
Signature Correction Attack on Dilithium Signature Scheme

Saad Islam
Worcester Polytechnic Institute

Worcester,MA, USA
sislam@wpi.edu

Koksal Mus
Worcester Polytechnic Institute

Worcester,MA, USA
kmus@wpi.edu

Richa Singh
Worcester Polytechnic Institute

Worcester,MA, USA
rsingh7@wpi.edu

Patrick Schaumont
Worcester Polytechnic Institute

Worcester,MA, USA
pschaumont@wpi.edu

Berk Sunar
Worcester Polytechnic Institute

Worcester, MA, USA
sunar@wpi.edu

Abstract—Motivated by the rise of quantum computers,
existing public-key cryptosystems are expected to be replaced
by post-quantum schemes in the next decade in billions
of devices. To facilitate the transition, NIST is running a
standardization process which is currently in its final Round.
Only three digital signature schemes are left in the competi-
tion, among which Dilithium and Falcon are the ones based
on lattices. Besides security and performance, significant
attention has been given to resistance against implementation
attacks that target side-channel leakage or fault injection
response. Classical fault attacks on signature schemes make
use of pairs of faulty and correct signatures to recover the
secret key which only works on deterministic schemes. To
counter such attacks, Dilithium offers a randomized version
which makes each signature unique, even when signing
identical messages.

In this work, we introduce a novel Signature Correction
Attack which not only applies to the deterministic version
but also to the randomized version of Dilithium and is
effective even on constant-time implementations using AVX2
instructions. The Signature Correction Attack exploits the
mathematical structure of Dilithium to recover the secret
key bits by using faulty signatures and the public-key. It can
work for any fault mechanism which can induce single bit-
flips. For demonstration, we are using Rowhammer induced
faults. Thus, our attack does not require any physical access
or special privileges, and hence could be also implemented
on shared cloud servers. Using Rowhammer attack, we
inject bit flips into the secret key s1 of Dilithium, which
results in incorrect signatures being generated by the signing
algorithm. Since we can find the correct signature using our
Signature Correction algorithm, we can use the difference
between the correct and incorrect signatures to infer the
location and value of the flipped bit without needing a
correct and faulty pair. To quantify the reduction in the
security level, we perform a thorough classical and quantum
security analysis of Dilithium and successfully recover 1,851
bits out of 3,072 bits of secret key s1 for security level 2.
Fully recovered bits are used to reduce the dimension of the
lattice whereas partially recovered coefficients are used to
to reduce the norm of the secret key coefficients. Further
analysis for both primal and dual attacks shows that the

lattice strength against quantum attackers is reduced from
2128 to 281 while the strength against classical attackers is
reduced from 2141 to 289 . Hence, the Signature Correction
Attack may be employed to achieve a practical attack on
Dilithium (security level 2) as proposed in Round 3 of the
NIST post-quantum standardization process.

1. Introduction

In recent years, quantum computers have made steady
progress to the point where they are considered a threat
to traditional public-key cryptosystems based on the con-
jectured hardness of problems such as integer factoriza-
tion and discrete logarithm. In a landmark result, Shor
introduced an algorithm [1] that can solve the classically
conjectured hard problems of factorization and discrete
logarithm in polynomial time with the aid of a quantum
computer. Symmetric-key systems will also be affected,
albeit to a lesser extent. Using Grover’s algorithm [2]
one may recover symmetric keys by searching through
the key-space with square-root time complexity. Hence
one may overcome Grover, by equivalently doubling key
lengths of symmetric schemes and output sizes of hash
functions. As Key Exchange Mechanism (KEM) uses
public-key schemes to exchange the symmetric keys, there
is a need to develop schemes based on quantum-secure
hard problems.

To aid the transition to post-quantum cryptography
(PQC), the US NIST has announced a PQC standard-
ization process in 2016 [3]. The process started with 82
submissions for public-key encryption (PKE), key encap-
sulation mechanisms (KEM) and digital signatures. 69
schemes were passed into Round 1, 26 were able to get
into Round 2 and currently there are seven finalists and
eight alternate candidates in Round 3 expected to be com-
pleted by the end of 2022. Similar schemes were merged
together and some were attacked by the cryptographic
community and were taken out of the competition [4], [5],
[6], [7], [8], [9], [10], [11], [12]. There are five categories
based on the underlying hard problems: lattice-based,
code-based, hash-based, isogeny-based and multivariate
schemes. These schemes offer varying key sizes under
varying performance figures, but lattice-based schemes

have comparatively compact keys and exhibit better per-
formance. Five out of seven finalists belong to the lattice
category; two of the lattice schemes are digital signatures
with Dilithium [13] being one of them. It belongs to the
CRYSTALS family having another finalist KYBER which
is a KEM. Both are based on the conjectured hard module
Learning With Errors (LWE) problem.

The cryptographic community as well as companies
have started integrating the finalists from the NIST compe-
tition into existing cryptographic libraries like OpenSSL.
An open-source project named Open Quantum Safe
(OQS) aims to support the development and prototyping
of quantum-resistant cryptography [14]. PQShield [15]
is providing four different products for hardware and
firmware for embedded devices, SDK for mobile and
server technologies and encryption solution for messaging
platforms. Another company, QuSecure [16], is providing
a software solution to protect the data at rest. The transi-
tion from classic to post-quantum algorithms is urgently
needed to ensure forward secrecy.

According to the status report on the second Round
of NIST PQC [17], evaluation is based on three criteria:
1) Security. 2) Cost and performance. 3) Algorithm and
implementation characteristics. The third criterion is very
important since even if a scheme is mathematically secure,
it may succumb to side-channel and fault attacks targeting
the implementation. Indeed, in recent years, numerous
side-channel attacks e.g. [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29] and fault attacks e.g.
[30], [31], [32], [33], [34], [35], [36], [37], [5], [38] have
been demonstrated by the research community on PQC
schemes. These include cache attacks, power and EM
side-channels, EM and laser injections, clock-glitches and
the Rowhammer attack. A major challenge in applying
these attacks on PQC schemes, is that PQC schemes have
massive key sizes (KBytes) while the attacks can reveal
only a few bits per attempt. Yet, even a few revealed
key bits may reduce the security strength below the level
specified by the PQC standard. Another challenge for
side-channel attacks is that all the finalists have constant-
time AVX2 implementations for example they do not
have secret dependent branches or other timing variations
based upon the secret key. Also, the schemes in Round
3 have withstood more than five years of cryptanaly-
sis by the cryptographic community and the underlying
hard problems have been analyzed for decades. For the
fault attacks like Differential Fault Attacks (DFA), PQC
schemes already have a mitigation by randomizing the
nonce values. DFA works on a principle of taking the
difference of the correct and faulty pair of output and
mathematically recover the secret key. After this mitiga-
tion, the same message signed or encrypted twice gives
a different signature or ciphertext and the attacker is
unable to collect a faulty and correct pair of the same
message. The exception is the recently introduced fault
attack named QuantumHammer [30] which exploits the
faulty signatures to recover secret key bits. However,
QuantumHammer works only on LUOV, a multivariate
signature scheme eliminated in Round 3.

In this work, we are the first to demonstrate a fault
attack on the randomized version of Dilithium in Round
3, which is also applicable to the deterministic version.
Previous fault attacks on Dilithium [31], [32], [5] are

only applicable to the deterministic version of Dilithium
in Round 1. DFA requires a pair of faulty and correct
signatures which can be collected by signing the same
message twice and faulting in the second iteration. To
prevent this DFA, Round 2 Dilithium introduced signa-
ture randomization by using a different nonce for every
signature generation. Our proposed Signature Correction
attack is independent of the nonce and hence applicable to
both randomized and deterministic versions of Dilithium.
Bruinderink et al. [31] based their analysis on hypothetical
faults without experimental confirmation. Ravi et al. [32],
[5] have experimented using EM fault injection on the
reference implementation for ARM-Cortex-M4. All of
these attacks require physical access to induce the faults.

We propose Signature Correction attack on Dilithium
and demonstrate it on the constant-time AVX2 implemen-
tation using a Rowhammer attack. Our Signature Cor-
rection attack can work with any single fault injection
mechanism. We have chosen Rowhammer, because it is a
software-only fault attack that can be launched remotely.
Also, it has not been mitigated and can be dangerous
in cloud scenarios where different users shares the same
DRAM [39], [40].

1.1. Our Contribution

We introduce the Signature Correction Attack on the
Dilithium signature scheme which recovers secret key bits
using only the faulty signatures and the public key. The
attack works by first inducing bit flips in the signing
process, then collecting the faulty signatures and finally
recovers the secret key bits while trying to correct the
faulty signature using verification algorithm as an oracle.
The faults are induced using a practical and software only
Rowhammer attack to produce the faulty signatures. In
summary, in this work:

1) We introduce the Signature Correction Attack on
Dilithium signature scheme on both randomized
as well as deterministic version. The Signature
Correction Attack only requires faulty signatures
and the public key to mathematically locate single
bit faults on the secret key and to reveal the
exact value of the bit-flip independent of the fault
mechanism used.

2) We practically demonstrate the Rowhammer at-
tack as a fault injection mechanism for Signature
Correction on constant-time AVX2 implementa-
tion of Dilithium to generate the faulty signatures.
Unlike physical fault mechanisms like EM, laser
or clock-glitches, Rowhammer does not require
any physical access which permits remote attacks
on shared servers and is also applicable through
JavaScript.

3) We recover partial secret key of 883 bits out of
3,072 bits for Dilithium security level 2 in about 2
hours of online Rowhammer attack and negligible
amount of post-processing.

4) Careful analysis of the encoding of the secret key
allows us to increase the number of recovered
bits from 883 to 1,522. Additionally, analysis
on the positions of the recovered bits reveal an
additional 329 bits hence significantly extending

the key material. Detailed analysis is given in
Section 5.

5) Further analysis of lattice attacks shows a much
reduced security for Dilithium security level 2
below the NIST’s requirements, i.e. from 2128 to
281 . Hence a partial key material collection and
recovery with Signature Correction Attack fol-
lowed by a lattice attack may indeed compromise
Dilithium level 2 in practice.

6) Our Signature Correction Attack is applicable to
all variants of Dilithium currently in Round 3
including the randomized versions recommended
for side-channel and fault attacks.

