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ABSTRACT—Time series data remains a perennially important
datatype considered in data mining. In the last decade there has
been an increasing realization that time series data can best
understood by reasoning about time series subsequences on the
basis of their similarity to other subsequences: the two most
familiar such time series concepts being motifs and discords. Time
series motifs refer to two particularly close subsequences, whereas
time series discords indicate subsequences that are far from their
nearest neighbors. However, we argue that it can sometimes be
useful to simultaneously reason about a subsequence’s closeness
to certain data and its distance to other data. In this work we
introduce a novel primitive called the Contrast Profile that allows
us to efficiently compute such a definition in a principled way. As
we will show, the Contrast Profile has many downstream uses,
including anomaly detection, data exploration, and preprocessing
unstructured data for classification. We demonstrate the utility of
the Contrast Profile by showing how it allows end-to-end
classification in datasets with tens of billions of datapoints.

Keywords—Motifs, Multiple Instance, Classification

I. INTRODUCTION

In order to perform various data mining tasks on time series,
it can be fruitful to annotate each subsequence with metadata
indicating various properties. One such feature is a
subsequence’s distance to its nearest neighbor within the same
dataset. That information can be represented by the Matrix
Profile [1]. Small values in the Matrix Profile are called motifs,
and large values are called discords. Both motifs and discords
have each been used in hundreds of research efforts . However,
we argue that it may be useful to score subsequences with a new
piece of meta-data that reflects the property that a subsequence
is simultaneously close to its nearest neighbor in certain data
but far from its nearest neighbor in other “black-listed” data. We
call this property Contrast, and the vector that represents it the
Contrast Profile. While the proposed representation has many
uses, for clarity, we will introduce it in the context of
subsequence extraction to allow classification.

While the time series classification community is very
active, most research efforts confine their work to datasets from
the UCR archive or similar benchmark datasets [2]. However,
for most of these archive datasets, the work of extracting the
exemplars from a longer time series has already been done.
Here, we argue that extracting the exemplars is actually the
most difficult and critical task. In a handful of cases, it may be
obvious where the beginning and the end of an exemplar is
within a longer time series. But, in many cases, these
demarcations may not be clear. Consider Fig. 1.bottom, which
shows a time series known to have several examples of chicken
dustbathing behavior [3]. Even to experts in avian
biomechanics, it is not obvious where the dustbathing behavior
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is. Moreover, even if we knew the answer to that question from
an ethological perspective, there is no guarantee that those
subsequences would optimize classification accuracy.

Some Dustbathing
s

r T T T T T
0 seconds

Fig. 1. Two short snippets of behavior from a chicken wearing a backpack
accelerometer. The bottom time series is known to contain at least two
examples of dustbathing behavior, whereas the top time series is known to be
free of this behavior.

This suggests that a technique is needed to annotate each
subsequence of the time series with a value that simultaneously
represents how close that subsequence is to its nearest neighbor
within the same time series and how far it is from its nearest
neighbor in the time series known to be free of the target
behavior. This score would reveal the location of the uniquely
conserved behavior, in this case, dustbathing.

In Fig. 2, we give a visual intuition of the property of
interest: abstracting time series subsequences to points in a high
dimensional space. We explicitly consider three data points.

e Point A is far from its nearest neighbor in the non-target
class, but it is also far from its nearest neighbor within
its own target class. It is an anomaly that would score
highly on the definition of time series discord [4].

e Point B in contrast is very close to its nearest neighbor
in the target class, but it is also close to its nearest
neighbors in non-target class. This point would score
highly on the definition of time series motif [1].

e Point C is both very far from its nearest neighbor in the
non-target class and very close to its nearest neighbor in
the target class. This is exactly the property we desire.

a

A

Small distance to nearest
° neighbor from same dataset

Large distance to + :
nearest neighbor from —— C .

different dataset

Fig. 2. A visual intuition of the “contrast” property. Of the three annotated
points from the target class, only C is close to a member of its own class, while
also being far from its nearest neighbor in the non-target class.
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The rest of this paper is organized as follows. In Section II,
we present the necessary definitions and notations. Section II1
sees a discussion of related work. In Section IV, we present
several examples of data mining tasks that can exploit the
Contrast Profile before experimentally demonstrating them in
Section V. Section VI offers conclusions.

II. DEFINITIONS AND NOTATION
Our data type of interest is time series.

Definition 1: A time series T = ty,t,, ..., t,, is a sequence
of real-valued numbers.

Typically, we are not interested in global properties of a
time series but rather shapes of small regions called
subsequences.

Definition 2: A subsequence T, is a contiguous subset of
values from T starting at index i with length m.

We can measure the distance between any two time series
of equal length using a distance measure. In this work, we use

the ubiquitous z-normalized Euclidean distance [1]. One minor

t\?odiﬁcation to the Euclidean distance is that we clip it at
(2= because values above this are anti-correlated in the

Pearson Correlation space. This is done in order to make the
greatest use of the normalized range when working with the
Contrast Profile. If we need to measure the distance between a
short time series and every subsequence from a long time series,
we can produce a distance profile.

Definition 3: A distance profile DPAB) is the vector of
distances between each subsequence in reference time series
T® and a query subsequence T;(,?%'

The distance can be computed very efficiently using the
MASS algorithm [5]. Fig. 3 illustrates these definitions on a
running example of a noisy electrocardiogram (ECG).

° -27 seconds at 128 Hz 00

Fig. 3. top) A 27-second snippet of an ECG time series. bottom) A single
heartbeat from earlier in the same dataset was used as a query to produce a
distance profile, which has low values when the “sliding” query is similar to a

subsequence and is minimized at the best match about five seconds in.

Our proposed ideas leverage the self-join Matrix Profile [1].

