
Sparse Exact Factorization Update

Jinhao Chen, Timothy A. Davis
Computer Science and Engineering

Texas A&M University
College Station, USA

jinhchen@tamu.edu, davis@tamu.edu

Christopher Lourenco
Mathematics

United States Naval Academy
Annapolis, USA

lourenco@usna.edu

Erick Moreno-Centeno
Industrial and Systems Engineering

Texas A&M University
College Station, USA

emc@tamu.edu

Abstract—To meet the growing need for extended or exact
precision solvers, an efficient framework based on Integer-
Preserving Gaussian Elimination (IPGE) has been recently de-
veloped which includes dense/sparse LU/Cholesky factorizations
and dense LU/Cholesky factorization updates for column and/or
row replacement. In this paper, we discuss our on-going work
developing the sparse LU/Cholesky column/row-replacement up-
date and the sparse rank-1 update/downdate. We first present
some basic background for the exact factorization framework
based on IPGE. Then we give our proposed algorithms along
with some implementation and data-structure details. Finally, we
provide some experimental results showcasing the performance
of our update algorithms. Specifically, we show that updating
these exact factorizations can be typically 10x to 100x faster
than (re-)factorizing the matrices from scratch.

Index Terms—sparse factorization updates, exact precision,
integer-preserving Gaussian elimination

I. INTRODUCTION

Factorization of the coefficient matrix A is critical for

solving the linear system Ax = b, as it improves both the

efficiency and numerical stability over the direct use of A−1

[1]. Traditionally, this factorization is obtained via floating-

point computations, since such computations can be performed

quickly on computers and, even though they have limited

precision, it is adequate for most applications. Nevertheless,

there are applications where extended precision or exact

precision is needed, such as studies of biological processes,

dynamical systems and mathematical physics [2], [3], scattered

data interpolation, and solving partial differential equations

[4]. A natural method to obtain the exact factorization is

to perform computations with full-precision rational arith-

metic, which has been applied for basic solution valida-

tion in some state-of-the-art exact mathematical programming

solvers: QSopt ex [5] and SCIP:SoPlex-exact [6], [7]. Yet,

these full-precision rational-arithmetic computations involve

recurring greatest common divisor calculations and irregular

memory usage/access; indeed, they are so expensive in both

computational time and memory that they have been shown to

be the bottleneck of exact linear programming solvers [8].

To address these drawbacks, an exact (dense) factorization

framework based on Integer-Preserving Gaussian Elimina-

tion (IPGE), referred to as the Roundoff-Error-Free (REF)

The work is partially supported by the National Science Foundation under
Grant No OAC-1835499. Additionally, the third author was also partially
supported by the United States Naval Academy Junior NARC.

LU/Cholesky factorization, was first proposed in [9]. Under

this framework, all operations are guaranteed to be integer

(notably because all the therein divisions are guaranteed

to have zero remainder) and the bit-length of each entry

is bounded polynomially; thereby addressing the time and

memory cost drawbacks of rational factorization. Specif-

ically, a dense LU/Cholesky factorization is an order of

magnitude faster than the exact rational-arithmetic factoriza-

tion [10]. These results were extended in [11] where the

sparse left-looking integer-preserving (SLIP) LU was derived,

which was shown to exactly solve the sparse linear system

Ax = b in time proportional to arithmetic work—to date

the only exact factorization for unsymmetric linear systems

with this asymptotically efficient complexity bound. Finally,

this sparse factorization was shown to be significantly faster

than sparse rational-arithmetic factorization (like those used in

QSopt/Soplex).

When a factorization of the coefficient matrix A is available

and a closely related matrix Ā is obtained by making elemen-

tary changes to A, then the factorization of Ā can be efficiently

obtained by modifying/updating the available factorization of

A. This process, known as factorization update, is fundamental

for many applications [12]–[15]. The most frequently used

updates are the column and/or row replacement, and the rank-

1 update/downdate. The LU factorization update for change

of basis (column replacement) is heavily used in the simplex

algorithm [1], [13], [16], and the Cholesky factorization rank-

1 update/downdate is used in the linear programming dual

active set algorithm [17]. Directly applying these traditional

factorization update algorithms to the REF LU/Cholesky

factorization was shown to be inadequate due to bit-length

growth; indeed the update can be as costly as computing a

new exact factorization from scratch [18]. Therefore, a new

(dense) REF factorization update, referred to as the push-

and-swap approach, was derived and shown to be efficient

[18]. The key idea of the push-and-swap approach is that

the to-be-replaced column, say column k, is pushed out of

the matrix by swapping it sequentially with the column to

its right (column k + 1). These adjacent column swaps are

done so that the factorization obtained via updates is identical

to factorizing the permuted matrix from scratch. Analogously,

in a yet-to-be-published manuscript, Escobedo and Gudivada

derive an exact (dense) rank-1 update/downdate algorithm for

the exact LU/Cholesky factorization. Since most real-world

Please cite as: https://dx.doi.org/10.1109/ia354616.2021.00012
Chen, J., Davis, T. A., Lourenco, C., & Moreno-Centeno, E. (2021). Sparse Exact Factorization Update.
2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3), 35-42.



linear programming matrices are sparse, it is critical that the

REF updates exploit sparsity. That is the topic of this paper.

The paper is organized as follows. Section 2 reviews

the REF factorization framework [9] and the different types

of sparse exact factorization update algorithms. Section 3

presents the implementation details of the sparse REF update

algorithms. Section 4 tests the efficiency of the algorithms

on a set of real-world matrices from the SuiteSparse Matrix

collection [19]. Finally, Section 5 draws conclusions and

discusses the outlook for future research on this topic.