7) We propose countermeasures to detect and pre-
vent the Signature Correction attack by temporal
and spatial redundancy techniques as well as
through Rowhammer mitigations.

1.2. Outline

In Section 2, we describe a brief Background of
Dilithium signature scheme and the Rowhammer attack.
We explain our novel Signature Correction attack in
Section 3. Section 4 includes the experimental results.
Lattice attacks with complexity calculations are explained
in Section 5. In Section 7, we propose countermeasures
for our attack and Section 8 concludes the work.

2. Background

We first briefly explain the primitives of the Dilithium
scheme. This is followed by an overview of the Rowham-
mer attack as we are using it as tool to demonstrate our
Signature Correction attack.

2.1. CRYSTALS - Dilithium

The Cryptographic Suite for Algebraic Lattices
(CRYSTALS) consists of two cryptographic schemes, Ky-
ber [41], a KEM and Dilithium [13], a digital signature
algorithm. The suite has been submitted to NIST PQC
competition by the Crystals team and both the CRYSTALS
are among the Round 3 finalists. These algorithms are
based on hard problems over module lattices. We will
only talk about Dilithium in this work. The security of
Dilithium is based on two problems, namely, Learning
With Errors (LWE) problem and SelfTargetMSIS problem.
Dilithium is essentially based on Bai-Galbraith scheme
proposed by Bai and Galbraith [42] in 2014. The design
of the scheme is based on “Fiat-Shamir with Aborts” [43].
Dilithium has three security levels 2, 3 and 5 and also
have AES versions instead of SHAKE for performance
purposes. We shall just briefly explain the key generation,
signing and verification algorithms of Dilithium scheme.
We refer the reader to the original specifications for details
[13].

2.1.1. Key Generation. The secret key vectors s1 and s2
of lengths l and k are sampled randomly from a uniform
distribution. Each element of these vectors is a polynomial
in the ring Rq = Zq[X]/(X n + 1) and the coefficients
are of size ⌘, where q = 2 23 213 + 1 and n = 256 .

Next, a k l⇥ matrix A is generated whose entries are
also from Rq with relatively larger coefficients in range
q. Then the LWE vector t is computed, part of which is
kept secret as t0 while the other part t1 is made public.
The matrix A is also made public while s1 and s2 are
kept secret. Dilithium key generation process can be seen
in Algorithm 1 where it outputs pk as public key and sk
as secret key. Unlike the Bai-Galbraith scheme, where the
whole t was made public, Dilithium just makes t1 public
to reduce the size of the public key. The signature size
however, is relatively increased by a small factor.

Algorithm 1 Dilithium Key Generation [13]

1: Output: pk - Public Key, sk - Secret Key
2: ⇣ {0,1} 256

3: (, &, K⇢) 2 {0, 1}256⇥3 H(⇣)
4: (s1, s2) 2 S l

⌘ ⇥ Sk
⌘ H(&)

5: A 2 R k l⇥
q ExpandA(⇢)

6: t As1 + s2
7: (t 1, t0) Power2Round q(t, d)
8: tr 2 {0, 1} 384 CRH(kt⇢ 1)
9: return (pk = (, t⇢ 1), sk = (, K,⇢ tr, s1, s2, t0))

2.1.2. Signature Generation. Dilithium signing has two
modes of operation, deterministic which is the default
and randomized, recommended for side-channel and fault
attacks scenarios. The nonce y is generated using a seed
⇢0 which is either deterministic or randomized depending
upon the mode of operation. The signature z is generated
using the expression z = y + c · s1, where c is the
challenge vector derived as depicted in Algorithm 2. An
important part of the signing operation is the rejection
sampling which checks if the signature z does not leak
any secret information. The rejection sampling loop runs
for approximately 4 to 7 times until a secure signature
is generated. There is a rejection counter which is
incremented in every loop to generate a different nonce y
in each iteration.

2.1.3. Signature Verification. The Dilithium verification
algorithm computes the challenge vector c̃ and compares
it to the c̃ provided in the signature. Also, it checks the
range of coefficients of signature z and the weight of the
hint h. If all the three conditions are met, the signature is
verified, otherwise rejected. The hint h is not kept secret
since it is needed by the verifier to makeup for t0. We
refer to the Dilithium specification for details [13].

2.2. Rowhammer Fault Injection Mechanism

We are using Rowhammer as a tool to inject faults. We
briefly review the concept and operation of the Rowham-
mer attack, covering memory management, DRAM or-
ganization, address translation and applicability on cloud
environments.

Every process has its own virtual address space which
is divided into virtual pages, typically of size 4 KBytes.
Memory Management Unit (MMU) translates the vir-
tual addresses into physical addresses and keeps track in
form of page tables. The memory controller integrated in
modern processor then translates these physical addresses

Algorithm 2 Dilithium Signature Generation [13]

1: Input: sk - Secret Key, M - Message
2: Output: - Signature
3: A 2 R k l⇥

q ExpandA(⇢)
4: µ 2 {0, 1} 384 CRH(trkM)
5: 0,(z,h) ?
6: ⇢0 2 {0, 1} 384 CRH(Kkµ) (or ⇢0 {0,1} 384

randomized)
7: while (z, h) =? do
8: y 2 S l

1 ExpandMask(⇢ 0,)
9: w Ay

10: w1 HighBits q(w, 2 2)
11: c̃ 2 {0, 1} 256 H(µkw 1)
12: c 2 B⌧ SampleInBall(˜ c)
13: z y+c·s 1
14: r0 LowBits q(w c · s2, 2 2)
15: if kzk 1 or kr0k1 2 then
16: (z,h) ?
17: else
18: h MakeHint q(c·t0, w c·s 2+c·t 0, 2 2)
19: if kc · t0k1 2 or the # of 1’s in h > !

then
20: (z,h) ?
21: end if
22: end if
23: +l
24: end while
25: return = (z, h, c̃)

Algorithm 3 Dilithium Signature Verification [13]

1: Input: pk - Public Key, M - Message, - Signature
2: Output: Verify / Reject
3: A 2 R k l⇥

q ExpandA(⇢)
4: µ 2 {0, 1} 384 CRH(CRH(kt⇢ 1 k M)
5: c SampleInBall(˜ c)
6: w0

1 UseHint q(h, Az ct1 · 2d , 2 2)
7: return [kzk1 < 1] and [c̃ = H(µ k w 0

1)] and [#
of 1’s in h !]

into channels, ranks and banks inside the DRAM. This
DRAM addressing varies from system to system and is
not publicly disclosed for Intel CPUs, although the DRAM
addressing was reverse engineered for some of the systems
by Pessl et al. in 2016 [44]. Each bank then further
consists of rows and columns sharing the same row buffer.
A DRAM row consists of 64K cells and a cell is composed
of a transistor and a capacitor. Data is stored in these
capacitors in form of charge and interpreted as a zero or a
one according to predefined threshold levels. As capacitors
leak charge over time, there is a refresh mechanism to
restore the charge of all the DRAM cells every 64ms.

As the DRAM manufacturers are trying to make
memories more compact, these rows of cells are getting
physically closer leading to disturbance errors from one
DRAM row to another. If one row is accessed repeatedly,
it might cause electrical interference with the neighboring
row due to insufficient insulation and the cells in the
neighboring row may leak faster. If the leakage is faster
than the refresh frequency, the cells can not maintain their
state, which may lead to bit flips. This is known as the

Rowhammer effect which was first introduced by Kim
et al. in 2014 [45]. Using Rowhammer, an attacker with
access to a row next to the victim row in DRAM is able
to cause bit flips in the victim memory, even when the
attacker resides in a process completely separate from the
victim process. If the attacker hammers one row which
causes bit flips in the neighboring row, it is called single-
sided Rowhammer.

After this discovery, Seaborn et al. [46] introduced the
double-sided Rowhammer which is far more effective than
the earlier single-sided Rowhammer. In a double-sided
Rowhammer, the attacker hammers two rows sandwiching
the victim row, leaking the victim cells even faster. Veen
et al. [47] in 2016 showed that it is also applicable to mo-
bile platforms. Gruss et al. [48] introduced one-location
hammering and achieved root access with opcode flipping
in sudo binary in 2018. Gruss et al. [49] and Ridder
et al. [50] have shown that Rowhammer can be applied
through JavaScript remotely. Tatar et al. [51] and Lip et al.
[52] have proved that it can be executed over the network.
Rowhammer is also applicable in cloud environments [39],
[40] and heterogeneous FPGA-CPU platforms [53]. In
2020, Kwong et al. [54] demonstrated that Rowhammer
is not just an integrity problem but also a confidentiality
problem.

There have been many efforts on Rowhammer de-
tection [55], [56], [57], [58], [59], [60], [61], [62] and
neutralization [49], [47], [63]. Gruss et al. [48] have
shown that all of these countermeasures are ineffective.
Some countermeasures require hardware modification,
bootloader or BIOS update [63], [64], [65], [45], [66],
[67] but they are not all implemented. Cojocar et al. [68]
in 2019 reverse engineered the ECC memories showing
that ECC countermeasure is not secure either. Another
hardware countermeasure Target Row Refresh (TRR) has
also been recently bypassed by Frigo et al. [69] using
many-sided Rowhammer on DDR4 chips. The same work
has been extended by Ridder et al. [50] to attack TRR
enabled DDR4 chips from JavaScript. They claim that
more than 80% of the DRAM chips in the market are
still vulnerable to the Rowhammer attack.

3. Signature Correction Attack on Dilithium

To the best of our knowledge, there is no published
work yet summarizing a fault attack on Dilithium which
can work on randomized version of Dilithium. The ran-
domized version randomly generates the nonce for each
signing operation, which gives a different signature ev-
ery time we sign the same message. Hence a standard
DFA is not possible in case of randomized Dilithium as
the attacker cannot recover a faulty and another correct
signature for the same message for the same nonce. Our
novel Signature Correction attack however is independent
of the nonce, hence it is applicable to both randomized
and deterministic versions of Dilithium.

The Signature Correction attack exploits the mathe-
matical structure of Dilithium to recover the secret key
bits by using just the faulty signatures and the public key.
Thus the attack can be executed offline after collecting
sufficiently many faulty signatures from an active fault
attack. The attack is independent of the concrete fault
injection technique. The only requirement is that the faults

should be single bit and induced before the signing step
13 of Algorithm 2 in secret key s1. First we define
the attacker model and then explain the phases of our
Signature Correction attack.

