

1
2
3

4 Thallium Mining from Industrial Wastewaters

5 Enabled by a Dynamic Composite Membrane Process

6

7

Revised Manuscript

8

9

10

11

Zhangxin Wang^{a,b}, Shanshan Liu^a, Hailong Zhang^{a,b}, Zhong Zhang^{a,b}, Jin Jiang^{a,b}, Di He^{a,b,*}, Shihong Lin^{c,d,*}

13

14

^aKey Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China

19

20

^b*Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China*

21

22

23

24

25

26

27

28

29

Corresponding author: email: di.he@gdut.edu.cn;
shihong.lin@vanderbilt.edu; Tel: +1 (615) 322-7226

31 **Abstract**

32 Thallium (Tl) is a rare but highly toxic element. Mineral exploitation and utilization
33 lead to a risk of thallium (Tl) leakage to the aqueous environment, greatly threatening
34 human health. In this study, we propose a novel Tl wastewater treatment process based
35 on a regenerable adsorptive membrane to achieve Tl removal and recovery from
36 industrial wastewaters. Specifically, a composite membrane was fabricated using
37 Prussian blue (PB) and a commercial polyvinylidene fluoride (PVDF) membrane. The
38 as-fabricated PB/PVDF composite membrane exhibited an outstanding Tl removal
39 efficiency (> 95 %) at various operating conditions (i.e., a permeate flux $\leq 140 \text{ L m}^{-2} \text{ h}^{-1}$,
40 pH from 3 to 11, and an initial Tl concentration from 50 to 1000 $\mu\text{g/L}$). Moreover,
41 coexisting heavy metal ions (e.g., Pb^{2+} , Cu^{2+} , Cd^{2+} , Ni^{2+} , and Zn^{2+}) had little
42 interference with the Tl removal efficiency of the PB/PVDF composite membrane.
43 Hydraulic backwash was applied to recover PB-Tl composite particles as a high content
44 source of Tl ($92.2 \pm 11.4 \text{ mg of Tl per gram of composite}$), while the backwashed PVDF
45 membrane can be reused for the fabrication of the PB/PVDF composite membrane. A
46 simplified economic analysis suggests that chemical cost for synthesizing the
47 consumable Pb in the proposed the dynamic composite membrane process was only \sim
48 6.1 % of the value of recovered Tl, highlighting the vast potential of the proposed
49 process for Tl removal and recovery from industrial wastewaters.

50 **1. Introduction**

51 Thallium (Tl) is a highly toxic trace element that has attracted increasing attentions
52 in recent years (Liu et al. 2021b, Xu et al. 2019, Zhao et al. 2020). The lethal dose of
53 Tl to human is only 8-10 mg/kg, suggesting a much higher toxicity of Tl than that of
54 other heavy metal elements such as mercury (Hg), cadmium (Cd), and lead (Pb) (Moore
55 et al. 1993, Riyaz et al. 2013). Although typical Tl concentration in natural water is
56 extremely low, Tl could be released to the water environment from exploration and
57 utilization of Tl-bearing mineral resources, and such releases have already resulted in
58 severe Tl contamination incidents (Liu et al. 2019a, Liu et al. 2018, Xu et al. 2019).
59 Furthermore, despite its extreme toxicity, Tl is a valuable element that has been utilized
60 in electronic, optical, and superconducting materials industries (Ning et al. 2021, Peter
61 and Viraraghavan 2005). Considering the rareness of Tl in natural minerals, mining Tl
62 from Tl-containing industrial wastewaters (e.g., metallurgical wastewater, sulfuric acid
63 production wastewater, and mine water) becomes a very appealing option (Hermassi et
64 al. 2022, Lin et al. 2021, Liu et al. 2019a).

65 In water, Tl exists in the form of Tl^+ and/or Tl^{3+} . As Tl^{3+} can be readily hydrolyzed
66 and removed through adsorption and coprecipitation processes (Liu et al. 2021b, Liu et
67 al. 2019b), the removal of Tl^+ is the major challenge and thus the focus of this study
68 (i.e., Tl removal hereafter will specifically refer to the removal of Tl^+). A variety of
69 wastewater treatment technologies, including chemical precipitation/coagulation,
70 oxidation-reduction precipitation, ion exchange, adsorption, solvent extraction, and
71 microbial fuel cells have been investigated for removing Tl from wastewaters (Huangfu
72 et al. 2015, Li et al. 2019, Liu et al. 2019a, Xu et al. 2019, Zhang et al. 2018a). Among
73 these technologies, adsorption is the most promising as it has the advantages of high Tl
74 removal efficiency, low operating cost, and thus high economic viability (Xu et al.

75 2019). Based on previous studies, Prussian blue (PB) has been recognized as a highly
76 effective absorbent because it can absorb Tl from wastewaters efficiently and
77 selectively in the presence of other co-existing cations (Lopez et al. 2021, Zhang et al.
78 2022). However, the separation of the PB-Tl composite from the wastewaters after Tl
79 adsorption is a technical challenge especially for large-scale applications (Vipin et al.
80 2016, Zhang et al. 2022).

81 Microfiltration (MF) is a commercially mature membrane filtration technology that
82 can separate micron-sized solids from the liquids (Baker 2012, Mulder 1996). A variety
83 of advanced water/wastewater treatment technologies have been developed by coupling
84 MF with other processes (Juang et al. 2013, Mori et al. 1998, Zuo et al. 2018). For
85 instance, by growing specific microorganisms on MF membranes as the substrates,
86 membrane bioreactors (MBR) have been developed and now widely employed (Judd
87 2008, Smith et al. 2012). Compared to other biological wastewater treatment
88 technologies, MBR has the advantages of high-quality effluent and higher volumetric
89 loading rates (Jegatheesan et al. 2016, Xiao et al. 2019). In addition, MF has been
90 combined with granular activated carbon (GAC) to form hybrid MF-GAC systems for
91 water/wastewater purifications (Kim et al. 2009, Shanmuganathan et al. 2015). Inspired
92 by the approach adopted in MBR and hybrid MF-GAC systems, a composite membrane
93 with a PB surface layer and an MF membrane substrate could potentially overcome the
94 challenge of separating the PB-Tl composite from wastewaters and recover PB-Tl
95 composite with a high Tl content as a high-value source of Tl.

