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Abstract—To meet the growing need for extended or exact
precision solvers, an efficient framework based on Integer-
Preserving Gaussian Elimination (IPGE) has been recently de-
veloped which includes dense/sparse LU/Cholesky factorizations
and dense LU/Cholesky factorization updates for column and/or
row replacement. In this paper, we discuss our on-going work
developing the sparse LU/Cholesky column/row-replacement up-
date and the sparse rank-1 update/downdate. We first present
some basic background for the exact factorization framework
based on IPGE. Then we give our proposed algorithms along
with some implementation and data-structure details. Finally, we
provide some experimental results showcasing the performance
of our update algorithms. Specifically, we show that updating
these exact factorizations can be typically 10x to 100x faster
than (re-)factorizing the matrices from scratch.

Index Terms—sparse factorization updates, exact precision,
integer-preserving Gaussian elimination

I. INTRODUCTION

Factorization of the coefficient matrix A is critical for
solving the linear system Ax = b, as it improves both the
efficiency and numerical stability over the direct use of A~*
[1]. Traditionally, this factorization is obtained via floating-
point computations, since such computations can be performed
quickly on computers and, even though they have limited
precision, it is adequate for most applications. Nevertheless,
there are applications where extended precision or exact
precision is needed, such as studies of biological processes,
dynamical systems and mathematical physics [2], [3], scattered
data interpolation, and solving partial differential equations
[4]. A natural method to obtain the exact factorization is
to perform computations with full-precision rational arith-
metic, which has been applied for basic solution valida-
tion in some state-of-the-art exact mathematical programming
solvers: QSopt_ex [5] and SCIP:SoPlex-exact [6], [7]. Yet,
these full-precision rational-arithmetic computations involve
recurring greatest common divisor calculations and irregular
memory usage/access; indeed, they are so expensive in both
computational time and memory that they have been shown to
be the bottleneck of exact linear programming solvers [8].

To address these drawbacks, an exact (dense) factorization
framework based on Integer-Preserving Gaussian Elimina-
tion (IPGE), referred to as the Roundoff-Error-Free (REF)
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LU/Cholesky factorization, was first proposed in [9]. Under
this framework, all operations are guaranteed to be integer
(notably because all the therein divisions are guaranteed
to have zero remainder) and the bit-length of each entry
is bounded polynomially; thereby addressing the time and
memory cost drawbacks of rational factorization. Specif-
ically, a dense LU/Cholesky factorization is an order of
magnitude faster than the exact rational-arithmetic factoriza-
tion [10]. These results were extended in [11] where the
sparse left-looking integer-preserving (SLIP) LU was derived,
which was shown to exactly solve the sparse linear system
Ax = b in time proportional to arithmetic work—to date
the only exact factorization for unsymmetric linear systems
with this asymptotically efficient complexity bound. Finally,
this sparse factorization was shown to be significantly faster
than sparse rational-arithmetic factorization (like those used in
QSopt/Soplex).

When a factorization of the coefficient matrix A is available
and a closely related matrix A is obtained by making elemen-
tary changes to A, then the factorization of A can be efficiently
obtained by modifying/updating the available factorization of
A. This process, known as factorization update, is fundamental
for many applications [12]-[15]. The most frequently used
updates are the column and/or row replacement, and the rank-
1 update/downdate. The LU factorization update for change
of basis (column replacement) is heavily used in the simplex
algorithm [1], [13], [16], and the Cholesky factorization rank-
1 update/downdate is used in the linear programming dual
active set algorithm [17]. Directly applying these traditional
factorization update algorithms to the REF LU/Cholesky
factorization was shown to be inadequate due to bit-length
growth; indeed the update can be as costly as computing a
new exact factorization from scratch [18]. Therefore, a new
(dense) REF factorization update, referred to as the push-
and-swap approach, was derived and shown to be efficient
[18]. The key idea of the push-and-swap approach is that
the to-be-replaced column, say column k, is pushed out of
the matrix by swapping it sequentially with the column to
its right (column k 4+ 1). These adjacent column swaps are
done so that the factorization obtained via updates is identical
to factorizing the permuted matrix from scratch. Analogously,
in a yet-to-be-published manuscript, Escobedo and Gudivada
derive an exact (dense) rank-1 update/downdate algorithm for
the exact LU/Cholesky factorization. Since most real-world



linear programming matrices are sparse, it is critical that the
REF updates exploit sparsity. That is the topic of this paper.
The paper is organized as follows. Section 2 reviews
the REF factorization framework [9] and the different types
of sparse exact factorization update algorithms. Section 3
presents the implementation details of the sparse REF update
algorithms. Section 4 tests the efficiency of the algorithms
on a set of real-world matrices from the SuiteSparse Matrix
collection [19]. Finally, Section 5 draws conclusions and
discusses the outlook for future research on this topic.

