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1 Introduction

When listing the many accomplishments of Vaughan Jones, the obituaries did
not mention the fact that he is indirectly responsible for much of the modern
development of the study of Algorithmic Information Theory, also known as
Kolmogorov Complexity. This is because much of this modern development was
spurred on by Rod Downey and Denis Hirschfeldt, who wrote, in the preface
and acknowledgments for their influential book [22]:

At the time, neither of us knew much about Kolmogorov complexity,
but we had a distinct interest in it after Lance Fortnow’s illuminating
lectures at Kaikoura in January 2000. . . . As mentioned in the preface,
our early interest in Kolmogorov complexity was stimulated by a talk
given by Lance Fortnow at a conference in Kaikoura . . .

The conference in Kaikoura in January, 2000 was organized by the New Zealand
Mathematical Research Institute (MZMRI), which owes its existence to the ef-
forts of Vaughan Jones. I was also a participant in the 2000 Kaikoura conference,
and that was the first time I met Vaughan. It was indeed a stimulating confer-
ence, and it led to other research-related visits to New Zealand.

One of those visits included participation in a meeting held to celebrate a
significant birthday for Rod Downey, and I wrote a contribution to the Festschrift
surveying the connections between Kolmogorov complexity and computational
complexity theory [1]. Three years later, that survey was already out of date,
with several of the open questions that were mentioned in [1] newly resolved,
and some of the conjectures mentioned in [1] consigned to the scrap heap. (In
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particular, recent work [29] shows that these conjectures are extremely unlikely
to be true.) Thus, when I was invited to give a keynote address at a conference
in Milan in 2020 (which was postponed to the fall of 2021 due to COVID)
I wrote a survey article [2] entitled “The New Complexity Landscape around
Circuit Minimization” (emphasis added), where by “New” I signaled my intent
to avoid repeating too many of the observations that were made in [1]. (It turns
out that the studies of Circuit Minimization and Kolmogorov Complexity are
closely related.) That survey began with these paragraphs:

Over the past few years, there has been an explosion of interest in
the Minimum Circuit Size Problem (MCSP) and related problems. Thus
the time seemed right to provide a survey, describing the new landscape
and offering a guidebook so that one can easily reach the new frontiers
of research in this area.

It turns out that this landscape is extremely unstable, with new fea-
tures arising at an alarming rate. Although this makes it a scientifically-
exciting time, it also means that this survey is doomed to be obsolete
before it appears. It also means that the survey is going to take the form
of an “annotated bibliography” with the intent to provide many pointers
to the relevant literature, along with a bit of context.

As predicted, that survey, which was written for a conference that has not yet
even taken place (due to the pandemic), is indeed already obsolete, with several
important advances being announced in just the past year. Also, some unfortu-
nate typographical errors and at least one misstatement wormed their way into
[2]. Thus I offer this updated survey.

2 Meta-complexity, MCSP and Kolmogorov Complexity

The focus of complexity theory is to determine how hard problems are. The focus
of meta-complexity is to determine how hard it is to determine how hard problems
are. Some of the most exciting recent developments in complexity theory have
been the result of meta-complexity-theoretic investigations.

The Minimum Circuit Size Problem (MCSP) is, quite simply, the problem of
determining the circuit complexity of functions. The input consists of a pair (f, i),
where f is a bit string of length N = 2n representing the truth-table of a Boolean
function, and i ∈ N, and the problem is to determine if f has a circuit of size at
most i.1 The study of the complexity of MCSP is therefore the canonical meta-
complexity-theoretic question. Complexity theoreticians are fond of complaining

1 The terms “circuit” and “size” are intentionally left undefined here. There are many
reasonable choices (such as “size” being the number of gates, or the number of wires,
or the length of an encoding of the circuit description, or “circuits” consisting only of
NAND gates, or allowing threshold gates, etc.) It is conceivable – although seemingly
unlikely – that these variants have very different complexity. No reductions among
these variants are known.
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that the problems they confront (showing that computational problems are hard
to compute) are notoriously difficult. But is this really true? Is it hard to show
that a particular function is difficult to compute? This question can be made
precise by asking about the computational complexity of MCSP. (See also [55]
for a different approach.)

A small circuit is a short description of a large truth-table f ; thus it is no
surprise that investigations of MCSP have made use of the tools and terminology
of Kolmogorov complexity. In order to discuss some of the recent developments,
it will be necessary to review some of the different notions, and to establish the
notation that will be used throughout the rest of the article.

Let U be a Turing machine. We define KU (x) to be min{|d| : U(d) = x}.
Those readers who are familiar with Kolmogorov complexity2 will notice that
the definition here is for what is sometimes called “plain” Kolmogorov com-
plexity, although the notation KU (x) is more commonly used to denote what is
called “prefix-free” Kolmogorov complexity. This is intentional. In this survey,
the distinctions between these two notions will be blurred, in order to keep the
discussion on a high level. Some of the theorems that will be mentioned below
are only known to hold for the prefix-free variant, but the reader is encouraged
to ignore these finer distinctions here, and seek the more detailed information in
the cited references. For some Turing machines U , KU (x) will not be defined for
some x, and the values of KU (x) and KU ′(x) can be very different, for different
machines U and U ′. But the beauty of Kolmogorov complexity (and the appli-
cability of the theory it gives rise to) derives from the fact that if U and U ′ are
universal Turing machines, then KU (x) and KU ′(x) differ by at most O(1). By
convention, we select one particular universal machine U and define K(x) to be
equal to KU (x).

