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Abstract—Closing timing after clock tree synthesis (CTS) is
very challenging in the presence of on-chip variations (OCVs).
State-of-the-art design flows first synthesize an initial clock
tree that contains timing violations introduced by OCVs. Next,
aggressive clock tree optimization (CTO) is applied to eliminate
the timing violations. Unfortunately, it may be impossible to
eliminate all violations given the structure of the initial clock tree.
In this paper, we propose an OCV-aware clock tree synthesis
methodology that aims to rethink how to account for OCVs.
The key idea is to predict the impact of OCVs early in the
synthesis process, which allows the variations to be compensated
for using non-uniform safety margins. This results in a synthesis
flow that is almost correct-by-design. In contrast, state-of-the-art
design flows often have an unpredictable success rate because the
OCVs are considered too late in the synthesis process. Concretely,
this is achieved by top-down constructing a virtual clock tree
that is refined bottom-up into a real clock tree implementation.
To balance the quality of results (QoR) and runtime, multiple
top-level tree topologies are enumerated and pruned in the
synthesis process. Compared with the CTO based approach, the
experimental results demonstrate that the proposed methodology
reduces the total negative slack (TNS) and worst negative slack
(WNS) with 90% and 75%, respectively.

Index Terms—On-chip variations, clock network synthesis

I. INTRODUCTION

Closing timing after clock tree synthesis (CTS) is one of the
most challenging design steps in EDA flows for synchronous
VLSI circuits. It often requires costly manual intervention
in the form of engineering change orders (ECOs) [2], [6],
which elongates turnaround time (TAT) and time-to-market
(TTM). The problem is exacerbated in aggressively scaled
technology nodes that are severely impacted by on-chip vari-
ations (OCVs). The variations are introduced by the intrinsic
variability in the semiconductor fabrication processes and
fluctuations in the environmental operating conditions. Clock
networks are naturally vulnerable to variations because they
span across the entire chip. The synthesis of clock networks
satisfying timing constraints under OCVs has been the focus
of many studies [4], [5], [7], [8], [11], [17].

Early studies on CTS focused on the construction of zero
skew trees (ZSTs) and bounded skew trees (BSTs) [4], [5].
More recently, the construction of useful skew trees (USTs)
was investigated to meet non-uniform skew constraints [8],
[11], [17]. The synthesis of USTs is motivated by that the
skew constraints imposed between pairs of sequential elements
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(or clock sinks) are non-uniform. While constructing clock
trees meeting non-uniform skew constraints under nominal
conditions is relatively easy [4], [5], [8], [11], [17], it is
tremendously difficult to synthesize clock trees that satisfy
timing constraints under the influence of OCVs. The challenge
stems from that OCVs introduce delay variations, which cause
unwanted clock skew between all pairs of clock sinks. More-
over, the magnitude of the introduced skew is dependent on
the distance between the clock sinks in the tree topology [13].
Pairs of clock sink that are distant (close) in the topology is
more (less) susceptible to OCVs.

Techniques of handling OCVs by inserting safety margins
before (or during) the clock tree synthesis process have been
explored in [10], [12], [17]. The insertion of uniform safety
margins was investigated in [10], [17]. The limitation of that
approach is that the required safety margins depend on the
clock tree topology and are therefore non-uniform. Conse-
quently, the use of non-uniform safety margins results in that
many timing constraints will have excessive (or inadequate)
timing margins inserted, which translates into substantial
hardware overheads (or timing violations). To reduce the
overheads, the magnitude of the safety margins can be tailored
to the clock tree topology during the synthesis process [7],
[12]. Unfortunately, these techniques still result in clock trees
with timing violations [12] or unacceptable overheads [7].

The state-of-the-art methodology for synthesizing clock
networks consists of a clock tree synthesis (CTS) phase
and a clock tree optimization (CTO) phase. In the CTS
phase, an initial clock tree is first constructed. Next, the
impact of the OCVs and the associated timing violations
are determined. Aggressive CTO is subsequently applied to
eliminate all timing violations [6], [14]. The CTO process
is based on first specifying delay insertions on the branches
of the clock tree. Next, the delay insertions are realized
physically by inserting delay buffers or detour wires. The delay
insertions improve timing by redistributing timing margins
from satisfied to unsatisfied timing constraints. While CTO
is capable of significantly improving the timing quality of
most clock trees, there is no guarantee that the optimization
process will converge to a solution without timing violations.
In particular, it may be impossible to close timing if the quality
of the initial clock tree is poor. Advanced CTO techniques
have recently been investigated to solve this challenge. The
insertion of negative delay adjustments based on buffer sizing
was proposed in [19]. The reconstruction of the clock tree
topology with the objective of minimizing latency or placing
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certain clock sinks close in the topology was explored in [2],
[15], [18]. Nevertheless, CTO flows are still time consuming
and often require costly manual intervention. This stems from
that the state-of-the-art design flows consider the impact of
OCVs too late in the synthesis process.