II. BACKGROUND AND FUNDAMENTALS

For the sake of 31mphc1ty, this paper denotes the integer
sequence {k,k+1,- —1,k} as [k..k] and makes the fol-
lowing assumptions: (1) A = {am} ez, ie(l.n], je
[1..n] is a nonsingular matrix; (ii) A is properly permuted
such that ay, 5, is the k-th pivot; and (iii) A is factorized via
REF LU as A = LDU. Note that these assumptions are a
matter of convenience and assumption (ii) can be removed
with simple modifications to the presented algorithms [18].
In this section, we first review integer-preserving Gaussian
elimination (IPGE) [20]-[22], which is the basis of the REF
factorization framework. Next, we discuss the theorems for
sparse exact factorization update. The proofs of these theorems
have been carefully derived and verified, and will appear
in a future publication. Due to space limitations and the
relative simplicity of other update algorithms, only the detailed
algorithm for sparse exact LU update for column replacement
is given.

A. Integer-Preserving Gaussian Elimination (IPGE)

IPGE is an elimination process for solving the linear system
Ax = b, which is defined as follows [20]-[22]:

Definition 1: For k € [0..n], let A¥ = {af,},i,j € [1.n]
denote the k-th iteration IPGE matrix of A. Then, the pivot
element selected from Ak*1 to perform the k-th IPGE iteration
can be denoted as p* := a’,:fkl, where A% := A4 and p° := 1.
Then, for k € [1..n], a j is iteratively computed as follows:
-1 if i =k,

Ty 1 k=1 k-1 (D
otherwise.

The key property of (1), termed IPGE Update, is that the
division is guaranteed to have zero remainder, and thus for
all k € [1..n], all entries of A* remain in the integer domain
[20]-[22]. Therefore, exact precision is achieved without using
rational arithmetic. Furthermore, as the next theorem states,
each entry of A* is indeed a subdeterminant of A [20], [21]:

Theorem 2: Let (A)}” k; denote the submatrix induced
by rows 1 to k and ¢ and columns 1 to k and j of A. Then,

ak = det ((A)};;;j ;:3) k=min(i,j)—1. (2

As discussed in [23], the efficiency of IPGE can be im-
proved by exploiting the zero pattern of sparse matrices.
Specifically, if either ak L =0or ak kl 0 in the k-th
iteration of IPGE, then (1) becomes a; ; ’ J Lok kL

Therefore, when a sequence (noted as [k..k]) of IPGE
1terat10ns exists such that for any k € [k..k|, either aﬁ =

or azk = 0, then
% ,0? Pz_l PEJrl . PE k-1
Q=71 7.5 % = %y - 3
pk—l pk—Z p pE » pk >

Effectively, this allows to skip (combine) all the intermediate
operations in a single operation (3), termed History Update.

B. Exact LU/Cholesky Factorization

Building on IPGE, [18] showed how to factorize a given
(full rank) matrix as A = LDU, where L = {l,,;} is a
lower-triangular matrix, U = {u,;} is an upper-triangular
matrix, and D = {d; ;} is a diagonal matrix. Specifically, each
nonzero entry of L, U and D can be obtained as follows.

li; = az?,;l Vi>j, (4
di,i = 1/( ot Z) - 1/( 1 1 = 1a211)7 (5)
wi ;= a; ' Vi<j o (6)

Moreover, when A is a non-singular symmetric positive-
definite matrix, we have U = L7, and thus the REF Cholesky
factorization of A can be obtained as A = LDL™T [18].