96 In this study, we develop a novel process using a PB/polyvinylidene fluoride
97 (PVDF) composite membrane to recover Tl from wastewaters as a high-value mineral.
98 The PB/PVDF composite membrane is fabricated by filtering a PB dispersion through
99 a commercial PVDF MF membrane, and its morphology is characterized. Then, we

100 assess the Tl removal performance of the PB/PVDF composite membrane at varied
101 operating conditions (i.e., permeate flux, pH, Tl concentration, presence of co-existing
102 heavy metal ions, and cumulative filtrate volume). Further, we decompose the
103 PB/PVDF composite membrane via hydraulic backwash and quantify the Tl content in
104 the recovered PB-Tl composite. Based on these results, we propose a dynamic
105 composite membrane process for Tl recovery from industrial wastewaters and perform
106 a simple economic analysis to estimate the application potential of the proposed process.

107 **2. Materials and methods**

108 *2.1. Materials*

109 The MF membranes used in this study were commercial hydrophilic PVDF
110 membranes with a nominal pore size of 0.22 μm (Haining Chuangwei Filtration
111 Equipment, China). Potassium hexacyanoferrate (II) trihydrate ($\text{K}_4[\text{Fe}(\text{CN})_6] \cdot 3\text{H}_2\text{O}$),
112 ferric chloride (FeCl_3), nickel chloride hexahydrate ($\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$), and cadmium
113 chloride (CdCl_2) were purchased from Aladdin (Shanghai, China). Sodium hydroxide
114 (NaOH) was obtained from Macklin Co. Ltd. (China). Nitric acid (HNO_3) was
115 purchased from Guangzhou Brand Chemical Reagent (Guangzhou, China). The
116 standard Tl solution containing 1000 mg/L Tl^+ was obtained from the Groups of the
117 General Research Institute for Nonferrous Metals (China). All the reagents were
118 analytical reagent grade and used as received without any further treatment, and
119 deionized (DI) water was used to prepare the solutions.

120 *2.2. Fabrication of the PB/PVDF composite membrane*

121 The fabrication procedure of the PB/PVDF composite membrane is illustrated in
122 Fig. 1A. Specifically, a PB suspension was prepared by mixing 0.0075 g

123 $\text{K}_4[\text{Fe}(\text{CN})_6] \cdot 3\text{H}_2\text{O}$ and 0.0039 g FeCl_3 in 50 mL DI water (detailed chemical reaction
 124 in the Supplementary Materials). Then, the prepared PB suspension was transferred to
 125 a dead-end filtration cell with a PVDF membrane coupon with an area of 12.56 cm^2 .
 126 Nitrogen gas was applied to pressurize the PB suspension (20 kPa) and drive the water
 127 through the PVDF membrane. After filtration, a layer of PB solids was retained on the
 128 PVDF membrane surface, resulting in the PB/PVDF composite membrane. The PB
 129 content in the as-fabricated PB/PVDF composite membrane was estimated to be 4.06
 130 g/m^2 (detailed calculation in the Supplementary Materials).
 131

132
 133 **Fig. 1** Schematic illustration of the experimental procedures. (A) Fabrication of the PB/PVDF
 134 composite membrane. (B) TI removal from the wastewater via membrane filtration. (C)
 135 Decomposition of the PB/PVDF composite membrane and recovery of the PB-TI composite.
 136 (D) Quantification of the TI content in the recovered PB-TI composite.
 137

138 *2.3. Membrane characterizations*

139 The morphology of the PB/PVDF composite membrane was observed using
 140 scanning electron microscopy (SEM, LTRA 3 XMU, Tescan). The structure of the
 141 synthesized PB was characterized by X-ray diffraction (XRD, Rigaku Ultima IV X-ray
 142 diffractometer) using $\text{CuK}\alpha$ radiation at 3kW, and the data was collected at angles (2θ)

143 from 10° to 80° with a scanning rate of 2° min⁻¹. The water permeabilities of the pristine
144 PVDF membrane and PB/PVDF composite membrane were determined using dead-
145 end filtration experiments with DI water (detailed procedures reported in
146 Supplementary Materials).

147 *2.3. Tl removal via membrane filtration*

148 Dead-end filtration experiments were conducted to determine the Tl removal
149 capability of the PB/PVDF composite membrane at varied experimental conditions (Fig.
150 1B). Four sets of short-term experiments were performed to investigate the impact of
151 operating conditions on the Tl removal efficiency of the PB/PVDF composite
152 membrane. The first set of short-term experiments were performed using a feed solution
153 containing 1 mg L⁻¹ Tl with varied permeate fluxes (i.e., from 50 to 430 L m⁻² h⁻¹) at
154 pH 3.0. The varied permeate fluxes were obtained by applying different hydraulic
155 pressures, and the dependence of permeate flux on hydraulic pressure can be found in
156 the Supplementary Materials (Fig. S1b). The second set of short-term experiments were
157 performed using Tl feed solutions of different initial concentrations (i.e., from 10 to
158 1000 µg L⁻¹) with a permeate flux of ~100 L m⁻² h⁻¹ at pH 3.0. The third set of short-
159 term experiments were performed using 1 mg L⁻¹ Tl feed solution with a permeate flux
160 of ~100 L m⁻² h⁻¹ at varied pH (i.e., from 3 to 12). The fourth set of short-term
161 experiments were performed using 1 mg L⁻¹ Tl feed solutions containing different co-
162 existing heavy metal ions (i.e., Pb²⁺, Cu²⁺, Cd²⁺, Ni²⁺, and Zn²⁺) of different
163 concentrations (from 10 to 1000 mg L⁻¹) with a permeate flux of ~100 L m⁻² h⁻¹ at pH
164 3.0. It should be noted that pH 3.0 was chosen as the experimental pH to avoid the

165 formation of metal hydroxides.