The function K is not computable. The simplest way to obtain a computable
function that shares many of the properties of K is to simply impose a time
bound, leading to the definition Kt(x) := min{|d| : U(d) = x in time t(|x|)}
where t is a computable function. Although it is useful in many contexts, Kt(x)
does not appear to be closely connected to the circuit size of x (where x is viewed
as the truth-table of a function). Thus we will frequently refer to two additional
resource-bounded Kolmogorov complexity measures, Kt and KT.

Levin defined Kt(x) to be min{|d|+log t : U(d) = x in time t} [41]; it has the
nice property that it can be used to define the optimal search strategy to use,
in searching for accepting computations on a nondeterministic Turing machine.
Kt(x) also corresponds to the circuit size of the function x, but not on “normal”
circuits. As is shown in [4], Kt(x) is roughly the same as the size of the smallest
oracle circuit that computes x, where the oracle is a complete set for EXP. (An
oracle circuit has “oracle gates” in addition to the usual AND, OR, and NOT
gates; an oracle gate for oracle A has k wires leading into it, and if those k
wires encode a bitstring y of length k where y is in A, then the gate outputs 1,
otherwise it outputs 0.)

2 If the reader is not familiar with Kolmogorov complexity, then we recommend some
excellent books on this topic [43, 22].
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It is clearly desirable to have a version of Kolmogorov complexity that is
more closely related to “ordinary” circuit size, instead of oracle circuit size. This
is accomplished by defining KT(x) to be min{|d| + t : U(d, i) = xi in time t}.
(More precise definitions can be found in [4, 14].)

We have now presented a number of different measures Kµ ∈ {K,Kt,Kt,KT}.
In order to connect the problem of computing these measures to the framework
of complexity classes, it is useful to define corresponding decision problems, as
follows: By analogy with MCSP, we can study Kµ in place of the “circuit size”
measure, and thus obtain various problems of the form MKµP = {(x, i) : Kµ(x) ≤
i}, such as MKTP, MKtP and MKtP. If t(n) = nO(1), then MKtP is in NP, and
several theorems about MKTP yield corollaries about MKtP in this case. (See,
e.g. [4]). Similarly, if t(n) = 2n

c

for some c > 0, then MKtP is in EXP, and
several theorems about MKtP yield corollaries about MKtP for t in this range
[4].

Table 1. List of the main complexity measures and decision problems dealing with
Kolmogorov complexity considered here.

Complexity Measure Definition Decision Problem
K min{|d| : U(d) = x} MKP
Kt min{|d| : U(d) = x in time t(|x|)} MKtP
Kt min{|d|+ log t : U(d) = x in time t} MKtP
KT min{|d|+ t : U(d, i) = xi in time t} MKTP

In order to highlight some of the recent developments, let us introduce some
notation that is somewhat imprecise and which is not used anywhere else, but
which will be convenient for our purposes. Let Kpoly serve as a shorthand for
Kt whenever t = nO(1), and similarly let Kexp serve as a shorthand for Kt

whenever t = 2n
c

for some c > 0. We will thus be referring to MKpolyP and
MKexpP. Doing so will enable us to avoid some confusing notation surrounding
the name MinKT, which was introduced by Ko [40] to denote the set

MinKT = {(x, 1t, 1i) : ∃d [U(d) = x in at most t steps and |d| ≤ i]}.

That is, (x, i) ∈ MKpolyP iff (x, 1n
c

, i) ∈ MinKT (where the time bound t(n) =
nc). Hence these sets have comparable complexity and results about MinKT
can be rephrased in terms of MKpolyP with only a small loss of accuracy. In
particular, some recent important results [27, 28] are phrased in terms of MinKT,
and as such they deal with Kpoly complexity, and they are not really very closely
connected with the KT measure; the name MinKT was devised more than a
decade before KT was formulated. The reader who is interested in the details
should refer to the original papers for the precise formulation of the theorems.
However, the view presented here is “probably approximately correct”.

Frequently, theorems about MCSP and the various MKµP problems are stated
not in terms of exactly computing the circuit size or the complexity of a string,
but in terms of approximating these values. This is usually presented in terms of
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two thresholds θ1 < θ2, where the desired solution is to say yes if the complexity
of x is less than θ1, and to say no if the complexity of x is greater than θ2, and
any answer is allowed if the complexity of x lies in the “gap” between θ1 and
θ2. In the various theorems that have been proved in this setting, the choice of
thresholds θ1 and θ2 is usually important, but in this article those details will
be suppressed, and all of these approximation problems will be referred to as
GapMCSP, GapMKtP, GapMKTP, etc.

At this point, the reader’s eyes may be starting to glaze over. It is natu-
ral to wonder if we really need to have all of these different related notions.
In particular, there does not seem to be much difference between MCSP and
MKTP. Most hardness results for MCSP actually hold for GapMCSP, and if the
“gap” is large enough, then MKTP is a solution to GapMCSP (and vice-versa).
Furthermore it has frequently been the case that a theorem about MCSP was
first proved for MKTP and then the result for MCSP was obtained as a corol-
lary. However, there is no efficient reduction known (in either direction) between
MCSP and MKTP, and there are some theorems that are currently known to
hold only for MKTP, although they are suspected to hold also for MCSP (e.g.,
[8, 10, 31, 20]).3 Similarly, some of the more intriguing recent developments can
only be understood by paying attention to the distinction between different no-
tions of resource-bounded Kolmogorov complexity. Thus it is worth making this
investment in defining the various distinct notions.