Definition 4: A self-join Matrix Profile MP®A) of a time
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contractions. While these two beats are similar, they are not as
well conserved as normal beats.

Matrix Profile

~27 seconds at 128 Hz 3500

Fig. 4. top) The ECG shown in Fig. 3 with its MP12g (bottom). The lowest
values of MP12g are the Top-1 motif pair, here two normal beats. Also, two
PVCs shown highlighted with red bars for future reference.

In addition to subsequence comparisons within a time series,
it can also be fruitful to make comparisons between two time
series using the AB-join Matrix Profile.

Definition 5: An 4B-join Matrix Profile MB(B) between
reference time series T(® and a query time series T® is a
vector of Euclidean distances between each subsequence T¢)

and its nearest neighbor T(®. Formally,
jm
MPUB) = [min(DP(), min(DPGB), ..., min(DPtB) )]

128 1m 2m n-m+1m

Note that in general, MP{B) == MPEL): even with equal
lengths, they correspond to different reference time series.

Fig. 5 shows MP{4® for our running example with a region
of normal ECG from the same patient.

T®: ECG-Il of 75-year-old male Motif B

0

3500

¢ -27 seconds at 128 Hz 0

Fig. 5. top) Time series T® is a normal ECG time series from the same
patient. center) Time series T®,which contains the behavior of interest, is the
original ECG introduced in Fig. 3. bottom) The top motif pair, where motif®
is the unrequited nearest neighbor of motif® . The red bars foreshadow
discovery of two PVCs.

We now exploit an important observation. Note that
MP®4) and MP®B) from the last two figures are very similar

128 128

in most regions. This makes sense. A noisy T() will tend to be
just as far from any other T@® as it is from any T® (An

, "
implication of theorem 1 of [61)7.nMoreover, anormal heartbeat



. TW . . m
series is a vector of Euclidean distances between every

subsequence T® and its nearest neighbor T . Formally,

im jm
MP®*% = [min(DP®A), min(DPAY), ..., min(DP®8 )]
m 1m 2m

n—-m+1m

Fig. 4 shows MP{¥4 for our running example. We can see
that the top motifs are a pair of normal heartbeats. Using some
out-of-band data (including advice of cardiologist Dr. Greg
Mason), we annotated the location of two premature ventricular
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in T® will tend to have approximately the same low distance

to another normal heartbeat, whether that beat happens to come

from T@® or T® . The only places showing a significant
difference are the locations corresponding to behaviors that are

unique to T@®: in this case, the two PVC beats.

We formalize these observations with our proposed
representation, the Contrast Profile, specializing from the



generic T® and T®, to consider two time series T(+) and
T) which have a mild assumption about their contents.

Definition 6: A Contrast Profile CP,, is the difference
between Matrix Profiles MP(+-) and MP*+), where MP(+-)

m m m

joins T with T), and MP(H+) is the self-join of T().

CP,, = (MP§~) — MP§H )/ V(2 *m)

The Contrast Profile is defined for any two time series so
long as m is shorter than the time series’ lengths. However, we
proposed to compute the Contrast Profile only when we believe
that the two following assumptions are likely to be true:

o T contains at least two behaviors that are unique to
the phenomena of interest.

e T contains zero behaviors of interest.

Under these assumptions, large values of CP,, indicate
behaviors that appear two or more times in T(+) while absent
from TC). Fig. 6 gives a visual intuition of these definitions.
Note that CPq,g peaks at the locations of the shape that is
unique to T (i.e., the two PVC heartbeats).

~27 seconds at 128 Hz

Fig. 6. top-to-bottom) Query time series T contains normal heartbeats. Time
series T(+) contains at least two instances of a behavior of interest. The top
discord of the AB-join Matrix Profile (the highest peak), results from a noisy
region in T, far from the ground truth labeled with red bars. The top two
candidates peak within the ground truth.

The subsequence in T(+) corresponding to the highest point
in the Contrast Profile is called the Plato, a backronym of
Pattern likely able to organize, which is suggestive of a platonic
ideal for some behavior of interest.

While we use the Matrix Profile as the core function to
compute the Contrast Profile, the value optimized is rather
simple. The Plato is the subsequence in T(*) with maximum
difference between its nearest neighbor distance in T and
nearest neighbor distance in T(+). This could be discovered by
a classic nested-loop, brute-force algorithm, requiring O(|T)|
(JTO| + |T®[) m). As m could be in the thousands, this is
clearly intractable. As we will later show, by exploiting the
Matrix Profile, we can completely remove the dependence on
m to produce a highly scalable algorithm.

To summarize, we have shown that at least for our running
example, the Contrast Profile can be used to extract
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discriminating subsequences. This clearly has implications for
several downstream algorithms, including classification and
novelty/anomaly detection. However, before discussing these,

in the next two sections we will consider the Contrast Profile’s
robustness to noise an ‘Bﬁe [‘)}\iaum%]ljﬁty oit 1t]he assumptions %ﬁat

warrant its use.

A. The Contrast Profile’s Robustness

The robustness of the Contrast Profile definition is hinted at
in Fig. 6, as it correctly recovers the PVC patterns in spite of
sporadic noise caused by motion artifacts. Moreover, we
empirically test this robustness in our experimental section.
However, it is worth explaining why it is so robust. Consider
Fig. 7.top which shows CP;,g computed from two relatively
clean ECGs, to hint at the presence of novel patterns (PVCs) in
T) . Moreover, as we show in [7] (for brevity), while this
particular example shows m = 128, the PVCs are discovered
with any setting in the range m = [50:500].

Suppose we concatenate some random data to our time
series; how would it affect the Contrast Profile? As Fig.
7.bottom shows, the relevant section of CP1,g is essentially
unchanged.