II. BACKGROUND AND FUNDAMENTALS

For the sake of simplicity, this paper denotes the integer

sequence {k, k+1, · · · , k− 1, k} as [k..k] and makes the fol-

lowing assumptions: (i) A = {ai,j} ∈ Z
n×n, i ∈ [1..n], j ∈

[1..n] is a nonsingular matrix; (ii) A is properly permuted

such that ak,k is the k-th pivot; and (iii) A is factorized via

REF LU as A = LDU . Note that these assumptions are a

matter of convenience and assumption (ii) can be removed

with simple modifications to the presented algorithms [18].

In this section, we first review integer-preserving Gaussian

elimination (IPGE) [20]–[22], which is the basis of the REF

factorization framework. Next, we discuss the theorems for

sparse exact factorization update. The proofs of these theorems

have been carefully derived and verified, and will appear

in a future publication. Due to space limitations and the

relative simplicity of other update algorithms, only the detailed

algorithm for sparse exact LU update for column replacement

is given.

A. Integer-Preserving Gaussian Elimination (IPGE)

IPGE is an elimination process for solving the linear system

Ax = b, which is defined as follows [20]–[22]:

Definition 1: For k ∈ [0..n], let Ak = {aki,j}, i, j ∈ [1..n]
denote the k-th iteration IPGE matrix of A. Then, the pivot

element selected from Ak−1 to perform the k-th IPGE iteration

can be denoted as ρk := ak−1
k,k , where A0 := A and ρ0 := 1.

Then, for k ∈ [1..n], aki,j is iteratively computed as follows:

aki,j =

{
ak−1
i,j if i = k,

ρkak−1
i,j −ak−1

k,j ak−1
i,k

ρk−1 otherwise.
(1)

The key property of (1), termed IPGE Update, is that the

division is guaranteed to have zero remainder, and thus for

all k ∈ [1..n], all entries of Ak remain in the integer domain

[20]–[22]. Therefore, exact precision is achieved without using

rational arithmetic. Furthermore, as the next theorem states,

each entry of Ak is indeed a subdeterminant of A [20], [21]:

Theorem 2: Let (A)1,··· ,k,i1,··· ,k,j denote the submatrix induced

by rows 1 to k and i and columns 1 to k and j of A. Then,

aki,j = det
(
(A)1,··· ,k,i1,··· ,k,j

)
, k = min(i, j)− 1. (2)

As discussed in [23], the efficiency of IPGE can be im-

proved by exploiting the zero pattern of sparse matrices.

Specifically, if either ak−1
k,j = 0 or ak−1

i,k = 0 in the k-th

iteration of IPGE, then (1) becomes aki,j = ak−1
i,j ρk/ρk−1.

Therefore, when a sequence (noted as [k..k]) of IPGE

iterations exists such that for any k ∈ [k..k], either ak−1
k,j = 0

or ak−1
i,k = 0, then

aki,j =
ρk

ρk−1

ρk−1

ρk−2
· · · ρ

k+1

ρk
ρk

ρk−1
a
k−1
i,j =

ρk

ρk−1
a
k−1
i,j . (3)

Effectively, this allows to skip (combine) all the intermediate

operations in a single operation (3), termed History Update.

B. Exact LU/Cholesky Factorization

Building on IPGE, [18] showed how to factorize a given

(full rank) matrix as A = LDU , where L = {li,j} is a

lower-triangular matrix, U = {ui,j} is an upper-triangular

matrix, and D = {di,j} is a diagonal matrix. Specifically, each

nonzero entry of L, U and D can be obtained as follows.

li,j = aj−1
i,j ∀i ≥ j, (4)

di,i = 1/(ρi−1ρi) = 1/(ai−2
i−1,i−1a

i−1
i,i ), (5)

ui,j = ai−1
i,j ∀i ≤ j. (6)

Moreover, when A is a non-singular symmetric positive-

definite matrix, we have U = LT , and thus the REF Cholesky

factorization of A can be obtained as A = LDLT [18].

Let the frame matrix F = {fi,j} be defined as (7). Then,

for the exact LU factorization A = LDU , L corresponds to

the lower triangular section of F (denoted as L = tril(F )),
while U is the upper triangular section of F (denoted as U =
triu(F )), and the diagonals of F are the pivots ρ, from which

we can compute D. As shown in (7), F is split into frames or

groups of entries computed in the same IPGE iteration, which

is noted by the superscript (denoted as κ). Note that fi,j = aκi,j
and that in iteration k only frames with index κ > k need to

be updated.

F :=

a01,1 a01,2 . . . a01,k . . . a01,n κ = 0

a02,1 a12,2 . . . a12,k . . . a12,n κ = 1
...

...
. . .

...
. . .

...
...

a0k,1 a1k,2 . . . ak−1
k,k . . . ak−1

k,n κ = k − 1
...

...
. . .

...
. . .

...
...

a0n,1 a1n,2 . . . ak−1
n,k . . . an−1

n,n κ = n− 1
(7)

When A is factorized as A = LDU , solving Ax = b is

done via specialized REF forward and backward substitution

algorithms. Most importantly for this paper, the forward substi-

tution process, LDy = b, can be performed without explicitly

computing D and instead by performing n iterations of the

following equation with y0i = bi [9], [11]:

yki =

{
yk−1
i i ≤ k,

yk−1
i ρk−li,kyk

ρk−1 i > k.
(8)

C. Backtracking

To update the exact factorization for column/row replace-

ment, a new push-and-swap algorithm was proposed in [18]

for dense matrices. The core of the push-and-swap approach is



that the to-be-replaced column, k, is “pushed out” of the frame

matrix by swapping it sequentially with the column to its right

(initially, column k+1). A core operation of this algorithm is

that the IPGE Update (1) for some entries must be “undone”

via an operation referred to as backtracking IPGE Update (9).