166 In each short-term experiment, 100 mL of feed solution was used, and after 60 mL
167 of the permeate was produced, the Tl concentration in the permeate stream (c_P) was
168 measured by inductively coupled plasma mass spectroscopy (ICP-MS, Thermo
169 Scientific iCAP Q). The calibration of ICP-MS was performed using the standard Tl
170 solution, and Bi (10 $\mu\text{g L}^{-1}$) was used as the internal standard for analysis. The Tl
171 removal rate of the PB/PVDF composite membrane (R_{Tl}) was calculated as follow,

$$R_{Tl} = \left(1 - \frac{c_P}{c_0}\right) \times 100\% \quad (1)$$

172 where c_0 is the initial Tl concentration in the feed solution.

173 In addition to short-term experiments, a long-term experiment was also performed
174 to investigate the Tl removal capacity of the PB/PVDF composite membrane. The long-
175 term experiment was performed with a permeate flux of $\sim 100 \text{ L m}^{-2} \text{ h}^{-1}$ using 2 L feed
176 solution containing 1 mg L^{-1} Tl⁺ at pH 3.0. During the long-term experiment, the Tl
177 concentration in the permeate stream was measured by ICP-MS after every 60 mL of
178 permeate was produced, and the corresponding Tl removal efficiency was calculated
179 using Eq. 1. Once the Tl removal efficiency was below 30 %, the long-term experiment
180 was terminated, and based on the experimental result, the time duration of the long-
181 term experiment was ~ 12 hours.

182 *2.4. Tl recovery and regeneration of PVDF membrane*

183 After the membrane filtration test, PB with adsorbed Tl was recovered from the
184 composite membrane using hydraulic backwash (Fig. 1C). Specifically, 10 mL DI water
185 was used to backwash with a hydraulic pressure of 100 kPa to obtain a suspension of

186 PB-Tl and a regenerated PVDF membrane. Solid PB-Tl composite was obtained by
187 drying the suspension at 80 °C for 6 hours, and the regenerated PVDF membrane can
188 be used for next cycle of PB/PVDF membrane formation and Tl recovery.

189 *2.5. Quantification of the Tl content in the recovered PB-Tl composite*

190 The Tl content in the PB-Tl composite was quantified to determine the quality of
191 the recovered Tl resource (Fig. 1D). First, the mass of the PB-Tl composite (m_c) was
192 measured using an analytical balance. Then, the PB-Tl composite was incinerated in a
193 muffle oven at 400 °C for 4 h. The residue from incineration was completely dissolved
194 in HNO₃ (0.1 M) under heating, and the total volume of the resulted solution (V_s) was
195 recorded. By determining the Tl concentration in the resulted solution (c_s) using ICP-
196 MS (detailed procedures described in Section 2.3), the Tl content in the PB-Tl
197 composite (f_{Tl}) was obtained,

$$f_{Tl} = \frac{c_s V_s}{m_c} \times 100\% \quad (2)$$

198 **3. Results and discussion**

199 *3.1. Characterizations of the PB/PVDF composite membrane*

200 The PB deposit on the PVDF membrane surface appears dark blue (Fig. 2a). The
201 morphology of the composite membrane is further unveiled by the SEM images. The
202 top surface of the composite membrane is a dense and uniform layer formed by packing
203 of small nanocages (Fig. 2b). The substrate PVDF membrane exhibits a microporous
204 structure unaffected by the PB deposition (Fig. 2c). A distinct boundary between the PB
205 surface coating and the substrate PVDF membrane is observed from the cross-section
206 SEM image of the composite membrane (Fig. 2d), which suggests no or minimal
207 intrusion of PB particles into the substrate membrane.

210 **Fig. 2** Characterizations of the PB/PVDF composite membrane. (a) Photographic image of the
 211 PB/PVDF composite membrane. SEM images featuring the (b) top surface (i.e., PB surface
 212 layer), (c) bottom surface (i.e., PVDF membrane substrate), and (d) cross-section morphology
 213 of the PB/PVDF composite membrane. The inset in panel (b) denotes the local surface
 214 morphology at a larger magnification. (e) XRD pattern of the PB surface layer. (f) FTIR spectra
 215 of the top layer (red curve) and bottom layer (blue curve) of the PB/PVDF composite membrane.
 216 (g) Water permeabilities of the PVDF membrane (red column) and PB/PVDF composite
 217 membrane (blue column).

219 XRD analysis confirms the surface layer to be exactly PB (PDF#01_0239, Fig. 2e),
 220 (Wu et al. 2018, Zhang et al. 2012). The PB surface layer was further verified by FTIR
 221 characterization (Fig. 2f). For the bottom layer, the peaks at 491 and 2078 cm⁻¹ can be
 222 attributed to the vibrations of Fe(II)-C≡N-Fe(III) and -C≡N- groups, respectively,
 223 suggesting that the top layer was comprised of PB (Zhang et al. 2022). For the bottom
 224 layer, the peaks at 1172, 1232, and 1405 cm⁻¹ can be ascribed to the vibrations of -CF₂-,
 225 indicating that the bottom layer is the commercial PVDF membrane (Boccaccio et al.
 226 2002). The membrane morphology and chemical composition analysis confirm the
 227 successful fabrication of PB/PVDF composite membrane.

228 To evaluate the impact of the PB surface layer on the filtration performance of the
 229 composite membrane, both the water permeabilities of the pristine PVDF membrane
 230 and PB/PVDF composite membrane were measured (details in the Supplementary

231 Materials). As Fig. 2g shows, the water permeability of the PB/PVDF composite
232 membrane ($4.7 \pm 0.1 \text{ L m}^{-2} \text{ h}^{-1} \text{ kPa}^{-1}$) is significantly lower than that of the pristine
233 PVDF membrane ($111.5 \pm 2.0 \text{ L m}^{-2} \text{ h}^{-1} \text{ kPa}^{-1}$), because the PB surface layer adds a
234 significant resistance to water permeation.