In this paper, we propose an OCV-aware clock tree synthesis
methodology that aims to rethink how to account for OCVs.
The key idea of the methodology is to predict the impact
of the OCVs early in the synthesis process. This will allow
the OCVs to be compensated for using non-uniform safety
margins during the initial tree construction. The goal is to
only leverage CTO to eliminate minor timing violations arising
from modeling errors, which results in that the synthesis
flow is almost correct-by-design. In contrast, the state-of-the-
art methodologies account for OCVs using aggressive CTO,
which results in unpredictable optimization and timing results.

The proposed OCV-aware clock tree synthesis method-
ology consists of a top-down phase and bottom-up phase.
In the top-down phase, numerous top-level tree topologies
are enumerated and pruned. Next, a virtual clock tree is
formed to estimate the timing and variations within every
timing constraint. Subsequently, non-uniform safety margins
are inserted to account for the variations. In the bottom-up
phase, each virtual clock tree is refined into a real clock
tree by constructing subtrees that connect the clock sinks
to the top-level tree. If the constructed subtrees meet a set
of latency constraints imposed by the virtual clock tree, the
timing constraints are guaranteed to be satisfied by design.
Otherwise, the virtual clock tree is updated with improved
timing predictions and the process is iteratively repeated.
The experimental results demonstrate that the proposed OCV-
aware synthesis flow reduces the average total negative slack
(TNS) and worst negative slack (WNS) by 90% and 75%,
respectively. Moreover, the run-time of the proposed flow is
47% shorter when compared to the CTO based flow.

The remainder of the paper is organized as follows: Pre-
liminaries are given in Section II. Motivation is highlighted
in Section III. Methodology is explained in Section IV. Ex-
perimental results are presented in Section V. The paper is
concluded with the summary and future works in Section VI.

II. PRELIMINARIES

A synchronizing clock signal is delivered to each sequential
element in a sequential circuit. There is a setup and hold time
constraint between each pair of flip-flops (FF) that are only
separated by combinational logic in the data and control paths.
The setup and hold time constraints between the launching
flip-flop FFi and the capturing flip-flop FFj are formulated
as follows:

ti + tCQ
i + tmax

ij + tSj + δi ≤ tj + T − δj , (1)

ti + tCQ
i + tmin

ij − δi ≥ tj + tHj + δj , (2)

where ti and tj are the arrival times of the clock signal to
the FFi and FFj , respectively. tCQ

i is the clock to output
delay of the capturing flip-flop; T is the clock period; tSj and

tHj are the setup time and hold time of FFj , respectively.
tmax
ij (tmin

ij ) is the maximum (minimum) delay through the
combinational logic between FFi and FFj . δi and δj are the
timing deteriorates introduced by OCVs.

By replacing the T − tCQ
i − tmax

ij − tSj and tHj − t
CQ
i − tmin

ij

respectively with the uij and lij , Eq (??) and Eq (2) can be
reformulated into explicit skew constraints, as follows:

lij + (δi + δj) ≤ ti − tj ≤ uij − (δi + δj) (3)

The timing deteriorates δi and δj are dependent on the
distance between FFi and FFj in the clock tree topology. A
clock tree containing the flip-flops FFi and FFj is illustrated
in Figure 1. Let the closest common ancestor (CCA) between
FFi and FFj in the clock tree be denoted CCA(i,j) [13]. Based
on the model in [15], δi and δj are equal to cocv · tCCA(i,j),i

and cocv · tCCA(i,j),j , respectively. tCCA(i,j),i and tCCA(i,j),j

are the propagation delays from the CCA(i,j) to FFi and
FFj , respectively. cocv is a parameter determined by circuit
simulations.

Fig. 1. The illustration of the path that introduces OCV into the timing
constraints between FFi and FFj .

III. MOTIVATION

In this section, we highlight the limitations of the previous
works and provide an overview of the proposed methodology.

