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Abstract

Thallium (TI) is a rare but highly toxic element. Mineral exploitation and utilization
lead to a risk of thallium (TI) leakage to the aqueous environment, greatly threatening
human health. In this study, we propose a novel Tl wastewater treatment process based
on a regenerable adsorptive membrane to achieve Tl removal and recovery from
industrial wastewaters. Specifically, a composite membrane was fabricated using
Prussian blue (PB) and a commercial polyvinylidene fluoride (PVDF) membrane. The
as-fabricated PB/PVDF composite membrane exhibited an outstanding Tl removal
efficiency (> 95 %) at various operating conditions (i.c., a permeate flux < 140 Lm? h-
!, pH from 3 to 11, and an initial T1 concentration from 50 to 1000 pg/L). Moreover,
coexisting heavy metal ions (e.g., Pb*", Cu®", Cd*, Ni**, and Zn>") had little
interference with the Tl removal efficiency of the PB/PVDF composite membrane.
Hydraulic backwash was applied to recover PB-T1 composite particles as a high content
source of T1(92.2 + 11.4 mg of Tl per gram of composite), while the backwashed PVDF
membrane can be reused for the fabrication of the PB/PVDF composite membrane. A
simplified economic analysis suggests that chemical cost for synthesizing the
consumable Pb in the proposed the dynamic composite membrane process was only ~
6.1 % of the value of recovered TI, highlighting the vast potential of the proposed

process for Tl removal and recovery from industrial wastewaters.
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1. Introduction

Thallium (T1) is a highly toxic trace element that has attracted increasing attentions
in recent years (Liu et al. 2021b, Xu et al. 2019, Zhao et al. 2020). The lethal dose of
Tl to human is only 8-10 mg/kg, suggesting a much higher toxicity of Tl than that of
other heavy metal elements such as mercury (Hg), cadmium (Cd), and lead (Pb) (Moore
et al. 1993, Riyaz et al. 2013). Although typical Tl concentration in natural water is
extremely low, Tl could be released to the water environment from exploration and
utilization of Tl-bearing mineral resources, and such releases have already resulted in
severe Tl contamination incidents (Liu et al. 2019a, Liu et al. 2018, Xu et al. 2019).
Furthermore, despite its extreme toxicity, T1 is a valuable element that has been utilized
in electronic, optical, and superconducting materials industries (Ning et al. 2021, Peter
and Viraraghavan 2005). Considering the rareness of T1 in natural minerals, mining T1
from Tl-containing industrial wastewaters (e.g., metallurgical wastewater, sulfuric acid
production wastewater, and mine water) becomes a very appealing option (Hermassi et

al. 2022, Lin et al. 2021, Liu et al. 2019a).

In water, Tl exists in the form of T1" and/or TI**. As TI** can be readily hydrolyzed
and removed through adsorption and coprecipitation processes (Liu et al. 2021b, Liu et
al. 2019b), the removal of TI" is the major challenge and thus the focus of this study
(i.e., Tl removal hereafter will specifically refer to the removal of T1"). A variety of
wastewater treatment technologies, including chemical precipitation/coagulation,
oxidation-reduction precipitation, ion exchange, adsorption, solvent extraction, and
microbial fuel cells have been investigated for removing Tl from wastewaters (Huangfu
et al. 2015, Li et al. 2019, Liu et al. 2019a, Xu et al. 2019, Zhang et al. 2018a). Among
these technologies, adsorption is the most promising as it has the advantages of high TI

removal efficiency, low operating cost, and thus high economic viability (Xu et al.
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2019). Based on previous studies, Prussian blue (PB) has been recognized as a highly
effective absorbent because it can absorb Tl from wastewaters efficiently and
selectively in the presence of other co-existing cations (Lopez et al. 2021, Zhang et al.
2022). However, the separation of the PB-TI composite from the wastewaters after T1
adsorption is a technical challenge especially for large-scale applications (Vipin et al.

2016, Zhang et al. 2022).