235 *3.2. Tl removal with the PB/PVDF composite membrane*

236 *3.2.1 Impact of permeate flux on Tl removal*

237 The impact of permeate flux on the Tl removal efficiency of the PB/PVDF
238 composite membrane was investigated (Fig. 3a). With a permeate flux lower than $140 \text{ L m}^{-2} \text{ h}^{-1}$, a high Tl removal efficiency ($> 97 \text{ \%}$) was achieved. Since the Tl removal
239 efficiency of the pristine PVDF membrane is negligible (details in the Supplementary
240 Materials), the excellent Tl removal capability of the PB/PVDF composite membrane
241 is attributed to the adsorption by the PB layer, a process that has been extensively
242 studied in literatures (Lehmann and Favari 1984, Mohammad et al. 2014, Yang et al.
243 2008). As the permeate flux further increased (i.e., $> 140 \text{ L m}^{-2} \text{ h}^{-1}$), the Tl removal
244 efficiency drastically decreased likely due to the shortened hydraulic retention time and
245 reduced contact between the Tl ions and the PB layer. Based on the above analysis, a
246 moderate permeability flux ($\sim 100 \text{ L m}^{-2} \text{ h}^{-1}$) was chosen for all membrane filtration
247 experiments discussed in the following sections.

248

249

251 **Fig. 3** TI removal capability of the PB/PVDF composite membrane. (a) Impact of permeate flux
252 on the TI removal efficiency. In each experiment, the initial TI concentration and pH of the feed
253 solution were 1 mg/L and 3, respectively. (b) Impact of initial TI concentration on the TI removal
254 efficiency (orange columns, left vertical axis) and the corresponding TI concentration in the
255 permeate stream (green columns, right vertical axis). In each experiment, the permeate flux
256 and the pH of the feed were controlled at $\sim 100 \text{ L m}^{-2} \text{ h}^{-1}$ and 3, respectively. (c) Impact of pH
257 on the TI removal efficiency. In each experiment, the permeate flux and initial TI concentration
258 of the feed solution were set at $\sim 100 \text{ L m}^{-2} \text{ h}^{-1}$ and 1 mg/L, respectively. (d) Impact of co-existing
259 ions on the TI removal efficiency. Five representative ions, Pb^{2+} (red columns), Cu^{2+} (yellow
260 columns), Cd^{2+} (blue columns), Zn^{2+} (green columns), and Fe^{2+} (purple columns) were used as
261 the co-existing ions in the measurements, and for each ion, the concentration varied from 10 to
262 1,000 mg/L. In each measurement, the initial TI concentration and pH of the feed solution were
263 1 mg/L and 3, respectively, and the permeate flux was controlled at $\sim 100 \text{ L m}^{-2} \text{ h}^{-1}$. In panels
264 (a), (b), (c), and (d), each TI removal efficiency was determined via measuring the TI
265 concentration in the permeate stream after 60 mL permeate was produced. (e) TI removal
266 efficiency (red circles, left vertical axis) and TI concentration in the permeate stream (blue
267 squares, right vertical axis) as a function of the cumulative permeate volume. In the experiment,
268 the initial TI concentration and pH of the feed solution were 1 mg/L and 3, respectively, and the
269 permeate flux was controlled at $\sim 100 \text{ L m}^{-2} \text{ h}^{-1}$. The TI removal efficiency was determined via
270 measuring the TI concentration in the permeate stream after every 60 mL of permeate was
271 produced.

272

273 3.2.2 Impact of TI concentration on TI removal

274 To evaluate the performance of the PB/PVDF composite membrane on treating
275 different TI wastewaters, the TI removal efficiencies of the PB/PVDF composite
276 membrane were determined using feed solutions with varied initial TI concentrations.
277 With increasing initial TI concentration, the TI removal efficiency increases (orange
278 columns in Fig. 3b), yet the effluent TI concentration also increases (green columns in
279 Fig. 3b).

280 The maximum allowable Tl concentrations for industrial wastewater discharge are
281 140 and 5 $\mu\text{g L}^{-1}$ in US and China, respectively (Liu et al. 2019a). Results from Fig. 3b
282 suggest that, as long as the feed Tl concentration does not exceed 200 $\mu\text{g L}^{-1}$, using the
283 PB/PVDF membrane with the selected operating condition can meet the discharge
284 standards in both the US and China. For higher feed concentration (e.g., $>200 \mu\text{g L}^{-1}$)
285 and stringent discharge standard (e.g., $<5 \mu\text{g L}^{-1}$), compliance of effluent quality can be
286 achieved by increasing the Tl-Pb contact time via using a slower filtration rate or
287 employing multi-stage filtration (Fig. S4 in the Supplementary Materials).

288 *3.2.3 Impact of pH on Tl removal*

289 Since Tl wastewaters could come from a variety of different sources, the pH of the
290 wastewaters can vary substantially (Pavoni et al. 2018) and its impact on Tl removal
291 was thus investigated. The Tl removal efficiencies of the PB/PVDF composite
292 membrane were evaluated at pH from 3 to 12 (Fig. 3c). As pH increased from 3 to 11,
293 the Tl removal efficiency remained relatively steady ($> 96 \%$). The Tl removal
294 efficiency was compromised only when pH increased beyond 12 as the PB structure
295 was destructed under such an alkaline condition (Fig. S5 in the Supplementary
296 Materials). Based on previous studies, the destruction of PB can be explained by its
297 reaction with hydroxide ions that produces ferric hydroxide and ferrocyanide (Koncki
298 et al. 2001, Koncki and Wolfbeis 1998). These results suggest that the PB/PVDF
299 composite membrane is functional over a wide range of pH except for highly alkaline
300 conditions.