A. Limitations of previous works

The state-of-the-art synthesis methodology for clock net-
works is shown in Figure 2(a). As the OCVs depend on
the timing and topology of the clock tree, uniform safety
margins are first inserted into the timing constraints. Next,
an initial clock tree is constructed. Given the topology and
timing of the initial clock tree, the negative impact of OCVs
and the associated timing violations are calculated. Finally,
aggressive CTO is iteratively applied to eliminate timing
violations. If the timing cannot be closed, expensive manual
feedback is performed using ECOs. It is not surprising that
ECOs are commonly required because the initial clock tree
was constructed without accounting for OCVs.

B. Proposed methodology

The flow of the proposed OCV-aware clock tree synthesis
methodology is shown in Figure 2(b). The methodology con-
sists of a top-down phase and a bottom-up phase. In the top-
down phase, a top-level tree is constructed. (In the proposed
framework, numerous top-level tree topologies are enumerated
to explore a larger solution space.) Next, a virtual clock tree

Authorized licensed use limited to: University of Central Florida. Downloaded on August 24,2022 at 21:19:21 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

Fig. 2. (a) State-of-the-art CTS+CTO based synthesis flow. (b) Proposed
OCV-aware clock tree synthesis flow.

is constructed based on the top-level tree to estimate the
non-uniform safety margin required in each timing constraint.
In the bottom-up phase, subtrees are constructed to connect
the clock sinks to the top-level tree. If the subtrees meet
the constraints imposed by the virtual tree, the timing is
satisfied by design. Otherwise, the timing and impact of OCVs
within the virtual tree are updated, and the bottom-up phase is
repeated. As the flow accounts for the impact of OCVs early
in the synthesis process, there is no need for costly manual
intervention using ECOs. The subsequent CTO is only used
to eliminate minor violations introduced by modeling errors1.

TABLE I
HOLISTIC GUIDELINES AND OBJECTIVES FOR DIFFERENT PARTS OF A

CLOCK TREE.

Part of Tree properties Objective Construction
Topology Timing Hardware method

& latency cost
Top-level Majority Minority Minimize Top-down

latency
Bottom-level Minority Majority Minimize Bottom-up

cost

The proposed flow is inspired by the holistic guidelines
for clock tree synthesis shown in Table I. A clock tree can
be decomposed into a top-part and a bottom-part. The table
shows that the top-part of a clock tree stands for a very
small portion of the total capacitance and hardware overheads.
At the same time, it defines the overall timing of the clock
tree. In contrast, the bottom part of the clock tree accounts

1The construction of clock trees is traditionally guided by less accurate
delay models that can be evaluated quickly. In contrast, CTO is commonly
performed using computationally expensive delay models that are more
accurate. We refer to the difference in accuracy between the two models
as modeling errors.

for a majority of the hardware resources and capacitance.
On the other hand, it has a limited impact on the timing.
Therefore, we speculate that it would be advantageous to
construct the top-part of the clock tree first to define the
timing and the negative impact of the OCVs. While fixating
the top-level tree (a restriction) may introduce some hardware
overheads, the overheads are expected to be small as the cost
of the top-part of the clock tree is minor compared with the
bottom-part. Next, the bottom-part of the clock tree can be
constructed in a cost efficient manner bottom-up. The main
challenge to this approach is that it is difficult to select the
ideal top-level tree. The larger the specified top-level tree is,
the more predictable the OCVs become. On the other hand,
the introduced overheads become larger when the top-level
tree is larger. Consequently, designs with tight (loose) timing
constraints require a larger (smaller) top-level tree. To solve
this challenge, the methodology enumerates and prunes out
several different top-level tree topologies.

IV. METHODOLOGY

In this section, we provide the details of the proposed OCV-
aware clock synthesis methodology.

Fig. 3. Detailed flow of proposed OCV-aware synthesis methodology.

A. The overview of the framework

The flow of the proposed methodology is shown in Figure 3
and illustrated with an example in Figure 4. The flow consists
of a top-down phase and a bottom-up phase. In the top-
down phase, a top-level tree is constructed by enumerating
and pruning top-level tree topologies, which is shown in (a)
and (b) of Figure 4. The details are provided in Section IV-B
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Fig. 4. (a) Multiple candidate top-level topologies are enumerated. (b) The top-level topology is determined after pruning the candidate topologies. (c) The
top-level clock tree and the virtual topology are constructed. (d) The latencies to the clock sinks are estimated using the virtual topology. (e) Non-uniform
safety margins are inserted in the skew constraints and a latency range is specified for each clock sinks. (f) Bottom-level subtrees are iteratively constructed
by inserting safety margins that are tailored to the topology. If the latency constraints are not satisfied, the construction process returns to (c) with improved
timing predictions.

