50]. STRAINS can be used alongside fluores-
cence labeling and deep tissue imaging techniques [51]
to spatiotemporally assess diffusion and drug delivery in
tumors. Collectively, these examples speak to the po-
tential for implementing STRAINS to comprehensively
study signal transduction in situ on the tissue scale for
a wide range of systems.

Furthermore, STRAINS aligns with new techniques in
multiplexed imaging and large-scale omics data collection
in the push for spatially-resolved cell data. Recently de-
veloped methods such as PASTE can produce full tissue-
scale renderings of transcriptomic data, enabling identi-
fication of gene expression and cell type within tissues
[52]. Similarly, techniques like IBEX [53] or Cell DIVE
[54] make use of immunofluorescent imaging to detect
protein-level spatial organization of cells and tissues [55].
Further, spatially-resolved isotope tracking has recently
been used to quantify metabolic activity in various tis-
sues [56]. While most of these techniques capture data at
a single time point, STRAINS enables real-time in situ,
nondestructive spatiotemporal mapping and analysis of
cell behavior in response to dynamic stimuli. Integrat-
ing STRAINS with such techniques would allow us to
probe how any stimulus affects coordinated cellular re-
sponses on the milliseconds-to-hours timescale, resulting
in patterns of, for example, gene expression, protein syn-
thesis, energy utilization, or ultimately cell and tissue
fate. As a new tool capable of simultaneously tracking
multiple responses of thousands of individual cells and
analyzing patterns of cellular behaviors, STRAINS pro-
vides insights into how events are coordinated in com-
plex biological systems. By combining time histories of
cellular responses with spatial maps of behavioral distri-
butions, we have demonstrated that STRAINS can effec-
tively make use of large datasets to study signal trans-
duction and cell fate in the context of tissue injury and
disease.

IV. METHODS

The method consists of three main components to com-
prehensively study chondrocyte responses to strain: in
situ fast confocal imaging, cell tracking and intensity ex-
traction, and cell signal analysis.

A. Impact-induced trauma to articular cartilage
explants in situ

1. Dissection

Samples were sterilely dissected from the femoral
condyles of neonatal bovids obtained from a local ab-
batoir (Gold Medal Packing, Rome, NY) within 24
hours of sacrifice. Cylindrical explants (6mm diame-
ter x 3mm depth) were extracted with a biopsy punch
(Fig. 1a) and cultured for 24 hours at 37°C, 21%
O2, and 5% CO2 in low glucose media containing
phenol-free Dulbecco’s modified Eagle’s medium con-
taining 1% fetal bovine serum, 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) 0.025 mL/mL,
penicillin 100U/mL, streptomycin 100U/mL, and 2.5mM
glucose (Fig. 1b). Special care was taken to ensure that
the surface of the tissue was cut perpendicular to the
depth of the cylinder to maintain uniformity of the strain
field during mechanical testing.

Bovine synovial fluid (abbatoir derived, Lampire Bio-
logics, Pipersville, PA) was applied to the joint surface to
ensure smooth cutting and to lower the shear forces ap-
plied onto the tissue by the biopsy punch, to preserve as
many chondrocytes as possible. Similarly, synovial fluid
was applied to the blade of extra sharp razors used to
bisect the sample. Samples were trimmed to 3mm thick-
ness and bisected in a custom built stainless steel cutting
jig, where the cartilage was submerged in a warmed PBS
bath during the entire cutting process.

2. Staining

In order to measure cellular signaling and mitochon-
drial activity during impact-induced trauma, the tis-
sue is fluorescently labeled with 3-color assay: (a) Cal-
bryte 520 AM, a intracellular calcium flux assay to ob-
serve cellular calcium signaling (4µM, 1 hr incubation at
37°C), (b) tetramethylrhodamine, a mitochondrial mem-
brane potential indicator to observe mitochondrial po-
larity (TMRM, 10nM, 1hr incubation at 37°C), and (c)
Sytox Blue, a nucleic acid stain used to identify dead cell
nuclei (1µM, 1hr incubation at 37°C) (Fig. 1b). The
stains selected for the assay can be modified to reflect
parameters of interest in the study.