3.1. Attacker Model

When multiple tenants in cloud environments reside
on the same server, they may share the same DRAM.
The Rowhammer attack requires the attacker process and
victim process to share a DRAM. The attacker process
can then induce bit flips by just reading its own memory
repeatedly [39], [40], [53]. Moreover, the DRAM must
be vulnerable to Rowhammer attack which means that its
memory cells must be susceptible to the hammering effect.
Most types of DRAMs have been shown to be vulnerable
in [69], [50]. We are not using HugePages for contiguous
memory as most of the servers are not configured to use
HugePages. We will explain how we detect contiguous
memory in Section 3 as it is required for the double-sided
Rowhammer to locate the neighboring rows in a DRAM
bank. Also, the attacker has no knowledge of the DRAM
mapping which is different for different memory con-
trollers and DRAM configurations. The DRAM mapping
maps physical addresses to actual DRAM ranks, banks,
rows and columns which can be used by the attacker to
co-locate with the victim in the same DRAM bank. In
Section 3, we will explain how we use the row conflict
side-channel for bank co-location. The attacker can induce
bit flips in the secret key s1 of Dilithium but she has no
control over the position of bit flip within the s1. For
security level 2 for example, the size of s1 is 4 KBytes
and the attacker has no knowledge of location of the bit
flip within this 4 KBytes memory. Also, she has no idea of
the value of the flipped bit. The attacker can just induce bit
flips from her own process and is able to collect the faulty
signatures from the victim. She can only use these faulty
signatures along with the pubic parameters to recover the
secret key bits.

3.2. Phases of the Signature Correction Attack

There are three phases in the Signature Correction
Attack. First, we identify vulnerable memory locations
called as templating. Then, we perform double-sided
Rowhammer attack on the victim in the online phase and
collect the faulty signatures. Finally, we post-process the
faulty signatures and recover the flipped secret key bits
by Signature Correction algorithm.

1) Templating Phase: In a pre-processing phase of
the Rowhammer attack, the attacker will identify
vulnerable memory locations. The victim needs
not to be present during this phase.

2) Online Phase: In the online phase, the victim
process is forced to map onto the identified vul-
nerable memory locations from the templating
phase. Then the attacker induces bit flips inside
the victim process and collects the faulty signa-
tures generated by the victim.

3) Post-processing Phase: In this phase, the at-
tacker uses the faulty signatures and the public

key to recover the secret key bits using the Sig-
nature Correction algorithm. This phase can be
carried out offline and can be parallelized and run
on distributed systems for performance.

We will first explain our novel Signature Correction
algorithm. Next, we describe the templating and online
phase of Rowhammer to practically demonstrate the fault
injection.

3.3. Signature Correction Algorithm for
Dilithium

Signature Correction is a way to recover the flipped
secret key bits using faulty signatures. Since challenge c is
public, the generated error in the signature can be used to
find the position of the flipped bit in the secret key. The er-
ror in the faulty signature can be some certain multiples of
c. Therefore, if we somehow correct the faulty signature,
we are able to find the position of the bit-flip. The main
idea of Signature Correction is to find the faulted bit in the
secret key by the process of correcting the faulty signature
by checking it using signature verification algorithm. The
main difference between the standard DFA and Signature
Correction Attack is that the attacker does not need to
know the original signature. Finding the position of the
flipped bit by the fault is different for every algorithm. In
Algorithm 4, we explain it specifically for Dilithium.

3.3.1. How to trace back to the flipped bit using a
faulty signature. s1 is defined in Sl

⌘ in Algorithm 1

step 4. Let s1 = (s (1)
1 , · · · , s(l)1) in vector form where

s(i)
1 = ⌃ n 1

j=0 a(i)
j x j and ⌘ a (i)

j ⌘ , 1 i l
and 0 j n 1. In Algorithm 2 step 13, signature
is generated by z = y + c · s 1 where c = ⌃ n 1

j=0 cj x j is a
constant challenge vector. If one bit in s1 is flipped before
the signature generation, it faults the output signature
z̄ = y + c · s̄1. Then, the difference of the faulty and
original signatures is z = z + z̄ = c · (s1 + s̄1) = c · s1.
Since just one bit is flipped in s1, z has just one non-
zero component which is ct ā(i)

r x t+r , where ā(i)
r is the

one bit difference, xr is the position of the flip in si
1

and ct is the relevant component of the flipped bit in
c. Note that, because of xr term, c shifts to the right r
times. Additionally, ār is a power of 2 since it is the 1-bit
difference.

For instance, if the flip is in the first coefficient of s1,
the changes in z appear at the same indices at which c
is non-zero. If it is in the second coefficient of s1, the
changes appear at the non-zero indexes of one bit shifted
version of c and so on. This observation makes it possible
to trace back to the faulty bit by just using the faulty
signature and the public key. We can not only locate the
position of the bit flip but also the value of the flipped bit
because both have a unique effect on the error.

To recover the secret key bit by just using the faulty
signature 0, first we unpack the faulty signature to get the
unpacked faulty signature z0 and the challenge information
c̃. Next we sample c̃ to get the challenge vector c and
copy it to a temporary variable c as we will need to
modify it. The idea is to add all n shifted versions of c in
the faulty signature z0 one by one and try to correct the

faulty signature. We can verify the correctness using the
Dilithium verification, Algorithm 3, as an oracle. When
the signature with the attempted correction verifies, we
can tell that this is the index of the flipped coefficient.
We can also tell the value of the flipped bit by trying
both addition and subtraction of the shifted versions of c.
We need to repeat this step for all of the L elements of
s1 to trace the flipped bit for any of the elements of s1.

This procedure works if the bit flip occurs in the LSB
of the coefficients. If the flip is the second or third LSB,
we need to add a multiplier , which is 2bit index . This
multiplier is first multiplied with the shifted version of the
challenge vector c and then added to the faulty signature
z0. In the Dilithium implementation, the coefficients of s1
are stored as int32_t, but the values of the coefficients
range up to four bits depending upon the security level.
Hence, we need to check up to three or four bits, we
call this number as B . The algorithm however is capable
of going further but there is no useful information on the
MSB side as the remaining bits are the same as last useful
LSB. So, we need to keep modifying the public challenge
c, multiply it with the multiplier , add it to the faulty
signature z0 and verify to see if the signature is corrected
using the verification oracle. If the signature is correct,
the algorithm returns the recovered bit of secret key s1
as output. The algorithm needs at most 2 B L n⇥ ⇥ ⇥
number of verification to recover one bit of secret key. In
practice however, the code breaks earlier upon finding the
location. Algorithm 4 summarizes our attack.

Algorithm 4 Novel Signature Correction Algorithm for
Dilithium

1: Input: 0 - Faulty Signature, M - Message, pk -
Public Key

2: Output: (row, col, bit index, value) - Recovered se-
cret key bit

3: (z0, h, c̃) unpack(0)
4: c SampleInBall(˜ c)
5: c c
6: for bit index from 1 to 32 do
7: multiplier 2 bit index 1

8: for row from 1 to L do
9: for col from 1 to N do

10: z[row] z 0[row] + multiplier c⇥
11: pack(z,h,c)
12: if sig verif y(pk, M,) = true then
13: return (row, col, bit index, 1)
14: else
15: c circ shift right(c)
16: end if
17: end for
18: for col from 1 to N do
19: z[row] z 0[row] multiplier c⇥
20: pack(z,h,c)
21: if sig verif y(pk, M,) = true then
22: return (row, col, bit index, 0)
23: else
24: c circ shift right(c)
25: end if
26: end for
27: end for
28: end for

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Page Numbers

1

1.2

1.4

1.6

1.8

2

2.2

2.4

F
ra

m
e
 N

u
m

b
e
rs

10
6

Contiguous Memory

Figure 1: Contiguous memory detection. x-axis shows the
page numbers of the allocated memory buffer, each page
being 4 KBytes. On y-axis are the frame numbers of these
pages in integer form. The straight line shows a linear
increase in frame numbers; it is not a horizontal line.

3.4. Templating Phase

Signature Correction attack needs a fault mechanism
which can provide faulty signatures. We are practically
inducing faults using Rowhammer, a software-only tech-
nique which does not require any physical access to the
target machine. Recent research has shown that it can be
applied over the network [51], [52] and even remotely
through JavaScript [49], [50]. There is no effective coun-
termeasure to prevent Rowhammer completely in DRAM
chips so far. Recent research has demonstrated that it is
possible to apply Rowhammer even on DDR4 memories
with TRR [69] mitigation as well as on ECC memories
[68]. Templating phase involves three steps: contiguous
memory detection, bank co-location and double-sided
hammering.

3.4.1. Contiguous Memory Detection. For a double-
sided Rowhammer, the attacker needs to allocate the rows
exactly one above and one below around the victim in
the actual DRAM. For this purpose, contiguous memory
is a requirement for double-sided Rowhammer. It can be
achieved using Huge-pages but that requires special con-
figuration and privileges. We achieve contiguous memory
detection using S POILER [70] from normal user space
without any special privileges. When the spoiler peaks
become equally distant apart, the physical addresses be-
come contiguous. Figure 1 shows the frame numbers of
memory pages inside a buffer. We can see the contiguous
memory where the frame numbers are linearly increasing.
A detailed description of this approach can be found in
[70].

3.4.2. Bank Co-location. A DRAM is organized in banks
and every bank has a row buffer. Rowhammer attack
works when both the attacker and the victim are sharing
the same bank. To find the virtual addresses mapping to
the same bank, we use a side-channel which is based on
the row conflict. When two addresses from the same bank
are accessed, it takes longer as compared to the accesses
from different banks. This is because one row loaded
inside the row buffer needs to be written back to its orig-
inal position before loading another row. The CPU cycles
taken for accessing one address and the remaining are
shown in Figure 2. Depending on the maximum values of

0 20 40 60 80 100 120 140 160 180 200

Page Number

250

300

350

400

450

C
y
c
le

s

Figure 2: When two DRAM rows are accessed which
reside in the same bank, we get a peak due to the row
conflict. A threshold can be set to separate these rows
using this side-channel information. In our experiments
we have set the THRESHOLD_ROW_CONFLICT value as
380 cycles.