Theorem 3 (Backtracking): For k ∈ [1..min(i, j)−1], given

aki,j , one can obtain without roundoff error the IPGE entry in

the preceding iteration, ak−1
i,j , as follows:

ak−1
i,j =

aki,jρ
k−1 + ak−1

k,j ak−1
i,k

ρk
. (9)

The backtracking process is made more efficient for sparse

matrices by combining it with the History Update (3). Specif-

ically, consider the case when either ak−1
k,j = 0 or ak−1

i,k =

0, then the backtracking operation (9) becomes ak−1
i,j =

aki,jρ
k−1/ρk. Therefore, if there exists a sequence (noted as

[k..k]) of backtracking such that for any k ∈ [k..k], either

ak−1
k,j = 0 or ak−1

i,k = 0, then

a
k−1
i,j =

ρk−1

ρk
ρk

ρk+1
· · · ρ

k−2

ρk−1

ρk−1

ρk
aki,j =

ρk−1

ρk
aki,j . (10)

Effectively, this allows to skip (combine) all the intermediate

backtracking operations in a single operation (10), termed

backtracking History Update.

D. Sparse Exact LU Update for Column Replacement

This section presents an algorithm to solve the following

problem: Given a sparse matrix A, its (sparse) exact factor-

ization A = LDU (stored in frame matrix F ), and a new

column v ∈ Z
n to replace the k-th column of A, obtain the

exact factorization of the matrix obtained by replacing the k-th

column of A with v. For this purpose, we first give a high-

level summary of the push-and-swap approach, which is the

algorithm devised in [18] to solve the dense version of our

problem.

Note that the to-be-replaced column k is unrelated to

columns 1, .., k − 1 of F , is intimately related to column k
of F , and an entry from it was used as a pivot to compute

columns k + 1, ..., n of F . The key idea of the (dense) push-

and-swap approach is that column k is pushed out of the

frame matrix by swapping it sequentially with the column

to its right (initially, column k + 1). Such adjacent column

swaps are done in such a way that the frame matrix obtained

is identical to the factorization that one would have obtained

by factorizing the permuted matrix, but using some shortcuts

expediting the computations: notably, frames k+2, ..., n only

change sign when columns k and k+1 are swapped (a special

case of Theorem 8). The core operation in the push-and-

swap approach is the aforementioned backtracking operation.

Finally, when the leaving column is in the last position, it can

be swapped with the solution of LDx = v (i.e., the incoming

vector v after performing a REF forward substitution on it).

The key idea of our sparse exact push-and-swap approach

is that, when the matrix A (and thus its factorization) is

sparse, then pushing the to-be-replaced column k does not

need to be done by swapping it sequentially with the next

column to its right; instead column k can “leap” several

columns simultaneously (as opposed to only one column) by

exploiting the zero pattern. Depending on the zero pattern,

the frame matrix resulting from the leap is computed with

one of the algorithms presented next: the diagonal permutation

pivot update (DPPU) and the column permutation pivot update

(CPPU) algorithms.

The DPPU algorithm is used when the submatrix of F has

the pattern shown in (11) or (12). The CPPU algorithm is

applied when the submatrix of F has the pattern shown in (13),

where k′ ∈ [k+1..n] is the column index of the next nonzero

in the k-th row of F . For better illustration, the original and

new k-th pivots in (11)-(13) are all enclosed in boxes.

(F )k,k+1,··· ,n
k,k+1,··· ,k′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ak−1
k,k 0 0

0
. . . 0

0 0 ak
′−1

k′,k′

...
. . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(11)

(F )k,k+1,··· ,n
k,k+1,··· ,k′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ak−1
k,k · · · ·

0
. . . 0

0 0 ak
′−1

k′,k′

0
. . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(12)

(F )k,k+1,··· ,n
k,k+1,··· ,k′ =

⎡
⎢⎢⎣

ak−1
k,k 0 0 ak−1

k,k′

· akk+1,k+1 · · · ·
...

...
. . .

...

⎤
⎥⎥⎦
(13)

Next, we present the foundational theorems for the sparse

exact LU factorization update algorithm for column replace-

ment.

Theorem 4 (Backtracking in DPPU): Let A be a non-

singular matrix such that the submatrix of its frame matrix F
has the zero pattern in (11) or (12). Then, for i, j ∈ [k+1..n],

ak−1
i,k′ =

ρk−1

ρκ
fi,k′ , (14)

ak−1
k′,j =

ρk−1

ρκ
fk′,j . (15)

Especially, for i, j ∈ [k + 1..k′ − 1],

ak−1
i,k′ = ak−1

k′,j = 0. (16)

Theorem 5 (Diagonal-wise Switch of Originating Pivot
(DwSOP)): Let F ′ be the updated frame matrix obtained by

swapping columns and rows k and k′ of F , whose submatrix

follows the zero pattern in (11) or (12). Then we have

ρk := ak−1
k,k and ρ′k := ak−1

k′,k′ . Moreover, for all entries in



frames k to k′−2 but not the entries in the k′-th column or row,

i.e., S := {(i, j)|i, j ∈ [k + 1..n]\{k′},min(i, j) ≤ k′ − 1},

f ′
i,j =

ρ′k

ρk
fi,j , (i, j) ∈ S. (17)

Theorem 6 (DPPU shortcuts): Let F ′ be the updated frame

matrix obtained by swapping columns and rows k and k′ of

F , whose submatrix follows the zero pattern in (11) or (12).