Let the frame matrix F' = {f; ;} be defined as (7). Then,
for the exact LU factorization A = LDU, L corresponds to
the lower triangular section of F' (denoted as L = tril(F)),
while U is the upper triangular section of F' (denoted as U =
triu(£")), and the diagonals of F’ are the pivots p, from which
we can compute D. As shown in (7), F' is split into frames or
groups of entries computed in the same IPGE iteration, which
is noted by the superscript (denoted as ). Note that f; ; = a7’;
and that in iteration k only frames with index x > k need to
be updated.

0 0 U 0 _
aij Qs Al - Aig k=0
T T T _
asq | Az Ayp oo Qo4 k=1
F:: (;LO al
k1 k,2
0 1
an,l a’n,2

When A is factorized as A = LDU, solving Ax = b is
done via specialized REF forward and backward substitution
algorithms. Most importantly for this paper, the forward substi-
tution process, LDy = b, can be performed without explicitly
computing D and instead by performing n iterations of the
following equation with y? =b; [9], [11]:

k—1 -
k_ )Y i <k, g
Yi =9 ¢k I)Zrllzkyk i> k. (®)
p

C. Backtracking
To update the exact factorization for column/row replace-

ment, a new push-and-swap algorithm was proposed in [18]
for dense matrices. The core of the push-and-swap approach is



that the to-be-replaced column, k, is “pushed out” of the frame
matrix by swapping it sequentially with the column to its right
(initially, column k£ + 1). A core operation of this algorithm is
that the IPGE Update (1) for some entries must be “undone”
via an operation referred to as backtracking IPGE Update (9).

Theorem 3 (Backtracking): For k € [1..min(%, j) — 1], given

k. one can obtain without roundoff error the IPGE entry in

@i j>

the preceding iteration, afj_-l, as follows:
E k-1 k-1 _k—1
B a; :p +ag a;
alf: - 1 _ 1,] - V2 ) (9)

,] p

The backtracking process is made more efficient for sparse
matrices by combining it with the History Update (3). Specif-
ically, consider the case when either a’,j;l =0 or aﬁ;l =
0, then the backtracking operation (9) becomes af’j_-l
af’j p"=1/p*. Therefore, if there exists a sequence (noted as

[k..k]) of backtracking such that for any k € [k..k], either

a’,j;l =0or af,;l = 0, then
e .._Pk_2pk_1az __pﬁ_laz (10)
Wi T gk pktl F—1 kI F hi
p=p P p P

Effectively, this allows to skip (combine) all the intermediate
backtracking operations in a single operation (10), termed
backtracking History Update.

D. Sparse Exact LU Update for Column Replacement

This section presents an algorithm to solve the following
problem: Given a sparse matrix A, its (sparse) exact factor-
ization A = LDU (stored in frame matrix F'), and a new
column v € Z" to replace the k-th column of A, obtain the
exact factorization of the matrix obtained by replacing the k-th
column of A with v. For this purpose, we first give a high-
level summary of the push-and-swap approach, which is the
algorithm devised in [18] to solve the dense version of our
problem.

Note that the to-be-replaced column k is unrelated to
columns 1,..,k — 1 of F, is intimately related to column k
of F, and an entry from it was used as a pivot to compute
columns k£ + 1,...,n of F. The key idea of the (dense) push-
and-swap approach is that column k is pushed out of the
frame matrix by swapping it sequentially with the column
to its right (initially, column k£ + 1). Such adjacent column
swaps are done in such a way that the frame matrix obtained
is identical to the factorization that one would have obtained
by factorizing the permuted matrix, but using some shortcuts
expediting the computations: notably, frames k + 2, ...,n only
change sign when columns %k and £+ 1 are swapped (a special
case of Theorem 8). The core operation in the push-and-
swap approach is the aforementioned backtracking operation.
Finally, when the leaving column is in the last position, it can
be swapped with the solution of LDx = v (i.e., the incoming
vector v after performing a REF forward substitution on it).

The key idea of our sparse exact push-and-swap approach
is that, when the matrix A (and thus its factorization) is
sparse, then pushing the to-be-replaced column k& does not

need to be done by swapping it sequentially with the next
column to its right; instead column k can “leap” several
columns simultaneously (as opposed to only one column) by
exploiting the zero pattern. Depending on the zero pattern,
the frame matrix resulting from the leap is computed with
one of the algorithms presented next: the diagonal permutation
pivot update (DPPU) and the column permutation pivot update
(CPPU) algorithms.