TO ECG
(clean)

T ECG (with
PVCs)

Fig. 7. top) Two ECGs and their Contrast Profile. bottom) After
concatenating random data to the two time series, the section corresponding to

the original CP is virtually unchanged, and the new section has low values,
meaning it will not cause spurious matches.

Let us examine this finding for each time series.

e If T(™ has sections of noise or any irrelevant data, it
makes no difference to the CP , because none of the
irrelevant data will act as a nearest neighbor to any
subsequence from T),

e If T(H has sections of noise, it makes no difference to
the CP because the noisy data will be approximately as
far from its nearest neighbor in T()1 as it is far from its
nearest neighbor in T(), Thus, the relevant indices of
the MP(f-) — MP(:+) calculation will subtract two
nearly equal numbers, resulting in a score less than or
equal to zero.

Thus, so long as our mild assumptions are true, the Contrast
Profile is likely to discover the discriminating behavior.
B. The Contrast Profile Assumptions

Recall that our assumptions for the Contrast Profile are that
T) contains at least two examples of the desired behavior, but



! As an implication of theorem 1 of [6]) a noisy subsequence is an
approximately equal and large, distance to all other subsequences.
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that T contains zero examples. These are very mild
assumptions, nevertheless it is worth considering when such
assumptions are warranted.

Our chicken example, shown in Fig. 1 and empirically
revisited in Section V.B, is one such documented example
where this assumption is justified [3]. We argue that such
examples are very common in many domains. For example, in
batch processing with delayed coking [8], it is possible to
produce a bad batch, but not be sure exactly when the process
began to fail. Thus, it is common to hear a petrochemical
engineer report something like “Everything was running
perfectly on Monday, but then we had a couple of bad batches
on Tuesday.” Here we can compute the Contrast Profile with
TO) « telemetry(Mon) and T(H) < telemetry(Tues).

Moreover, in some cases we can actually infervene in a
domain to ensure data that conforms to our assumptions. For
example:

e While it was not necessary for our chicken work, we
could have created a cage that had all the usual food and
water supplies, but had a solid floor to prevent the bird
from dustbathing. This would have made the
TO) trivially true.

e For our insect example (cf. Section V.A), suppose we
hope to find the signature of “cell rupture” feeding as
opposed to the more common “salivary sheath” feeding
[9]. Since it is known what parts of a plant allow such
feeding strategies, it would be easy for an entomologist
to add/remove the appropriate plant parts into the
insectary to build T(+) and T(-) with the Contrast Profile
assumptions satisfied.

Finally, our assumptions are satisfied trivially in most
examples relating to ~iuman behavior. For example, if we want
to understand what effect (if any) a stretching warm-up routine
has on a hurdler’s jumps, we can simply ask her to record her
workouts with and without the warm-up routine.

C. General Contrast Profile Observations

Note that while the two time series that are input into the
Contrast Profile are denoted T(H) and T(-) , there is nothing
pejorative about the “negative” time series. It is simply a snippet
of data which we know does not have some behavior. That
behavior could be undesirable, say a seizure, or it could be
desirable, say a critical depressurization phase in an industrial
process.

The Contrast Profile is bound between zero and one. A value

of one corresponding to T(*) means that T(*) is a perfect motif
im im

in MP&+) while also a maximum discord in MPG-) [1]. A

m m
value of zero means that Tl(jn) is conserved at least as much in

MP) as MPUH),

m m

This property is critically different from that of TS-Diff
[10], which is optimized solely by maximizing MP(*~) , a
definition that simply tends to point to the noisiest subsequence.
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meaningfully compare scores for length 50 and for length 60,
and state which subsequence is better conserved. This provides
us with the opportunity to remove the Contrast Profile’s only
parameter, the subsequence length. We propose the Pan-
Contrast Profile (in the spirit of [11]). We can simply compute
all Contrast Profiles in some range, and choose the Plato from
the one that produces the highest value. To see why we can
expect this to work, consider the two extreme cases.

e If m is too small, then we are only comparing tiny
fragments of the time series. These are very unlikely to
be discriminating.

o If m is too large, then we are comparing the most
discriminating subsequence along with extra non-
discriminating shapes padded to its prefix or suffix.
These non-discriminating sections can only dull the
contrast property.

In Fig. 8, we show the Pan-Contrast Profile for the ECG
shown in Fig. 7; the example bears out our intuition above. The
optimal Plato has a length of 313, which is about the length of
the PVC, excluding the QRS peak, which it shares with healthy
heartbeats.

Any value of m in this range produces a
score of at least 0.7

mis too large mis too small
L | I\
( T Y
. (]

500 313 0

Fig. 8. left) The Pan-Contrast Profile for the example shown in Fig. 7. A red
dot indicates the largest value. right) A side view shows that the Contrast
Profile is very robust to its only input parameter. Any subsequence length from
131 to 424 would have produced a score of at least 0.7.

One additional takeaway from this experiment is the relative
insensitivity of the Contrast Profile definition to its only
parameter. Over a huge range of values (131 to 424) it produces
nearly identical values in nearly identical locations.

A computation of a single Contrast Profile requires
O(]T®]2 + |T®]|TO)]) time. To concretely ground this, the
example shown in Fig. 7 takes 0.182 seconds, and the full Pan-
Contrast Profile shown in Fig. 8 takes 82 seconds. Note that
because the Contrast Profile is based on the Matrix Profile, it
inherits many of the Matrix Profile’s desirable properties such
as time complexity that is completely independent of the

subsequence’s dimensionality, and the possibility of anytime,
online, and GPU-accelerated computation [12].