For i, j ≥ k′ + 1 (i.e., frames k′ to n− 1),

f ′
i,j = fi,j . (18)

Theorem 7 (Extended Row-wise Switch of Originating Pivot
(xRwSOP)): Let F ′ be the updated frame matrix obtained by

swapping columns k and k′ of F , whose submatrix has the

pattern shown in (13). Then, we have ρk = fk,k and ρ′k =
fk,k′ . In addition, for i ∈ [k + 1..n], j ∈ [k + 1..k′ − 1], f ′

i,j

can be equivalently obtained without roundoff error via

f ′
i,j =

ρ′k

ρk
fi,j (19)

Moreover, for i ∈ [k + 1..k′], j ∈ [k′ + 1..n], f ′
i,j can be

equivalently obtained without roundoff error via the formula

f ′
i,j =

fi,jρ
′k − fi,k′fk,j

ρk
(20)

Theorem 8 (CPPU shortcuts): Let F ′ be the frame matrix

obtained by swapping columns k and k′ of F , whose subma-

trix has the pattern shown in (13). Then for i, j ∈ [k′ + 1..n]

f ′
i,j = −fi,j . (21)

In addition, for the entries in the k′-th column of F ′ with row

index i ∈ [k + 1..n],

f ′
i,k′ = −fi,k′ . (22)

Fig. 1 illustrates the DPPU and CPPU algorithms, which are

built on the above theorems. Due to space limitations and for

simplicity, Fig. 1a only illustrates DPPU for updating F when

its submatrix has the pattern (11); the process of updating

F when its submatrix has the pattern (12) requires additional

computations (specifically, to perform iterations of IPGE to k-

th row of F to obtain row k′ of F ′). Fig. 1b illustrates CPPU

for the case where only exactly one of fk+1,k and fk,k+1 is

zero (when both are zero, then the update can be done more

efficiently with DPPU). The sparse exact LU update algorithm

for column replacement, together with the details of the CPPU

and DPPU algorithms, are given as follows, where F = {fi,j}
is the frame matrix being updated, and the sparse vector v ∈
Z
n is the entering vector to replace the k-th column of A.

Column addition: Solve LDan+1 = v with (8), and add

an+1 as the (n+ 1)-st column of F .

Column pushes: Iteratively push k-th column of F to posi-

tion n by performing the DPPU algorithm if the subma-

trix of F has pattern as either (11) or (12), and the CPPU

algorithm otherwise.

DPPU algorithm (Partially illustrated in Fig. 1a):

• backtrack frame k′ − 1 by simply multiplying all

entries by α = fk−1,k−1/fk′−1,k′−1 (Theorem 4);

• swap columns and rows of indices k and k′;
• scale all entries between frames k − 1 and k′ − 1

by λ = fk,k/fk′,k′ (since entries are swapped)

according to Theorem 7.

• perform IPGE for frame k′ − 1 (by multiplying

all entries by λ/α = fk′−1,k′−1/fk−1,k−1 if the

submatrix of F follows pattern in (11)).

CPPU algorithm (Illustrated in Fig. 1b):

• Backtrack column k′ and update the entries with row

index i ∈ [k + 1..n] (in purple) in column k with

the backtracking results;

• Swap column k and k′ for entries with row index

i ∈ [1..k] (in yellow);

• Perform scaling for entries with column index j ∈
[k + 1..k′ − 1] and row index i ∈ [k′ + 1..n] (in

green) by λ = fk,k/fk,k′ (since entries are swapped)

according to (19) in Theorem 7. Moreover, update

entries in the red box according to (20);

• Flip sign for all entries in blue box according to

CPPU shortcuts.

Column swap and deletion: Once the exiting column is

pushed to the n-th position, swap it with the entering

column (column n+1 of F ) and remove it to obtain the

final updated frame matrix.

E. Sparse Exact Cholesky Update for Symmetric Column and
Row Replacement

This algorithm updates L in the exact Cholesky factorization

when the k-th column and row of A are symmetrically

replaced (recall D can be obtained from L). This algorithm

is similar to the one in Subsection II-D, but to maintain

symmetry, only the DPPU algorithm is used. Specifically,

the DPPU algorithm applies when the submatrix of F has

pattern (11) or (23). Fig. 1a depicts how DPPU is used when

F has pattern (11); when F has pattern (23), modifications

are needed. Specifically, the last iteration of backtracking for

column k′ of L does not satisfy the requirement for (10), and

thus the last iteration is done separately using (9), and the

first iteration of IPGE for column k of L needs to be done

separately with (1).

(F )k,k+1,··· ,k′
k,k+1,··· ,k′ =

⎡
⎢⎢⎢⎢⎣

ak−1
k,k 0 ak−1

k,k′

0
. . . 0

ak−1
k′,k 0 ak

′−1
k′,k′

⎤
⎥⎥⎥⎥⎦ (23)

F. Sparse Exact Cholesky Rank-1 Update/Downdate

The sparse exact Cholesky rank-1 update/downdate com-

putes the exact Cholesky factorization of Ā = A + σwwT

by modifying that of sparse matrix A, where w ∈ Z
n is a

sparse vector, and σ is either 1 (update) or −1 (downdate). The

following theorem is the basis for this algorithm. Throughout



(a) DPPU algorithm if the submatrix of F has pattern (11) (b) CPPU algorithm

Fig. 1: The two sub-algorithms used in sparse exact LU update for column replacement. All entries marked as x must be nonzero.