Cylinders were bisected and mounted side by side
on the back plate of a previously described confocal-
mounted impactor, with the deep zone of the tissue ad-
hered to the backplate of the impactor with superglue.
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Samples were submerged in a bath of Dulbecco’s Phos-
phate Buffered Saline (DPBS) with Sytox Blue to ensure
that cells dying over the course of the experiment were
labeled (Fig. 1c). Previous experiments have demon-
strated the efficacy of the impactor system in inducing
mitochondrial dysfunction and cell death.

3. Injury

The impacting device, which has been described and
validated in previous experiments [21, 23], delivers an
energy-controlled impact using a spring-loaded piston
with an impacting tip consisting of an 0.8mm diameter
stainless steel rod. The half cylinders are positioned so
that one is centered on the impactor tip and the other is
left as an unimpacted control. The impact lasts 5-10 ms,
and produces a peak stress of approximately 1 MPa (Fig.
1c). This replicates a superphysiologic loading rate which
is characteristic of cartilage injury. However, it is not de-
signed directly to replicate a specific loading pattern, but
instead to expose the tissue within field of view of the mi-
croscope objective to a wide range of strains, allowing us
to directly make connections between the mechanics of
impact and injury to cellular responses.

4. Confocal imaging

The impactor was mounted to the stage of an inverted,
spinning disk confocal microscope (3i Marianas) with
a 10x objective, which allowed the capture of a 660μx
660μ(512 x 512 pixel) area. The site of impact, along
with three surrounding locations (two adjacent sites on
the articular surface and one adjacent site into the depth
of the tissue), and two locations on the control sample
were captured. Together, these imaging sites combine to
capture up to 1.2mm into the depth of the tissue, and
1.8mm laterally surrounding the impact site and up to
a similar depth in the unimpacted control. Z-focus was
centered on a depth 30μm away from the cut surface of
the tissue to avoid imaging chondrocytes damaged dur-
ing the sample preparation process. Additional sites can
also be used, with limitations set by the scanning speed
of the confocal microscope (Fig. 1d).

In order to observe the peracute timecourse of events
surrounding impact, we image continuously during and
immediately following impact at a rate high enough to
capture the cellular dynamics of injury. Cell calcium con-
centration is imaged in the green channel with 25ms ex-
posure, a fast enough imaging rate to observe sub-second
changes in chondrocyte calcium (Fig. 2a).

A three-color staining assay is used to monitor the sub-
sequent effects of impact in the longer minutes to hours
timescale. Images were collected every 20 seconds se-
quentially at each site, with Calbryte 520 AM (green;
488nm excitation/499-553nm detection), TMRM (red;
561nm/563-735nm), and Sytox Blue (blue; 405nm/414-

479nm). A slower rate of imaging is used to allow
for longer exposure with the weaker red and blue sig-
nals, while simultaneously minimizing the effect of pho-
tobleaching (Fig. 2b).

B. Modified particle tracking

While the original Crocker and Grier algorithm [38]
assumed a relatively constant intensity for the tracked
particles, our cell fluorescence signal could vary signifi-
cantly. Thus, to maintain a coherent track when fluo-
rescence levels fluctuated, we interpolated between suc-
cessfully tracked frames. We found that linear interpola-
tion was reasonable when the distance between tracked
frames was small, typically less than a cell diameter. Fi-
nally, once the tissue was relaxed and cells were nearly
static in their position, we continued to measure fluores-
cence over long periods of time even when cells were not
visible. This procedure captured tracks for „96% of the
cells uniformly distributed over the entire tissue for time
scales ranging from milliseconds to hours post impact.
The coordinates of each cell centroid in each frame

were used to extract intensity data for each channel. In
order to account for fluctuations in imaging and inho-
mogeneities within a cell, we averaged over a 3x3 pixel
region surrounding the centroid pixel. The size of this
region was chosen to ensure that data collection in one
cell did not overlap with data collection in neighboring
cells, or extend into the extracellular matrix. We then
extracted the fluorescence intensity of each channel for
each tracked cell over the entire experiment.