and Section IV-C. In the bottom-up phase, a virtual clock tree
is first formed based on the top-level tree, which is shown
in Figure 4(c) and detailed in Section IV-D. Next, the timing
and OCV impact is estimated based on the virtual tree. The
estimates are used to insert non-uniform safety margins in
the timing constraints, as shown in Figure 4(d) and explained
in Section IV-E. Next, the timing constraints are converted
into latency constraints, which is shown in Figure 4(e) and
explained in Section IV-F. A latency constraint is a lower
and upper bound on the arrival time of the clock signal to a
clock sink. The conversion is motivated by that it is typically
easier to construct clock trees based on latency constraints than
skew constraints. Finally, subtrees are constructed bottom-up
to connect the clock sinks to the leaf nodes of the top-level
tree as shown in Figure 4(f) and Section IV-G.

After bottom-level subtrees have been constructed, we com-
pute the maximum latency to each clock sink. If all the latency
constraints are satisfied, the synthesis process has converged
and timing is closed in the presence of OCVs. Otherwise, the
synthesis process returns to the insertion of non-uniform safety
margins step. However, the timing of the virtual tree is updated
with timing from the constructed subtrees. Hence, the timing
and the impact of the OCVs can be computed more accurately.
In our future work, we plan to explore adjusting the topology
of the top-level tree based on feedback from the construction
process.

B. Enumeration of top-level trees

In this section, it is explained how different top-level trees
are enumerated. The top-level trees in this paper are in the
form of uniform and non-uniform H-trees [1]. While any type
of top-level trees could be used, we select H-trees because they
have short latency, which in turn results in smaller OCVs. The

H-trees divide the die into multiple rectangular regions. Each
leaf node of the top-level tree is expected to drive all the clock
sinks in the corresponding region.

Fig. 5. (a) Uniform H-tree (b) Non-uniform H-tree

In the proposed framework, all possible uniform and non-
uniform top-level H-trees with a maximum of three levels are
enumerated. A uniform H-tree have the same amount of levels
from the root node to each of the leaf node, which divides the
die into a set of uniform regions as shown in Figure 5(a). On
the other hand, a non-uniform H-tree divides the die into a
set of non-uniform regions by constructing irregular level of
H-trees, which is illustrated in Figure 5(b). In our framework,
we primarily use non-uniform H-trees to better adapt the top-
level tree to the properties of the input circuit. Note that
we consider uniform H-trees are considered a subset of non-
uniform H-trees. We also limit the maximum level of an H-
tree to be three. The maximum level was selected to balance
a trade-off between runtime and solution quality.

C. Pruning of top-level trees

In this section, we prune down the enumerated top-level tree
topologies into a single top-level tree topology. An alternative
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is to keep multiple promising topologies to improve the
solution space exploration at the expense of longer synthesis
time. The pruning is performed by defining a cost metric for
each region. Next, the smallest top-level tree that satisfies a
cost constraint on each region is selected.

The cost metric attempts to limit the size of the subtrees that
will be connected to each leaf node of the top-level tree. If the
subtrees become too large, the magnitude of the introduced
OCVs between different sink pairs will be large, requiring
excessive safety margins. Consequently, it is advantageous to
limit the size of the subtrees. There are several features that
determine the size of the subtree constructed from the clock
trees within a region of the die. We observe that the most
prevalent features are: i) the number of clock sinks, ii) the
total sink capacitance, and iii) the region die area. Therefore,
we define the cost metric, as follows:

cost = α ·Nsink + β · Ctotal + γ ·Adie (4)

where Nsink is the total number of clock sinks in a region;
Ctotal is the total downstream capacitance at the inputs of
clock sinks in a region; Adie is the area of a region. α, β
and γ are the parameters to balance different terms in the cost
function.

D. Construction of virtual topology

In this section, it is explained how the virtual clock tree
topology is formed. The root node of each region is located at
the mid-point of a region and corresponds to the root node
of a bottom-level subtree. To obtain the virtual clock tree
topology, first the clock sinks that are located at the same
region are clustered. Next, the virtual clock tree topology is
formed by inserting a virtual connection from each clock sink
to its corresponding root node. The virtual clock tree topology
that is obtained after inserting the virtual connections is shown
in Figure 4(c).