For all the shaded entries, leave fi,j untouched but update the j-th diagonal of DL or i-th diagonal of DU correspondingly.

this subsection, denote the exact Cholesky factorization of A
given as LDLT , and that of Ā = A+ σwwT as L̄D̄L̄T .

Theorem 9 (Exact Cholesky rank-1 update/downdate):
When using (8) to solve LDx = w or L̄D̄x̄ = w, the

following equality holds for k ∈ [0..n],

xk
i = x̄k

i . (24)

In addition, let ρ̄i = l̄i,i, then

l̄i,j = li,j
ρ̄j−1

ρj−1
+ σxj−1

j

xj−1
i

ρj−1
. (25)

G. Sparse Exact LU Rank-1 Update/Downdate

The sparse exact LU rank-1 update/downdate is an extension

of the sparse exact Cholesky rank-1 update/downdate. It is

used when the change to A is not symmetric; i.e., when Ā =
A + σuvT . The following theorem shows how to obtain the

exact factorization of Ā by updating the factorization of A.

Throughout this subsection denote the exact LU factorization

of A as LDU , and that of Ā = A+ σuvT as L̄D̄Ū .

Theorem 10 (Exact LU rank-1 update/downdate): When

using (8) to solve LDx = u or L̄D̄x̄ = u, and UTDy = v
or ŪT D̄ȳ = v, the following equality holds for k ∈ [0..n],

xk
i = x̄k

i , y
k
i = ȳki . (26)

In addition, let ρ̄i = l̄i,i = ūi,i, then

l̄i,j = li,j
ρ̄j−1

ρj−1
+ σxj−1

j

xj−1
i

ρj−1
, (27)

ūj,i = uj,i
ρ̄j−1

ρj−1
+ σyj−1

j

yj−1
i

ρj−1
. (28)

III. DATA STRUCTURE AND IMPLEMENTATION

This section discusses the data structures and efficient

implementations of the update algorithms.

A. Data Structures

For the sparse matrices in all four update algorithms, we

store A, L, and UT as an array of sparse column vectors,

where each column vector is independently allocated, thereby

allowing its size to grow or shrink without affecting other

columns. This approach has two advantages: (i) since all

algorithms update the frame matrix F frame-wise (i.e., update

one or multiple frames per iteration), we can update column(s)

of L and UT in the same frame(s) as needed and (ii) when the

number of entries in one column of L or UT changes, there

is no need to update other columns. In each column vector,

the first entry is the diagonal entry; however the indices of

the remaining entries are unsorted. Thus, the addition of fill-

in to a column or the deletion of entry from a column can be

done very efficiently. All the sparse exact factorization update

algorithms are implemented using the GNU Multiple Precision

Arithmetic (GMP) Library [24]. Specifically, all entries are

stored as full-precision integers (i.e., mpz_t).

B. Implementation
There are three types of operations involved in all sparse

exact update algorithms. The first type of operation updates

an entry by multiplying with a rational scalar (i.e., f ′
i,j =

fi,jt/s), such as equations in Theorems 4 and 8, and (19).

The second type performs an IPGE-like update in form of

f ′
i,j = (fi,jt − uv)/s, which includes the IPGE update (1)

and (20) in Theorem 7. The third type updates an entry with

a backtracking-like equation in form of f ′
i,j = (fi,jt+ uv)/s,

which includes the backtracking operation (9) and the rank-

1 update (i.e., (25), (27) and (28)). In fact, the second and

third types of updates can become pure scaling under certain

condition(s). For example, when fi,k′ = 0 or fk,j = 0, (20)

becomes exactly the same as (19), or when xj−1
j = 0, (25)

becomes l̄i,j = li,j ρ̄
j−1/ρj−1. Therefore, when thinking of the

algorithms as updating vectors (as opposed to single entries),

most involve multiplying all entries in a frame or a column/row

of a frame by a common rational scalar. To further improve the

efficiency of the update algorithm by postponing these scalar-

vector multiplications, we introduce two additional diagonal

rational matrices, DL and DU , such that L = tril(F ) ∗ DL

and U = DU ∗ triu(F ) (initially, DL = DU = I). Then, in

the case when all entries in the j-th column (i-th row) of a

frame need to by multiplied by a common scaling factor, we

only update the j-th (i-th) diagonal of DL (DU ).
Given DL and DU , all shaded entries in Fig. 1 can be up-

dated without explicitly performing the multiplication. Instead,

only DL and/or DU need to be updated. For Fig. 1b, all the

entries in the row of the (i0 − 1)-st frame can be updated via



(19) and thus the above technique can also be applied, where

i0 ∈ [k + 1..k′] is the row index such that fi0,k′ = 0.

The implicit update for the j-th column of L by updating the

diagonals of DL can remain implicit if the next update for the

j-th column of L still requires only pure multiplication. The

same will hold for the i-th row of U . Moreover, the backward

substitution phase of solving Ax = b (i.e., solving Ux = y)

does not require any entries of U to be explicitly updated.

Instead, x′
i can be solved as

x′
i =

yiρ
n −DU (i, i)

∑n
j=i+1 ui,jx

′
j

ρi

where x′ = xρn [9], DU (i, i) is the i-th diagonal of DU and

the pending scaling factor for i-th row of U .