C. Fluorescent intensity validation

Multiple controls were included for each of the fluores-
cent stains, in order to provide relevant comparisons with
experimental data. Calcium staining controls were con-
ducted with EGTA, a calcium chelator, and Thapsigar-
gin, an endoplasmic reticulum calcium chelator, in 0mM
Ca +

2 media as a minimum, and with 10mM Ca +
2 me-

dia as a maximum. Mitochondrial polarity controls were
conducted with FCCP in the media, which fully de-
polarizes mitochondria, as a minimum, and incubation
with oligomycin, which hyperpolarizes mitochondria, as
a maximum. Nuclear membrane permeability/cell via-
bility controls were conducted with ethanol in the media
as a minimum, and incubation with P188, a membrane
stabilizer, as a maximum.

D. Background subtraction for confocal images

After tracking cells within the tissue, background
subtraction is implemented. Impact-induced cartilage
trauma can cause formerly cell-localized stains to leak
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into the extracellular matrix, locally increasing the back-
ground intensity of certain areas of tissue for some time.
This causes the background to be both non-uniform
throughout the imaging frame and also changing with
time. We address this problem by dividing each image
into an 8-by-8 grid and subtracting the mean value of
the twenty lowest pixel values within each region. For a
512-by-512 pixel image, this corresponds to the twenty
lowest pixel values out of 4096, ensuring that no pixels
within cells would be accounted for in this background
subtraction.

When necessary, we used a moving average to smooth
the data to remove high-frequency noise arising from fluc-
tuations in the confocal images. The size of the moving
average window is chosen to adequately remove high fre-
quency noise without disturbing the shape or size of fea-
tures of interest in the time series. For the time series
data in our system, a window size of 20 frames is optimal.

E. Details of feature extraction

To find peaks in the timeseries, we used the MAT-
LAB FINDPEAKS function with slight modification.
The ‘minpeakprominence’ parameter was set to 3, and
a width-to-prominence ratio of 10 was used to filter out
extremely wide peaks not considered calcium transients.
An additional shape parameter was established by se-
lecting for peaks with a set width to prominence ratio
in order to filter out extremely broad peaks that should
not be considered transients. Once the peak detection
parameters were established for one data set, they could
be used to identify peaks in subsequent data sets.

We identified sudden changes in the fluorescence time-
series data using the MATLAB FINDCHANGEPTS
function. Here, we adjusted the residuals such that the
fitting parameters identified either one or two change-
points per “step” in intensity, and additionally filtered
for changepoints where the slopes before and after the
identified point were significantly different, to distinguish
from baseline drift. Similarly to setting the peak detec-
tion parameters, once changepoint detection parameters
were established, they too could be used to identify steps
in the fluorescence data of subsequent data sets. Notably,
these features are highly customizable with user-adjusted
inputs, and can easily be adapted to other systems.

F. Full decision tree methodology

A visualization of the decision tree algorithm for our
system is available in the Supplementary Information. In
this algorithm, individual cells are run through the tree
one-by-one. We start with one of the most conditional
arguments. In the following description, all numbers
have arbitrary intensity units. Cells where the nuclear
membrane permeability starts high (Fig. 4a) are catego-
rized based on their maximum blue value (greater than 7)

and frame at which blue reaches maximum (less than 7).
Then, the tree splits between cells that have blue change-
points and cells that do not have blue changepoints.