301 *3.2.4 Impact of co-existing cations on Tl removal*

302 Tl wastewaters usually contain other heavy metal ions that co-exist with Tl in the
303 source minerals (Liu et al. 2021a, Luo et al. 2020, Tatsi and Turner 2014). Thus, the
304 impact of co-existing cations on Tl removal by the PB/PVDF composite membrane was

305 investigated. Five representative heavy metal ions (i.e., Pb^{2+} , Cu^{2+} , Cd^{2+} , Ni^{2+} , and Zn^{2+})
306 were employed to evaluate the Tl removal efficiencies of the PB/PVDF composite
307 membrane in the presence of co-existing heavy metal ions (Fig. 4d). In the feed
308 solutions, the concentration of the co-existing heavy metal ions varies from 10 to 1000
309 mg L^{-1} , which is 10 to 1000 times higher than the Tl concentration (i.e., 1 mg L^{-1}).
310 However, the Tl removal efficiency still exceeded 90 % in all cases regardless of the
311 co-existing ion species or concentrations (Fig. 4d), suggesting that the adsorption of Tl
312 by the PB/PVDF composite membrane is highly selective. The exact mechanism of the
313 high Tl selectivity of PB has not be fully elucidated. Previous studies have attributed
314 the selectivity of PB toward Tl^{+} adsorption to the favorable ion exchange between Tl^{+}
315 and K^{+} on PB lattices (Lopez et al. 2021, Zhao et al. 2020). More recent work revealed
316 that that ion dehydration might also play an important role in the selective Tl removal
317 of PB against other ions as the dehydrated Tl^{+} can more easily enter the crystal lattices
318 of PB (Zhang et al. 2022).

319 *3.2.5 Tl adsorption capacity*

320 The capacity of the PB/PVDF composite membrane for Tl removal is limited as
321 the removal mechanism is adsorption instead of rejection (Khulbe and Matsuura 2018,
322 Yang et al. 2021, Zhang et al. 2018b). The Tl removal capacity of the PB/PVDF
323 composite membrane was determined by a long-term filtration experiment using a 1
324 mg L^{-1} Tl feed solution. When the cumulative permeate volume was less than 540 mL,
325 the Tl removal efficiency could remain stable and high ($\sim 95 \%$), and the Tl
326 concentration in the permeate stream was less than 50 $\mu\text{g L}^{-1}$. When the cumulative
327 permeate volume exceeded 540 mL, a gradual increase in permeate Tl concentration
328 was observed, which suggests that the top portion of the PB layer started to become
329 saturated. Continued filtration of Tl wastewater further extended the saturation zone

330 and reduced the Tl removal efficiency. If we set 540 mL as the cumulative permeate
 331 volume below which the permeate quality (i.e., Tl concentration) is considered as
 332 compliant, the Tl content in the PB layer (i.e., PB-Tl composite) is calculated to be 95.8
 333 \pm 9.6 mg g⁻¹ (details in the Supplementary Materials). After Tl adsorption, the
 334 PB/PVDF composite membrane could maintain its structure (Fig. 2d and Fig. S6).

335 *3.2.5 Regeneration of the PB/PVDF composite membrane and Tl recovery*

336 Due to the strong attraction between PB and Tl, in-situ desorption of Tl from PB is
 337 highly challenging (Zhao et al. 2020). Since the binding of the PB layer and PVDF
 338 membrane substrate is weak (Fig. 2D), the PB/PVDF composite membrane can be
 339 regenerated by removing the PB-Tl composite layer and reconstructing the PB layer on
 340 the PVDF membrane surface. Specifically, hydraulic backwash with DI water was
 341 applied to detach the PB-Tl composite layer from the PVDF membrane after Tl
 342 adsorption, and the performance of the reconstructed PB/PVDF composite membrane
 343 was evaluated (Fig. 4a). The regenerated PB/PVDF membrane was tested for a
 344 cumulative permeate volume of 540 mL with a feed Tl concentration of 1 mg L⁻¹.

345
 346 **Fig. 4** Regeneration of the PB/PVDF composite membrane and Tl recovery. (a) Tl removal
 347 efficiency as a function of cumulative permeate volume in the membrane filtration experiment
 348 by repeatedly constructing and decomposing the PB/PVDF composite membrane for 3 times
 349 (i.e., 3 trials). In each trial, the PB/PVDF composite membrane was first constructed, and then
 350 tested with a permeate flux of \sim 100 L m⁻² h⁻¹ using 1 mg/L Tl feed solution at pH 3.0. After 540
 351 mL of the permeate was produced, the PB/PVDF composite membrane was decomposed by
 352 hydraulic backwash using 20 mL DI water. The photographic images depict the membrane at
 353 different stages. (b) Measured Tl content in the PB-Tl composite obtained from each trial. In
 354 each trial, the PB-Tl composite was obtained after drying the suspension from hydraulic

355 backwash.

356

357 The performance of the Tl removal was reproduceable using the regenerated
358 PB/PVDF membrane (Fig. 4a). Photographic images in Fig. 4a show that the PB/PVDF
359 composite membrane can be mostly removed by hydraulic backwash using DI water
360 (as indicated by the almost complete disappearance of the dark blue top layer after
361 backwash). As mentioned earlier, the easy detachment of the PB layer from the PVDF
362 substrate can be attributed to their weaking binding. Once the PB/PVDF composite
363 membrane was reconstructed, the Tl removal efficiency was restored. In all three trials
364 of Tl removal using regenerated PB/PVDF composite membrane, outstanding Tl
365 removal capability was observed, demonstrating the viability of PB/PVDF composite
366 membrane regeneration.

367 After hydraulic backwash, the PB layer with adsorbed Tl was removed from the
368 PVDF membrane substrate as a suspension of PB-Tl composite. Since PB has a
369 relatively large Tl adsorption capacity (Fig. 3e), the PB-Tl composite has the potential
370 to be recovered Tl resource. The Tl content in the PB-Tl composite was measured to be
371 92.2 ± 11.4 mg/g (Fig. 4b), which is consistent with the Tl adsorption capacity of PB
372 (95.8 ± 9.6 mg/g). In comparison, the Tl contents in natural minerals are usually lower
373 than 20 mg/g, significantly lower than that in the PB-Tl composite (Baceva et al. 2014,
374 Dordevic et al. 2021). Thus, in terms of Tl content, the PB-Tl composite can be
375 considered as a high-grade Tl mineral.