Microfiltration (MF) is a commercially mature membrane filtration technology that
can separate micron-sized solids from the liquids (Baker 2012, Mulder 1996). A variety
of advanced water/wastewater treatment technologies have been developed by coupling
MF with other processes (Juang et al. 2013, Mori et al. 1998, Zuo et al. 2018). For
instance, by growing specific microorganisms on MF membranes as the substrates,
membrane bioreactors (MBR) have been developed and now widely employed (Judd
2008, Smith et al. 2012). Compared to other biological wastewater treatment
technologies, MBR has the advantages of high-quality effluent and higher volumetric
loading rates (Jegatheesan et al. 2016, Xiao et al. 2019). In addition, MF has been
combined with granular activated carbon (GAC) to form hybrid MF-GAC systems for
water/wastewater purifications (Kim et al. 2009, Shanmuganathan et al. 2015). Inspired
by the approach adopted in MBR and hybrid MF-GAC systems, a composite membrane
with a PB surface layer and an MF membrane substrate could potentially overcome the
challenge of separating the PB-TI composite from wastewaters and recover PB-TI

composite with a high Tl content as a high-value source of TI.

In this study, we develop a novel process using a PB/polyvinylidene fluoride
(PVDF) composite membrane to recover Tl from wastewaters as a high-value mineral.
The PB/PVDF composite membrane is fabricated by filtering a PB dispersion through

a commercial PVDF MF membrane, and its morphology is characterized. Then, we
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assess the Tl removal performance of the PB/PVDF composite membrane at varied
operating conditions (i.e., permeate flux, pH, Tl concentration, presence of co-existing
heavy metal ions, and cumulative filtrate volume). Further, we decompose the
PB/PVDF composite membrane via hydraulic backwash and quantify the Tl content in
the recovered PB-Tl composite. Based on these results, we propose a dynamic
composite membrane process for Tl recovery from industrial wastewaters and perform

a simple economic analysis to estimate the application potential of the proposed process.

2. Materials and methods

2.1. Materials

The MF membranes used in this study were commercial hydrophilic PVDF
membranes with a nominal pore size of 0.22 um (Haining Chuangwei Filtration
Equipment, China). Potassium hexacyanoferrate (II) trihydrate (K4[Fe(CN)s]:3H20),
ferric chloride (FeCls), nickel chloride hexahydrate (NiCl2'6H20), and cadmium
chloride (CdCl2) were purchased from Aladdin (Shanghai, China). Sodium hydroxide
(NaOH) was obtained from Macklin Co. Ltd. (China). Nitric acid (HNO3) was
purchased from Guangzhou Brand Chemical Reagent (Guangzhou, China). The
standard T1 solution containing 1000 mg/L TI" was obtained from the Groups of the
General Research Institute for Nonferrous Metals (China). All the reagents were
analytical reagent grade and used as received without any further treatment, and
deionized (DI) water was used to prepare the solutions.

2.2. Fabrication of the PB/PVDF composite membrane
The fabrication procedure of the PB/PVDF composite membrane is illustrated in

Fig. 1A. Specifically, a PB suspension was prepared by mixing 0.0075 g
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Ka[Fe(CN)s]:3H20 and 0.0039 g FeCls in 50 mL DI water (detailed chemical reaction
in the Supplementary Materials). Then, the prepared PB suspension was transferred to
a dead-end filtration cell with a PVDF membrane coupon with an area of 12.56 cm?.
Nitrogen gas was applied to pressurize the PB suspension (20 kPa) and drive the water
through the PVDF membrane. After filtration, a layer of PB solids was retained on the
PVDF membrane surface, resulting in the PB/PVDF composite membrane. The PB
content in the as-fabricated PB/PVDF composite membrane was estimated to be 4.06

g/m? (detailed calculation in the Supplementary Materials).

a Membrane Fabrication b Tl Removal
K [Fe(CN) ]3H.0 Thallium (TI) — 'CP-Ms
Fe(Cl), * £ Nitrogen Gas = Feed Solution
'—| l |
PB/PVDF —
Prussian end Composite Permeate
Blue (PB) Membrane Membrane 1=
Suspension / '
Water =] =]
o Membrane Decomposition and Tl Recovery d Tl Quantatification
o o Reusable ] ICP-MS
[ | | PVDF membrane ] [~
PB-TI/PVDF Incinerate Add Acid _
Composite N ‘ AT —
Membrane Backwash |8 of PB-TI
Water |k Composite I i

Fig. 1 Schematic illustration of the experimental procedures. (A) Fabrication of the PB/PVDF
composite membrane. (B) Tl removal from the wastewater via membrane filtration. (C)
Decomposition of the PB/PVDF composite membrane and recovery of the PB-TI composite. (D)
Quantification of the Tl content in the recovered PB-TI composite.