Listing 1: Typical Rowhammer instruction sequence [40]
l o o p :

movzx r a x , BYTE PTR [r c x]
movzx r a x , BYTE PTR [r d x]
c l f l u s h BYTE PTR [r c x]
c l f l u s h BYTE PTR [r d x]
mfence
jmp l o o p

the peaks, we can set a threshold to extract the addresses
mapped to the same bank.

3.4.3. Double-sided Hammering. Once we identify the
contiguous memory within a bank, we can start taking
three rows at a time from this memory and apply double-
sided Rowhammer on them. We hammer the top and bot-
tom row and expect the bit flips in the middle row. In our
experiments, we have kept the number of hammers equal
to 106. While keeping the record of the vulnerable rows,
we keep moving onto the next three rows until for our
identified contiguous memory. We have used the typical
Rowhammer instruction sequences without the mfence
as shown in Listing 1. Without the mfence, the number
of bit flips are more as compared to with mfence. This is
because the DRAM accesses become faster which results
in quicker leakage of the charge stored in the memory
cells. The number of flips with and without mfence are
compared in Figure 3. The number of CPU cycles and
the time taken by one Rowhammer instruction sequence
is given in Table 1.

3.5. Online Phase

As the Rowhammer attack is highly reproducible, we
first place the victim into our target vulnerable location
inside the memory and repeat the double-sided Rowham-
mer attack by hammering the neighboring addresses. This
induces the bit flips in the actual victim, and faulty signa-
tures are produced by the victim in response. The online
phase consists of two steps, first is the victim placement
and the second is the double-sided Rowhammer.

3.5.1. Victim Placement. Once the attacker finds vulner-
able DRAM rows, it frees the row using munmap. Now

0 1 2 3 4 5 6 7 8 9 10

Number of Hammers 10
7

0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

B
it
 F

lip
s

with mfence
without mfence

Figure 3: The number of bit flips in 1 MByte of memory
in a DRAM bank out of the 8 MBytes contiguous chunk
spread across 8 banks as a function of the number of
hammers. The number of bit flips increases with the
number of hammers and without mfence sequence gives
much more bit flips. Approximately 0.03% of the DRAM
cells are found to be vulnerable to Rowhammer attack on
the DRAM model we profiled.

TABLE 1: CPU cycles and time taken by a typical
Rowhammer instruction sequence on our platform.

Instruction Sequence (mV) CPU Cycles Time (µs)
With mfence 635 0.18

Without mfence 480 0.14

it can either wait for the victim page to take that space in
the memory or use standard techniques like spraying [49],
[46], [39], grooming [47] or memory waylaying [48], [54],
[71] to force the victim to come at the target address. We
achieve this by repeatedly mapping the secret key s1 of
the victim until it lands to the target page as shown in
Figure 4. The physical addresses are checked using the
pagemap file.

3.5.2. Double-sided hammering. When the victim is
mapped to the attacker’s desired vulnerable memory
location, the attacker can now apply the double-sided
Rowhammer again. While the victim is signing the mes-
sages, the attacker now hammers the same rows which
she found in the offline phase but this time it flips the
bits in the victim process. This is because of the fact that
Rowhammer effect is highly reproducible which means if
you have found the vulnerable cells once, their values can
be flipped again later. Finally, the victim starts producing
the faulty signatures due to the bit flips in the secret key
which are collected by the attacker.

When a bit is flipped on the MSB side of s1, it is
likely that the rejection sampling condition in step 15 of
Algorithm 2 repeatedly becomes true or takes too many
iterations to output a faulty signature. This can create a
denial of service scenario and can cause the victim to stuck
in a loop and never output a signature unless the victim is
moved to another memory location in the DRAM, making
our attack harder. To counter this situation, we have set a
limit on in Algorithm 2 to prevent the victim from going
into an infinite loop. However, if there is a side-channel
attack running in parallel is collecting side information,
this scenario can be useful as the nonce y is changing in
each iteration.

Aggressor Row (8 KB)

Victim Page (4 KB)

Aggressor Row (8 KB)

...

...

Row Buffer

X X X X X X X X

Figure 4: Victim placement and double-sided Rowham-
mer. To flip the bits from 1 ! 0 inside the victim page,
the attacker rows are needed to be filled with all zeros
and for 0 ! 1 flips, the attacker rows must be filled with
all ones. Empirically, cells which flip both ways are very
rare. Hence, a 0 ! 1 flip may not happen in a 1 ! 0 bad
cell and vice versa.

4. Experimental Results

In this Section, first we mention our Rowhammer
experimental setup and then mention the results of our
Signature Correction attack experiments 1.

4.1. Experimental Setup

All the Rowhammer experiments are performed on
a Haswell system with Intel(R) Core(TM) i7-4770 CPU
@ 3.4GHz with 2 GBytes Samsung DDR3 part number
M378B5773DH0-CH9. We have used Haswell because
the AVX2 support start from Haswell and it also supports
DDR3 memories. Our underlying operating system is
Ubuntu 16.04 LTS.

We have performed all the post-processing on a Sky-
lake system with Intel(R) Core(TM) i5-6440HQ CPU
@ 2.60GHz having 8 GBytes DDR4 memory running
Ubuntu 16.04 LTS using only a single core. The post-
processing performance can be improved using multicore,
GPUs or distributed computing.

4.2. Key recovery with Signature Correction At-
tack

We have successfully applied Rowhammer on s1 of
size 1024 ⇥ 32bits for the AVX2 implementation of the
Dilithium security level 2. After collecting 6,853 single-
bit faulty signatures in 2.19 hours of online Rowhammer
attack, we have recovered 3,735 unique bits of secret key
s1 using our Signature Correction algorithm as shown in
Figure 5. Note that, the faults we can inject are far from
uniform. In fact, there are locations that are unflippable.
The spatial bias is highly dependent on the technology
of the DRAM. In our target DRAM (M378B5773DH0-
CH9), we observed heavy spatial correlations (dark verti-
cal stripes in Figure 5). Also rejection sampling prevents
faulty signatures with flips at higher locations to be re-
leased. Hence, even if we force s1 to relocate in memory
as explained in Section 3.5.1, this does not allow recovery
of all s1 bits. We start recovering the same key bits and

1. The source code for Signature Correction Attack is made available
at http://github.com/VernamLab/SignatureCorrection.

TABLE 2: Post computation times for Signature Correc-
tion attack on a single CPU. These offline computations
can be performed on a distributed system or GPUs for
performance improvement.

AVX2 Average CPU Cycles Time (Sec)
Implementations (1 Verification) (1 Signature Correction)

dilithium2 36595 0.094
dilithium3 70397 0.267
dilithium5 67719 0.263

dilithium2-AES 28901 0.071
dilithium3-AES 47614 0.177
dilithium5-AES 49479 0.200

while others that wander through unflippable locations are
never recovered. Therefore, we stop the online phase and
do post-processing after all flippy locations are recovered.
Among the 3,735 recovered bits, 2,454 are the 0’s (green
pixels) and 1,281 are the 1’s (red pixels). Each sub-figure
represents an element (polynomial) of s1 up to l = 4
for Dilithium security level 2. Each polynomial has 256
coefficients on y-axis and 32 bits per coefficient on the
x-axis. Every faulty signature gives one bit of secret key.
The difference of 3,118 bits is because of the repetition
of the faults at the same memory location as the attacker
has no control over the locations within the s1. 883 out
of these 3,735 bits reside in the first three LSBs which
should contain the actual key information. The rest of the
bits from bit 4 to bit 32 are redundant, same as bit 3.

However, as the remaining bits from bit 4 to bit 32
are all same as bit 3 for each coefficient, if any of the bits
are recovered from this region, we can consider it a bit
recovery for LSB 3. This increases our useful bit recovery
number significantly from 883 to 1,522 bits. Finally, we
can say that by analyzing the positions of recovered bits in
the coefficient, we can increase the number of recovered
bits from 1,522 to 1,851, see Section 5.2 and Section 5.3
for details. As a summary, we have successfully recovered
1,851 bits out of the total 3,072 bits of s1, 3-bits each of
1024 coefficients. The results and distribution of recovered
bits up to the secret key coefficients is provided in Table
8.

Table 2 shows the offline computation time needed
to trace one bit of secret key for all the variants of
Dilithium. These timings are for the worst case scenario
of 2 B L n⇥ ⇥ ⇥ verification as explained in Section
3. The search is however stopped earlier once a bit is
located. We have computed the post-computation times
for all variants but demonstrated the Rowhammer attack
on only Dilithium security level 2. However our Signature
Correction attack is applicable to all variants, modes and
security levels of Dilithium Round 3, where modes are
randomized and deterministic, variants are SHAKE and
AES and the security levels 2, 3 and 5.

5. Estimating the Diminished Security Level
of Dilithium

5.1. Lattice Security with Reduced Dimension

The Signature Correction Attack can be used itera-
tively to recover the secret key-bits. There are however
two caveats in applying Signature Correction in practice:

Bits per Coefficient

C
o
e

ffi
c
ie

n
ts

Polynomial s
1
(1)

11632

1

32

64

96

128

160

192

224

256

Polynomial s
1
(2)

11632

1

32

64

96

128

160

192

224

256

Polynomial s
1
(3)

11632

1

32

64

96

128

160

192

224

256

Polynomial s
1
(4)

11632

1

32

64

96

128

160

192

224

256

Figure 5: Recovered bits of secret key s1 for Dilithium (security level 2). 3,735 in total with 2,454 0’s (green pixels)
and 1,281 1’s (red pixels).

• Each Signature Correction recovers only one se-
cret key bit. For full-key recovery we need at least
1024 ⇥ 3unique faulty signatures which is rather
time-consuming.

• As described below in practice we inject faults
using Rowhammer, which prevents precise target-
ing of bits. Thus, we need many more Signature
Correction iterations (and time consuming page re-
allocations) in practice.

To overcome both problems, we instead opt to recover
only a fraction of the key-bits to diminish the security level
of Dilithium to a point where the remaining key bits can
be recovered using lattice attacks.