There are cases when the entries need to be explicitly

updated (and the corresponding diagonal of DL and/or DU is

then reset to 1): (i) when the explicit factorization A = LDU
is desired/required; (ii) when the j-th column of L is needed to

perform the j-th iteration of IPGE update for given vector or

the forward substitution when solving LDy = b, in which

all entries in that column of L need to be multiplied by

DL(j, j); and (iii) when the entries in a row/column of a frame

needs to be partially/entirely updated with the second or third

aforementioned update (i.e., f ′
i,j = (fi,jt ± uv)/s). In these

cases, these updates can also be efficiently done because both

the operand and the result of such updates are guaranteed to

be in integer domain.

The explicit update for case (ii) is needed due to the

following two reasons. The first reason is the use of (3) for

successive IPGE updates in the sparse algorithm. If only one

iteration of IPGE update is needed, the implicit update can

theoretically remain implicit. Consider the j-th column of L is

used to perform the j-th IPGE update for x, and DL(j, j) �= 1,

then ρj = lj,jDL(j, j) and the update for xi, i > j should be

xi =
xiρ

j − xj li,jDL(j, j)

ρj−1
=

xilj,j − xj li,j
ρj−1

DL(j, j).

According to this equation, xi can be updated without applying

or changing DL(j, j). However, when a sequence of IPGE

updates is performed and (3) is used, the entries will not be

correctly updated. Furthermore, updating xi without applying

any pending scaling factor DL(j, j) �= 1 could result in a

non-integer value of xi, which breaks the exact factorization

framework. Thus, the major reason for explicit update for case

(ii) is to keep the resulting entry in the integer domain.

Consider the case where an entry fi,j needs to be explic-

itly updated by multiplying with a rational number t1/t2,

t1, t2 ∈ Z, gcd(t1, t2) = 1. For example, in Fig. 1b, all the

green entries in the row of the (i − 1)-th frame must be

explicitly updated with λ = fk,k/fk,k′ , where i ∈ [k + 1..k′]
is the row index such that fi,k′ �= 0. In this case, since λ
remains the same for all green entries in the same row, it is

computed and stored as a full-precision rational number (as

mpq_t). For such case, instead of performing fi,j = fi,j ∗ t1
and fi,j = fi,j/t2 sequentially, the computation can be done

in two steps as fi,j = fi,j/t2 followed by fi,j = fi,j ∗t1. Both

computation sequence can guarantee the final result, as well as

the intermediate result, to be in integer domain (either division

therein is guaranteed to have zero remainder). However, the

latter computation sequence will be relatively faster since the

first method increases the size of fi,j before the second step.

Consider a different case in which fi,j needs to be updated

but it was implicitly updated with the scaling factor γ stored

as either DL(j, j) or DU (i, i). Depending on the update to be

performed on fi,j , we have three scenarios:

• If fi,j needs to be updated explicitly by multiplying

with a rational scalar t1/t2, we first compute γt1/t2 by

removing any common factor between denominator and

numerator. Then follow the procedure discussed above.

• If fi,j needs to be updated with an IPGE-like formula

(i.e., f ′
i,j = (fi,jt− uv)/s), we compute f ′

i,j = γ′fi,j −
uv/s with γ′ = γt/s instead of directly solving f ′

i,j =
(γfi,jt − uv)/s. Since the value of t/s is the same for

all entries in the same column/row of a frame, γ′ = γt/s
can be always computed by removing any common

factor between denominator and numerator in advance.

Then f ′
i,j = γ′fi,j − uv/s involves 2 multiplications, 2

divisions and 1 subtraction, while f ′
i,j = (γfi,jt− uv)/s

requires 3 multiplication, 2 divisions and 1 subtraction.

Therefore, computing γ′ in advance accelerates this up-

date. Since the update only guarantees f ′
i,j , but not γ′fi,j

or uv/s, to be an integer, we can instead compute f ′
i,j as

floor(γ′fi,j) - floor(uv/s).
• If fi,j needs to be updated with a backtracking-like

formula (i.e., f ′
i,j = (fi,jt+ uv)/s), we compute f ′

i,j =
γ′fi,j + uv/s with γ′ = γt/s instead of directly solving

f ′
i,j = (γfi,jt + uv)/s. Again, γ′ = γt/s can be

always computed in advance for a whole row/column

of a frame, and f ′
i,j = γ′fi,j + uv/s involves one less

multiplication. Therefore, knowing that the result must be

an integer, it is more efficient to compute the update as

f ′
i,j = γ′fi,j + uv/s = floor(γ′fi,j) + ceil(uv/s).

where the divisions of floor and ceil are done in exact

arithmetic using mpz_fdiv_q and mpz_cdiv_q.

IV. COMPUTATIONAL TESTS AND ANALYSIS

This section analyzes the performance of the algorithms for

the sparse exact LU update for column replacement and the

sparse exact Cholesky rank-1 update/downdate.

A. Computing Environment and Test Instances

All of the tests were run on an IBM Power8 with 1TB

of RAM with 20 hardware cores (4GHz, dual socket). Only

a single core was used for these experiments. To illustrate

the performance in real-world applications, the sparse LU

column replacement update and the sparse Cholesky rank-1

update/downdate were used in the linear programming simplex

and dual active set algorithms, respectively. We tested on ma-

trices from the LPnetlib group within the SuiteSparse Matrix

Collection [19]. Of the 138 problems from the LPnetlib group,

29 were infeasible and 31 were optimal from the initial basis

or too simple (recorded running time is 0 second) or too large



to solve. Thus we restrict our comparison to the remaining 78

instances. Note that all input matrices are processed such that

all entries are integer, all fixed variables (with same upper and

lower bounds) are removed, and all lower bounds are zero.

