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Abstract
The orbit of an n-variate polynomial f(x) over a field F is the set {f(Ax+b) | A ∈ GL(n,F) and b ∈
Fn}, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this
paper, we give improved constructions of hitting-sets for the orbit of read-once oblivious algebraic
branching programs (ROABPs) and a related model. Over fields with characteristic zero or greater
than d, we construct a hitting set of size (ndw)O(w2 log n·min{w2,d log w}) for the orbit of ROABPs in
unknown variable order where d is the individual degree and w is the width of ROABPs. We also
give a hitting set of size (ndw)O(min{w2,d log w}) for the orbit of polynomials computed by w-width
ROABPs in any variable order. Our hitting sets improve upon the results of Saha and Thankey
[43] who gave an (ndw)O(d log w) size hitting set for the orbit of commutative ROABPs (a subclass
of any-order ROABPs) and (nw)O(w6 log n) size hitting set for the orbit of multilinear ROABPs.
Designing better hitting sets in large individual degree regime, for instance d > n, was asked as an
open problem by [43] and this work solves it in small width setting.

We prove some new rank concentration results by establishing low-cone concentration for the
polynomials over vector spaces, and they strengthen some previously known low-support based rank
concentrations shown in [17]. These new low-cone concentration results are crucial in our hitting set
construction, and may be of independent interest. To the best of our knowledge, this is the first
time when low-cone rank concentration has been used for designing hitting sets.
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1 Introduction

Polynomial identity testing (PIT) problem is a fundamental problem in the area of algebraic
circuit complexity. PIT is the problem of deciding whether a given multivariate polynomial
is identically zero, where the input is given as an algebraic formula, circuit or other computa-
tional models like algebraic branching program. One way of testing zeroness of a polynomial
is to check whether the coefficients of all the monomials are zero. However, the polynomial
computed by a circuit or a branching program may have, in the worst-case, an exponential
number of monomials compared to its size. Hence, by computing the explicit polynomial
from the input, we cannot solve PIT problem in polynomial time. However, evaluating the
polynomial at a point can be done in polynomial time of the input size. This helps us to
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30:2 Improved Hitting Set for Orbit of ROABPs

get a polynomial time randomized algorithm for PIT by evaluating the input circuit at a
random point, since any nonzero polynomial evaluated at a random point gives a nonzero
value with high probability [10, 57, 49]. However, finding a deterministic polynomial time
algorithm for PIT is a long-standing open question in algebraic complexity theory.

PIT captures several problems in algebra and combinatorics. For example, parallel
algorithms for perfect matching [55, 35, 14, 54], primality testing [2], multivariate polynomial
factorization [31], and many other problems [50, 11, 22]. PIT also has strong connection to
circuit lower bounds [25, 26, 13, 7, 21]. See [45, 53, 48] for surveys on PIT.

PIT problem is studied in two different settings: 1) whitebox, where we are allowed to
access the internal structure of the circuit, and 2) blackbox, where only evaluation of the
circuit at points is allowed. Deterministic blackbox PIT for an n-variate circuit class is
equivalent to efficiently finding a set of points H ⊆ Fn, called a hitting-set, such that for any
nonzero P in that circuit class, the set H contains a point at which P ̸= 0 1. In this work,
we only focus on the blackbox model.

Despite a lot of effort, little progress has been made on the PIT problem in general.
However, efficient deterministic PIT algorithms are known for many special circuit models.
For example, blackbox PIT for depth-2 circuits (or sparse polynomials) [6, 30, 34], PIT
algorithms for depth-3 circuits with bounded top fan-in [12, 29, 28, 27, 46, 47, 48], depth-3
diagonal circuits [44, 17, 16] and various other subclasses of depth-3 circuits [42, 1, 9], PIT for
the subclasses of depth-4 circuits [3, 5, 15, 32, 40] and certain types of symbolic determinants
[14, 54, 24].