E. Insertion of non-uniform safety margins

In this section, we detail how the non-uniform safety
margins are inserted in the timing constraints. The magnitude
of the OCVs in each timing constraint depends on the timing
and topology of the clock tree. In our framework, we utilize
the virtual clock tree to predict the magnitude of the OCVs.
Next, we insert the appropriate non-uniform safety margins.

The timing of the clock tree and the latencies to the clock
sinks are first estimated using the virtual clock tree, which
is shown in Figure 4(c). Let Th and Tk be the leaf node of
the H-tree that is located at the mid-point of region h and k,
respectively. The latency on the path from CCA(h, k) to the
clock sinks in region h and k are respectively estimated as
follows:

lCCA(h,k),h = lCCA(Th,Tk),Th
+ lh (5)

lCCA(h,k),k = lCCA(Th,Tk),Tk
+ lk

where lCCA(Th,Tk),Th
is the propagation delay on the path

from CCA(Th, Tk) to Th; lCCA(Th,Tk),Tk
is the propagation

delay from CCA(Th, Tk) to Tk. lh and lk are the average

latency of the bottom-level subtrees in the virtual clock tree
that are constructed in region h and k, respectively. The
average latency is used because the bottom-most subtrees are
constructed without any internal restrictions on the topology.
Next, the safety margin M(h,k) is inserted in the timing
constraints between clock sinks in region h and k, as follows:

M(h,k) = cocv · (lCCA(h,k),h + lCCA(h,k),k) · cs (6)

where cs is a user specified parameter that can be used to
scale the inserted safety margins. The default value for the
parameter cs is 1. Finally, the safety margins are inserted into
the skew constraints by replacing the δi and δj terms in Eq (3)
with M(h,k) in Eq (6) as follows:

li,j +M(h,k) ≤ ti − tj ≤ ui,j −M(h,k) (7)
i ∈ h, j ∈ k

The latencies lCCA(h,k),h and lCCA(h,k),k are obtained using
SPICE simulations of the top-level tree. The average subtree
latencies lh and lk are estimated to be zero in the first iteration.
In subsequent iterations, the average latency of the subtree
constructed in the previous iteration is used. The latencies of
the subtrees are also obtained using SPICE simulations.

F. Specification of latency ranges

In this section, we explain how to specify latency constraints
that ensure that the skew constraints are satisfied. A set of
latency constraints consist of a latency range for each clock
sinks. A latency range specifies a lower and upper bound on
the arrival time of the clock signal to a clock sink. Skew con-
straints specify a restriction on the relative arrival time of the
clock signal in between a pair of clock sinks. The motivation
for converting the skew constraints into latency constraints is
that it is easier to construct clock trees with respect to latency
constraints [8]. The specification of the latency constraints is
performed by capturing the skew constraints using a skew
constraint graph (SCG). Next, a latency range is specified for
each clock sink by formulating and solving an LP problem.

An SCG captures the skew constraints with non-uniform
safety margins in Eq (7). In an SCG G = (V,E), V is the
set of clock sinks and E is the set of skew constraints. Let
the flip-flops FFi and FFj be represented by vertices i and j,
respectively. For each constraint in Eq (7), edges eij and eji
are inserted to the SCG. Let wij = ui,j−M(h,k) be the weight
of edge eij and wji = −li,j −M(h,k) be the weight of edge
eji. Next, we formulate the LP formulation in [8] to specify
latency ranges, as follows:

min ctns · Ptns + cwns · Pwns +
∑
i∈V

crf(x
ub
i , x

lb
i )

xlbi ≤ xubi , ∀i ∈ V
xubi − xlbj − Pij ≤ wij , ∀(i, j) ∈ E (8)

Ptns =
∑

(i,j)∈E

Pij

Pwns ≥ Pij ,
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xlbi and xubi are the lower bound and upper bound of latency
range for sink i, respectively. f(.) is a piece-wise linear
function that aims to maximize the length of the latency
ranges. More details about the piece-wise linear function is
in [8]. Pij is the term that captures the timing violation
(negative slack) in the skew constraint between FFi and FFj .
Ptns and Pwns denote the predicted total negative slack and
predicted worst negative slack, respectively. cr, ctns and cwns

are respectively the parameters to balance the weights of
latency range, total negative slack and worst negative slack in
the objective. In our framework, ctns and cwns are specified to
be significantly larger than cr to minimize timing violations.

G. Construction of USTs

In this section, it is explained how subtrees are constructed
bottom-up to connect the clock sinks to the top-level tree. A
separate subtree construction is performed for the clock sinks
assigned to each leaf node in the top-level tree. The subtrees
are constructed using the useful skew tree construction algo-
rithm in [8] that is based on the BST construction in [4]. Both
algorithms are based on the deferred-merge embedding (DME)
paradigm, where smaller subtrees are iteratively merged to
create larger subtrees.