2.3. Membrane characterizations

The morphology of the PB/PVDF composite membrane was observed using
scanning electron microscopy (SEM, LTRA 3 XMU, Tescan). The structure of the
synthesized PB was characterized by X-ray diffraction (XRD, Rigaku Ultima IV X-ray

diffractometer) using CuKa radiation at 3kW, and the data was collected at angles (26)
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from 10° to 80° with a scanning rate of 2° min'. The water permeabilities of the pristine
PVDF membrane and PB/PVDF composite membrane were determined using dead-
end filtration experiments with DI water (detailed procedures reported in
Supplementary Materials).
2.3. Tl removal via membrane filtration

Dead-end filtration experiments were conducted to determine the Tl removal
capability of the PB/PVDF composite membrane at varied experimental conditions (Fig.
1B). Four sets of short-term experiments were performed to investigate the impact of
operating conditions on the Tl removal efficiency of the PB/PVDF composite
membrane. The first set of short-term experiments were performed using a feed solution
containing 1 mg L™ TI with varied permeate fluxes (i.e., from 50 to 430 L m? h!) at
pH 3.0. The varied permeate fluxes were obtained by applying different hydraulic
pressures, and the dependence of permeate flux on hydraulic pressure can be found in
the Supplementary Materials (Fig. S1b). The second set of short-term experiments were
performed using TI feed solutions of different initial concentrations (i.e., from 10 to
1000 pg L) with a permeate flux of ~100 L m? h! at pH 3.0. The third set of short-
term experiments were performed using 1 mg L' Tl feed solution with a permeate flux
of ~100 L m? h! at varied pH (i.e., from 3 to 12). The fourth set of short-term
experiments were performed using 1 mg L' Tl feed solutions containing different co-
existing heavy metal ions (i.e., Pb*, Cu?’, Cd**, Ni*, and Zn?") of different
concentrations (from 10 to 1000 mg L") with a permeate flux of ~100 L m? h™! at pH

3.0. It should be noted that pH 3.0 was chosen as the experimental pH to avoid the
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formation of metal hydroxides.

In each short-term experiment, 100 mL of feed solution was used, and after 60 mL
of the permeate was produced, the Tl concentration in the permeate stream (cp) was
measured by inductively coupled plasma mass spectroscopy (ICP-MS, Thermo
Scientific iCAP Q). The calibration of ICP-MS was performed using the standard Tl
solution, and Bi (10 pg L") was used as the internal standard for analysis. The Tl
removal rate of the PB/PVDF composite membrane (Ry;) was calculated as follow,

Ry = (1— Z—’;) x 100% (1)
where ¢, is the initial TI concentration in the feed solution.

In addition to short-term experiments, a long-term experiment was also performed
to investigate the Tl removal capacity of the PB/PVDF composite membrane. The long-
term experiment was performed with a permeate flux of ~100 L m™ h! using 2 L feed
solution containing 1 mg L' TI" at pH 3.0. During the long-term experiment, the TI
concentration in the permeate stream was measured by ICP-MS after every 60 mL of
permeate was produced, and the corresponding Tl removal efficiency was calculated
using Eq. 1. Once the Tl removal efficiency was below 30 %, the long-term experiment
was terminated, and based on the experimental result, the time duration of the long-
term experiment was ~12 hours.

2.4. Tl recovery and regeneration of PVDF membrane

After the membrane filtration test, PB with adsorbed Tl was recovered from the

composite membrane using hydraulic backwash (Fig. 1C). Specifically, 10 mL DI water

was used to backwash with a hydraulic pressure of 100 kPa to obtain a suspension of
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PB-TI and a regenerated PVDF membrane. Solid PB-TI composite was obtained by
drying the suspension at 80 °C for 6 hours, and the regenerated PVDF membrane can
be used for next cycle of PB/PVDF membrane formation and Tl recovery.
2.5. Quantification of the Tl content in the recovered PB-TI composite