For cells that have blue changepoints, we ask if there
are more than three changepoints to determine cells
where the nuclear membrane permeability has multiple
levels (Fig. 4l). For cells with fewer blue changepoints,
we determine if the mean difference between red and blue
timeseries is greater than 20 (red being higher). If true,
then the cell has polarized mitochondria but the nuclear
membrane permeability still increases (Fig. 4e). If false,
then we determine if the cell has green peaks. If the
green peaks are before the blue changepoint, then the
calcium transient occurs and the nuclear membrane per-
meability increases (Fig. 4h) and if they are after the blue
changepoint, then the cell has calcium transients after
the nuclear membrane permeablity is elevated (Fig. 4g).
For cells that have no green peaks, then we determine
whether or not the blue changepoint occurs immediately
after impact. Cells where the maximum value occurs af-
ter frame 120 and the blue changepoint after frame 100
are considered to have a late increase in nuclear mem-
brane permeability, not immediately from impact. If true
and there is a green changepoint, then the calcium con-
centration drops and the nuclear membrane permeability
increases (Fig. 4f). If true and there is not green change-
point, then the nuclear membrane permeability increases
late with no obvious trigger (Fig. 4d). If the cell increases
in nuclear membrane permeability immediately after im-
pact, then we determine if it has blue peaks, which indi-
cate an increase and decrease in nuclear membrane per-
meability (Fig. 4c). If there are no peaks, and the range
after the blue maximum is lower than 8, then the cell’s
nuclear membrane permeability increases and plateaus
(Fig. 4b). All remaining cells in this branch of the tree
(has blue changepoints) are categorized as nuclear mem-
brane permeability starts elevated (Fig. 4a).

For cells that do not have blue changepoints, we first
determine if the cell has green peaks. If yes, then the cell
has physiologic calcium transients (Fig. 4i). If no, we find
cells where the range of blue values is greater than 10,
indicating that the nuclear membrane permeability rises
(Fig. 4b). Then, if the range of blue values is lower than
10, we determine whether the mean of red values after
frame 50 is lower than 6. This frame value is chosen to
represent a significant enough time after impact where
cells have stabilized to their state. For cells with a high
red mean, they are normal cells with polarized mitochon-
dria (Fig. 4j), and cells with a low red mean have all low
signals and depolarized mitochondria (Fig. 4k).

Finally, in developing this decision tree we were able
to make more informed decisions about how we manually
classified cells. For example, the normal cells (Fig. 4j),
and the all low signal cells (Fig. 4k) exist on a contin-
uum. Both categories feature no calcium signaling and
no elevated nuclear membrane permeability, with the sole
distinction between the two being the intensity of mito-
chondrial polarity. While hand-sorted cells were judged
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to the best of our human efforts, there was no easily de-
fined cutoff between the two categories. In programming
the decision tree, we specifically defined a numerical cut-
off for mean values of fluorescence which provided a more
quantitative method of separating the two categories. By
iteratively designing the decision tree and updating the
manual classifications, we were able to produce more ac-
curate classifications.

G. Time Series Classifier Parameters

Each classifer in the sktime library has its own model
and training parameters. We optimized the parameters
for our dataset by testing a range of values for each pa-
rameter. We found that while increasing the number
of estimators or kernels may very slightly increase accu-
racy, the run time of training and testing these models
increased significantly. We also tested other available pa-
rameters for these models, but have only listed relevant
ones which noticeably affected accuracy.

For the Canonical Interval Forest (CIF) classifier, we
used nestimators “ 200 and nintervals “ 100. For the Di-
verse Representation Canonical Interval Forest (DrCIF)
classifier, we used nestimators “ 200 and nintervals “
40. For the RandOm Convolutional KErnal Transform
(ROCKET) Classifier, we used nkernels “ 50000. Finally,
for the Arsenal Ensemble Classifier, we used nkernels “
10000 and nestimators “ 50.

H. Data Availability

An example dataset alongside a video of the GUI are
available at the Cornell eCommons Repository at https:
//doi.org/10.7298/3kwt-pm43

I. Code Availability

The codes associated with this method are available
on GitHub at https://github.com/jingyangzheng/
STRAINS
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