Here we estimate the new security level of Dilithium
by exploiting the recovered bits by Signature Correction
attack. Briefly, Dilithium is based on the hardness of the
MLWE and MSIS problems under the Strong Unforgeabil-
ity under Chosen Message Attack (SUF-CMA) model. We
follow the cost estimation approach of [72], [13], i.e., the
MLWE problem is analyzed as an LWE problem and the
security level is estimated using standard lattice hardness
estimation techniques. Specifically, we base our estimate
on the so-called primal and dual attacks [73], [74] and use
BKZ for lattice reduction. Cost estimation of the attacks
are given in [72], [13]. Note that these estimates ignore
SVP oracle calls. Instead, core-SVP hardness which is the

cost of one call to an SVP oracle in dimension b is taken
into account. For Quantum attacks, the Sieve algorithm
is used to estimate the core hardness of underlying open
problem. For the quantum sieve algorithm the heuristic

complexity is
p

3/2
b+O(b)

⇡ 20.292b [75], [76]. Grover’s
quantum search algorithm reduces the complexity down to
20.265b [77], [78]. Cost of solving SVP in classical attack
bound is 20.2075b ⇡ 239 for the best-known algorithm [73].

The Signature Correction attack allows us to recover
certain number of bits of the private key s1. By analyzing
the distribution of the recovered bits, we can recover addi-
tional bits. We follow the general methodology from [72],
[79] to analyze the reduced security of Dilithium with
side information recovered using the Signature Correction
attack as described in Section 3. The reduced security
levels can be determined by following the analysis in
[13], [72], [79]. The analysis converts the equation system
into an LWE instance of dimensions 256 · l and 256 · k
by taking the coefficients of polynomial elements in the
MLWE problem as the vectors of coefficients in LWE
problem. Hence, the problem is reduced to finding the
coefficient vectors

s1 , s2 2 Z256·l ⇥Z256·k

from Ā and coefficient vector of t . Here Ā 2 Z256·k⇥256·l
q

is obtained by replacing all entries aij 2 R q of A by

the rotation of the coefficient vectors of aij . One can
show that the private key coefficients recovered using the
Signature Correction Attack can be used to reduce the
dimension n of the lattice formed by the equation system

As1 + s2 = t (1)

by inserting the recovered coefficients of the secret key
into its polynomial form. Moreover, inserting the recov-
ered bits which are not used to find the coefficients can
also reduce the norm of the coefficient vector. The security
estimates for the scheme reduced for a given number of
coefficients recovered using Signature Correction is given
in Table 9. From the table, we deduce that recovering
8 coefficients of secret key reduces the attack complexity
to around half of the overall complexity on average. In
other words, recovering approximately 320 coefficients by
Signature Correction attack is enough to reduce the attack
complexity to a practical level, i.e. 80 bits. Note that, we
take the norm of secret key coefficients as ⇣ =

p
10.

Estimated time to recover is given in Section 4.2. 2

To recover 320 coefficients, we need 960 bits in the
same coefficients. Therefore, we cannot conclude that any
960-bit recovery is enough to break the scheme since we
do not have any control on the location of the recovered
bits.

5.2. Exploiting the Redundant Encoding to Re-
cover More Coefficients

In this section, we focus on how we can use the
recovered bits in the most effective way to diminish the
security level of Dilithium. For this purpose, we divide the
coefficients of the secret key polynomial into 3 groups:

• Group 1 has the fully recovered coefficients, i.e, 3
out of 3 bits are known in the coefficients. Number
of recovered coefficients in Group 1 can directly
be used to reduce the dimension n of the LWE
system (Section 5.2).

• Group 2 consists the coefficients in which 1 or
2 out of 3 bits are known in each coefficient.
The recovered bits in this category fall short in
reducing the LWE dimension further, yet they can
still be used to reduce the norm of the secret
key coefficients, i.e, unique SVP solution in LWE
system (Section 5.3).

• Group 3 is the collection of coefficients with
no recovered bits. hence yielding no information
about the coefficients.

When we estimate the security level, our calculations
are based on the number of recovered coefficients
and the norm of the remaining unknown coefficients.
Secret key is defined as an l dimensional vector of
nth degree polynomials with coefficients in the range
[⌘, ⌘]. In our experiments, we consider Dilithium
security level 2 in which parameters are set to ⌘ = 2,
l = 4 and n = 256 [13], i.e., Each coefficient of
the secret key is in { 2, 1, 0, 1, 2} but is encoded
in the reference implementation as 32-bit words
{1 · · · 1110, 1 · · · 1111, 0 · · · 0000, 0 · · · 0001, 0 · · · 0010},

2. The script “scripts/PQsecurity.py” which estimates the cost of pri-
mal and dual attacks can be found at [72].

TABLE 3: Recovering an additional bit by using recovered
2-bit info by Rowhammer. Shaded rows has the additional
bit recovery, i.e., full coefficient is recovered by 2-bit info.

Known bits Possible # of possible
of xyz coefficients coefficients
00z 00z 2
01z 010 1
10z N/A 0
11z 11z 2
0y0 0y0 2
0y1 001 1
1y0 110 1
1y1 111 1
x00 000 1
x01 001 1
x10 x10 2
x11 111 1

TABLE 4: Number of additional full coefficient recoveries
by 2-bit info. Highlighted bit shows the additional bit
recovery.

xyz Rec Coeffs s(1)
1 s(2)

1 s(3)
1 s(4)

1 Total
01z 010 10 11 6 5 32
0y1 001 12 5 6 8 31
1y0 110 7 7 6 9 29
1y1 111 10 9 5 11 35
x00 000 1 0 0 0 1
x01 001 0 0 0 0 0
x11 111 0 0 0 1 1
Total # of Rec Coeffs 40 32 23 34 129

respectively. Therefore we have a highly redundant
representation, where the per coefficient entropy of secret
key encoding is only 2.25 bits (in 32 logical bits). The
recovered bits are distributed over the last three bits
of 1024 coefficients given in Figure 5. Additionally,
distribution of number of recovered bits up to the
coefficients is given in Table 5.

Even though the recovered 1,522 bits are expected to
give us information for about 507 coefficients, just 99
coefficients fully recovered, since only 297 out of 1,522
bits are concentrated in 99 coefficients. The remaining
1,423 bits are distributed over the remaining 857 different
coefficients. On the other hand, 2-bit recovered in any
coefficient yields either 0 or 1 bits of information on a
coefficient as summarized in Table 3. Here coefficients are
represented by xyz where z denotes the least significant
bit (LSB) of the coefficient, and x represents the most
significant bit (MSB) if we represent the coefficients by
the last three bits. All higher order bits will be identical to
x, i.e. the sign bit of the coefficient. In certain cases, with

TABLE 5: Distribution of 1,522 bits recovered by Sig-
nature Correction Algorithm to the # secret key in poly-
nomial coefficients. Total of 99 coefficients are recovered
with another 857 coefficients yielding only partial infor-
mation.

s(1)
1 s(2)

1 s(3)
1 s(4)

1 #bits #coefs
No recovery 19 14 18 17 0 68
1 bit rec 122 126 131 110 489 489
2 bits rec 95 89 86 98 736 368
Full rec 20 27 21 31 297 99
Total 372 385 366 399 1522 1024

TABLE 6: Recovering an additional bit by using 1-bit
recovered by Rowhammer. Shaded rows yield an extra
bit.

Known bit Possible # of possible
of xyz coefficients coefficients
1yz 11z 2
0yz 00z or 010 3
x1z 11z or 010 3
x0z 00z 2
xy1 001 or 111 2
xy0 x10 or 000 3

TABLE 7: Number of additional bit recovery by 1-bit info.
Highlighted bit shows the recovered bit.

xyz Rec Coeffs s(1)
1 s(2)

1 s(3)
1 s(4)

1 Total
1yz 11z 51 46 56 37 190
x0z 00z 2 1 2 0 5
xy1 xx1 2 1 1 1 5
Total # of Rec bits 55 48 59 38 200

a 2-bit information of a coefficient we can recover the full
3-bit coefficient as shown in Table 3. For instance, if we
recovered the first two bits as in the case of 01z, then due
to the encoding the only possible value z can take is 0. We
can fully recover a coefficient from 2-bits of information
in 7 out of 12 cases as shown in the shaded rows in
Table 3. With this approach, we managed to recover an
additional 129 coefficients of the secret key as summarized
in Table 4. The total number of recovered coefficients is
increased significantly, i.e. from 99 to 228. You can find
the number of recovered coefficients in Table 8.

5.3. Reducing the Norm of the Coefficients

In cases where we recover 1-bit out of a coefficient
the information is not sufficient to recover the entire
coefficient. However, we can still gain information useful
in reducing the attack complexity. Specifically we can
reduce the norm of the target vector by removing known
bits from it. This reduces the complexity of the lattice
search problem.

Further in certain cases the 1-bit knowledge may fa-
cilitate recovery of an additional bit of the coefficient. In
Table 6, these special cases are shown in shaded rows.
Analyzing the experimentally recovered bits gives us 200
of these special cases, i.e., two bits of 200 coefficients are
recovered by 1-bit information. In Table 7, the number
of coefficients in which extra bit recovery is possible is
shown. By analyzing the recovered bits, we recovered 1 bit
of 289 coefficients and 2 bits of 439 coefficients. There are
68 coefficients that we have no extra information about.
Number of recovered bits and coefficients by Rowhammer
and extra bit recovery method is given in Table 8. When
we insert these recovered bits into the Lattice formulation
the norm of secret key coefficients in the reduced system
is decreased to

⇣ = 68
796

⇥ 3 + 289
796

⇥ 2 + 439
796

⇥ 1 = 1.53392.

By analyzing the encoding (Section 4.2), we increased
the number of recovered bits from 883 to 1,522. This was
achieved by taking recovered bits from 4 to 32 as the
sign bit, i.e. x. Then we further increased from 1,522 to

1,851 by considering the positions in the recovered bits
in the last 3 bits of the coefficient. In total, the number
of fully recovered coefficients are increased from 99 to
228, and the number of coefficients with 2 bits known are
increased from 368 to 439. By analyzing the encoding,
we partially or fully recovered 956 coefficients of 1024
secret key coefficients, in total. The breakdown is given
in Table 8.

The diminished security level of Dilithium with the
fully recovered coefficients (reduced dimension n̄) and
reduced average norm ⇣ is listed in Table 9. Note that
with the fully recovered coefficients the reduced security
level is 124-bits for classical and 112-bits for quantum
attackers. By also exploiting the encoding to increase the
fully recovered coefficients from 99 to 228 and partially
recovered coefficients to reduce the norm from ⇣ =

p
10

to ⇣ = 1.53392, we managed to significantly degrade the
security level: 89-bits (classical) and 81-bits (quantum).