The TI content in the PB-TI composite was quantified to determine the quality of
the recovered T1 resource (Fig. 1D). First, the mass of the PB-TI composite (m,) was
measured using an analytical balance. Then, the PB-T1 composite was incinerated in a
muftle oven at 400 °C for 4 h. The residue from incineration was completely dissolved
in HNOs3 (0.1 M) under heating, and the total volume of the resulted solution (V) was
recorded. By determining the TI concentration in the resulted solution (cs) using ICP-
MS (detailed procedures described in Section 2.3), the Tl content in the PB-TI

composite (f7;) was obtained,

CsVs
fri === % 100% 2)

c

3. Results and discussion

3.1. Characterizations of the PB/PVDF composite membrane

The PB deposit on the PVDF membrane surface appears dark blue (Fig. 2a). The
morphology of the composite membrane is further unveiled by the SEM images. The
top surface of the composite membrane is a dense and uniform layer formed by packing
of small nanocages (Fig. 2b). The substrate PVDF membrane exhibits a microporous
structure unaffected by the PB deposition (Fig. 2¢). A distinct boundary between the PB
surface coating and the substrate PVDF membrane is observed from the cross-section
SEM image of the composite membrane (Fig. 2d), which suggests no or minimal

intrusion of PB particles into the substrate membrane.
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Fig. 2 Characterizations of the PB/PVDF composite membrane. (a) Photographic image of the
PB/PVDF composite membrane. SEM images featuring the (b) top surface (i.e., PB surface
layer), (c) bottom surface (i.e., PVDF membrane substrate), and (d) cross-section morphology
of the PB/PVDF composite membrane. The inset in panel (b) denotes the local surface
morphology at a larger magnification. (e) XRD pattern of the PB surface layer. (f) FTIR spectra
of the top layer (red curve) and bottom layer (blue curve) of the PB/PVDF composite membrane.
(g) Water permeabilities of the PVDF membrane (red column) and PB/PVDF composite
membrane (blue column).

XRD analysis confirms the surface layer to be exactly PB (PDF#01 0239, Fig. 2e),
(Wu et al. 2018, Zhang et al. 2012). The PB surface layer was further verified by FTIR
characterization (Fig. 2f). For the bottom layer, the peaks at 491 and 2078 cm™! can be
attributed to the vibrations of Fe(Il)-C=N-Fe(Ill) and -C=N- groups, respectively,
suggesting that the top layer was comprised of PB  (Zhang et al. 2022). For the bottom
layer, the peaks at 1172, 1232, and 1405 cm™! can be ascribed to the vibrations of -CF2-,
indicating that the bottom layer is the commercial PVDF membrane (Boccaccio et al.
2002). The membrane morphology and chemical composition analysis confirm the

successful fabrication of PB/PVDF composite membrane.

To evaluate the impact of the PB surface layer on the filtration performance of the
composite membrane, both the water permeabilities of the pristine PVDF membrane

and PB/PVDF composite membrane were measured (details in the Supplementary
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Materials). As Fig. 2g shows, the water permeability of the PB/PVDF composite
membrane (4.7 £ 0.1 L m? h'! kPa™') is significantly lower than that of the pristine
PVDF membrane (111.5 = 2.0 L m? h'! kPa'), because the PB surface layer adds a
significant resistance to water permeation.
3.2. Tl removal with the PB/PVDF composite membrane
3.2.1 Impact of permeate flux on Tl removal

The impact of permeate flux on the Tl removal efficiency of the PB/PVDF
composite membrane was investigated (Fig. 3a). With a permeate flux lower than 140
L m? h'!, a high Tl removal efficiency (> 97 %) was achieved. Since the TI removal
efficiency of the pristine PVDF membrane is negligible (details in the Supplementary
Materials), the excellent Tl removal capability of the PB/PVDF composite membrane
is attributed to the adsorption by the PB layer, a process that has been extensively
studied in literatures (Lehmann and Favari 1984, Mohammad et al. 2014, Yang et al.
2008). As the permeate flux further increased (i.e., >140 L m™ h'), the Tl removal
efficiency drastically decreased likely due to the shortened hydraulic retention time and
reduced contact between the Tl ions and the PB layer. Based on the above analysis, a
moderate permeability flux (~100 L m? h') was chosen for all membrane filtration