3 Connections to Learning Theory

Certain connections between computational learning theory and Kolmogorov
complexity were identified soon after computational learning theory emerged as
a field. After all, the goal of computational learning theory is to find a satisfactory
(and hence succinct) explanation of a large body of observed data. For instance,
in the 1980s and 1990s (and even earlier [25]) there was work [56, 57] showing
that it is NP-hard to find “succinct explanations” that have size somewhat close
to the optimal size, if these “explanations” are required to be finite automata or
various other restricted formalisms. Ko studied this in a more general setting,
allowing “explanations” to be efficient programs (in the setting of time-bounded
Kolmogorov complexity).

Thus Ko studied not only the problem of computing Kpoly(x) (where one can
consider x to be a completely-specified Boolean function), but also the problem
of finding the smallest description d such that U(d) agrees with a given list of
“yes instances” Y and a list of “no instances” N (that is, x can be considered as
a partial Boolean function, with many “don’t care” instances). Thus, following
[36], we can call this problem Partial-MKpolyP. In the setting that is most relevant
for computational learning theory, the partial function x is presented compactly

3 Given the close connection between KT and circuit size, the case can be made that
MKTP is a particularly convenient formulation of MCSP. They are suspected to have
equivalent complexity, but it seems to be easier to prove theorems about MKTP than
MCSP.
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as separate lists Y and N , rather than as a string of length 2n over the alphabet
{0, 1, ∗}.

Ko showed in [40] that relativizing techniques would not suffice, in order to
settle the question of whether MKpolyP and Partial-MKpolyP are NP-complete.
That is, by giving the universal Turing machine U that defines Kolmogorov

complexity access to an oracle A, one obtains the problems MKpolyP
A

and

Partial-MKpolyP
A

, and these sets can either be NPA-complete or not, depending
on the choice of A.

Thus it is noteworthy that it has recently been shown that Partial-MCSP is
NP-complete under ≤P

m reductions [36]. (As is usually the case4, the proof also
establishes that Partial-MKTP is NP-complete under ≤P

m reductions.) One lesson
to take from this is that KT and Kpoly complexity differ from each other in sig-
nificant ways, since the result of Ko mentioned in the previous paragraph shows
that Partial-MKpolyP, cannot be shown to be NP-complete using relativizing
techniques. There are other recent examples of related phenomena, which will
be discussed below.

There are other strong connections between MCSP and learning theory that
have come to light recently. Using MCSP as an oracle (or even using a set that
shares certain characteristics with MCSP) one can efficiently learn small circuits
that do a good job of explaining the data [15]. For certain restricted classes of
circuits, there are sets in P that one can use in place of MCSP to obtain learning
algorithms that don’t require an oracle [15]. This connection has been explored
further [51, 16].

4 Completeness, Hardness, Reducibility

The preceding section mentioned a result about a problem being NP-complete
under ≤P

m reductions. In order to discuss other results about the complexity of
MCSP and related problems it is necessary to go into more detail about different
notions of reducibility.

Let C be either a class of functions or a class of circuits. The classes that will
concern us the most are the standard complexity classes L ⊆ P ⊆ NP as well as
the circuit classes (both uniform and nonuniform):

NC0 ( AC0 ( AC0[p] ( NC1 ⊆ P/poly.

We refer the reader to the text by Vollmer [63] for background and more complete
definitions of these standard circuit complexity complexity classes, as well as for
a discussion of uniformity.

We say that A≤CmB if there is a function f ∈ C (or f computed by a circuit
family in C, respectively) such that x ∈ A iff f(x) ∈ B. We will make use of

4 In fact, I am not aware of any instance where a theorem has been proved for MCSP
and the proof does not carry over to MKTP. As mentioned in the last paragraph
of the preceding section, there are some theorems that have been proved for MKTP
that are not (yet) known to hold for MCSP.
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≤P
m,≤L

m,≤AC0

m , ≤NC0

m , and ≤proj
m reducibility. This last notion (≤proj

m ), refers to
projections, which are functions computed by NC0 circuits that have only NOT
gates. That is, in a projection, each output bit is either a constant 0 or 1, or is
connected by a wire to an input bit or its negation.

The more powerful notion of Turing reducibility also plays an important role
in this work. Here, C is a complexity class that admits a characterization in terms
of Turing machines or circuits, which can be augmented with an “oracle” mech-
anism, either by providing a “query tape” or “oracle gates”. We say that A≤CTB
if there is a oracle machine in C (or a family of oracle circuits in C) accepting A,

when given oracle B. We make use of ≤P/poly
T ,≤RP

T ,≤ZPP
T ,≤BPP

T ,≤P
T,≤L

T, ≤NC1

T and

≤AC0

T reducibility; instead of writing A≤P/poly
T B or A≤ZPP

T B, we will sometimes

write A ∈ PB/poly or A ∈ ZPPB . Turing reductions that are “nonadaptive” – in
the sense that the list of queries that are posed on input x does not depend on
the answers provided by the oracle – are called truth table reductions. We make

use of ≤P
tt and ≤P/poly

tt reducibility.
Once again, the reader may protest that this profusion of different notions

of reducibility is unjustified and unmotivated. We will return to discuss this
objection, after we present some of the hardness and non-hardness results, so
that the reader will be in a better position to understand the motivation.