The focus of this work is on the model of read-once oblivious algebraic branching programs
(ROABPs). An ROABP is a product of matrices

f = aT ·M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)) · c,

where a, c ∈ Fw×1 and for some permutation π on [n] for each i ∈ [n], Mi(xπ(i)) ∈ Fw×w[xπ(i)]
can be viewed as a polynomial over the matrix algebra. The permutation π is called the
variable order of the ROABP. One reason to be interested in ROABP is that derandomizing
blackbox PIT for ROABP can be viewed as an algebraic analogue of the RL vs. L question.
Besides that, the ROABP model is surprisingly rich and powerful. It captures several other
interesting circuit classes such as sparse polynomials or depth-two circuits, depth-three
powering circuits (symmetric tensors), set-multilinear depth-three circuits (tensors), and
semi-diagonal depth-3 circuits [19]. Some notable polynomials such as the iterated matrix
multiplication polynomial, the elementary and the power symmetric polynomials, and the
sum-product polynomials can be computed by linear size ROABPs. Hitting sets for ROABPs
have also led to the derandomization of an interesting case of the Noether Normalization
Lemma [38, 18], and to hitting sets for non-commutative algebraic branching programs [19].

PIT question for ROABPs and its variants has been widely studied. There are three
parameters associated with an ROABP: the number of variables n, the size of the matrices
w called width and the individual degree d which is the maximum possible degree of any
variable. First, [41] gave a polynomial time whitebox PIT algorithm for this model. [19]
first gave (ndw)O(log n) size hitting set for ROABPs when the variable order is known. Later,
[17] gave an (ndw)O(d log w·log n) size hitting for ROABPs with unknown variable order, and
subsequently, [1] gave an improved hitting set of size (ndw)O(log n) for this model. For zero or
large characteristic fields, [22] gave an ndwlog n size hitting sets for the known order ROABPs

1 When F is a finite field, we are allowed to go some suitable extension K of F and pick points from Kn.
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and the size becomes polynomially large when the width is constant. Better hitting set is
known for a special class of ROABPs, called any-order ROABP. A polynomial f is computable
by a w-width any-order ROABP, if for every permutation π on [n], f is computable by a
w-width ROABP. The notion of any-order ROABP subsumes the notion of commutative
ROABP. An ROABP is called commutative ROABP if the polynomial computed by it
remains unchanged under any permutation of the matrices involved in the product. [17] gave
two different constructions of hitting sets of size (ndw)O(log w) and dO(log w) · (nw)O(log log w)

for any-order ROABPs 2. Later, [22] gives an improved hitting set of size (ndw)O(log log w)

for this model. Recently, [20] gives improved hitting sets for both ROABPs and any-order
ROABPs. Compared to the previous constructions, the size of hitting sets in [20] have finer
dependence on the parameters of ROABPs. However, the construction of polynomial size
hitting sets for ROABPs and its variants is still open.

In this work, we study the PIT question for the orbit of ROABPs. The orbit of an n-
variate polynomial f(x) over a field F, denoted by orbit(f), is the set of polynomials obtained
by applying invertible affine transformations on the variables of f , that is, orbit(f) =
{f(Ax + b) | A ∈ GL(n,F), and b ∈ Fn}. The orbit of a polynomial class C, denoted by
orbit(C), is the union of the orbits of the polynomials in the class. Apart from being a
natural question to study the sturdiness of the known techniques (and improving them),
designing hitting sets for the orbits of polynomial families and circuit classes is interesting
for the following reasons:

As observed by [43], the affine projections of “simple” polynomials have great expressive
power. The set of affine projections of an n-variate polynomial f(x) over a field F is
aproj(f) := {f(Ax + b) | A ∈ Fn×n and b ∈ Fn}. Formally, they show that if the
characteristic of F is zero, the set of affine projections of an n-variate polynomial f(x)
over a field F lies inside the Zariski closure of the orbit of f (denoted by orbit(f)),
that is aproj(f) ⊆ orbit(f). This observation has some interesting implications. For
instance, using the above observation one can show that, the entire class of depth-
3 circuits ΣΠΣ with top fan-in s and degree d is contained in aproj(SPs,d), where
SPs,d :=

∑
i∈[s]