Thus far, we have only defined the Top-1 Plato. However,
it is possible that we may be interested in the Top-K Platos, as

A useful property of the Contrast Profile is that it is length
invariant and sampling-rate invariant. For example, we can



we may suspect that the behavior of interest is polymorphic. For
example, unlike the simple PVC arrhythmia shown in Fig.
16.inset, some arrhythmias such as bidirectional ventricular
tachycardia can present themselves with a handful of different
shapes even from a single individual. If we are given T(+) that
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has at least two examples of each manifestation, we would like

to extract them all.

Recall that for time series discords, the Top-K discords

correspond to the Top-K peaks in the Matrix Profile. However,
that is not the case for the Contrast Profile. To discover the K
Plato we must ensure that the influence of the K®-1 Plato is first
removed from the Contrast Profile. That is trivial to achieve, we
simply concatenate the K™-1 Plato to T and then recompute
the Contrast Profile from scratch?. All subsequences in
T that were sir{l_i;ar to the K Plato will then be close to a

subsequence in T

D. Online Contrast Profile

The reader will appreciate that it may be useful to compute
the Contrast Profile in an online fashion. While “online” could
have several interpretations, we believe the most useful variant
will be a fixed T with an incrementally updated T ") in the

, and thus their original peaks will vanish.

face of real-time data arrival. As we will show in Section IV.C,
this interpretation maps onto a type of anomaly detection.

Assume that we start with a computed CP,, of length » for
T®) , and some length for T(-) , and we wish to ingest an
additional datapoint, the n + 1 datapoint. This will result in the
creation of a new subsequence, NEW, which ends with the n +
1 datapoint.

What effect will subsequence NEW have on the current
CP,,, beyond lengthening it by one?

If NEW is sufficiently dissimilar to any other subsequence
in T(+), then the previous n values of CP  will be unchanged

m =)

regardless of NEW’s distance to its nearest neighbor in T
If NEW is simjlar to one or more subsequencgs in T.(H), but
also su 101entISyHcliose to its nearest nelg?ﬁ)qor n eIs(—l?, then B1e

previous n values of
CP,,

will again be unchanged.

If NEW is similar to one or more subsequences in T(+), and
it is far from any subsequence in T(), then we will have to
update CP,, corresponding to those subsequences.

From this, we can see that the previously computed CP,,
values can only increase or stay the same. They can never

decrease. Then, adding the n+1 value to CP,, requires
computing every index in DPG¢+-)  and DPG+) . After

NEW,m NEWm

outlining the algorithm that maintains the Contrast Profile
Incremental (ContrastProﬁfgl) in TABLE 1. , we will explain
how this process can be accomplished surprisingly efficiently
by exploiting the MASS algorithm [5st™

We denote the updated variables with NEW in the
superscript. In line 1, each newly arriving time point t(+) is
appended to the expanding time series T(+). This completes the
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NEW , then appending the minimum of DPt+-) to MP(t-)

last;m m
and storing in MP{F—), NEW,

TABLE L THE CONTRASTPROFILE/ ALGORITHM

Algorithm: ContrastProfile/(T), T, tt), MP(;;), MP<;}+>, m)

Input: negative time series T(-), positive time series T(*), a new

positive time point t(+) following T(+), Matrix Profile MP(-), Matrix
m

Profile MP(*), and subsequence length m.

Output: The Contrast Profile CP,,, the incrementally updated Matrix
Profiles MP(-)NEW  and MP<'+"+)JVEW , and the current time series
THNEW

—_

TENEW = [T(+), t(+)]

last « n -m+1//index of last subsequence in THNEW
NEW TIE;)E’YHEW // last subsequence in THNEW of length m

DPI(;S?m «— MASS(T®), NEW)) // Begin AB-join update
MP VY IMPS ), Min(DPS) )]

last,

DPGH  «— MASS(T™, NEW) // Begin self-join update

last;m
MP7(n++)' — ElemWiseMin(MP%ﬂ, DP(;;)Nz // Update prev vals
MP DN (MPTY, Min(DPE), )]

CP_ « (MPG) NEW — MPCHH.NEW)/sqrt(2 * m)
m m m
return CP,,

O 00 9 N WL B~ W

—_
S

Because this is a Matrix Profile where the query time series
is unchanging, the previously computed values are also
unchanged. An extra line of work is done in lines 6 — 8§ to update
the self-join Matrix Profile because the query time series
T has expanded. The self-join distance profile
between T(") and NEW is stored in DP(++) . The element- wise

minimum between MP(++) apnd DP(+) jgsts}lored in

MP&®" | which is then updated to MPGHNEW after
m

+H ™

concatenating the minimum value of DP,, ... Finally, in lines

9 and 10, CPy

MP,, and updated and expanded MP,,

is recomputed frogﬂm expanded

The time complexity of ContrastProfile/ is dominated by the
MASS function, which performs an O(nlogn) FFT operation.
The time complexity begins as O( |T™]| log |[TH)| +
|TO)| log |TC)| ), but as the size of T(H) dominates, the
effective time complexity is O(|T(H|log| T(H)]). Each time the
function is called, MASS searches a slightly longer time series
with n becoming n + 1. There are no conditional control
statements, making the runtime value-invariant to the incoming

data.

next subsequence NEWin T(+)NEW in lines 2 and 3. Lines 4 and 5
correspond to updating the contrasting Matrix Profile by first
calculating the distance profile DP(+-) between T(-) and



For example, consider the following two scenarios which

This time complexity discussion is a little indirect. A more refer to an Intel® Core 17-9700 CPU at 3.00GHz with 32 GB of
intuitive way to measure the time requirements is by using the memory (full worked details at [7]).