4.1 Hardness of MCSP

The strongest hardness results that are known for the MKµP problems in NP re-
main the results of [6], where it was shown that MCSP, MKTP, and MKpolyP are
all hard for SZK under ≤BPP

T reductions. SZK is the class of problems that have
statistical zero knowledge interactive proofs; SZK contains most of the problems
that are assumed to be intractable, in order to build public-key cryptosystems.
Thus it is widely assumed that MCSP and related problems lie outside of P/poly,
and cryptographers hope that it requires nearly exponential-sized circuits. SZK
also contains the Graph Isomorphism problem, which is ≤RP

T -reducible to MCSP
and MKTP. In [8], Graph Isomorphism (and several other problems) were shown
to be ≤ZPP

T reducible to MKTP; it remains unknown if this also holds for MCSP.
In fact, there is no interesting example of a problem A that is not known to be
in NP ∩ coNP that has been shown to be ≤ZPP

T reducible to MCSP.
Although it is useful to know that every problem in SZK is “efficiently

reducible” (via a BPP reduction) to MCSP, this does not yield any uncondi-
tional lower bounds on the complexity of MCSP, since it is still open whether
BPP = EXP. Thus there is motivation to consider very restrictive reductions:

Theorem 1. [7] MKTP is hard for co-NISZKL under non-uniform ≤proj
m reduc-

tions. This also holds for MKtP and MKP.

Here, co-NISZKL is a subclass of SZK that – like SZK – contains several problems
that are widely believed to be cryptographically hard. It includes the well-known
complexity classes L and NL, as well as the class known as DET: the class of
problems NC1-Turing-reducible to computing the determinant.
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Because projections are so computationally weak, this immediately implies
that MKTP is not in AC0[p] for any prime p. (This was mentioned as an open
question in [1] (see footnote 2 of [1]).) It also implies that MKTP cannot be

computed by THRESHOLD◦MAJORITY circuits of size 2n
o(1)

, by appealing to a
lower bound proved in [23]. It is currently still open whether this latter lower
bound holds also for MCSP.

The AC0[p] lower bound for MKTP was first proved in [10]. It remained open
whether MCSP was in AC0[p] until this was established in [26], by showing that
the problem of computing the determinant of integer matrices is reducible to
MCSP via non-uniform ≤AC0

T reductions. Incidentally, it is no accident that the
reductions presented in [7, 10, 26] are non-uniform. If one can show that MCSP

or MKTP is hard for TC0 under uniform ≤AC0

T reductions, then one will have
shown that NP 6= TC0 [11]. Of course, most researchers would conjecture that
NP 6= TC0, and thus this should not be taken as evidence that non-uniformity
is essential – only that it is essential given our current inability to prove lower
bounds.

4.2 Negative hardness results

In the last section, we noted that proving hardness for MKTP under uniform
≤AC0

T reductions will be difficult with our current understanding. This is just
one example of what is by now a large collection of results, showing either that
MCSP is not hard under a class of reductions, or at least showing that it will
be difficult to show that it is hard. Table 2 is an updated version of a similar
table that appeared in my earlier survey [1]. Table 2 presents information about
the consequences that will follow if MCSP is NP-complete (or even if it is hard
for certain subclasses of NP). There is some redundancy in the table, since some
readers will primarily be interested in the consequences that follow if MCSP is
NP-complete under ≤P

m reductions, even though that line in the table follows
from the lines dealing with hardness for subclasses of NP under even more pow-
erful reductions. The “???” entry indicates that no consequences are known, if
MCSP is NP-complete under ≤P

T reductions. The table does not include results
about some restricted versions of ≤P

m reductions, although the theorems of this
type that were proved by Kabanets and Cai [39] were influential in starting off
this line of research. One thing should jump out at the reader from Table 2: All
of the conditions listed in Column 3 (with the exception of “FALSE”) are widely
believed to be true, although they all seem to be far beyond the reach of current
proof techniques.

It is significant that neither MCSP nor MKTP is NP-complete under ≤n1/3

m

reductions, since SAT and many other well-known problems are complete under
this very restrictive notion of reducibility – but it would be more satisfying to
know whether these problems can be complete under more widely-used reducibil-
ities such as ≤AC0

m . These sublinear-time reductions are so restrictive, that even

the PARITY problem is not ≤n1/3

m -reducible to MCSP or MKTP.
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Table 2. Summary of what is known about the consequences of MCSP being hard for
NP under different types of reducibility. If MCSP is hard for the class in Column 1
under the reducibility shown in Column 2, then the consequence in Column 3 follows.

class C reductions R statement S Reference

TC0 ≤n
1/3

m FALSE5 [50]

TC0 ≤AC0

m LTH6 6⊆ io-SIZE[2Ω(n)] and P = BPP [11, 50]

TC0 ≤AC0

m NP 6⊆ P/poly [11]

TC0 ≤AC0

T NP 6= TC0 [10]

NC1 ≤AC0

T NP 6= NC [10]

P ≤L
m PSPACE 6= P [11]

ZPP ≤L
T PSPACE 6= ZPP implicit in [24]

ZPP ≤P
tt EXP 6= ZPP [24]

NP ≤AC0

T NP 6= (MA ∩ P/poly) [10]

NP ≤P
m EXP 6= ZPP [50]

NP ≤P
tt EXP 6= ZPP [33]

NP ≤P
T ??? [60]

I suspect that Theorem 1 holds also for MCSP. Let us pause, to consider one
of the obstacles to proving this. The proof of Theorem 1 actually carries over
to a version of GapMKTP where the “gap” is quite small. Thus one avenue for
proving a hardness result for MCSP had seemed to be to improve the hardness
result for MKTP, so that it worked for a much larger “gap”. This avenue was
subsequently blocked, when it was shown that PARITY is not AC0-reducible to
GapMCSP (or to GapMKTP) for a moderate-sized “gap” [12]. Thus, although

it is still open whether MCSP is NP-complete under ≤AC0

m reductions, we now
know that GapMCSP is not NP-complete under this notion of reducibility.