376 *3.4. Dynamic PB/PVDF Composite Membrane for Tl Recovery from Wastewaters*

377 Based on the experimental results presented in this study, a dynamic composite
378 membrane process is proposed for Tl removal and recovery from wastewaters using
379 full-scale membrane modules (Fig. 5a). The proposed process consists of three stages:
380 PB layer formation, adsorptive filtration of Tl, and hydraulic backwash. For PB layer

381 formation, a suspension of PB synthesized using FeCl_3 and $\text{K}_4[\text{Fe}(\text{CN})_6] \cdot 3\text{H}_2\text{O}$ is
 382 filtered by a commercial PVDF membrane module to form a top PB layer for Tl
 383 adsorption. Through adsorptive filtration, Tl in the wastewater is efficiently removed
 384 by the PB layer on the PB/PVDF composite membrane. Once the PB layer is partially
 385 saturated with adsorbed Tl to the extent that the permeate quality is non-compliant,
 386 hydraulic backwash with freshwater is applied to remove the PB-Tl composite on the
 387 PVDF membrane and recover it in the form of a suspension. Drying the suspension
 388 recovers the PB-Tl composite as a high-content source of Tl. The backwashed PVDF
 389 membrane module can be reused for the formation of new PB/PVDF composite
 390 membrane module, which starts the next cycle of Tl recovery. We note that the
 391 formation of new PB/PVDF membrane involves only the filtration of a PB suspension
 392 and can be achieved practically even with commercial membrane modules.

393

394
 395 **Fig. 5** Tl wastewater treatment enabled by a dynamic composite membrane. (a) Schematic
 396 illustration of the dynamic PB/PVDF composite membrane process. (b) A simple economic
 397 analysis of the chemicals involved in the dynamic composite membrane process. The analysis
 398 was conducted based on the assumption that 1 kg Tl was recovered.

400 To further evaluate the economic viability of this dynamic composite membrane
 401 process, a simplified economic analysis was performed based on the values of
 402 chemicals used and recovered (Fig. 5b). The analysis is based on recovering 1 kg of Tl

403 which has a value of ~\$ 7,600 according to literature (Reilly 2020). Based on the Tl
404 content in the PB-Tl composite (Fig. 4b), recovering 1 kg of Tl requires 9.49 kg of PB
405 the synthesis of which consumes 7.17 kg of FeCl_3 and 14.01 kg of $\text{K}_4[\text{Fe}(\text{CN})_6] \cdot 3\text{H}_2\text{O}$.
406 Since the price of FeCl_3 and $\text{K}_4[\text{Fe}(\text{CN})_6] \cdot 3\text{H}_2\text{O}$ are \$ 0.45 and \$ 33.00 per kilogram,
407 respectively (from www.alibaba.com), the total cost of FeCl_3 and $\text{K}_4[\text{Fe}(\text{CN})_6] \cdot 3\text{H}_2\text{O}$
408 required to recover 1 kg of Tl is estimated to be \$ 465.56, accounting for only 6.1% of
409 the value of the recovered Tl. While such an analysis only considers the costs of the
410 core materials, the high value of Tl and the very low cost of the core materials for
411 synthesizing the adsorbent suggests a strong potential for the proposed dynamic
412 composite membrane process to be economically viable. To fully evaluate the economic
413 competitiveness of the process, a more comprehensive technoeconomic analysis based
414 on data from pilot-scale investigation is required, which is beyond the scope of the
415 current study.

416

417 **4. Conclusions**

418 A dynamic composite membrane process has been demonstrated for Tl removal
419 and recovery from industrial wastewaters. Specifically, a PB/PVDF composite
420 membrane comprising a PB surface layer and a PVDF membrane substrate has been
421 shown to be able to effectively remove Tl from wastewaters of different Tl
422 concentrations (i.e., $50\text{-}1000 \mu\text{g L}^{-1}$) over a wide range of pH (i.e., 3-11). The adsorption
423 of Tl was highly selective with minimal interference from co-existing heavy metal ions
424 at much higher concentrations. The Tl removal rate of the PB/PVDF composite
425 membrane was over 90 % until the PB layer was partially saturated (corresponding to
426 a Tl content of $95.8 \pm 9.6 \text{ mg g}^{-1}$ in this study). The PB layer with adsorbed Tl can be
427 readily removed and recovered as a high-content source of Tl with simple hydraulic

428 backwash, while the backwashed PVDF membrane can be reused for forming a new
429 PB/PVDF composite membrane for next-cycle Tl recovery. A simple economic analysis
430 based on the costs of Tl and adsorbents suggests that the proposed dynamic composite
431 membrane process has a strong potential to become an economically competitive
432 process for Tl removal and recovery from industrial wastewaters.

433 **Acknowledgement**

434 Z.W. and J. J. acknowledge the support from the Program for Guangdong Introduction
435 of Innovative and Entrepreneurial Teams (2019ZT08L213). Z.W. acknowledges the
436 support from the National Science Foundation of China (52100079). Z.W. and D. H.
437 acknowledge the support from the Science and Technology Planning Project of
438 Guangdong Province (2021A0505110013). S. Lin acknowledges the support from the
439 Water Research Foundation via the Paul L. Busch Award and from the National Science
440 Foundation via Grant #1903685.

441

442 **References**

443 Baceva, K., Stafilov, T., Sajn, R., Tanaselia, C. and Makreski, P. (2014) Distribution
444 of chemical elements in soils and stream sediments in the area of abandoned Sb-
445 As-Tl Allchar mine, Republic of Macedonia. Environmental Research 133, 77-89.
446 Baker, R.W. (2012) Membrane Technology and Applications, John Wiley & Sons,
447 Hoboken, NJ.

448 Boccaccio, T., Bottino, A., Capannelli, G. and Piaggio, P. (2002) Characterization of
449 PVDF membranes by vibrational spectroscopy. Journal of Membrane Science

450 210(2), 315-329.

451 Dordevic, T., Drahota, P., Kolitsch, U., Majzlan, J., Peresta, M., Kiefer, S., Stoger-

452 Pollach, M., Tepe, N., Hofmann, T., Mikus, T., Tasev, G., Serafimovski, T., Boev, I.

453 and Boev, B. (2021) Synergetic Tl and As retention in secondary minerals: An

454 example of extreme arsenic and thallium pollution. *Applied Geochemistry* 135.

455 Hermassi, M., Granados, M., Valderrama, C., Ayora, C. and Cortina, J.L. (2022)

456 Recovery of rare earth elements from acidic mine waters: An unknown secondary

457 resource. *Science of the Total Environment* 810.