experiments discussed in the following sections.
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Fig. 3 Tl removal capability of the PB/PVDF composite membrane. (a) Impact of permeate flux
on the Tl removal efficiency. In each experiment, the initial TlI concentration and pH of the feed
solution were 1 mg/L and 3, respectively. (b) Impact of initial TI concentration on the Tl removal
efficiency (orange columns, left vertical axis) and the corresponding Tl concentration in the
permeate stream (green columns, right vertical axis). In each experiment, the permeate flux
and the pH of the feed were controlled at ~100 L m? h™' and 3, respectively. (c) Impact of pH
on the Tl removal efficiency. In each experiment, the permeate flux and initial TI concentration
of the feed solution were set at ~100 L m2 h-' and 1 mg/L, respectively. (d) Impact of co-existing
ions on the Tl removal efficiency. Five representative ions, Pb?* (red columns), Cu?* (yellow
columns), Cd?* (blue columns), Zn?* (green columns), and Fe?* (purple columns) were used as
the co-existing ions in the measurements, and for each ion, the concentration varied from 10 to
1,000 mg/L. In each measurement, the initial TI concentration and pH of the feed solution were
1 mg/L and 3, respectively, and the permeate flux was controlled at ~100 L m2 h™'. In panels
(a), (b), (c), and (d), each Tl removal efficiency was determined via measuring the TI
concentration in the permeate stream after 60 mL permeate was produced. (e) Tl removal
efficiency (red circles, left vertical axis) and Tl concentration in the permeate stream (blue
squares, right vertical axis) as a function of the cumulative permeate volume. In the experiment,
the initial Tl concentration and pH of the feed solution were 1 mg/L and 3, respectively, and the
permeate flux was controlled at ~100 L m? h™'. The Tl removal efficiency was determined via
measuring the Tl concentration in the permeate stream after every 60 mL of permeate was
produced.

3.2.2 Impact of Tl concentration on Tl removal

To evaluate the performance of the PB/PVDF composite membrane on treating
different Tl wastewaters, the Tl removal efficiencies of the PB/PVDF composite
membrane were determined using feed solutions with varied initial T1 concentrations.
With increasing initial Tl concentration, the Tl removal efficiency increases (orange
columns in Fig. 3b), yet the effluent Tl concentration also increases (green columns in

Fig. 3b).
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The maximum allowable TI concentrations for industrial wastewater discharge are
140 and 5 pg L' in US and China, respectively (Liu et al. 2019a). Results from Fig. 3b
suggest that, as long as the feed Tl concentration does not exceed 200 ug L', using the
PB/PVDF membrane with the selected operating condition can meet the discharge
standards in both the US and China. For higher feed concentration (e.g., >200 ug L)
and stringent discharge standard (e.g., <5 pg L), compliance of effluent quality can be
achieved by increasing the TI-Pb contact time via using a slower filtration rate or
employing multi-stage filtration (Fig. S4 in the Supplementary Materials).
3.2.3 Impact of pH on Tl removal

Since T1 wastewaters could come from a variety of different sources, the pH of the
wastewaters can vary substantially (Pavoni et al. 2018) and its impact on Tl removal
was thus investigated. The Tl removal efficiencies of the PB/PVDF composite
membrane were evaluated at pH from 3 to 12 (Fig. 3¢). As pH increased from 3 to 11,
the Tl removal efficiency remained relatively steady (> 96 %). The Tl removal
efficiency was compromised only when pH increased beyond 12 as the PB structure
was destructed under such an alkaline condition (Fig. S5 in the Supplementary
Materials). Based on previous studies, the destruction of PB can be explained by its
reaction with hydroxide ions that produces ferric hydroxide and ferrocyanide (Koncki
et al. 2001, Koncki and Wolfbeis 1998). These results suggest that the PB/PVDF
composite membrane is functional over a wide range of pH except for highly alkaline
conditions.
3.2.4 Impact of co-existing cations on Tl removal

Tl wastewaters usually contain other heavy metal ions that co-exist with Tl in the
source minerals (Liu et al. 2021a, Luo et al. 2020, Tatsi and Turner 2014). Thus, the

impact of co-existing cations on Tl removal by the PB/PVDF composite membrane was
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investigated. Five representative heavy metal ions (i.e., Pb*", Cu?**, Cd**, Ni**, and Zn*")
were employed to evaluate the Tl removal efficiencies of the PB/PVDF composite
membrane in the presence of co-existing heavy metal ions (Fig. 4d). In the feed
solutions, the concentration of the co-existing heavy metal ions varies from 10 to 1000
mg L', which is 10 to 1000 times higher than the Tl concentration (i.e., 1 mg L™).
However, the Tl removal efficiency still exceeded 90 % in all cases regardless of the
co-existing ion species or concentrations (Fig. 4d), suggesting that the adsorption of T1
by the PB/PVDF composite membrane is highly selective. The exact mechanism of the
high TI selectivity of PB has not be fully elucidated. Previous studies have attributed
the selectivity of PB toward T1" adsorption to the favorable ion exchange between TI*
and K* on PB lattices (Lopez et al. 2021, Zhao et al. 2020). More recent work revealed
that that ion dehydration might also play an important role in the selective Tl removal
of PB against other ions as the dehydrated TI" can more easily enter the crystal lattices
of PB (Zhang et al. 2022).
3.2.5 Tl adsorption capacity