The DPPU algorithm is used when the submatrix of F' has
the pattern shown in (11) or (12). The CPPU algorithm is
applied when the submatrix of F' has the pattern shown in (13),
where k&’ € [k+ 1..n] is the column index of the next nonzero
in the k-th row of F. For better illustration, the original and
new k-th pivots in (11)-(13) are all enclosed in boxes.

a0 0
Kkl n 0 0
(F)kkilk’ = o1 Y
0 0 Jag x
i -
A 1
kok41, n 0 0
(F)k,kil,m,k’ = K1 (12)
0 0 |ap i
L 0 -
ay ) 0 0 |ag
kk+1,---mn
(F)k,k+1,~~~,k’ = a£+1,k+1
(13)

Next, we present the foundational theorems for the sparse
exact LU factorization update algorithm for column replace-
ment.

Theorem 4 (Backtracking in DPPU): Let A be a non-
singular matrix such that the submatrix of its frame matrix F'
has the zero pattern in (11) or (12). Then, for i, j € [k+1..n],

pk'—l
al et ="—fix, (14)
’ p
k—1
afit =" i (15)
' P
Especially, for i,j € [k + 1.k — 1],
al )t =ay =0 (16)

Theorem 5 (Diagonal-wise Switch of Originating Pivot
(DwSOP)): Let F' be the updated frame matrix obtained by
swapping columns and rows k and k" of F, whose submatrix
follows the zero pattern in (11) or (12). Then we have

pF = al7! and p'* = a};),. Moreover, for all entries in

)



frames k to k' —2 but not the entries in the &’-th column or row,
ie, S:={(i,4)|i,j € [k + 1.n]\{K'}, min(7, j) < k' — 1},
p/k
/ ..
fi,j = ﬁfi,jv (Zm]) € S
P
Theorem 6 (DPPU shortcuts): Let F’ be the updated frame
matrix obtained by swapping columns and rows %k and k' of
F', whose submatrix follows the zero pattern in (11) or (12).
For i,5 > k' + 1 (i.e., frames k' to n — 1),

f /i, j = [ 5K

Theorem 7 (Extended Row-wise Switch of Originating Pivot
(xRwSOP)): Let F' be the updated frame matrix obtained by
swapping columns %k and k' of F, whose submatrix has the
pattern shown in (13). Then, we have p* = f;  and p’* =

frx- In addition, for i € [k + 1.n],j € [k + 1.k = 1], f]
can be equivalently obtained without roundoff error via

a7

(18)

Ay (19)
2,7 - pk 7

Moreover, for i € [k + 1.k'],j € [k' + 1.n], f; can be

equivalently obtained without roundoff error via the formula

r fi,jp/k - fi,k’fk,j
fm' - pk-

Theorem 8 (CPPU shortcuts): Let F' be the frame matrix
obtained by swapping columns & and k' of F, whose subma-
trix has the pattern shown in (13). Then for 4,5 € [k’ + 1..n]

fij=—Fij.

In addition, for the entries in the k’-th column of F’ with row
index i € [k + 1..n],

(20)

ey

fiw =—fip (22)

Fig. 1 illustrates the DPPU and CPPU algorithms, which are
built on the above theorems. Due to space limitations and for
simplicity, Fig. 1a only illustrates DPPU for updating I’ when
its submatrix has the pattern (11); the process of updating
F when its submatrix has the pattern (12) requires additional
computations (specifically, to perform iterations of IPGE to k-
th row of F' to obtain row k' of F”). Fig. 1b illustrates CPPU
for the case where only exactly one of fj41 5 and fi r11 is
zero (when both are zero, then the update can be done more
efficiently with DPPU). The sparse exact LU update algorithm
for column replacement, together with the details of the CPPU
and DPPU algorithms, are given as follows, where F' = {f; ;}
is the frame matrix being updated, and the sparse vector v €
Z™ is the entering vector to replace the k-th column of A.
Column addition: Solve LDa,; = v with (8), and add

a,+1 as the (n + 1)-st column of F.

Column pushes: Iteratively push k-th column of F' to posi-
tion n by performing the DPPU algorithm if the subma-
trix of F' has pattern as either (11) or (12), and the CPPU
algorithm otherwise.