The BST construction in [4] is based on keeping track of
the minimum and maximum delay to a clock sink within a
subtree. This makes it easy to merge (or join) two subtrees
while meeting a skew bound B. The generalization to UST
construction in [8] is based on converting the latency ranges
into a virtual minimum and maximum delay offset for each
clock sink. Next, USTs can be constructed while only checking
that each subtree satisfies a skew bound B. Please refer to [8]
for the technical details of specifying the virtual delay offsets.
The BST construction is based on the DME paradigm and is
performed exactly as in [4].

The DME algorithm is based on iteratively merging the pair
of subtree (or clock sinks) that requires minimum wirelength
to be joined while meeting a skew bound B under the Elmore
delay model. The transition time is evaluated after each pair of
subtrees have been merged. If the transition time constraint is
violated, subtrees are unmerged and locked for further merging
operations. Merging operations are performed until all the
subtrees are locked. When all the subtrees are locked, a buffer
with the minimum size that can drive each subtree is inserted
to the root of each respective subtree. Next, a stem wire is
inserted between the buffer and the subtree [3]. The merging
and buffer insertion operations are repeatedly performed until
there is one single subtree left. Lastly, a top-down embedding
phase is performed to determine the exact locations of internal
nodes within each subtree.

After all the clock sinks have been connected to the top-level
tree, each subtree is simulated using SPICE simulations. If the
latency constraints are satisfied, the flow converges. Otherwise,
the framework returns to the insertion of non-uniform safety
margins in Section IV-E. The latency constraints are required
to be checked because the UST construction only guarantees

that the clock signal is delivered within latency ranges with
an arbitrary offset [8].

V. EXPERIMENTAL EVALUATIONS

The proposed framework is implemented in C++ and eval-
uations are performed using a quad-core 3.4 GHz Linux
machine with 32GB of memory. The properties of buffers and
wires are obtained from a 45nm technology library in [16].
The clock tree methodology is evaluated using the benchmarks
in [9]. The details of each benchmark circuit is shown in Ta-
ble II. The timing of the constructed clock trees are evaluated
with circuit simulations using NGSPICE. The cocv parameter
is set to be 0.085 in our framework.

TABLE II
THE PROPERTIES OF BENCHMARK CIRCUITS IN [9]

Circuit Sinks Skew constraints
(name) (num) (num)
s15850 597 318

usbf 1765 33438
ecg 7674 63440
dma 2092 132834

pci bridge32 3578 141074
des peft 8808 17152

The structures are evaluated in terms of capacitance and
timing quality. The timing quality is evaluated using TNS and
WNS. The performance of the proposed framework is evalu-
ated by constructing three different clock tree structures. The
UST-U-CTS structure is a useful skew tree constructed with
uniform safety margins inserted in the skew constraints [7],
[17]. The structure is obtained by performing multiple tree
constructions with uniform safety margins of different mag-
nitude. The safety margin configuration that achieves the best
timing quality is selected as the UST-U-CTS structure. The
UST-U-CTO structure is obtained by applying CTO [6] to the
UST-U-CTS structure. The UST-N structures are clock trees
obtained using the proposed OCV-aware methodology.

In Section V-A, the configurations within the framework
are evaluated. In Section V-B, the proposed methodology is
compared with a state-of-art synthesis flow. The evaluation is
performed using the aforementioned tree structures.

A. Evaluation of framework configurations

In this section, we evaluate the algorithm design and pa-
rameter configurations within the proposed methodology.

The iterative subtree construction is evaluated using the
dma circuit in Figure 6. The evaluations are performed by
comparing the performance of each constructed clock tree
within the iterative construction process.

The predicted latency and the actual latency of a bottom-
level subtree with respect to the iteration are shown in
Figure 6(a). It can be observed that the gap between the
predicted latency and the actual latency is gradually reduced
until the predicted latency is smaller than the actual latency,
which results in that the flow converges. In Figure 6(b), we
evaluate the capacitance of the constructed clock tree. It can
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(a) (b)

(c) (d)

Fig. 6. Evaluation of the framework in terms of (a) Latency. (b) Capacitance.
(c) TNS. (d) WNS.

be observed that the capacitance of the clock tree increases
with each iteration. This is easy to understand because the
framework predicts larger and larger latencies, which results in
that gradually larger non-uniform safety margins are inserted
in the skew constraints. Intuitively, larger safety margins
constrain the tree construction more, which translates into
the synthesis of clock trees with higher capacitive overheads.
Next, we evaluate the timing quality of the constructed clock
trees using TNS and WNS in (c) and (d) of Figure 6,
respectively. The figures show that the timing quality of
the constructed clock tree is improved with each iteration.