Maximum Time Horizon, which answers the question, “How

long can the Contrast Profile be maintained before the

maintenance computation is slower than the sampling rate?”

o If we have a Contrast Profile created with T(H) and
T both of length 10,000, and the data is arriving at 10Hz,

2 This is what logically must be done, however by caching distance calculations
and only recomputing values that could have changed, the time and space
overhead for the Kt-1 Plato is inconsequential.
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then we can update the Contrast Profile for about 51 hours
before the arrival rate is faster than our update time.

® Most automotive GPS loggers update at 1hz. If we have a
Contrast Profile created with T and T(-) both of length
10,000, with data arriving at 1Hz, then we can update the
Contrast Profile for about 9.5 months before the arrival rate
is faster than our update time.

Note that we do not specify the value of m in the above, as
the update times are effectively invariant to the subsequence
length due to the use of the MASS algorithm.

E. Anytime Contrast Profile

The computation time for the Contrast Profile is not
particularly onerous relative to the tasks it can be used to solve.
Nevertheless, it is natural to ask where the current limits of
computation are in terms of the size of the datasets we can
consider. Here we can take advantage of the fact that the
Contrast Profile is largely comprised of calls to the Matrix
Profile. In recent years Matrix Profile has become a widely
studied algorithm, with multiple high-performance
computational paradigms now available, including distributed
computation and GPU implementations. Here we will show that
we can also exploit the anytime computation property from the
Matrix Profile [13].

Clearly it would be pointless to first compute MP("—), and
only then compute MP(t®) in anytime fashion, as we would
have to wait for about half the overall time to get the first
approximation. Fortunately, the SCRIMP++ algorithm for the
Matrix Profile has perfect interruptibility and preemptability
[13]. This means we can spend p% of our time computing

MP(+-), then suspend it and then switch to spending p% of our
time computing MP(++), then toggle back to MP() etc.

The only question is what value ‘p’ should have. If there is
a large cost in suspending and then resuming an algorithm, this
can be a difficult question to answer. But for the SCRIMP++
algorithm, this cost is inconsequential (less than 0.0001% of the
overall cost). Because of this, we can make p arbitrarily small.
For simplicity we chose p = 0.5%. We can measure the utility
of the anytime property in two ways, the rate at which the best-
so-far Contrast Profile converges on the final Contrast Profile
(as measured by the RMSE), and by asking at what point the
best-so-far Plato is as good as the final Plato. Here we define
“as good as” to mean able to obtain within 1% of the latter’s
classification accuracy on holdout data. In Fig. 9 we answer
both questions for the ECG example considered in Section V.C.

Note that while the

convergence plots for a 03 =

Matrix Profile are strictly o o
monotonic, this is not
necessarily the case for the
Contrast Profile.
Nevertheless, as this figure
shows, both numerically and
semantically, the Contrast
Profile  converges
quickly.

computation, and at every
w02 time point thereafter, the
%) best-so-far Plato is as good
E as the final Plato

Percentage of full computation 100

Fig. 9. Anytime convergence plot
VeIY  for the ECG data shown in Fig. 16.
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III. RELATED WORK

The work closest in spirit to the Contrast Profile is in time
series contrast-set mining by Lin and Keogh [10]. Their work
proposes to solve the same problem of identifying subsequences
that maximize the differences between two time series. This
work predates the Matrix Profile but in retrospect can be seen
as returning the subsequence pointed to by the location that

maximizes MP(+). The problem with this definition is that it
tends to simply return the most complex and/or noisiest
subsequence. For example, for the data shown in Fig. 7.bottom,
it will return a subsequence of the pure noise at the right end of
the T(+) signal (see [2]).

If we generalize beyond time series, multiple instance
learning, pioneered by Dietrich et al. [14], is another closely
related concept. In order to identify a unique feature of a desired
class, two labeled “bags” are provided: The class-positive bag
must contain at least one sample with the desired property,
while the class-negative bag must contain zero samples with the
desired property. There have been some attempts to generalize
this framework to time series by researchers noting that you
cannot (meaningfully) convert the time series problem to a
classic multiple instance framework by use of “sliding
windows”. However, the proposed methods require significant
feature engineering and a change of representation. In
comparison, the Contrast Profile works directly on the raw data.

Moreover, the Contrast Profile is tasked with finding
discriminating exemplars, but is completely agnostic as to what
classification algorithm will then be used. In contrast, [15] is
tied to a particular Auto-Regressive Hidden Markov Model
classification paradigm. Finally, the HMM requires the learning
of six explicit parameters, whereas the Contrast Profile has one
parameter, or zero parameters for the Pan-Contrast Profile.

The general literature of time series classification is vast;
however, it is mostly orthogonal to this work. As we noted
above, virtually all research efforts only consider time series
objects after they have been extracted from a longer time series.
However, they are silent as to sow they can be extracted. In
most cases, the community has bypassed this issue by only
evaluating on the UCR archive, where many of the datasets
were processed with human annotations and access to out-of-
band information and domain knowledge.

IV. ALGORITHMS THAT EXPLOIT THE CONTRAST PROFILE

We believe that the Contrast Profile may be a useful
primitive within dozens of higher-level algorithms. In this
section we give some concrete examples.

A. End-to-End Time Series Classification

As we noted in the introduction, given discriminative
subsequences (i.e., in the UCR format [2]) that characterize a
behavior, time series classification is generally a simple task.
We argue that finding such discriminative subsequences can be
extremely difficult. Clearly the Contrast Profile has the
potential to mitigate this difficulty. For concreteness, we outline a
basic approach:

o Identify two snippets of time series that conform to the
Contrast Profile assumptions (See Section I1.B).



¢ Run the Pan-Contrast Profile to discover the Plato.

e Use this Plato with a threshold ¢ to discover similar
instances, label them as the class that T(+) represents.