When a much larger “gap” is considered, it was shown in [10] that, if cryp-
tographically-secure one-way functions exist, then GapMCSP and GapMKTP
are NP-intermediate in the sense that neither problem is in P/poly, and neither
problem is complete for NP under P/poly-Turing reductions.

We close this section with a discussion of a very powerful notion of re-
ducibility: SNP reductions. (Informally A is SNP reducible to B means that
A is (NP ∩ coNP)-reducible to B.) Hitchcock and Pavan have shown, under the
very plausible assumption that NP ∩ coNP contains problems that require large
circuits, that if MCSP is NP-complete (under the usual ≤P

m reductions), then it is
also complete under SNP reductions whose queries avoid asking about very small
circuit sizes; they are able to use this as a tool to derive additional interesting
consequences from the assumption that MCSP is NP-complete [33]. It is interest-

5 The notation “≤n1/3

m ” refers to “local reductions” computable in time bounded by
the cube root of the input length. This is an important non-hardness result, because
SAT and most familiar NP-complete problems are complete under local reductions
computable even in logarithmic time.

6 LTH is the linear-time analog of the polynomial hierarchy. Problems in LTH are
accepted by alternating Turing machines that make only O(1) alternations and run
for linear time.
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ing to note that, back in the early 1990’s, Ko explicitly considered the possibility
that computing MKpolyP might be NP-complete under SNP reductions [40].

4.3 Completeness in EXP and Other Classes

There are problems “similar” to MCSP that reside in many complexity classes.
We can define MCSPA to be MCSP for oracle circuits with A-oracle gates. That
is, MCSPA = {(f, i) : f has an A-oracle circuit of size at most i}. When A is
complete for EXP, then MCSPA is thought of as being quite similar to MKtP.

Both of these problems, along with MKexpP, are complete for EXP under ≤P/poly
tt

and ≤NP
T reductions, and neither is complete for EXP under ≤P

tt reductions [4].

It is still open whether either of MKtP or MCSPA is in P, and it had been
open if MKtP is in P for “small” exponential functions t such as t(n) = 2n/2.
But there is recent progress:

Theorem 2. [28] MKexpP is complete for EXP under ≤ZPP
T reductions.

This seems to go a long way toward addressing Open Question 3.6 in [1].
In contrast to MKtP, we know that MKexpP is not in P. In fact, a much

stronger result holds. Let t be any superpolynomial function. Then the set of
Kt-random strings {x : Kt(x) < |x|} is immune to P (meaning: it has no infinite
subset in P) [28]. The proof does not seem to carry over to Kt complexity,
highlighting a significant difference between Kt and Kexp.

Although it remains open whether MKtP ∈ P, Hirahara [29] does show that
MKtP is not in P-uniform ACC0, and in fact the set of Kt-random strings is
immune to P-uniform ACC0. Furthermore, improved immunity results for the
Kt-random strings are in some sense possible if and only if better algorithms for
CircuitSAT can be devised for larger classes of circuits [28].

Oliveira has defined a randomized version of Kt complexity, which is conjec-
tured to be nearly the same as Kt, but for which he is able to prove unconditional
intractability results [52]. Lu and Oliveira also show that a version of the “coding
theorem” for Kolmogorov complexity holds for this randomized version of Kt,
which is a nice property not known to hold for other versions of resource-bounded
Kolmogorov complexity [48].

MCSPQBF was known to be complete for PSPACE under ≤ZPP
T reductions [4].

In more recent work, for various subclasses C of PSPACE, when A is a suitable
complete problem for C, then MCSPA has been shown to be complete for C under
≤BPP

T reductions [38]. Crucially, the techniques used by [38] (and, indeed, by any

of the authors who had proved hardness results for MCSPA previously for various
A) failed to work for any A in the polynomial hierarchy. We will return to this
issue in the following section.

In related work, it was shown [10] that the question of whether MKTPA

is hard for DET under a type of uniform AC0 reductions is equivalent to the
question of whether DSPACE(n) contains any sets that require exponential-size
A-oracle circuits. Furthermore, this happens if and only if PARITY reduces to
MKTPA. Note that this condition is more likely to be true if A is easy, than if
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A is complex; it is false if A is complete for PSPACE, and it is probably true if
A = ∅. Thus, although MKTPQBF is almost certainly more complex than MKTP
(the former is PSPACE-complete, and the latter is in NP), a reasonably-large
subclass of P probably reduces to MKTP via these uniform AC0 reductions,
whereas hardly anything AC0-reduces to MKTPQBF. The explanation for this is
that a uniform AC0 reduction cannot formulate any useful queries to a complex
oracle, whereas it (probably) can do so for a simpler oracle.

4.4 NP-Hardness

Recall from the previous section that there were no NP-hardness results known
for any problem of the form MCSPA where A is in the polynomial hierarchy.