B. Results for Sparse Exact LU Column-Replace Update

While the simplex algorithm allows the existence of nonzero

values for the non-basic variables, our simple implementation

of simplex algorithm assumes that all non-basic variables are

zero. Therefore, we use the GLPK library [25] to search for

an initial basis set that meets this assumption. During each

iteration of our implementation of the simplex algorithm, we

solve sparse linear equations exactly to find the entering and

exi iting columns for the basis matrix and obtain the exact

factorization for the new basis matrix from both direct LU

factorization (DLU) and iteratively LU update (LUU).

For each of the 78 cases, we ran simplex for up to 100

iterations to find an optimal basis. Fig. 2 shows the total

time of DLU and LUU for at most 100 iterations. The time

ratio of DLU over LUU for each case ranges from 1.066

(lp_osa_07) to 228.5 (lp_ship12l). Fig. 2 shows that

LUU outperforms DLU in all cases and the improvement is

more significant for larger problems.

DLU always finds a permutation which reduces fill-in and

bit-length of entries, however, the LUU modification may lead

to an undesirable permutation. Therefore, iteratively using

LUU may lead to excessive fill-in or entries of large bit-

length. Thus, we next show the effect of permutation on the

performance of the updates by performing the update based

on the direct factorization of the previous basis matrix, which

can be considered as a rough estimate of the lower-bound of

the update algorithm and thus denoted as lb.

Fig. 3 shows the results of DLU, LUU and the so-called

lb for case lp_osa_07, which is the case that the average

time for DLU is closest to that of LUU. Specifically, Fig.

3c shows the time for searching the entering and existing

columns by exactly solving sparse linear equations based on

the factorization from LUU, from which one can see that

several significant jumps occur in the 48th, 54th and 76th

iterations. Moreover, similar jumps happen in the results of

LUU in Figs. 3b, 3e and 3f. However, the results of lb do not

show this kind of pattern, which indicates that the quality of

the permutation after LUU has dropped significantly during

these iterations and needs to be reset with the help of DLU to

have better performance. This could be the next direction of

improvement for future work on these algorithms.

C. Results for Sparse Exact Cholesky Rank-1 Up/Down-date

This subsection presents the performance of the sparse exact

Cholesky rank-1 update/downdate algorithm. Let B denote the

basis matrix obtained via the GLPK library. Then, from the

remaining columns associated with the non-basic variables,

we select one of the sparsest vectors u and one of the

densest vectors v. Then we compute A0 = BBT and its

exact Cholesky factorization. Next, we find the exact Cholesky

factorizations for A1 = A0 + uuT and A2 = A1 + vvT

10 -2 10 0 10 2 10 4 10 6

Time for direct LU factorization (sec)

10 -4

10 -2

10 0

10 2

10 4

10 6

T
im

e 
fo

r 
LU

 u
pd

at
e 

(s
ec

)

1x 1/10x 1/100x

Fig. 2: Performance of sparse exact LU factorization update for

column replacement, compared with direct LU factorization.

via direct factorization and rank-1 update. Similarly, we find

the factorizations for A3 = A2 − vvT = A1 and A4 =
A3−uuT = A0 via direct factorization and rank-1 downdate.

For each matrix, Fig. 4 compares the total time of all the direct

factorization to the total time of all rank-1 update/downdate.

Fig. 4 does not include 11 out of the 78 cases because the

recorded total time for either the direct factorization or the

rank-1 update/downdate was 0 second and one case is too large

to solve (lp_fit2p). The time ratio (direct factorization

over rank-1 update/downdate) for each matrix ranges from

1.333 (lp_agg2) to 1698 (lp_perold). Furthermore, the

speedups obtained by our update/downdate algorithm tend to

be higher for larger problems.

V. CONCLUSION

This paper reviews the theoretical foundation and proposed

algorithms for two kinds of updates for sparse exact Cholesky

and LU factorization, namely the update for column and/or

row replacement and rank-1 update/downdate. The paper sum-

marizes the common operations used by these four update

algorithms, and proposes a data structure to efficiently imple-

ment these algorithms. The computational results show that the

update algorithms provide substantial performance gains over

direct factorization. In the future, we will try to further improve

the performance of the sparse exact LU column-replacement

update by checking the quality of the permutation as updates

are made and selectively re-factorizing as needed, and our

finalized open-source code will be made publicly available.

REFERENCES

[1] R. H. Bartels and G. H. Golub, “The simplex method of linear pro-
gramming using LU decomposition,” Commun. ACM, vol. 12, no. 5, p.
266–268, May 1969.

[2] D. Ma and M. A. Saunders, “Solving multiscale linear programs using
the simplex method in quadruple precision,” in Numerical analysis and
optimization. Springer, 2015, pp. 223–235.

[3] D. H. Bailey and J. M. Borwein, “High-precision arithmetic in mathe-
matical physics,” Mathematics, vol. 3, no. 2, pp. 337–367, 2015.

[4] S. A. Sarra, “Radial basis function approximation methods with extended
precision floating point arithmetic,” Engineering Analysis with Boundary
Elements, vol. 35, no. 1, pp. 68–76, 2011.