Note that while the Euclidean distance is the natural distance
measure to use, other measures such as DTW are possible [8].
We need to set a threshold; here we must resort to heuristics.
For example we can use 3 x the distance for the Plato to its
nearest neighbor (recall that we are assuming that the Plato’s
nearest neighbor is also an example of the desired behavior).
Finally, the above assumes that there is a single template for the
desired behavior. If we think it may be polymorphic, we can use
the technique discussed in Section II.C to find the Top-K Platos
instead. This is a very simple technique for end-to-end
classification, but as we will show on diverse real-word
problems, extremely effective.

B. Exploratory Data Mining

We believe that the most frequent use of the Contrast Profile
may be in exploratory data mining. That is, searching datasets
with the goal of finding interesting hypotheses to further
evaluate. As this is a difficult task to evaluate objectively, we
will confine ourselves to a single example here. In Fig. 9.top we
show a pair of four-year long time series that record pedestrian
traffic in two locations in Melbourne, Australia. A city manager
may wish to know, “What happens only in Bourke Street but
not elsewhere?”

T
Commons
T®) Bourke
Street Mall

2009.04-30 2013.0430

Hours since 2009-0430 Hours since 2009-04-30

Fig. 10. fop) Two four-year-long time series and their CP12 . bottom) The two
contrasting subsequences shown in context.

This is a difficult question to answer; the data have daily,
weekly and seasonal variation in addition to spikes and dips
caused by both cultural events (protests, flash mobs, strikes) and
severe weather events. As shown in Fig. 9.bottom there is a
subtle distinction between the two time series. Only the Bourke
Street data has small spikes at what is otherwise the quietest part
of the day. This might be a coincidence, but we have an
additional 4.75 years of data, and we find that this distinction
holds up with a handful of similar events over the longer time
period. What is the cause of this pattern? Using Reddit we
crowdsourced that question, and one volunteer noted that the
area is dominated by a branch of Myers, Australia’s largest
department store chain. She went on to note “That was around
the time of the new store opening up and I worked there at the
time. We had .. (EOD fire drills) evacuations mid 2009-mid
2010. ..the Bourke doors being the only way to access Myer
some days”. In brief, the volunteer believes this burst is the
evacuation of Myers during mandatory fire drills, with staff
pouring out into the street. Whatever the reason, this example

shows the potential utility of the Contrast Profile to find
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

C. Anomaly Detection: Solving the Twin Freak Problem

While there are dozens of approaches for the task of
anomaly detection in time series, it has long been known that
shape-based methods (i.e. discords and their variants) can be
competitive [4]. Here we propose a novel interpretation of
anomaly detection, the Contrast Profile Anomaly Detector
(CPAD). We propose creating a T(-), which contains all the
“allowable” behavior of a system, and then expanding T
online as new data arrives (see TABLE I. ). The T(-) may be a
natural time series or created from the concatenation of several
time series. For example, if we wanted to build an anomaly
detector to monitor pedestrian traffic at a train station, we could
create a concatenation of one weekday, one weekend day, one
bank holiday, one rainy day etc.

This idea is somewhat similar to “golden batch” monitoring,
where engineers find or create an ideal representation of a
manufacturing process, and continuously compare an ongoing
process to it [8]. However, our formulation generalizes in
several ways. We do not need to obtain or understand the
process in detail, we simply need to obtain data that we think
covers the space of allowable behavior.

The CPAD has a very unusual property that makes it
something of a hybrid between an anomaly detector and a
regime-change detector. In particular, the first occurrence of a
new pattern will not register a high score. It is only when the
second occurrence is seen that the Contrast Profile value spikes
to signal an anomaly.

We believe that therg are problems for which this is the ideal

behavior. Recall the T shown in Fig. 6. It shows that ECGs
are often contaminated with noise, which are typical sensor
artifacts. We typically do not want an anomaly detector to alert
for these (in any case, they are trivial to monitor with simpler

methods). However, if we are monitoring a patient recovering
in an ICU and we see novel beats, they may have sudden onset
paroxysmal atrial fibrillation.

As with the previous task, we will confine our consideration

regularities that would otherwise be difficult to notice.



to anecdotal examples, saving space for more forceful and
quantitative evaluation of classification in the next section.

We consider data from a house that has individual
appliances metered. This particular house happens to have two
refrigerators. Refrigerator power demand has a very
approximately square wave appearance, as the cycle between
on/off compressor cycles. However, the timing of these cycles
drift as the room temperature drifts and in response to someone
opening the refrigerator door. In addition, at the very beginning
ofthe on cycle, there is an increased demand as the compressor
struggles to build rotational inertia. The latter variability is
somewhat unique to each device depending on the rotational
mass. This allows us to perform a natural experiment. We use a
diverse selection of snippets from the refrigerator time series as
T). We then use the online Contrast Profile algorithm outlined
in TABLE I. to monitor newly arriving data from the same
stream. After 4.5 hours, we switched the leads to monitor the
other refrigerator in the same house. This “refrigerator swap”
models the situation where a system unexpectedly changes to
allow instances from a new and unanticipated class. This is
exactly what happens for certain cardiological diseases, or in
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batch processing if one component (say a valve or pump) begins
to fail and then produces a different batch profile.

As Fig. 11 shows, the difference caused by the refrigerator
switch is too subtle to be seen, at least at this scale.
Nevertheless, the CPAD algorithm clearly captures this event.

T® Normal Fridge Behavior
b s b A A M

T®) Normal Fridge Behavior, except for appliance switch ~4
1
A
Fig. 11. An example of CPAD. fop) A time series that represents normal
behavior of a fridge. center) A snippet from the same refrigerator, with the

final moments swapped out for a different fridge from the same house. bottom)
The Contrast Profile strongly spikes to indicate conserved novel behavior.