6. Discussion

6.1. Is the weakness inherent to Dilithium?

In our attack we exploited the linear structure of
Step 13 in the Dilithium Signing Algorithm:

z y+c·s 1 .

To this end, we compute and check possible fault patterns
as they would appear as additive terms in the faulty
signature z̄. This approach is enabled by the linearly
additive secret mask y and the publicly known challenge
vector c. Clearly, the presented signature correction al-
gorithm is specific to Dilithium. However, we have also
tried to produce a similar technique in the GeMSS [80]
and Rainbow [81] schemes which gave insufficient partial
information. While the approach is generic, the particulars
of the signing algorithm may still make it hard to trace
the fault to the output without causing the search space
to grow exponentially, thus preventing efficient signature
correction. While the presented attack utilizes faulty sig-
natures to recover secret key bits we have also exploited
the highly redundant encoding of the coefficients to gain
significant advantage in reducing the security level of
Dilithium. This weakness is not rooted in the algorithm
itself, but rather due to the choice of representation used
in the implementation.

6.2. Further Reducing the Attack Complexity

Dachman-Soled et al. [6] introduced a framework
for cryptanalysis of lattice based schemes when side-
information in the form of “hints” about the secret and/or
error is available. The framework allows the primal lattice
reduction attack and allows progressive integration of
hints before running a lattice reduction step. What we refer
to as “recovered coefficient” and “partially recovered coef-
ficient” correspond to “Modular hints” and “Approximate
hints”, respectively. Along with the framework the authors
introduced techniques for progressively sparsifying the
lattice, projecting onto and intersecting with hyperplanes,
and/or altering the distribution of the secret vector. One
may apply these more advanced techniques to gain advan-
tage and further degrade the security level.

TABLE 8: Recovered Information by Signature Correction up to the number of coefficients. Highlighted rows show the
number of coefficients with additional bit recovery.

s(1)
1 s(2)

1 s(3)
1 s(4)

1 #coefs
Group 3: Coefficients with no bit recovery.

68 coefficients in total.
No recovery 19 14 18 17 68

Group 2: Coefficients with 1 bit recovery.
289 bits in 289 coefficients in total.

1 bit rec by 1 bit 67 78 72 72 289
Group 2: Coefficients with 2 bit recovery.

878 bits in 439 coefficients in total.
2 bits rec by 1 bit 55 48 59 38 200
2 bits rec by 2 bits 55 57 63 64 239

Group 1: Full coefficient recovery.
684 bits in 228 coefficients in total.

Full Coef rec by 2 bits 40 32 23 34 129
Full Coefs rec by 3 bits 20 27 21 31 99
Total#recbits(1851) 467 465 448 471 1024

TABLE 9: The reduced security level of Dilithium using the Signature Correction Attack. The value n̄ denotes the
reduced lattice dimension, b the block dimension of BKZ, and m the number of samples. Cost is given in log base 2
and is the smallest cost for all possible choices of m and b. Shaded rows show improvements: 124-bits (classical) and
112-bits (quantum) with plain Signature Correction , 89-bits (classical) and 81-bits (quantum) by also exploiting the
encoding in addition to Signature Correction .

Dilithium Security Level II (128 bit) parameters: q = 2 23 213 + 1 , n = 1024
Primal Attack Dual Attack

Rec coeffs n̄ ⇣ m b Classical Quantum m b Classical Quantum

0 1024 ⇣ =
p

10 1090 485 141 128 1089 484 141 128
0 1024 ⇣ = 1.53392 1001 429 125 113 1027 428 125 113

Reduced Complexities with # Recovered coefficients and Reduced Norm

1 1023 ⇣ =
p

10 1129 484 141 128 1132 483 141 128
2 1022 ⇣ =

p
10 1075 484 141 128 1074 483 141 128

4 1020 ⇣ =
p

10 1062 483 141 128 1062 482 140 127
8 1016 ⇣ =

p
10 1089 480 140 127 1090 479 140 127

64 960 ⇣ =
p

10 1025 446 130 118 1037 445 130 118
99 925 ⇣ =

p
10 981 425 124 112 997 424 124 112

128 896 ⇣ =
p

10 933 408 119 108 947 407 119 107
192 832 ⇣ =

p
10 919 369 107 97 885 369 107 97

228 796 ⇣ =
p

10 863 348 101 92 843 348 101 92
288 736 ⇣ =

p
10 799 313 91 83 788 313 91 83

320 704 ⇣ =
p

10 744 295 86 78 810 294 86 78
352 672 ⇣ =

p
10 745 276 80 73 742 276 80 73

99 925 ⇣ = 1.53392 902 375 109 99 957 374 109 99
228 796 ⇣ = 1.53392 782 306 89 81 773 306 89 81

7. Countermeasures

Every novel attack sheds light onto how to strengthen a
cryptographic scheme, and in this perspective, a discussion
on countermeasures is very important. We can find con-
siderable work on countermeasures against fault attacks
on PQC schemes [31], [32], [36], [35]. In particular,
Bindel et al. [37] have written an exhaustive literature
review on countermeasures for fault attacks on lattice-
based signature schemes.

For our Signature Correction attack, there are two
ways to detect and prevent the fault attack. First, we can
prevent or detect the fault injection mechanism, which
means that we would prevent or detect Rowhammer faults.
Second, we can prevent or detect the exploitation of an in-
jected fault. This requires an algorithmic countermeasure,
such as preventing faulty signatures from being returned
by the signer. Algorithmic countermeasures are required
because our attack is independent of the fault mechanism

used. In the following, we discuss the Rowhammer coun-
termeasures followed by algorithmic countermeasures.
Then, we provide a literature review of countermeasures
against implementation attacks on lattice-based signature
and encryption schemes in Table 10. In this table, we
have shown countermeasures which work against timing,
cache and fault attacks with a green tick mark and which
don’t work with a red cross mark. We show that post-
quantum schemes are broadly vulnerable to three kinds of
fault attacks, DFA, Instruction Skip and single-bit trace
analysis. The table describes how countermeasures help
against these known attacks, which include an attack on
an older round-2 PQ scheme [30] as well as our proposed
Signature Correction .

7.1. Rowhammer Countermeasures

We discuss two approaches to counter Rowhammer
attack. One technique detects the Rowhammer attack

TABLE 10: An Overview of Countermeasures against Implementation Attacks on Lattice-Based Post-Quantum Cryp-
tography; 3 Countermeasure works, 7Countermeasure doesn’t work

Countermeasures

Implementation Attacks

Timing
[82],
[83],
[84]

Cache
[18],
[19],
[82],
[85]

Fault

DFA
[86], [31]

Instruction Skip
[5], [31], [32],

[35], [36], [87],
[88], [89]

QuantumHammer
[30]

(LUOV Round2)

Signature
Correction

Attack
(this work)

Constant run-time &

data-oblivious accesses [18] 3 3 7 7 7 7
Key-independent control flow

& memory accesses [82] 7 3 7 7 7 7
Nonce Randomization [31], [32] 7 7 3 3 7 7

Temporal Redundancy [86], [32], [90] 7 7 3 3 7 7
Spatial Redundancy [86], [90] 7 7 3 7 3 3

Verify-after-sign [86], [32] 7 7 3 3 3 3
HPC [91] 7 7 7 7 3 3

DRAM Refresh Rate [92] 7 7 7 7 3 3

through hardware monitors, while the second technique
prevents Rowhammer from happening in the first place.

Hardware Performance Counters (HPC). HPCs
are special purpose registers which store the hardware
events inside the CPU like cache hits and cache missed. As
the Rowhammer bypasses the cache and directly hits the
DRAM, there will be a significant increase in the number
of cache misses which can be used to detect the Rowham-
mer attack. These HPCs, when paired with machine learn-
ing techniques, can detect Rowhammer attack with high
accuracy. Gulmezoglu et al. [91] have shown an accuracy
of 100% using the performance counter LLC Miss.

Increasing DRAM Refresh Rate. DDR3 and
DDR4 specifications require that each DRAM row must
be refreshed after at least 64ms to retain its values [93].
However, as we have seen this refresh rate is not sufficient
in Rowhammer scenarios where hammering the neigh-
boring rows cause the cells to leak faster than normal
and are unable to retain their charge. So, an immediate
mitigation can be to decrease the refresh interval to 32ms
or 16ms. Many systems allow this configuration from
the BIOS for better memory stability. However, there are
two downsides for this approach. The first one is that
the power consumption will increase and the second one
is the reduction of data transfer rate. This is because
while the cells are refreshed, the data can not be read or
written. Also, the Rowhammer can not be fully mitigated
by this countermeasure. At most, one can significantly
reduce the chances of getting bit flips. Mutlu et al. [92]
have shown that to fully mitigate Rowhammer using the
refresh rate, one needs to set the refresh rate as 8.2 ms
which is 7.8 times lower than 64 ms. This will cause
significant burden on power consumption and quality of
service which researchers are already trying to improve
[94], [95].

7.2. Algorithmic Countermeasures

Here, we discuss algorithmic countermeasures for
PQC signature schemes, specifically Dilithium against

general fault attacks as well as our Signature Correction
attack. These countermeasures include adding random-
ization, temporal and spatial redundancy techniques and
verify-after-sign approach.

Randomized Signing. Due to the fault attacks
based on determinism like [31], [32], Dilithium added
this mitigation in Round 2 for DFAs as listed in step 6
of Algorithm 2. Here, the nonce y is generated randomly
instead of generating using the message M , recommended
for side-channel and fault attacks [13]. The idea is that if
the attacker can not collect the faulty and correct signa-
ture pair for the same message, the DFA will not work.
However, this mitigation will not work for our Signature
Correction attack as it is independent of the nonce y.
Whatever the value of the y is, we get the same error
in the faulty signature depending upon the position of the
fault in secret key s1.