Fig. 7. Sensitivity to scaling parameter
cs on ecg.

This stems from that bet-
ter latency predictions are
performed, which results in
that safety margins with ad-
equate magnitude are spec-
ified. The figure shows that
the framework converges to
a clock tree structure with-
out timing violations after
four iterations, which val-
idates the effectiveness of
the proposed framework.

We analyze the sensitivity of the framework to the cs
parameter from Eq (6) in Figure 7. The performance of the
framework is evaluated in terms of total clock tree capacitance
and the timing cost on the ecg benchmark circuit. The timing
cost is the combined cost that consists of both TNS and WNS.
The costs are weighted using ctns and cwns in Eq (6). The
figure shows that the timing cost of the clock tree reduces
with the increase of the cs parameter. On the other hand, the
capacitance increases when the cs increases. This stems from
that larger safety margins are specified when cs is set to be
larger, which constrains the clock tree construction.

Fig. 8. Evaluation of top-level tree construction using uniform H-tree vs.
non-uniform H-tree.

We evaluate the top-level tree construction based on uniform
and non-uniform H-trees in Figure 8. The top-level tree
construction technique using only uniform H-tree is based on
constructing 1-level, 2-level, 3-level H-trees and selecting the
structure that provides the best performance in terms of timing
quality. The proposed top-level tree construction is based on
enumerating and pruning candidate topologies as explained in
Section IV-B and Section IV-C. The comparison is performed
in terms of run-time and total capacitance on the s15850
benchmark circuit. As it can be observed in Figure 8, the pro-
posed technique results in 61% shorter run-time without any
capacitive overhead. The improvement in the run-time stems
from that the clock tree can be constructed by performing a
single synthesis process using the proposed technique, while
multiple clock trees are required to be synthesized to select
the uniform H-tree that performs best.

B. Comparisons with state-of-the-art

In Table III, we evaluate the performance of the three clock
tree structures in terms of total capacitance, timing quality and
run-time. We evaluate the total capacitance of the structures
because it is well known to be highly correlated with the power
consumption. The capacitance breakdown of the constructed
clock trees are reported in the ‘Capacitance’ column. The
timing quality is evaluated using latency, total negative slack
(TNS) and worst negative slack (WNS). The latency, TNS and
WNS of the structures are respectively reported in the columns
of ‘Latency’, ‘TNS’ and ‘WNS’. The minimum, average
and maximum safety margins that are used to construct the
UST-U-CTS and UST-N structures are reported in the ‘Safety
margin’ column. The run-time of the synthesized clock trees
are reported in the ‘Runtime’ columns. The run-times of the
UST-U-CTS structure and the UST-N structure in the table
are the run-times of individual synthesis steps. The run-time
of the UST-U-CTO structure is the cumulative run-time, i.e.,
the sum of the run-time of both the UST-U-CTS structure and
the CTO process.

The normalized performance in terms of total capacitance,
latency and run-time are normalized with respect to the
UST-U-CTO structure. The TNS and WNS performance of
the structures are normalized with respect to the UST-U-CTS
structure. Note that all the synthesized clock trees in Table III
meet the transition time constraint.
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TABLE III
EVALUATION OF THE CLOCK TREE STRUCTURES IN TERMS OF PERFORMANCE AND SYNTHESIS TIME.

Benchmark Structure Safety margin Capacitance Latency TNS WNS Run-time
min avg max Buffer Wire Total
(ps) (ps) (ps) (pF) (pF) (pF) (ps) (ps) (ps) (min)

s15850 UST-U-CTS [7], [17] 40 40 40 5.4 14.8 23.1 374.0 66.1 14.8 1.7
UST-U-CTO [6] ‘-’ ‘-’ ‘-’ 6.6 15.0 24.6 378.5 31.8 6.1 36.3
UST-N 11.9 17.2 29.0 4.7 9.5 17.3 311.8 0.0 0.0 6.9

usbf UST-U-CTS [7], [17] 30 30 30 1.9 5.1 8.0 214.1 37.0 11.4 2.9
UST-U-CTO [6] ‘-’ ‘-’ ‘-’ 2.4 5.1 8.5 230.3 0.0 0.0 21.9
UST-N 9.7 17.7 24.4 3.2 4.4 8.7 228.8 0.0 0.0 11.8