DPPU algorithm (Partially illustrated in Fig. 1a):

e backtrack frame k' — 1 by simply multiplying all
entries by & = fy_1 -1/ fr—1,,r—1 (Theorem 4);

e swap columns and rows of indices k and £’;

o scale all entries between frames k — 1 and k' — 1
by A = frr/frw (since entries are swapped)
according to Theorem 7.

o perform IPGE for frame k' — 1 (by multiplying
all entries by Ao = fir—1p—1/fu—1,k-1 if the
submatrix of F' follows pattern in (11)).

CPPU algorithm (Illustrated in Fig. 1b):

o Backtrack column %’ and update the entries with row
index ¢ € [k + 1..n] (in purple) in column & with
the backtracking results;

e Swap column k and %k’ for entries with row index
i € [1..k] (in yellow);

o Perform scaling for entries with column index j €
[k + 1.k — 1] and row index ¢ € [k’ + 1..n] (in
green) by A\ = fj 1/ fr.r (since entries are swapped)
according to (19) in Theorem 7. Moreover, update
entries in the red box according to (20);

o Flip sign for all entries in blue box according to
CPPU shortcuts.

Column swap and deletion: Once the exiting column is
pushed to the n-th position, swap it with the entering
column (column n + 1 of F') and remove it to obtain the
final updated frame matrix.

E. Sparse Exact Cholesky Update for Symmetric Column and
Row Replacement

This algorithm updates L in the exact Cholesky factorization
when the k-th column and row of A are symmetrically
replaced (recall D can be obtained from L). This algorithm
is similar to the one in Subsection II-D, but to maintain
symmetry, only the DPPU algorithm is used. Specifically,
the DPPU algorithm applies when the submatrix of F' has
pattern (11) or (23). Fig. 1a depicts how DPPU is used when
F' has pattern (11); when F' has pattern (23), modifications
are needed. Specifically, the last iteration of backtracking for
column %’ of L does not satisfy the requirement for (10), and
thus the last iteration is done separately using (9), and the
first iteration of IPGE for column k of L needs to be done
separately with (1).

k—1 k—1
a,k,k O ak,k}'
kok+1,- k" .
(F)k,k+1,--~,k’ = 0 i 0 (23)
k-1 K —1
Ay 0 |app

F. Sparse Exact Cholesky Rank-1 Update/Downdate

The sparse exact Cholesky rank-1 update/downdate com-
putes the exact Cholesky factorization of A = A + oww?’
by modifying that of sparse matrix A, where w € Z" is a
sparse vector, and o is either 1 (update) or —1 (downdate). The
following theorem is the basis for this algorithm. Throughout
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Fig. 1: The two sub-algorithms used in sparse exact LU update for column replacement. All entries marked as x must be nonzero.
For all the shaded entries, leave f; ; untouched but update the j-th diagonal of D or i-th diagonal of Dy correspondingly.

this subsection, denote the exact Cholesky factorization of A

given as LDL”, and that of A = A+ oww?! as LDL.
Theorem 9 (Exact Cholesky rank-1 update/downdate):

When using (8) to solve LDx = w or LDX = w, the
following equality holds for & € [0..n],
zk = zF, (24)
In addition, let p° = I; ;, then
_ 5i—1 R e
Jj—1 i (25)

li’j :li’jF—f—O’xj pj*l'

G. Sparse Exact LU Rank-1 Update/Downdate

The sparse exact LU rank-1 update/downdate is an extension
of the sparse exact Cholesky rank-1 update/downdate. It is
used when the change to A is not symmetric; i.e., when A=
A + ouv”. The following theorem shows how to obtain the
exact factorization of A by updating the factorization of A.
Throughout this subsection denote the exact LU factorization
of A as LDU, and that of A = A+ ocuv” as LDU.

Theorem 10 (Exact LU rank-1 update/downdate): When
using (8) to solve LDx = u or LDx =u, and UTDy = v
or UT Dy = v, the following equality holds for k € [0..n],

af =Ty =45 (26)
In addition, let p' = I; ; = i, ;, then
i i1
7 P -1
lzg _lljpj_l +0’"E; z._l, (27)
i —1
; P! 1Y
g, = Uji pj’l + Uy; 1-71 (28)

III. DATA STRUCTURE AND IMPLEMENTATION

This section discusses the data structures and efficient
implementations of the update algorithms.