This is still true; however, there is some progress to report. Hirahara has
shown that computing the “conditional” complexity Kpoly(x|y) relative to SAT
(i.e., given (x, y), finding the length of the shortest description d such that

USAT(d, y) = x in time nc) is NP-hard under ≤P
tt reductions [28].

It might be more satisfying to remove the SAT oracle, and have a hardness
result for computing Kpoly(x|y) – but Hirahara [29] shows that this can’t be
shown to be hard for NP (or even hard for ZPP) under ≤P

tt reductions without
first separating EXP from ZPP.

In a similar vein, if one were to show that MCSP or MKTP (or MCSPA or
MKTPA for any set A ∈ EXP) is hard for NP under ≤P

tt reductions, then one
will have shown that ZPP 6= EXP [28].

One should be careful how to interpret these results. To illustrate this, let
me restate the result above, and provide additional context, for the particular
case where A is complete for EXP (in which case the proof carries over to MKtP:
the problem of computing Levin’s Kt complexity).

1. If MKtP is hard for NP under ≤P
tt reductions, then ZPP 6= EXP [28].

2. If MKtP is hard for ZPP under ≤P
tt reductions, then ZPP 6= EXP (This follows

from the proof given in [24], showing the analogous result where MKtP is
replaced by MCSP.)

3. If MKtP is hard for NP under ≤P
m reductions, then EXP = NEXP [11].

The second item is a strengthening of the first item; each of the first two items
seem to be saying that we should not expect a proof in the near future, showing
that MKtP is hard for NP (or even for ZPP) under ≤P

m reductions, since this
would provide the long-awaited proof that EXP is not equal to ZPP. But the third
item shows that the “expected” conclusion that ZPP 6= EXP follows because of
the extremely unlikely condition EXP = NEXP. Thus we should certainly not
expect that MKtP is NP-hard under ≤P

m reductions. These results give us no
guidance, regarding whether we should expect that MKtP is hard for ZPP under
≤P

m reductions.7

But let us return to the topic of NP-hardness for conditional versions of
Kolmogorov complexity.

7 Of course, under the popular conjecture that ZPP = P, hardness holds trivially.
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A different kind of NP-hardness result for conditional Kolmogorov complexity
was proved recently by Ilango [34]. In [4], conditional KT complexity KT(x|y) was
studied by making the string y available to the universal Turing machine U as
an “oracle”. Thus it makes sense to consider a “conditional complexity” version
of MCSP by giving a string y available to a circuit via oracle gates. This problem
was formalized and shown to be NP-complete under randomized reductions8[34].
This proof was adapted [5] to show that McKTP = {(x, y, i) : KT(x|y) ≤ i} is
also NP-complete under randomized reductions. Neither of these problems can
be shown to be hard for NP (or even for ZPP) under ≤P

tt reductions, without
first showing ZPP 6= EXP (by adapting the proof in [24]).

Many of the functions that we compute daily produce more than one bit of
output. Thus it makes sense to study the circuit size that is required in order to
compute such functions. This problem is called Multi-MCSP in [36], where it is
shown to be NP-complete under randomized reductions. It will be interesting to
see how the complexity of this problem varies, as the number of output bits of
the functions under consideration shrinks toward one (at which point it becomes
MCSP).

It has been known since the 1970’s that computing the size of the smallest
DNF expression for a given truth-table is NP-complete. (A simple proof, and
a discussion of the history can be found in [9].) However, it remains unknown
what the complexity is of finding the smallest depth-three circuit for a given
truth table. (Some very weak intractability results for minimizing constant-depth
circuits can be found in [9], giving subexponential reductions from the problem
of factoring Blum integers.) The first real progress on this front was reported
in [30], giving an NP-completeness result (under ≤P

m reductions) for a class of
depth three circuits (with MOD gates on the bottom level). Ilango proved that
computing the size of the smallest depth-d formula for a truth-table lies outside
of AC0[p] for any prime p [34], and he has now followed that up with a proof
that computing the size of the smallest depth-d formula is NP-complete under
randomized quasipolynomial-time reductions [35]. Note that a constant-depth
circuit can be transformed into a formula with only a polynomial blow-up; thus
in many situations we are able to ignore the distinction between circuits and
formulas in the constant-depth realm. However, the techniques employed in [35,
34] are quite sensitive to small perturbations in the size, and hence the distinction
between circuits and formulae is important here. Still, this is dramatic progress
on a front where progress has been very slow.

4.5 Why so many kinds of reducibility?

I was pleased to be invited to give a lecture on Metacomplexity at the 2021 Com-
putational Complexity Conference [3]. One of the questions from the audience
after the lecture essentially asked: “Why do you bother with so many different

8 A randomized reduction from A to B is computed by a polynomial-time machine
that takes as input a string x and a string r of random bits, such that, with high
probability over the choice of r, x ∈ A if and only if M(x, r) ∈ B.
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types of reducibility?” I do not think that I gave this question a sufficiently clear
and compelling answer. Let me try again here.

Better lower bounds follow from hardness results using less-powerful
forms of reducibility. For instance, the lower bound proved in [7], showing that

MKTP requires large THRESHOLD◦MAJORITY circuits of size 2n
o(1)

would not
follow if we did not have a ≤proj

m reduction from a problem in A ∈ L to MKTP,
where A is known to require large circuits of this type. (Projections are typically
the most restrictive notion of reducibility that is studied – although even in this
instance we needed to use non-uniform projections, because hardness under uni-
form projections, or even uniform AC0 reductions, cannot be established without
first separating NP from TC0 [11].) Similarly, the argument in [26] showing that

MCSP 6∈ AC0[p] required making use of ≤AC0

T reducibility. Using a more powerful
notion of reducibility would not have yielded the lower bound. And we still don’t
know if hardness under a more restrictive reducibility holds. Thus, even if you
don’t care about restrictive reductions, they can still be used as the means to a
desirable end.