For this dataset we could update the online Contrast Profile
3,660 times faster than real time.

It is interesting to note that the classic discord definition has
had one criticism levied at it for over a decade, in dozens of
papers. In [16] the authors noted “discords miss similar
anomalies” , likewise [17] notes the discords fail “because our
dataset includes several anomalies that are similar to one
another”. In other words, if there are two or more occurrences
of undesirable behaviors, and they happen to have the same
shape in each occurrence, then by definition it is a motif rather
than a discord. Note that our framing of anomaly detection
completely solves that problem, because as shown in this
example, it can only find anomalies that occur at least twice.
Thus, the union of the discords discovered using the Matrix
Profile [1] and the anomalies discovered with the proposed
Contrast Profile can be used to create a hybrid-definition that
includes all anomalies, independent of how often they occur.

V. EXPERIMENTAL EVALUATION

To ensure that our experiments are reproducible, we have
built a website [7] which contains all data/code for the results,

in addition to many experiments that are omitted here for

brevity. We have created a detailed document that with concrete
details of our experiments, that we believe will allow anyone to
reproduce all our experiments with less than one hour of effort.
All experiments were conducted on an Intel® Core 17-9700
CPU at 3.00GHz with 32 GB of main memory.

While we hinted at several downstream algorithms that can
exploit the Contrast Profile, we will mostly confine our
attention to end-to-end classification. We remind the reader that
the Contrast Profile is a data mining tool whose output can be
repurposed as a nearest neighbor classifier, which allows for
objective measures of utility.

As noted in the related work section, to the best of our
knowledge, there is no other algorithm that performs prototype
extraction under our assumptions. Where appropriate we
consider the baseline of the default rate representing a random
selection of K candidate behaviors.

A. Insect Behavior Classification

Sapsucking insects (insects in the orders Hemiptera and
Homoptera) are insects that feed by sucking nutrients from
plants. This behavior is typically not destructive by itself but
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can spread diseases from plant to plant. Worldwide, across all
crops/insects, this results in billions of dollars in crop losses
each year. The primary tool used to study these insects is the
electrical penetration graph (EPG), which as shown in Fig. 12,
produces a complex and noisy time series that reflects the
insect’s behavior [9].

II 5 21 hours of ACP on Poncirus trifoliata x Citrus sinensis hybrid

Fig. 12. top) 21 hours of Asian citrus psyllid (ACP) feeding behavior on citrus.
bottom) A zoom-in of a small fraction of the data.

~30 minutes of weakly labeled data

We managed to obtain 21 hours of such data that was
annotated by a combination of algorithms and humans
(exploiting out-of-band information). Using the two regions
shown in Fig. 12.bottom, that conform to our algorithm’s mild
assumptions, we ran the Contrast Profile to produce the Plato
shown in Fig. 13.

Plato
(zoom-in)

Fig. 13. top-to-bottom) The weakly-labeled instances shown in Fig. 12 have
their MP(+-Jand MP -+ computed to produce the CP , which strongly peaks

10 10 10
to indicate the location of the Plato.

Using this template to find the Top-100 instances in the
full dataset (excluding training data), the Plato had an error-
rate of 7%, whereas the Top-1 motif in T(+) had an error-rate
of 32%, not much better than the default error rate of 36.9%

B. Chicken Behavior Classification

Here we revisit the chicken behavior example considered in
Fig. 1. First, we should explain why the data is weakly- labeled.
The accelerometer worn by the bird was approximately
synchronized with a video camera trained on the coop.
However, technical limitations meant that the synchronization
had an error of up to £ 3 seconds. By comparison, the
dustbathing behavior we were tasked with quantifying is known
to last about 0.5 to 3 seconds. Thus, a domain expert was able
to locate 30-second regions with and without the behavior, but
not provide annotations at a finer temporal resolution. In Fig.
14 we use the two time series shown in Fig. 1 to compute CP1,¢
in an attempt to find a Plato that can act as a “signature” for
dustbathing.



T4 No Dustbathing

- Plato
(zoom-in)

" seconds '

Fig. 14. top-to-bottom) The weakly-labeled instances shown in Fig. 1 have

their MP*-)and MP* *) computed to produce the CP
120 120 120

, which strongly

peaks to indicate the location of the Plato.

We used this Plato to search a 12,679,054,727 datapoint
archive of chicken behavior for the one thousand best matches.
The returned matches are shown in Fig. 15.

Domain experts examined the results and confirmed that all
the returned subsequences are true positives.

Top-1000 Match

Top-d Match

Top-2 Match N ) /'\\\,/ Java /\
o~ T NN\
g (V2 VAR /

Fig. 15. The Plato used for dustbathing classification (fop.leff). Selected
matches returned by a nearest neighbor search using the Plato discovered in
Fig. 14. The Top-1000 matches (bottom.right).

The discovery of the Plato took 0.3 seconds. Surprisingly,
the exact Top-1000 search in the 12.7 billion datapoints of disk-
resident data (corresponding to four years of behavior) took
only 55 minutes using the MASS algorithm.

C. Electrocardiogram Classification

We consider a 23.5 hour (10,828,800 datapoints at 128Hz),
ECG dataset from a 46-year-old male (MIT 14046). The dataset
has a beat-by-beat annotation created by a combination of
specialized algorithms and human expert inspection.