A. Data Structures

For the sparse matrices in all four update algorithms, we
store 4, L, and UT as an array of sparse column vectors,
where each column vector is independently allocated, thereby
allowing its size to grow or shrink without affecting other
columns. This approach has two advantages: (i) since all

algorithms update the frame matrix F' frame-wise (i.e., update
one or multiple frames per iteration), we can update column(s)
of L and U7 in the same frame(s) as needed and (ii) when the
number of entries in one column of L or UT changes, there
is no need to update other columns. In each column vector,
the first entry is the diagonal entry; however the indices of
the remaining entries are unsorted. Thus, the addition of fill-
in to a column or the deletion of entry from a column can be
done very efficiently. All the sparse exact factorization update
algorithms are implemented using the GNU Multiple Precision
Arithmetic (GMP) Library [24]. Specifically, all entries are
stored as full-precision integers (i.e., mpz_t).

B. Implementation

There are three types of operations involved in all sparse
exact update algorithms. The first type of operation updates
an entry by multiplying with a rational scalar (i.e., l']
fijt/s), such as equations in Theorems 4 and 8, and (19).
The second type performs an IPGE-like update in form of

Z-’J- = (fi,jt — uv)/s, which includes the IPGE update (1)
and (20) in Theorem 7. The third type updates an entry with
a backtracking-like equation in form of f; ; = (f; ;t +uv)/s,
which includes the backtracking operation (9) and the rank-
1 update (i.e., (25), (27) and (28)). In fact, the second and
third types of updates can become pure scaling under certain
condition(s). For example, when f; ;v = 0 or fkf =0, (20)
becomes exactly the same as (19), or when xj_ =0, (25)
becomes I; j = l; jp' 1 /p?~ L. Therefore, when thinking of the
algorithms as updating vectors (as opposed to single entries),
most involve multiplying all entries in a frame or a column/row
of a frame by a common rational scalar. To further improve the
efficiency of the update algorithm by postponing these scalar-
vector multiplications, we introduce two additional diagonal
rational matrices, D, and Dy, such that L = tril(F) x Dy,
and U = Dy * triu(F') (initially, D, = Dy = I). Then, in
the case when all entries in the j-th column (i-th row) of a
frame need to by multiplied by a common scaling factor, we
only update the j-th (i-th) diagonal of Dy (Dy).

Given Dy, and Dy, all shaded entries in Fig. 1 can be up-
dated without explicitly performing the multiplication. Instead,
only Dy, and/or Dy need to be updated. For Fig. 1b, all the
entries in the row of the (ig — 1)-st frame can be updated via



(19) and thus the above technique can also be applied, where
io € [k + 1..K] is the row index such that f; r» = 0.

The implicit update for the j-th column of L by updating the
diagonals of Dy, can remain implicit if the next update for the
j-th column of L still requires only pure multiplication. The
same will hold for the ¢-th row of U. Moreover, the backward
substitution phase of solving Ax = b (i.e., solving Ux = y)
does not require any entries of U to be explicitly updated.
Instead, z} can be solved as

. yip" — Dy (i, ) Z;'l:Hl ui,jx;

T; = pi
where x’ = xp™ [9], Dy (i,1) is the i-th diagonal of Dy and
the pending scaling factor for ¢-th row of U.

There are cases when the entries need to be explicitly
updated (and the corresponding diagonal of D and/or Dy is
then reset to 1): (i) when the explicit factorization A = LDU
is desired/required; (ii) when the j-th column of L is needed to
perform the j-th iteration of IPGE update for given vector or
the forward substitution when solving LDy = b, in which
all entries in that column of L need to be multiplied by
Dy,(4,7); and (iii) when the entries in a row/column of a frame
needs to be partially/entirely updated with the second or third
aforementioned update (i.e., f/; = (fi;t & uv)/s). In these
cases, these updates can also be efficiently done because both
the operand and the result of such updates are guaranteed to
be in integer domain.