Temporal Redundancy. Temporal Redundancy
requires re-execution of same task after a certain amount
of time and comparing their results. If they don’t match
then the output of the algorithm is disabled in order to
prevent the attacker from accessing any information from
the faulty signature. It makes harder for the attacker to
inject the same fault in redundant computations. However,
as the Rowhammer attack faults the memory and can
induce permanent faults, if multiple signatures are gen-
erated using the same faulty secret key in memory, they
will still match, fault remains undetected. An algorithm
with such a countermeasure can provide fault tolerance
against transient faults but not permanent faults. Hence, it
is recommended to add spatial redundancy.

Spatial Redundancy. Spatial Redundancy in-
volves simultaneous execution of N instances of a critical
task for N level of redundancy and comparing their results
for fault detection. If we store redundant copies of the
original secret key during the key generation process at
different memory locations, they can be used in parallel
computations of signature generation using spatial redun-
dancy technique. To bypass this approach, the attacker
will need to fault the same exact bits at both memory

locations which will be much harder because every cell
in the DRAM is not faulty. An important point here is
that for deterministic version of Dilithium, this approach
can work in a straightforward manner because the same
nonce y is generated for the same message signed twice.
However, for the randomized version, we will also need
to store a copy of the nonce y for redundant computation.
On the performance side, computation based on spatial
redundancy will have significant overhead than the nor-
mal computation because of the increased complexity of
the algorithm. Therefore, the level of spatial redundancy
needed to detect faults should be taken into consideration.

Verify-after-Sign. If there is any bit flip in the se-
cret key s1 of Dilithium, it will generate a faulty signature
which will not be verified by the verification algorithm.
Hence, the verification can be used as a fault detection
mechanism and if done on the signing side, the sender can
easily detect the existence of the attacker. As compared
to double signing, this approach is approximately three
times faster as the verification algorithm takes less time
as compared to the signing algorithm. There is still a
possibility that the attacker also faults the verification in
a way which results in a valid signature but to the best
of our knowledge, there has not been such an algorithm
developed so far for Dilithium. This approach may also
fail if the comparison instruction is skipped using an
instruction skip fault similar to [32]. Verify-after-sign
can also detect instruction skip faults on signing step 13
and the rejection sampling step 15 in Algorithm 2 [32].
Rejection sampling step is critical because if it is bypassed
without a mitigation in place, it can reveal information
about the secret key [13].

8. Conclusion

We have proposed the Signature Correction attack
targeting Dilithium a Round 3 finalist in the NIST PQC
competition. The attack requires single bit-flips in the
secret key vector, which we have implemented using
Rowhammer targeting the constant-time AVX2 implemen-
tation of Dilithium. By analyzing the faulty signatures
and exploiting redundancy in the secret key encoding,
our attack successfully recovered 1,851 bits (out of 3,072
bits) of the secret key. This enabled us to reduce the post
quantum security level to 81-bits (quantum) and 89-bits
(classical) for both primal and dual lattice attacks. The
attack is also applicable to other variants and security
levels. We have demonstrated the first fault attack which
works on randomized as well as deterministic versions of
Dilithium. Our Signature Correction attack is independent
of the fault mechanism but we have used Rowhammer
to demonstrate the attack as it is a software only attack
and does not need physical access. This can be very
critical in case of cloud scenarios where the attacker can
launch an attack remotely and leak secret information by
using only faulty signatures. We have shown how few
bits of secret key significantly reduce the security strength
of Dilithium using the lattice attacks especially when
the secret key encoding is exploited as in the analysis
shown in this paper. Further, randomizing the nonce, a
countermeasure commonly implemented in the design of
signature schemes to thwart fault attacks, is not sufficient
in practice as demonstrated by our attack.

Acknowledgment

We thank our anonymous reviewers for their insightful
comments for improving the quality of this paper. This
work is supported by U.S. Department of State, Bureau of
Educational and Cultural Affairs’ Fulbright Program and
by the National Science Foundation under grants CNS-
1814406, CNS-2026913 and CNS-1931639.

References

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM review,
vol. 41, no. 2, pp. 303–332, 1999.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM sympo-
sium on Theory of computing, 1996, pp. 212–219.

[3] NIST, “Post-quantum cryptography standardization,”
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization, 2017.

[4] J. Ding, J. Deaton, K. Schmidt, Vishakha, and Z. Zhang, “Crypt-
analysis of the lifted unbalanced oil vinegar signature scheme,”
Cryptology ePrint Archive, Report 2019/1490, 2019, https://eprint.
iacr.org/2019/1490.

[5] P. Ravi, D. B. Roy, S. Bhasin, A. Chattopadhyay, and
D. Mukhopadhyay, “Number “not used” once-practical fault attack
on pqm4 implementations of NIST candidates,” in International
Workshop on Constructive Side-Channel Analysis and Secure De-
sign. Springer, 2019, pp. 232–250.

[6] D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi, “Lwe
with side information: attacks and concrete security estimation,”
in Annual International Cryptology Conference. Springer, 2020,
pp. 329–358.

[7] A. Greuet, S. Montoya, and G. Renault, “Attack on LAC key
exchange in misuse situation,” in International Conference on
Cryptology and Network Security. Springer, 2020, pp. 549–569.

[8] D. Apon, R. Perlner, A. Robinson, and P. Santini, “Cryptanalysis
of ledacrypt,” in Annual International Cryptology Conference.
Springer, 2020, pp. 389–418.

[9] Y. Son, “A note on parameter choices of round5.” IACR Cryptol.
ePrint Arch., vol. 2019, p. 949, 2019.

[10] Y. Son and J. H. Cheon, “Revisiting the hybrid attack on sparse
and ternary secret LWE,” IACR Cryptol. ePrint Arch., vol. 2019,
p. 1019, 2019.

[11] R. Perlner and D. Smith-Tone, “Rainbow band separation is better
than we thought,” Cryptology ePrint Archive, 2020.

[12] D. Kales and G. Zaverucha, “Forgery attacks on mqdssv2. 0,” 2019.

[13] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehĺe, “Crystals-dilithium: A lattice-based digital
signature scheme,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 238–268, 2018.

[14] D. Stebila and M. Mosca, “Post-quantum key exchange for the
internet and the open quantum safe project,” in International
Conference on Selected Areas in Cryptography. Springer, 2016,
pp. 14–37.

[15] PQShield, “Think openly, build securely post-quantum standards
ready,” https://pqshield.com,2021.

[16] QuSecure, “Scalable cybersecurity for the post-quantum enter-
prise,” https://www.qusecure.com, 2021.

[17] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,
J. Kelsey, Y.-K. Liu, C. Miller, D. Moody, R. Peralta et al., “Status
report on the second round of the NIST post-quantum cryptogra-
phy standardization process,” US Department of Commerce, NIST,
2020.

[18] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom, “Flush,
gauss, and reload–a cache attack on the bliss lattice-based signature
scheme,” in International Conference on Cryptographic Hardware
and Embedded Systems. Springer, 2016, pp. 323–345.

[19] P. Pessl, L. G. Bruinderink, and Y. Yarom, “To BLISS-B or not
to be: Attacking strongswan’s implementation of post-quantum
signatures,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1843–1855.

[20] J. Bootle, C. Delaplace, T. Espitau, P.-A. Fouque, and M. Tibouchi,
“LWE without modular reduction and improved side-channel at-
tacks against BLISS,” in International Conference on the Theory
and Application of Cryptology and Information Security. Springer,
2018, pp. 494–524.

[21] P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin,
“Side-channel assisted existential forgery attack on Dilithium-A
NIST PQC candidate.” IACR Cryptol. ePrint Arch., vol. 2018, p.
821, 2018.

[22] P. Pessl and R. Primas, “More practical single-trace attacks on
the number theoretic transform,” in International Conference on
Cryptology and Information Security in Latin America. Springer,
2019, pp. 130–149.

[23] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel
attacks on masked lattice-based encryption,” in International Con-
ference on Cryptographic Hardware and Embedded Systems.
Springer, 2017, pp. 513–533.

[24] T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi, “Side-
channel attacks on BLISS lattice-based signatures: Exploiting
branch tracing against strongswan and electromagnetic emanations
in microcontrollers,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
1857–1874.

[25] J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede,
“Timing attacks on error correcting codes in post-quantum
schemes,” in Proceedings of ACM Workshop on Theory of Imple-
mentation Security Workshop, 2019, pp. 2–9.

[26] A. Park, K.-A. Shim, N. Koo, and D.-G. Han, “Side-channel attacks
on post-quantum signature schemes based on multivariate quadratic
equations,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 500–523, 2018.

[27] A. Askeland and S. Rønjom, “A side-channel assisted attack on
NTRU,” Cryptology ePrint Archive, 2021.

[28] E. Karabulut and A. Aysu, “Falcon down: Breaking falcon post-
quantum signature scheme through side-channel attacks,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), 2021, pp.
691–696.

[29] I.-J. Kim, T. Lee, J. Han, B.-Y. Sim, and D.-G. Han, “Novel single-
trace ML profiling attacks on NIST 3 round candidate dilithium.”
IACR Cryptol. ePrint Arch., vol. 2020, p. 1383, 2020.

[30] K. Mus, S. Islam, and B. Sunar, “Quantumhammer: A practical hy-
brid attack on the LUOV signature scheme,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1071–1084.

[31] L. G. Bruinderink and P. Pessl, “Differential fault attacks on deter-
ministic lattice signatures,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 21–43, 2018.

[32] P. Ravi, M. P. Jhanwar, J. Howe, A. Chattopadhyay, and S. Bhasin,
“Exploiting determinism in lattice-based signatures: practical fault
attacks on pqm4 implementations of NIST candidates,” in Pro-
ceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, 2019, pp. 427–440.

[33] P. Pessl and L. Prokop, “Fault attacks on CCA-secure lattice
KEMs,” IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, pp. 37–60, 2021.

[34] J. Krämer and M. Loiero, “Fault attacks on UOV and RAINBOW,”
in International Workshop on Constructive Side-Channel Analysis
and Secure Design. Springer, 2019, pp. 193–214.

[35] N. Bindel, J. Buchmann, and J. Krämer, “Lattice-based signature
schemes and their sensitivity to fault attacks,” in 2016 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC). IEEE,
2016, pp. 63–77.

[36] T. Espitau, P.-A. Fouque, B. Ǵerard, and M. Tibouchi, “Loop-abort
faults on lattice-based fiat-shamir and hash-and-sign signatures,”
in International Conference on Selected Areas in Cryptography.
Springer, 2016, pp. 140–158.