ecg UST-U-CTS [7], [17] 35 35 35 7.7 22.4 34.8 267.1 685.4 18.9 44.4
UST-U-CTO [6] ‘-’ ‘-’ ‘-’ 11.2 23.1 39.0 283.7 31.7 3.6 416.7
UST-N 20.5 26.6 35.5 13.3 24.1 42.1 333.4 25.4 3.0 165.1

dma UST-U-CTS [7], [17] 20 20 20 1.8 4.5 7.6 180.2 144.9 8.1 5.3
UST-U-CTO [6] ‘-’ ‘-’ ‘-’ 2.6 4.6 8.5 180.2 25.9 4.4 29.8
UST-N 8.8 18.1 20.7 3.2 4.4 8.9 173.5 1.0 0.3 32.2

pci UST-U-CTS [7], [17] 30 30 30 2.5 6.5 11.2 267.1 38.9 7.3 7.3
UST-U-CTO [6] ‘-’ ‘-’ ‘-’ 3.0 6.5 11.8 276.1 2.8 0.7 67.9
UST-N 9.4 18.0 24.1 3.8 6.2 12.2 218.6 1.1 0.6 40.2

des UST-U-CTS [7], [17] 30 30 30 7.4 21.3 34.2 206.4 614.8 15.0 44.8
UST-U-CTO [6] ‘-’ ‘-’ ‘-’ 10.2 21.8 37.5 241.0 6.9 0.7 259.8
UST-N 15.8 17.6 28.7 10.4 19.0 34.9 236.3 1.7 0.5 91.1

Norm UST-U-CTS [7], [17] 0.92 0.95 1.00 1.00 0.12
UST-U-CTO [6] 1.00 1.00 0.13 0.21 1.00
UST-N 0.97 0.95 0.01 0.05 0.53

Compared with the UST-U-CTS structure, the UST-U-CTO
structure have 87% and 79% lower TNS and WNS, respec-
tively. The improvements in the timing quality stem from
that CTO is applied to remove the timing violations that are
obtained from the UST-U-CTS structure. The improvements
in timing quality come at the expense of increasing the
capacitance and the latency respectively by 8% and 5%. This
is expected because CTO inserts buffers and wires into the
clock tree to realize the delay adjustments, which introduces
overheads in terms of total capacitance. The run-time of the
UST-U-CTO is 88% longer because CTO requires performing
a vast amount of timing analysis using SPICE simulations.

Next, we compare the performance of the UST-U-CTO
structure with the UST-N structure. The table shows that the
UST-N structure has 90% and 75% lower TNS and WNS,
respectively. The improvements in the timing quality stem
from synthesizing the clock tree by inserting non-uniform
safety margins that are tailored to the topology. It is promising
that the capacitance and the latency of the UST-N structure
are respectively 3% and 5% lower when compared to the
UST-U-CTO structure. This stems from that the UST-U-CTO
structure is constructed by inserting safety margins that are
larger than required for certain skew constraints, which results
in constructing larger clock trees. On the other hand, the
UST-N structure inserts only the required amount of safety
margins that are tailored to the topology, which are reported in
Table III. The run-time of the UST-N structure is 48% shorter
when compared to the UST-U-CTO structure. The run-time
improvements stem from that the UST-N structure is obtained
by synthesizing a single clock tree while the UST-U-CTO
structure is obtained by constructing multiple clock trees using

different safety margins and selecting the clock tree structure
that performs best in terms of TNS and WNS.

Based on the evaluations above, the UST-N structure
demonstrates that the proposed methodology in Figure 2(b)
outperforms the traditional clock tree construction method-
ology in Figure 2(a) in terms of average timing quality,
capacitance and run-time.

VI. SUMMARY AND FUTURE WORKS

In this work, we proposed an OCV-Aware clock tree syn-
thesis methodology that is capable of accounting the impact
of OCV during the synthesis process. Moreover, the conver-
gence of the proposed synthesis flow is completely automated
unlike the state-of-the-art synthesis flow that often requires
costly manual intervention in the form of ECOs to close
timing. Compared to the state-of-the-art flow, the proposed
flow demonstrates higher timing quality with shorter run-time
and lower capacitance. In the future, we plan to extend the
proposed flow to incorporate techniques of reconstructing the
top-level tree topology during the synthesis process.
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