The capacity of the PB/PVDF composite membrane for Tl removal is limited as
the removal mechanism is adsorption instead of rejection (Khulbe and Matsuura 2018,
Yang et al. 2021, Zhang et al. 2018b). The Tl removal capacity of the PB/PVDF
composite membrane was determined by a long-term filtration experiment using a 1
mg L' Tl feed solution. When the cumulative permeate volume was less than 540 mL,
the Tl removal efficiency could remain stable and high (~ 95 %), and the TI
concentration in the permeate stream was less than 50 pug L''. When the cumulative
permeate volume exceeded 540 mL, a gradual increase in permeate Tl concentration
was observed, which suggests that the top portion of the PB layer started to become

saturated. Continued filtration of Tl wastewater further extended the saturation zone
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and reduced the Tl removal efficiency. If we set 540 mL as the cumulative permeate
volume below which the permeate quality (i.e., Tl concentration) is considered as
compliant, the T content in the PB layer (i.e., PB-T1 composite) is calculated to be 95.8
+ 9.6 mg g' (details in the Supplementary Materials). After T1 adsorption, the
PB/PVDF composite membrane could maintain its structure (Fig. 2d and Fig. S6).
3.2.5 Regeneration of the PB/PVDF composite membrane and Tl recovery

Due to the strong attraction between PB and Tl, in-situ desorption of TI from PB is
highly challenging (Zhao et al. 2020). Since the binding of the PB layer and PVDF
membrane substrate is weak (Fig. 2D), the PB/PVDF composite membrane can be
regenerated by removing the PB-T1 composite layer and reconstructing the PB layer on
the PVDF membrane surface. Specifically, hydraulic backwash with DI water was
applied to detach the PB-TI composite layer from the PVDF membrane after TI
adsorption, and the performance of the reconstructed PB/PVDF composite membrane
was evaluated (Fig. 4a). The regenerated PB/PVDF membrane was tested for a

cumulative permeate volume of 540 mL with a feed Tl concentration of 1 mg L.
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Fig. 4 Regeneration of the PB/PVDF composite membrane and Tl recovery. (a) Tl removal
efficiency as a function of cumulative permeate volume in the membrane filtration experiment
by repeatedly constructing and decomposing the PB/PVDF composite membrane for 3 times
(i.e., 3 trials). In each trial, the PB/PVDF composite membrane was first constructed, and then
tested with a permeate flux of ~100 L m2 h-' using 1 mg/L Tl feed solution at pH 3.0. After 540
mL of the permeate was produced, the PB/PVDF composite membrane was decomposed by
hydraulic backwash using 20 mL DI water. The photographic images depict the membrane at
different stages. (b) Measured Tl content in the PB-TI composite obtained from each trial. In
each ftrial, the PB-TI composite was obtained after drying the suspension from hydraulic
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The performance of the Tl removal was reproduceable using the regenerated
PB/PVDF membrane (Fig. 4a). Photographic images in Fig. 4a show that the PB/PVDF
composite membrane can be mostly removed by hydraulic backwash using DI water
(as indicated by the almost complete disappearance of the dark blue top layer after
backwash). As mentioned earlier, the easy detachment of the PB layer from the PVDF
substrate can be attributed to their weaking binding. Once the PB/PVDF composite
membrane was reconstructed, the Tl removal efficiency was restored. In all three trials
of Tl removal using regenerated PB/PVDF composite membrane, outstanding TI
removal capability was observed, demonstrating the viability of PB/PVDF composite
membrane regeneration.