We examine the first five minutes of the data to find a 30-
second region free of anomalies T(-) and a 30-second region
with at least two (actually, six) anomalies T(+), which we later
learned are PVCs. Running the Pan-Contrast Profile for lengths
32 to 128 (a Y second to a full second) produced the 91-
datapoint Plato shown in Fig. 16.

iRAaARARiiERiNENIAERIiRERRAREREREEE]

(typical beats)

_ et
(includes PVC
beats)
; Plato
Location of Plato — > ii (zoom-in) { ~

Fig. 16. top-to-bottom) Two weakly-labeled snippets from first 5 minutes used
to compute their MP-)and MP®+), which then produce the CP , with high

91 91 91
amplitude peak to indicate the location of the Plato.

By (naively) extrapolating the density of PVCs we see in
our tiny training snippets, we expect to see 3,934 additional
PVCs in the remaining 23.42 hours of data. Retrieving the Top-
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Here our recall was only 0.4031, because we underestimated
the number of PVCs. If we “cheat” and retrieve the ground truth
number of PVCs (there are 9,753), we obtain 0.9047 precision
and 0.9047 recall. As impressive as this is, these results appear
to be pessimistic. An audit of our “false negatives” by
cardiologist Greg Mason suggests that they are mostly

mislabeled in the original data (discussion moved to [7]).

A recent paper surveyed thirteen approaches on datasets,

including the one above (see Table 9 of [11]). While these
works are not all directly comparable with each other or this
work, the accuracy we report would place us high in this list.
More important however is the speed and simplicity of our
method. Consider:

o The median number of parameters that need to be tuned
by the thirteen methods in [11] is seven (most are based
on CNNs or LSTMs); in contrast, we have no
parameters to tune.

e For a much smaller dataset, [11] notes that it took 4.5
hours to train the model and then took 0.05 seconds to
classify each beat. In contrast, we needed 16.3 seconds
to learn our Plato model and 0.00000294 seconds to
classify each beat.

o The other approaches worked with extracted beats and,
thus, required domain dependent code to first do the
extraction. In contrast, we worked with the raw data
without explicitly extracting beats or using any
cardiological knowledge.

Our ability to classify each heartbeat in just 0.00000294
seconds may strike the reader as being implausibly fast, but it is
possible using Mueen’s MASS algorithm [5]. MASS takes just
0.3390 seconds to process a time series of length 10,828,800
containing 115,278 beats. This is a quarter of million times
faster than real time. Of course, being so much faster than real
time is of limited utility for monitoring an individual patient but
is very useful for mining large data archives.

Finally, lest the reader think we chose an easy ECG, in [7]
we repeated this experiment with other ECGs with similar
results.

D. Model Comparison

We will now compare the Contrast Profile as a classifier to
two other leading time series models: shapelets and LSTM. We
acknowledge that there is not a 1:1 correspondence in purpose
of the models and we will explain the possible discrepancies.

1) Comparison to Shapelets

Time series shapelets have very different assumptions to the
proposed Contrast Profile. However, the Contrast Profile can
duplicate at least some elements of time series shapelets (the

opposite is not true). To see this, consider the following:
3,934 nearest neighbors we achieve 0.9992 precision. By
contrast the default rate is only 0.1645.



We can produce a positive time series T by
concatenating all exemplars of one class, and T by
concatenating all exemplars of the other class(es). Given two
such assembled time series, we can simply hand them over to
the Contrast Profile. The Trace dataset, which does not have
polymorphic classes, is from the UCR Archive [2] that
illustrates our purpose of extracting a single Plato. Using
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1
uniform m of (§ * sampleLength) for all four classes results

in an error rate of 0.17, but the misclassifications come solely
from the fourth class, whose main feature is a rising edge, which

. . 3
also appears in other classes. Increasing m for class 4 to (Z*

sampleLength) lowers the error rate to 0.09, Platos shown in
Fig. 17. For comparison, the error rate for INNED and the
default error rate are 0.24 and 0.71 respectively.

Class 1 Class 2 Class 3 Class 4

Fig. 17. Samples of each of the four classes in the Trace dataset overlaid with
Plato.

The Plato’s error rate is competitive, given that shapelets
have access to many strongly labeled extracted samples.

2) Comparison to LSTM

For the sake of completeness, we also include a comparison
to an off-the-shelf LSTM approach [18]. This experiment
comes with a disclaimer. The Contrast Profile is not a
classification algorithm. It simply extracts patterns that can be
used for nearest neighbor classification, one of the simplest
classification algorithms.

We test on the chicken behavior classification from Section
V.B. As a reminder, the T(-) (Class-0) training data contains
behaviors to be ignored while the T(+) (Class-1) training data
contains at least two instances of the desired behavior, as well
as other behaviors likely exhibited in T(-). The LSTM’s XTrain
variable is constructed by extracting each subsequence from
T) and T, then assigning a 0 or 1 accordingly in YTrain.
Two parameter changes were made to the original model:
[inputSize = 120, numClasses = 2]. The 51-minute training
completed with 100% training accuracy. The test accuracy on a
set of 2000 samples balanced between dustbathing and non-
dustbathing was 60.20% compared to 98.55% for the Plato. We
have no doubt that the results for the LSTM could be improved
by some preprocessing. However, our point here is simply that
in this real-world challenging problem, we can quickly achieve
results that are better than the community’s current “go-to”
solution, and we can do this with significantly less human effort
and parameter tuning.

VI. CONCLUSIONS

We have introduced the Contrast Profile, a novel data
structure that allows a user or algorithm to reason about the
differences between two time series. We reiterate that the
Contrast Profile is not a classification algorithm, but it can help
any downstream time series classification algorithm by finding
discriminative prototypes. Beyond allowing end-to-end time
series classification with only the weakest possible
assumptions/annotations of the data, we have shown that the
Contrast Profile has several other uses in data mining, including
anomaly detection and data exploration. We have shared all
code and data with the community [7], to allow it to confirm
and exploit our findings.
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