[37] N. Bindel, J. Kramer, and J. Schreiber, “Special session: ham-
pering fault attacks against lattice-based signature schemes-
countermeasures and their efficiency,” in 2017 International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS). IEEE, 2017, pp. 1–3.

[38] A. Genêt, M. J. Kannwischer, H. Pelletier, and A. McLauchlan,
“Practical fault injection attacks on SPHINCS,” IACR Cryptol.
ePrint Arch., vol. 2018, p. 674, 2018.

[39] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips,
one cloud flops: Cross-VM row hammer attacks and privilege es-
calation,” in 25th USENIX Security Symposium (USENIX Security
16). Austin, TX: USENIX Association, Aug. 2016, pp. 19–35.

[40] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman,
and O. Mutlu, “Are we susceptible to rowhammer? an end-to-end
methodology for cloud providers,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 712–728.

[41] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-
kyber: a CCA-secure module-lattice-based KEM,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE,
2018, pp. 353–367.

[42] S. Bai and S. D. Galbraith, “An improved compression technique
for signatures based on learning with errors,” in Cryptographers’
Track at the RSA Conference. Springer, 2014, pp. 28–47.

[43] V. Lyubashevsky,“Fiat-shamir with aborts: Applications to lattice
and factoring-based signatures,” in Advances in Cryptology – ASI-
ACRYPT 2009, M. Matsui, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 598–616.

[44] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM addressing for Cross-CPU attacks,”
in 25th USENIX Security Symposium (USENIX Security 16).
Austin, TX: USENIX Association, Aug. 2016, pp. 565–581.

[45] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 361–
372, 2014.

[46] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug
to gain kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

[47] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Mau-
rice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer:
Deterministic rowhammer attacks on mobile platforms,” in Pro-
ceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 1675–1689.

[48] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom, “Another flip in the wall
of rowhammer defenses,” in 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 245–261.

[49] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in International con-
ference on detection of intrusions and malware, and vulnerability
assessment. Springer, 2016, pp. 300–321.

[50] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized many-sided rowhammer at-
tacks from JavaScript,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
1001–1018.

[51] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos,
and K. Razavi, “Throwhammer: Rowhammer attacks over the net-
work and defenses,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18). Boston, MA: USENIX Association, Jul. 2018,
pp. 213–226.

[52] M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga, C. Maurice,
and D. Gruss, “Nethammer: Inducing rowhammer faults through
network requests,” in 2020 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). IEEE, 2020, pp. 710–719.

[53] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth,
and B. Sunar, “Jackhammer: Efficient rowhammer on heteroge-
neous fpga-cpu platforms,” arXiv preprint arXiv:1912.11523, 2019.

[54] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed:
Reading bits in memory without accessing them,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 695–
711.

[55] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Stopping
microarchitectural attacks before execution.” IACR Cryptol. ePrint
Arch., vol. 2016, p. 1196, 2016.

[56] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection
of cache-based side-channel attacks using hardware performance
counters,” Applied Soft Computing, vol. 49, pp. 1162–1174, 2016.

[57] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Sympo-
sium on Research in Attacks, Intrusions, and Defenses. Springer,
2016, pp. 118–140.

[58] N. Herath and A. Fogh, “These are not your grand Daddys cpu
performance counters–cpu hardware performance counters for se-
curity,” Black Hat Briefings, 2015.

[59] M. Payer, “HexPADS: a platform to detect “stealth” attacks,”
in International Symposium on Engineering Secure Software and
Systems. Springer, 2016, pp. 138–154.

[60] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ Flush:
a fast and stealthy cache attack,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assess-
ment. Springer, 2016, pp. 279–299.

[61] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “ANVIL: Software-based protection against next-
generation rowhammer attacks,” ACM SIGPLAN Notices, vol. 51,
no. 4, pp. 743–755, 2016.

[62] J. Corbet, Defending against Rowhammer in the kernel, Oct. 2016,
https://lwn.net/Articles/704920/.

[63] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi,
“CAn’t touch this: Software-only mitigation against rowhammer
attacks targeting kernel memory,” in 26th USENIX Security Sym-
posium (USENIX Security 17). Vancouver, BC: USENIX Asso-
ciation, Aug. 2017, pp. 117–130.

[64] J. S. S. T. Association, Low Power Double Data Rate 4
(LPDDR4), Jan. 2020, https://www.jedec.org/standards-documents/
docs/jesd209-4b.

[65] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support for
mitigating row hammering in DRAM memories,” IEEE Computer
Architecture Letters, vol. 14, no. 1, pp. 9–12, 2014.

[66] M. Ghasempour, M. Lujan, and J. Garside, “Armor: A run-time
memory hot-row detector,” 2015.

[67] IBM, “IBM Chipkill Memory: Advanced ECC memory for the
IBM Netfinity 7000 M10,” 2019, http://ps-2.kev009.com/pccbbs/
pc servers/chipkilf.pdf.

[68] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting
correcting codes: On the effectiveness of ECC memory against
rowhammer attacks,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 55–71.

[69] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu,
C. Giuffrida, H. Bos, and K. Razavi, “TRRespass: Exploiting the
many sides of target row refresh,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 747–762.

[70] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu,
T. Eisenbarth, and B. Sunar, “SPOILER: Speculative load hazards
boost rowhammer and cache attacks,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 621–637.

[71] L. Xu, R. Yu, L. Wang, and W. Liu, “Memway: in-memory
waylaying acceleration for practical rowhammer attacks against
binaries,” Tsinghua Science and Technology, vol. 24, no. 5, pp.
535–545, 2019.

[72] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-
quantum key Exchange—A New Hope,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Asso-
ciation, Aug. 2016, pp. 327–343.

[73] Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice security
estimates,” in Advances in Cryptology – ASIACRYPT 2011, D. H.
Lee and X. Wang, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 1–20.

[74] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Math.
Program., vol. 66, no. 2, p. 181–199, Sep. 1994.

[75] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New directions
in nearest neighbor searching with applications to lattice sieving,”
in Proceedings of the Twenty-Seventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, ser. SODA ’16. USA: Society for
Industrial and Applied Mathematics, 2016, p. 10–24.

[76] T. Laarhoven, “Sieving for shortest vectors in lattices using angular
locality-sensitive hashing,” in Advances in Cryptology – CRYPTO
2015, R. Gennaro and M. Robshaw, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 3–22.

[77] ——, “Search problems in cryptography: from fingerprinting to
lattice sieving,” Ph.D. dissertation, Mathematics and Computer
Science, Feb. 2016, proefschrift.

[78] T. Laarhoven, M. Mosca, and J. Pol, “Finding shortest lattice
vectors faster using quantum search,” Des. Codes Cryptography,
vol. 77, no. 2–3, p. 375–400, Dec. 2015.

[79] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Niko-
laenko, A. Raghunathan, and D. Stebila, “Frodo: Take off the
ring! practical, quantum-secure key exchange from LWE,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1006–1018.

[80] A. Casanova, J.-C. Faugere, G. Macario-Rat, J. Patarin, L. Perret,
and J. Ryckeghem, “Gemss: a great multivariate short signature,”
Ph.D. dissertation, UPMC-Paris 6 Sorbonne Universit és; INRIA
Paris Research Centre, MAMBA Team . . . ,2017.

[81] J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial
signature scheme,” in International conference on applied cryptog-
raphy and network security. Springer, 2005, pp. 164–175.

[82] J. Sepulveda, A. Zankl, and O. Mischke, “Cache attacks and
countermeasures for NTRUEncrypt on MPSoCs: Post-quantum
resistance for the IOT,” in 2017 30th IEEE International System-
on-Chip Conference (SOCC), 2017, pp. 120–125.

[83] J. H. Silverman and W. Whyte, “Timing attacks on NTRUEncrypt
via variation in the number of hash calls,” in Topics in Cryptology
– CT-RSA 2007, M. Abe, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 208–224.

[84] J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede,
“Timing attacks on error correcting codes in post-quantum
schemes,” in Proceedings of ACM Workshop on Theory of Imple-
mentation Security Workshop, ser. TIS’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2–9.

[85] N. Bindel, J. Buchmann, J. Krämer, H. Mantel, J. Schickel, and
A. Weber, “Bounding the cache-side-channel leakage of lattice-
based signature schemes using program semantics,” in Inter-
national Symposium on Foundations and Practice of Security.
Springer, 2017, pp. 225–241.

[86] L. Castelnovi, A. Martinelli, and T. Prest, “Grafting Trees: a
fault attack against the SPHINCS framework,” in International
Conference on Post-Quantum Cryptography. Springer, 2018, pp.
165–184.

[87] K. Xagawa, A. Ito, R. Ueno, J. Takahashi, and N. Homma, “Fault-
injection attacks against NIST’s post-quantum cryptography round
3 kem candidates,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer,
2021, pp. 33–61.

[88] F. Valencia, T. Oder, T. G̈uneysu, and F. Regazzoni, “Exploring the
vulnerability of R-LWE encryption to fault attacks,” in Proceedings
of the Fifth Workshop on Cryptography and Security in Computing
Systems, ser. CS2 ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 7–12.

[89] A. A. Kamal and A. M. Youssef, “Fault analysis of the NTRUSign
digital signature scheme,” Cryptography Commun., vol. 4, no. 2,
p. 131–144, Jun. 2012.

[90] A. A. Kamal and A. Youssef, “Strengthening hardware implemen-
tations of NTRUEncrypt against fault analysis attacks,” Journal of
Cryptographic Engineering, vol. 3, pp. 227–240, 2013.

[91] B. Gulmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar, “For-
tuneteller: Predicting microarchitectural attacks via unsupervised
deep learning,” arXiv preprint arXiv:1907.03651, 2019.

[92] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 8, pp. 1555–1571, 2019.

[93] J. Standard, “Double Data Rate (DDR) SDRAM specification,”
JEDEC Solid State Technology Assoc, 2005.

[94] K. K.-W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilk-
erson, Y. Kim, and O. Mutlu, “Improving DRAM performance by
parallelizing refreshes with accesses,” in 2014 IEEE 20th Inter-
national Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2014, pp. 356–367.

[95] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-
aware intelligent DRAM refresh,” ACM SIGARCH Computer Ar-
chitecture News, vol. 40, no. 3, pp. 1–12, 2012.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