After hydraulic backwash, the PB layer with adsorbed Tl was removed from the
PVDF membrane substrate as a suspension of PB-TI composite. Since PB has a
relatively large Tl adsorption capacity (Fig. 3e), the PB-T1 composite has the potential
to be recovered TI resource. The Tl content in the PB-TI composite was measured to be
92.2 + 11.4 mg/g (Fig. 4b), which is consistent with the Tl adsorption capacity of PB
(95.8 £ 9.6 mg/g). In comparison, the Tl contents in natural minerals are usually lower
than 20 mg/g, significantly lower than that in the PB-T1 composite (Baceva et al. 2014,
Dordevic et al. 2021). Thus, in terms of Tl content, the PB-T1 composite can be
considered as a high-grade Tl mineral.

3.4. Dynamic PB/PVDF Composite Membrane for Tl Recovery from Wastewaters

Based on the experimental results presented in this study, a dynamic composite
membrane process is proposed for Tl removal and recovery from wastewaters using
full-scale membrane modules (Fig. 5a). The proposed process consists of three stages:

PB layer formation, adsorptive filtration of Tl, and hydraulic backwash. For PB layer
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formation, a suspension of PB synthesized using FeCls and K4[Fe(CN)s]-3H20 is
filtered by a commercial PVDF membrane module to form a top PB layer for TI
adsorption. Through adsorptive filtration, Tl in the wastewater is efficiently removed
by the PB layer on the PB/PVDF composite membrane. Once the PB layer is partially
saturated with adsorbed TI to the extent that the permeate quality is non-compliant,
hydraulic backwash with freshwater is applied to remove the PB-T1 composite on the
PVDF membrane and recover it in the form of a suspension. Drying the suspension
recovers the PB-T1 composite as a high-content source of Tl. The backwashed PVDF
membrane module can be reused for the formation of new PB/PVDF composite
membrane module, which starts the next cycle of Tl recovery. We note that the
formation of new PB/PVDF membrane involves only the filtration of a PB suspension

and can be achieved practically even with commercial membrane modules.
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Fig. 5 Tl wastewater treatment enabled by a dynamic composite membrane. (a) Schematic
illustration of the dynamic PB/PVDF composite membrane process. (b) A simple economic
analysis of the chemicals involved in the dynamic composite membrane process. The analysis
was conducted based on the assumption that 1 kg Tl was recovered.

To further evaluate the economic viability of this dynamic composite membrane
process, a simplified economic analysis was performed based on the values of

chemicals used and recovered (Fig. 5b). The analysis is based on recovering 1 kg of Tl
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which has a value of ~$ 7,600 according to literature (Reilly 2020). Based on the TI
content in the PB-TI composite (Fig. 4b), recovering 1 kg of Tl requires 9.49 kg of PB
the synthesis of which consumes 7.17 kg of FeCls and 14.01 kg of K4[Fe(CN)s]-3H20.
Since the price of FeCls and K4[Fe(CN)es]-3H20 are $ 0.45 and $ 33.00 per kilogram,
respectively (from www.alibaba.com), the total cost of FeCls and K4[Fe(CN)s]-3H20
required to recover 1 kg of Tl is estimated to be $ 465.56, accounting for only 6.1% of
the value of the recovered Tl. While such an analysis only considers the costs of the
core materials, the high value of Tl and the very low cost of the core materials for
synthesizing the adsorbent suggests a strong potential for the proposed dynamic
composite membrane process to be economically viable. To fully evaluate the economic
competitiveness of the process, a more comprehensive technoeconomic analysis based
on data from pilot-scale investigation is required, which is beyond the scope of the

current study.

4. Conclusions

A dynamic composite membrane process has been demonstrated for Tl removal
and recovery from industrial wastewaters. Specifically, a PB/PVDF composite
membrane comprising a PB surface layer and a PVDF membrane substrate has been
shown to be able to effectively remove Tl from wastewaters of different TI
concentrations (i.e., 50-1000 pg L") over a wide range of pH (i.e., 3-11). The adsorption
of Tl was highly selective with minimal interference from co-existing heavy metal ions
at much higher concentrations. The Tl removal rate of the PB/PVDF composite
membrane was over 90 % until the PB layer was partially saturated (corresponding to
a Tl content of 95.8 + 9.6 mg g'! in this study). The PB layer with adsorbed Tl can be

readily removed and recovered as a high-content source of Tl with simple hydraulic
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backwash, while the backwashed PVDF membrane can be reused for forming a new
PB/PVDF composite membrane for next-cycle Tl recovery. A simple economic analysis
based on the costs of Tl and adsorbents suggests that the proposed dynamic composite
membrane process has a strong potential to become an economically competitive

process for Tl removal and recovery from industrial wastewaters.
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