The explicit update for case (ii) is needed due to the
following two reasons. The first reason is the use of (3) for
successive IPGE updates in the sparse algorithm. If only one
iteration of IPGE update is needed, the implicit update can
theoretically remain implicit. Consider the j-th column of L is
used to perform the j-th IPGE update for x, and Dy (j,j) # 1,
then p/ =1; ;D(j,j) and the update for x;,7 > j should be

z; = .’I}zpj l‘;JlL]lDL(]u]) — ijil @] DL(],_])
According to this equation, x; can be updated without applying
or changing Dy, (j,j). However, when a sequence of IPGE
updates is performed and (3) is used, the entries will not be
correctly updated. Furthermore, updating z; without applying
any pending scaling factor Dy (j,j) # 1 could result in a
non-integer value of x;, which breaks the exact factorization
framework. Thus, the major reason for explicit update for case
(ii) is to keep the resulting entry in the integer domain.
Consider the case where an entry f; ; needs to be explic-
itly updated by multiplying with a rational number ¢;/t,
ty,to € Z,ged(t1,t2) = 1. For example, in Fig. 1b, all the
green entries in the row of the (i — 1)-th frame must be
explicitly updated with A\ = fj 1/ fi &/, Where i € [k + 1..k/]
is the row index such that f; ;v # 0. In this case, since A
remains the same for all green entries in the same row, it is
computed and stored as a full-precision rational number (as
mpq_t). For such case, instead of performing f; ; = fi ; * t1
and f; ; = fi j/t2 sequentially, the computation can be done
in two steps as f; ; = fi j/t2 followed by f; ; = fi j*t1. Both

xil‘j l‘jl

computation sequence can guarantee the final result, as well as
the intermediate result, to be in integer domain (either division
therein is guaranteed to have zero remainder). However, the
latter computation sequence will be relatively faster since the
first method increases the size of f; ; before the second step.
Consider a different case in which f; ; needs to be updated
but it was implicitly updated with the scaling factor ~ stored
as either Dy, (4, j) or Dy (4,4). Depending on the update to be
performed on f; j, we have three scenarios:

o If f;; needs to be updated explicitly by multiplying
with a rational scalar ¢1/t2, we first compute vt; /to by
removing any common factor between denominator and
numerator. Then follow the procedure discussed above.

o If f;; needs to be updated with an IPGE-like formula
(e f1; = (fist — uv)/5), we compute £, = 7' fi,; —
uv/s with o/ = 4t/s instead of directly solving f; ; =
(vfi,jt —uv)/s. Since the value of t/s is the same for
all entries in the same column/row of a frame, v = yt/s
can be always computed by removing any common
factor between denominator and numerator in advance.
Then f;; = 9'fij — uv/s involves 2 multiplications, 2
divisions and 1 subtraction, while f; ; = (vfi jt —uv)/s
requires 3 multiplication, 2 divisions and 1 subtraction.
Therefore, computing + in advance accelerates this up-
date. Since the update only guarantees f; ;, but not v’ f; ;
or uv/s, to be an integer, we can instead compute fi’, ; as
floor(¥'fi;) - £loor(uv/s).

o If f;; needs to be updated with a backtracking-like
formula (ie., f;; = (fijt +uv)/s), we compute f]; =
v fi.j +uv/s with o/ = ~t/s instead of directly solving
fii (vfijt + wv)/s. Again, v/ = ~At/s can be
always computed in advance for a whole row/column
of a frame, and f;; = +'fi ;j + uv/s involves one less
multiplication. Therefore, knowing that the result must be
an integer, it is more efficient to compute the update as

;=7 fij +uw/s= floor(y fi;) + ceil(uv/s).
where the divisions of floor and ceil are done in exact
arithmetic using mpz_fdiv_g and mpz_cdiv_g.

IV. COMPUTATIONAL TESTS AND ANALYSIS

This section analyzes the performance of the algorithms for
the sparse exact LU update for column replacement and the
sparse exact Cholesky rank-1 update/downdate.

A. Computing Environment and Test Instances

All of the tests were run on an IBM Power8 with 1TB
of RAM with 20 hardware cores (4GHz, dual socket). Only
a single core was used for these experiments. To illustrate
the performance in real-world applications, the sparse LU
column replacement update and the sparse Cholesky rank-1
update/downdate were used in the linear programming simplex
and dual active set algorithms, respectively. We tested on ma-
trices from the LPnetlib group within the SuiteSparse Matrix
Collection [19]. Of the 138 problems from the LPnetlib group,
29 were infeasible and 31 were optimal from the initial basis
or too simple (recorded running time is 0 second) or too large



to solve. Thus we restrict our comparison to the remaining 78
instances. Note that all input matrices are processed such that
all entries are integer, all fixed variables (with same upper and
lower bounds) are removed, and all lower bounds are zero.