458 Huangfu, X.L., Jiang, J., Lu, X.X., Wang, Y., Liu, Y.Z., Pang, S.Y., Cheng, H.J., Zhang,

459 X. and Ma, J. (2015) Adsorption and Oxidation of Thallium(I) by a Nanosized

460 Manganese Dioxide. *Water Air and Soil Pollution* 226(1).

461 Jegatheesan, V., Pramanik, B.K., Chen, J.Y., Navaratna, D., Chang, C.Y. and Shu, L.

462 (2016) Treatment of textile wastewater with membrane bioreactor: A critical review.

463 *Bioresource Technology* 204, 202-212.

464 Juang, Y.J., Nurhayati, E., Huang, C.P., Pan, J.R. and Huang, S.M. (2013) A hybrid

465 electrochemical advanced oxidation/microfiltration system using BDD/Ti anode

466 for acid yellow 36 dye wastewater treatment. *Separation and Purification*

467 *Technology* 120, 289-295.

468 Judd, S. (2008) The status of membrane bioreactor technology. *Trends in*

469 *Biotechnology* 26(2), 109-116.

470 Khulbe, K.C. and Matsuura, T. (2018) Removal of heavy metals and pollutants by
471 membrane adsorption techniques. *Applied Water Science* 8(1).

472 Kim, K.Y., Kim, H.S., Kim, J., Nam, J.W., Kim, J.M. and Son, S. (2009) A hybrid
473 microfiltration-granular activated carbon system for water purification and
474 wastewater reclamation/reuse. *Desalination* 243(1-3), 132-144.

475 Koncki, R., Lenarczuk, T., Radomska, A. and Glab, S. (2001) Optical biosensors
476 based on Prussian Blue films. *Analyst* 126(7), 1080-1085.

477 Koncki, R. and Wolfbeis, O.S. (1998) Composite films of Prussian Blue and N-
478 substituted polypyrroles: Fabrication and application to optical determination of
479 pH. *Analytical Chemistry* 70(13), 2544-2550.

480 Lehmann, P.A. and Favari, L. (1984) Parameters for the adsorption of thallium ions
481 by activated charcoal and Prussian blue. *J Toxicol Clin Toxicol* 22(4), 331-339.

482 Li, H.S., Zhang, H.G., Long, J.Y., Zhang, P. and Chen, Y.H. (2019) Combined Fenton
483 process and sulfide precipitation for removal of heavy metals from industrial
484 wastewater: Bench and pilot scale studies focusing on in-depth thallium removal.
485 *Frontiers of Environmental Science & Engineering* 13(4).

486 Lin, S.H., Hatzell, M., Liu, R.P., Wells, G. and Xie, X. (2021) Mining resources from
487 water. *Resources Conservation and Recycling* 175.

488 Liu, J., Luo, X.W., Sun, Y.Q., Tsang, D.C.W., Qi, J.Y., Zhang, W.L., Li, N., Yin, M.L.,

489 Wang, J., Lippold, H., Chen, Y.H. and Sheng, G.D. (2019a) Thallium pollution in
490 China and removal technologies for waters: A review. *Environment International*
491 126, 771-790.

492 Liu, J., Wang, J., Tsang, D.C.W., Xiao, T.F., Chen, Y.H. and Hou, L.P. (2018) Emerging
493 Thallium Pollution in China and Source Tracing by Thallium Isotopes.
494 *Environmental Science & Technology* 52(21), 11977-11979.

495 Liu, Y., Wei, L.Z., Luo, D.G., Xiao, T.F., Lekhov, A., Xie, X.M., Huang, X.X. and Su, X.T.
496 (2021a) Geochemical distribution and speciation of thallium in groundwater
497 impacted by acid mine drainage (Southern China). *Chemosphere* 280.

498 Liu, Y.L., Li, Y.T., Wang, L., Wang, W. and Ma, J. (2021b) Enhanced Trace TI Removal
499 with Ferrate through the Addition of Mn(II): Effect and Mechanism. *ACS ES&T*
500 Engineering 1(3), 571-580.

501 Liu, Y.L., Zhang, J., Huang, H.M., Huang, Z.S., Xu, C.B., Guo, G.J., He, H.Y. and Ma,
502 J. (2019b) Treatment of trace thallium in contaminated source waters by ferrate
503 pre-oxidation and poly aluminium chloride coagulation. *Separation and*
504 *Purification Technology* 227.

505 Lopez, Y.C., Ortega, G.A., Martinez, M.A. and Reguera, E. (2021) Magnetic Prussian
506 Blue derivative like absorbent cages for an efficient thallium removal. *Journal of*
507 *Cleaner Production* 283.

508 Luo, C., Routh, J., Dario, M., Sarkar, S., Wei, L.Z., Luo, D.G. and Liu, Y. (2020)

509 Distribution and mobilization of heavy metals at an acid mine drainage affected
510 region in South China, a post-remediation study. *Science of the Total Environment*
511 724.

512 Mohammad, A., Faustino, P.J., Khan, M.A. and Yang, Y. (2014) Long-term stability
513 study of Prussian blue - a quality assessment of water content and thallium
514 binding. *Int J Pharm* 477(1-2), 122-127.

515 Moore, D., House, I. and Dixon, A. (1993) Thallium poisoning. Diagnosis may be
516 elusive but alopecia is the clue. *British Medical Journal* 306(6891), 1527.

517 Mori, Y., Oota, T., Hashino, M., Takamura, M. and Fujii, Y. (1998) Ozone-
518 microfiltration system. *Desalination* 117(1-3), 211-218.

519 Mulder, M. (1996) Basic principles of membrane technology, Springer, Dordrecht,
520 Netherlands.

521 Ning, Z.P., Liu, E.G., Yao, D.J., Xiao, T.F., Ma, L., Liu, Y.Z., Li, H. and Liu, C.S. (2021)
522 Contamination, oral bioaccessibility and human health risk assessment of thallium
523 and other metal(loid)s in farmland soils around a historic Tl-Hg mining area.
524 *Science of the Total Environment* 758.