0 20 40 60 80 100
iteration index

0

1

2

3

nu
m

be
r 

of
 n

on
ze

ro

10 3

L
DLU

L
lb

L
LUU

(a) number of nonzeros in L

0 20 40 60 80 100
iteration index

0

2

4

6

nu
m

be
r 

of
 n

on
ze

ro

10 4

U
DLU

U
lb

U
LUU

(b) number of nonzeros in U

0 20 40 60 80 100
iteration index

0

5

10

15

20

25

30

35

tim
e 

(s
ec

)

X 48
Y 4.41

X 54
Y 10.81

X 76
Y 32.81

(c) time to search the entering and existing
columns

0 20 40 60 80 100
iteration index

0

2

4

6

8

10

12

nu
m

be
r 

of
 d

ig
it

10 7

L
DLU

L
lb

L
LUU

(d) number of bits of all entries in L

0 20 40 60 80 100
iteration index

0

0.5

1

1.5

2

2.5

nu
m

be
r 

of
 d

ig
it

10 9

U
DLU

U
lb

U
LUU

(e) number of bits of all entries in U

0 20 40 60 80 100
iteration index

0

5

10

15

20

tim
e 

(s
ec

)

t
DLU

t
lb

t
LUU

(f) time for factorization or update

Fig. 3: The detailed performance results for lp_osa_07.

10 -2 10 0 10 2 10 4 10 6

Time for direct Cholesky factorization (sec)

10 -4

10 -2

10 0

10 2

10 4

10 6

T
im

e 
fo

r 
C

ho
le

sk
y 

up
da

te
/d

ow
nd

at
e 

(s
ec

) 1x 1/10x 1/100x

Fig. 4: Performance of sparse exact Cholesky rank-1 up-

date/downdate, compared with direct Cholesky factorization.

[5] D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza, “Exact solutions
to linear programming problems,” Operations Research Letters, vol. 35,
no. 6, pp. 693–699, 2007.

[6] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler,
M. Gasse et al., “The SCIP optimization suite 7.0,” ZIB, Takustr. 7,
14195 Berlin, Tech. Rep. 20-10, 2020.

[7] A. Gleixner, D. Steffy, and K. Wolter, “Iterative refinement for linear
programming,” ZIB, Takustr. 7, 14195 Berlin, Tech. Rep. 15-15, 2015.

[8] A. M. Gleixner, “Exact and fast algorithms for mixed-integer nonlinear
programming,” 2015.

[9] A. R. Escobedo and E. Moreno-Centeno, “Roundoff-error-free algo-
rithms for solving linear systems via Cholesky and LU factorizations,”
INFORMS Journal on Computing, vol. 27, no. 4, pp. 677–689, 2015.

[10] A. R. Escobedo, E. Moreno-Centeno, and C. Lourenco, “Solution of
dense linear systems via roundoff-error-free factorization algorithms:
Theoretical connections and computational comparisons,” ACM Trans-
actions on Mathematical Software (TOMS), vol. 44, pp. 1–24, 2018.

[11] C. Lourenco, A. R. Escobedo, E. Moreno-Centeno, and T. A. Davis,

“Exact solution of sparse linear systems via left-looking roundoff-error-
free LU factorization in time proportional to arithmetic work,” SIAM J.
Matrix Analysis and Applic., vol. 40, pp. 609–638, 2019.

[12] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, “Methods for
modifying matrix factorizations,” Mathematics of computation, vol. 28,
no. 126, pp. 505–535, 1974.

[13] J. A. Tomlin, “Modifying triangular factors of the basis in the simplex
method,” in Sparse matrices and their applications. Springer, 1972,
pp. 77–85.

[14] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “Maintaining
LU factors of a general sparse matrix,” Linear Algebra and its Applica-
tions, vol. 88, pp. 239–270, 1987.

[15] T. A. Davis and W. W. Hager, “Row modifications of a sparse Cholesky
factorization,” SIAM Journal on Matrix Analysis and Applications,
vol. 26, no. 3, pp. 621–639, 2005.

[16] L. M. Suhl and U. H. Suhl, “A fast LU update for linear programming,”
Annals of Operations Research, vol. 43, no. 1, pp. 33–47, 1993.

[17] T. A. Davis and W. W. Hager, “A sparse proximal implementation of
the LP dual active set algorithm,” Mathematical programming, vol. 112,
no. 2, pp. 275–301, 2008.

[18] A. R. Escobedo and E. Moreno-Centeno, “Roundoff-error-free basis
updates of LU factorizations for the efficient validation of optimality
certificates,” SIAM Journal on Matrix Analysis and Applications, vol. 38,
no. 3, pp. 829–853, 2017.

[19] T. A. Davis and Y. Hu, “The University of Florida sparse matrix col-
lection,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, pp. 1–25, 2011.

[20] J. Edmonds, “Systems of distinct representatives and linear algebra,” J.
Res. Nat. Bur. Standards Sect. B, vol. 71, no. 4, pp. 241–245, 1967.

[21] E. H. Bareiss, “Sylvester’s identity and multistep integer-preserving
gaussian elimination,” Mathematics of computation, vol. 22, no. 103,
pp. 565–578, 1968.

[22] R. M. Montante-Pardo and M. A. Méndez-Cavazos, “Un método
númerico para cálculo matricial,” Revista Técnico-Cientıfica de
DFIMEUANL, Nueov León, vol. 2, pp. 1–24, 1977.

[23] H. R. Lee and B. D. Saunders, “Fraction free gaussian elimination for
sparse matrices,” Journal of symbolic computation, vol. 19, no. 5, pp.
393–402, 1995.

[24] T. Granlund, “GNU multiple precision arithmetic library,” http://gmplib.
org/, 2010.

[25] A. Makhorin, “GLPK (GNU linear programming kit),” http://www. gnu.
org/s/glpk/glpk. html, 2008.