B. Results for Sparse Exact LU Column-Replace Update

While the simplex algorithm allows the existence of nonzero
values for the non-basic variables, our simple implementation
of simplex algorithm assumes that all non-basic variables are
zero. Therefore, we use the GLPK library [25] to search for
an initial basis set that meets this assumption. During each
iteration of our implementation of the simplex algorithm, we
solve sparse linear equations exactly to find the entering and
exi iting columns for the basis matrix and obtain the exact
factorization for the new basis matrix from both direct LU
factorization (DLU) and iteratively LU update (LUU).

For each of the 78 cases, we ran simplex for up to 100
iterations to find an optimal basis. Fig. 2 shows the total
time of DLU and LUU for at most 100 iterations. The time
ratio of DLU over LUU for each case ranges from 1.066
(lp_osa_07) to 228.5 (1p_shipl21). Fig. 2 shows that
LUU outperforms DLU in all cases and the improvement is
more significant for larger problems.

DLU always finds a permutation which reduces fill-in and
bit-length of entries, however, the LUU modification may lead
to an undesirable permutation. Therefore, iteratively using
LUU may lead to excessive fill-in or entries of large bit-
length. Thus, we next show the effect of permutation on the
performance of the updates by performing the update based
on the direct factorization of the previous basis matrix, which
can be considered as a rough estimate of the lower-bound of
the update algorithm and thus denoted as lb.

Fig. 3 shows the results of DLU, LUU and the so-called
Ib for case 1p_osa_07, which is the case that the average
time for DLU is closest to that of LUU. Specifically, Fig.
3c shows the time for searching the entering and existing
columns by exactly solving sparse linear equations based on
the factorization from LUU, from which one can see that
several significant jumps occur in the 48th, 54th and 76th
iterations. Moreover, similar jumps happen in the results of
LUU in Figs. 3b, 3e and 3f. However, the results of Ib do not
show this kind of pattern, which indicates that the quality of
the permutation after LUU has dropped significantly during
these iterations and needs to be reset with the help of DLU to
have better performance. This could be the next direction of
improvement for future work on these algorithms.

C. Results for Sparse Exact Cholesky Rank-1 Up/Down-date

This subsection presents the performance of the sparse exact
Cholesky rank-1 update/downdate algorithm. Let B denote the
basis matrix obtained via the GLPK library. Then, from the
remaining columns associated with the non-basic variables,
we select one of the sparsest vectors u and one of the
densest vectors v. Then we compute Ay = BBT and its
exact Cholesky factorization. Next, we find the exact Cholesky
factorizations for A; = Ag + uu’ and Ay = A + vv7
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Fig. 2: Performance of sparse exact LU factorization update for
column replacement, compared with direct LU factorization.

via direct factorization and rank-1 update. Similarly, we find
the factorizations for As = Ay — vvl = A; and A, =
As —uu” = Ay via direct factorization and rank-1 downdate.
For each matrix, Fig. 4 compares the total time of all the direct
factorization to the total time of all rank-1 update/downdate.
Fig. 4 does not include 11 out of the 78 cases because the
recorded total time for either the direct factorization or the
rank-1 update/downdate was 0 second and one case is too large
to solve (1p_fit2p). The time ratio (direct factorization
over rank-1 update/downdate) for each matrix ranges from
1.333 (1p_agg?) to 1698 (1p_perold). Furthermore, the
speedups obtained by our update/downdate algorithm tend to
be higher for larger problems.

V. CONCLUSION

This paper reviews the theoretical foundation and proposed
algorithms for two kinds of updates for sparse exact Cholesky
and LU factorization, namely the update for column and/or
row replacement and rank-1 update/downdate. The paper sum-
marizes the common operations used by these four update
algorithms, and proposes a data structure to efficiently imple-
ment these algorithms. The computational results show that the
update algorithms provide substantial performance gains over
direct factorization. In the future, we will try to further improve
the performance of the sparse exact LU column-replacement
update by checking the quality of the permutation as updates
are made and selectively re-factorizing as needed, and our
finalized open-source code will be made publicly available.
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