525 Pavoni, E., Covelli, S., Adami, G., Baracchini, E., Cattelan, R., Crosera, M., Higueras,
526 P., Lenaz, D. and Petranich, E. (2018) Mobility and fate of Thallium and other
527 potentially harmful elements in drainage waters from a decommissioned Zn-Pb
528 mine (North-Eastern Italian Alps). *Journal of Geochemical Exploration* 188, 1-10.

529 Peter, A.L.J. and Viraraghavan, T. (2005) Thallium: a review of public health and
530 environmental concerns. *Environment International* 31(4), 493-501.

531 Reilly, J.F. (2020) Mineral Commodity Summaries 2020, U.S. Geological Survey,
532 Reston, Virginia.

533 Riyaz, R., Pandalai, S.L., Schwartz, M. and Kazzi, Z.N. (2013) A Fatal Case of
534 Thallium Toxicity: Challenges in Management. *Journal of Medical Toxicology* 9(1),
535 75-78.

536 Shanmuganathan, S., Johir, M.A.H., Nguyen, T.V., Kandasamy, J. and Vigneswaran,
537 S. (2015) Experimental evaluation of microfiltration-granular activated carbon
538 (MF-GAC)/nano filter hybrid system in high quality water reuse. *Journal of*
539 *Membrane Science* 476, 1-9.

540 Smith, A.L., Stadler, L.B., Love, N.G., Skerlos, S.J. and Raskin, L. (2012) Perspectives
541 on anaerobic membrane bioreactor treatment of domestic wastewater: A critical
542 review. *Bioresource Technology* 122, 149-159.

543 Tatsi, K. and Turner, A. (2014) Distributions and concentrations of thallium in
544 surface waters of a region impacted by historical metal mining (Cornwall, UK).
545 *Science of the Total Environment* 473, 139-146.

546 Vincent, T., Taulemesse, J.M., Dauvergne, A., Chanut, T., Testa, F. and Guibal, E.
547 (2014) Thallium(I) sorption using Prussian blue immobilized in alginate capsules.
548 *Carbohydrate Polymers* 99, 517-526.

549 Vipin, A.K., Fugetsu, B., Sakata, I., Isogai, A., Endo, M., Li, M.D. and Dresselhaus,
550 M.S. (2016) Cellulose nanofiber backboned Prussian blue nanoparticles as
551 powerful adsorbents for the selective elimination of radioactive cesium. *Scientific
552 Reports* 6.

553 Wu, S.M., Xu, Y., Li, X.L., Tong, R.F., Chen, L., Han, Y.D., Wu, J.B. and Zhang, X. (2018)
554 Controlled Synthesis of Porous Hierarchical ZnFe₂O₄ Micro-/Nanostructures with
555 Multifunctional Photocatalytic Performance. *Inorganic Chemistry* 57(24), 15481-
556 15488.

557 Xiao, K., Liang, S., Wang, X.M., Chen, C.S. and Huang, X. (2019) Current state and
558 challenges of full-scale membrane bioreactor applications: A critical review.
559 *Bioresource Technology* 271, 473-481.

560 Xu, H.Y., Luo, Y.L., Wang, P., Zhu, J., Yang, Z.H. and Liu, Z.M. (2019) Removal of
561 thallium in water/wastewater: A review. *Water Research* 165.

562 Yang, Y., Faustino, P.J., Progar, J.J., Brownell, C.R., Sadrieh, N., May, J.C., Leutzinger,
563 E., Place, D.A., Duffy, E.P., Yu, L.X., Khan, M.A. and Lyon, R.C. (2008) Quantitative
564 determination of thallium binding to ferric hexacyanoferrate: Prussian blue. *Int J
565 Pharm* 353(1-2), 187-194.

566 Yang, Y., Xiong, Z., Wang, Z., Liu, Y., He, Z.J., Cao, A.K., Zhou, L., Zhu, L.J. and Zhao,
567 S.F. (2021) Super-adsorptive and photo-regenerable carbon nanotube based
568 membrane for highly efficient water purification. *Journal of Membrane Science*

569 621.

570 Zhang, G.S., Fan, F., Li, X.P., Qi, J.Y. and Chen, Y.H. (2018a) Superior adsorption of
571 thallium(I) on titanium peroxide: Performance and mechanism. Chemical
572 Engineering Journal 331, 471-479.

573 Zhang, H.L., Qi, J.Y., Liu, F., Wang, Z.X., Ma, X.M. and He, D. (2022) One-pot
574 synthesis of magnetic Prussian blue for the highly selective removal of thallium(I)
575 from wastewater: Mechanism and implications. Journal of Hazardous Materials
576 423.

577 Zhang, L., Wu, H.B., Madhavi, S., Hng, H.H. and Lou, X.W. (2012) Formation of
578 Fe₂O₃ Microboxes with Hierarchical Shell Structures from Metal-Organic
579 Frameworks and Their Lithium Storage Properties. Journal of the American
580 Chemical Society 134(42), 17388-17391.

581 Zhang, X., Fang, X.F., Li, J.S., Pan, S.L., Sun, X.Y., Shen, J.Y., Han, W.Q., Wang, L.J.
582 and Zhao, S.F. (2018b) Developing new adsorptive membrane by modification of
583 support layer with iron oxide microspheres for arsenic removal. Journal of Colloid
584 and Interface Science 514, 760-768.

585 Zhao, Z., Xiong, Y.H., Cheng, X.K., Hou, X., Yang, Y.X., Tian, Y.P., You, J.L. and Xu,
586 L. (2020) Adsorptive removal of trace thallium(I) from wastewater: A review and
587 new perspectives. Journal of Hazardous Materials 393.

588 Zuo, K.C., Chen, M.S., Liu, F.B., Xiao, K., Zuo, J.L., Cao, X.X., Zhang, X.Y., Liang, P.

589 and Huang, X. (2018) Coupling microfiltration membrane with biocathode
590 microbial desalination cell enhances advanced purification and long-term stability
591 for treatment of domestic wastewater. *Journal of Membrane Science* 547, 34-42.
592