On occasion, more powerful forms of reducibility are required, be-
cause hardness under more restrictive reducibilities fails to hold. The
problem MKtP provides an instructive example. It is useful to know that MKtP
is complete for EXP; but the only “efficient” reducibility for which this is known

to hold is ≤P/poly
tt . It is provably not complete under the usual ≤P

m or even ≤P
tt

reducibility [4]. It is a significant open question whether it is complete under
≤P

T reductions. It is known that MKtP is in ZPP iff EXP = ZPP [4], which is
the conclusion one would obtain if MKtP were hard for EXP under ≤ZPP

T reduc-
tions – but we still do not know if hardness under ≤ZPP

T reductions holds. (This
highlights the importance of Hirahara’s proof that MKexpP is complete for EXP
under ≤ZPP

T reductions [28].) Or consider the conditional KT problem McKTP. It
is useful to know that McKTP is NP-complete under randomized reductions. If
it’s complete under ≤P

m reductions, then EXP 6= ZPP; if it’s not complete under
≤P

m reductions, then P 6= NP. Thus it seems like we’re unlikely to avoid random-
ized reductions when considering the complexity of this problem, until some of
the longstanding questions in complexity are resolved. (There may be reasons
to consider whether McKTP is hard under, say, randomized or nonuniform AC0

reductions, but this requires some extra work, and thus far there has not been a

reason to take this step. In “most” cases, a problem that is hard under ≤P/poly
m

reductions is actually hard under ≤AC0

m or even ≤proj
m reductions, although for

MKTP in particular this is an open question [7].)

The general lesson is: It’s better to use more restrictive reducibilities, because
doing so yields stronger conclusions. But more powerful notions of reducibility
are sometimes the only feasible tool available, to draw an important connection
about the complexity of a problem.



14 E. Allender

5 Average Case Complexity, One-Way Functions, and
Cryptography

Cai and Kabanets gave birth to the modern study of MCSP in 2000 [39], in
a paper that was motivated in part by the study of Natural Proofs [58], and
which called attention to the fact that if MCSP is easy, then there are no
cryptographically-secure one-way functions. In the succeeding decades, there has
been speculation about whether the converse implication also holds. That is, can
one base cryptography on assumptions about the complexity of MCSP?

First, it should be observed that, in some sense, MCSP is very easy “on
average”. For instance the hardness results that we have (such as reducing SZK
to MCSP) show that the “hard instances” of MCSP are the ones where we want
to distinguish between n-ary functions that require circuits of size 2n/n2 (the
“NO” instances) and those that have circuits of size at most 2n/3 (the “YES”
instances). However, an algorithm that simply says “no” on all inputs will give
the correct answer more than 99% of the time. (We will return to this point later
in this section.)

Thus Hirahara and Santhanam [31] chose to study a different notion of heuris-
tics for MCSP, where algorithms must always give an answer in {Yes, No, I don’t
know}, where the algorithm never gives an incorrect answer (“errorless heuris-
tics”), and the algorithm is said to perform well “on average” if it only seldom
answers “I don’t know”. They were able to show unconditionally that MCSP is
hard on average in this sense for AC0[p] for any prime p, and to show that certain
well-studied hypotheses imply that MCSP is hard on average.

More recently, Santhanam [61] has formulated a conjecture (which would
involve too big of a digression to describe more carefully here), which – if true
– would imply that a version of MCSP is hard on average in this sense if and
only if cryptographically-secure one-way functions exist. That is, Santhanam’s
conjecture provides a framework for believing that one can base cryptography
on the average-case complexity of MCSP.

But how does the average-case complexity of MCSP depend on its worst-case
complexity? Hirahara [27] showed that GapMCSP has no solution in BPP if and
only if a version of MCSP is hard on average. A related result stated in terms of
Kpoly appears in the same paper. These results attracted considerable attention,
because prior work had indicated that such worst-case-to-average-case reductions
would be impossible to prove using black-box techniques. Additional work has
given further evidence that the techniques of [27] are inherently non-black-box
[32].

A flurry of recent activity has shown that the existence of cryptographically-
secure one-way functions can indeed be characterized in terms of the complexity
of computing time-bounded Kolmogorov complexity.

The initial breakthrough was provided by Liu and Pass, who showed that
one-way functions exist if and only if MKpolyP is hard-on-average [44] (in the
sense of “regular” heuristics, rather than “errorless” heuristics).

Let us digress for a moment, to highlight the significance of this result of Liu
and Pass. Although one-way functions are essential for cryptography, the nom-
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ination of any particular candidate one-way function has largely been guided
more by heuristics, experimentation, and conjecture, instead of a firm theoret-
ical foundation. There had never been a natural example of a computational
problem whose complexity is equivalent to the existence of cryptographically-
secure one-way functions. (There had long been an “unnatural” example, arising
from Levin’s “universal one-way function” [42]. But it is safe to say that this
function, although of theoretical interest, has had little impact on practical cryp-
tography.) In contrast, MKpolyP has been studied for years, independent of any
connection to cryptography. Thus [44] provided a new window into the theoret-
ical foundations of cryptography. Furthermore, since Hirahara [27] had related
the worst-case complexity of MKpolyP to its average case complexity (albeit only
for errorless heuristics), this seems to bring us closer to the goal of basing one-
way functions on a worst-case complexity assumption for a problem where we
have strong theoretical justification of intractability.

The result of [44] relates one-way functions to MKpolyP. What about MKTP?
Ren and Santhanam addressed this question, by showing that MKTP is hard-on-
average if and only if logspace-computable one-way functions exist [59]. Further-
more, this happens if and only if the NP-complete problem McKTP (discussed
earlier) is hard-on-average [5]. In addition, if any one-way functions exist (not
just those computable in logspace), then McKTP is “somewhat” hard-on-average
[5]; thereby giving the first example of a “natural” NP-complete problem whose
average-case complexity is tightly linked to the existence of cryptographically-
secure one-way functions. Liu and Pass [46] subsequently provided an alternative
definition of conditional time-bounded Kolmogorov complexity (which they also
called McKTP), and showed that (a) it is also NP-complete under randomized
reductions, and (b) it is hard on average if and only if one-way functions exist.

But NP is not the limit! It turns out that cryptographically-secure one-way
functions exist if and only the EXP-complete problem MKtP is hard on average
[59, 47]. Nor do things stop at EXP. Ilango, Ren, and Santhanam subsequently
showed that one-way functions exist if and only if the undecidable problem MKP
is hard on some samplable distribution (and they also provide yet another equiv-
alent characterization, in terms of the average-case complexity of MCSP on a
class of “locally-samplable” distributions) [37]. This was subsequently general-
ized again by Liu and Pass [45].

This connection between complexity-theoretical considerations and undecid-
able languages connects well to our next topic:

6 Complexity Classes and Noncomputable Complexity
Measures

The title of this section is the same as the title of Section 4 of my earlier survey
[1]. In that section, I described the work that had been done, studying the classes
of sets that are reducible to the (non-computable) set of Kolmogorov-random
strings RK , and to MKP, including the reasons why it seemed reasonable to
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conjecture that BPP and NEXP could be characterized in terms of different
types of reductions to the Kolmogorov-random strings.

I won’t repeat that discussion here, because both of those conjectures have
been disproved (barring some extremely unlikely complexity class collapses).
Taken together, the papers [32], [29], and [28] give a much better understanding
of the classes of languages reducible to the Kolmogorov-random strings.

Previously, it was known that PSPACE ⊆ PRK , and NEXP ⊆ NPRK . Hirahara

[28] has now shown NEXP ⊆ EXPNP ⊆ PRK .

This same paper also gives a surprising answer to Open Question 4.6 of [1],
in showing that Quasipolynomial-time nonadaptive reductions to RK suffice to
capture NP (and also some other classes in the polynomial hierarchy).

As described in [1], when we consider uniform reductions to MKP (such as
≤P

T or ≤NP
T reductions) that hold regardless of the universal Turing machine

that is used in defining Kolmogorov complexity, only subclasses of EXPSPACE
result (and when ≤P

tt reductions are used, one obtains a class between BPP and
PSPACE). It is not clear what the true picture is.

Similarly, when one considers nonuniform reductions to MKP all computably-

enumerable sets are ≤P/poly
tt -reducible to MKP, but no complexity class larger

than co-NISZKL is known to be ≤AC0

m reducible to MKP [7]. It seems unlikely
that this is is optimal.

7 Magnification

Some of the most important and exciting developments relating to MCSP and
related problems deal with the emerging study of “hardness magnification”. This
is the phenomenon whereby seemingly very modest lower bounds can be “am-
plified” or “magnified” and thereby be shown to imply superpolynomial lower
bounds. I was involved in some of the early work in this direction [13] (which
did not involve MCSP), but much stronger work has subsequently appeared.

It is important to note, in this regard, that lower bounds have been proved
for MCSP that essentially match the strongest lower bounds that we have for any
problems in NP [21]. There is now a significant body of work, showing that slight
improvements to those bounds, or other seemingly-attainable lower bounds for
GapMKtP or GapMCSP or related problems, would yield dramatic complexity
class separations [19, 18, 17, 16, 62, 54, 53, 49].

In particular, I’d like to put a spotlight on two theorems. To state the the-
orems, let MCSP[s(n)] denote the set of truth tables f of n-ary Boolean func-
tions that have circuits of size ≤ s(n). That is MCSP[s(n)] = {f : |f | = N =
2n ∧ (f, s(n)) ∈ MCSP}.

– MCSP[2εn]] requires time more than N1.99 on any one-tape probabilistic
Turing machine [20].

– If MCSP[2δn]] requires time more than N1.01 on any one-tape deterministic
Turing machine, then P 6= NP [49].
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If it were not the case that δ < ε, this would yield a proof of P 6= NP.
This would be a good place to survey the field of hardness magnification,

except that an excellent survey already appears in [16]. Igor Carboni Oliveira has
also written some notes entitled “Advances in Hardness Magnification” related to
a talk he gave at the Simons Institute in December, 2019, available on his home
page. These notes and [16] describe in detail the reasons that this approach
seems to avoid the Natural Proofs barrier identified in the work of Razborov
and Rudich [58]. But they also describe some potential obstacles that need to be
overcome, before this approach can truly be used to separate complexity classes.
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