∏
j∈[d] xi,j is a very structured s-sparse polynomial. The orbit closure of

ROABPs is also very powerful, in fact they are as powerful as general ABPs. This can be
seen by observing, the iterated matrix multiplication polynomial IMMw,d is computable
by a linear-size ROABP, yet every polynomial computable by a size-s general algebraic
branching program is in aproj(IMMs,s). For more polynomial families whose orbit closures
contain interesting circuit classes, see [36].
For an n-variate polynomial f over a field F, let V(f) denotes the variety (that is, zero
locus) of f . Hitting set construction for an n-variate polynomial class C is the problem of
picking a set of points H such that for each polynomial f ∈ C, H is not entirely contained
in V(f). On the other hand, Constructing hitting sets for the orbits of a polynomial class
C is the task of finding a small set of points H such that for every f ∈ C, H is not entirely
contained in the set {Aa + b | a ∈ V(f), A ∈ GL(n,F) and b ∈ Fn}. This ensures that
H will be independent to the choice of coordinate system, making it mathematically and
geometrically robust.

For a more detailed discussion on the reasons for studying hitting set of orbits, see [43].

Hitting set construction for orbits of circuit classes is very recent, somewhat simultaneously
Medini and Shpilka [36] and Saha and Thankey [43] started exploring PIT for the orbit of
various polynomial classes. Medini and Shpilka [36] gave a quasi-polynomial size hitting

2 In [17], any-order ROABPs are referred by “commutative ROABPs”.
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set for the orbits of sparse polynomials (
∑ ∏

circuits) and read-once formulas (ROFs).
Saha and Thankey [43] gave hitting sets for the orbits of ROABPs and constant-read (more
generally, constant-occur) formulas. Concretely, [43] gave an (ndw)d log w size hitting set for
the orbit of n-variate individual degree d width w commutative ROABPs. They also gave an
(nw)O(w6 log n) size hitting set for the orbit of n-variate multilinear polynomials computed
by width w ROABPs. Building on this, they also gave quasi-polynomial size hitting set for
constant-depth constant-occur formulas whose leaves are labeled by s-sparse polynomials
with constant individual degree. In this work, we design hitting sets for the orbit of ROABPs
and any-order ROABPs. Our results significantly improve the dependence on individual
degree in the size of hitting sets in comparison to [43], from exponential to polynomial.

1.1 Our Results
First, we define the models studied in this paper. Algebraic branching programs (ABPs)
were defined by Nisan in [39]. In this paper, we study a variant of ABPs known as read-once
oblivious ABPs (ROABPs). While Nisan defined ABPs using directed graphs, we use a
more conventional definition using product of matrices. Let f(x1, . . . , xn) be an n-variate
individual degree d polynomial over a field F. Let π be a permutation on [n]. We say f is
computed by a width w ROABP with variable order π, if f can be written as

f = aT ·M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)) · c,

where a, c ∈ Fw×1 and for all i ∈ [n], Mi(xπ(i)) ∈ Fw×w[xπ(i)] can be viewed as a polynomial
in xπ(i) over the matrix algebra with degree at most d. We say f is computable by a w-width
any order ROABP, if for every permutation π on [n], f is computable by a width w ROABP.
We say f is computed by a width w commutative ROABP, if all Mi(xπ(i))’s are polynomials
over a commutative sub-algebra of the matrix algebra. For example, consider the coefficients
of each Mi are diagonal matrices. One can observe that the set of polynomials computed
by w-width commutative ROABPs are also computable by w-width any-order ROABPs.
However, the converse direction is unknown to us. All PIT algorithms for ROABPs are
designed by analyzing the coefficient space of M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)).

In this paper, we design hitting sets for the orbits of ROABPs and any-order ROABPs.
Let f(x) be an n-variate polynomial over a field F. The orbit of f , denoted by orbit(f), is
the set {f(Ax + b) | A ∈ GL(n,F) and b ∈ Fn}. For a polynomial class C, the orbit of C,
denoted by orbit(C), is the union of orbits of all the polynomials in C. Now, we describe our
result for the orbit of any-order ROABPs.

▶ Theorem 1. Let F be a field of characteristic zero or greater than d. Let C be the set of
n-variate polynomials over F with individual degree at most d and computable by a width w

any-order ROABP. Then, there exists a hitting set for orbit(C) computable in time (ndw)O(ℓ)

where ℓ = min{w2, 2d log w}.

Comparison with previous works

As far as we know, this is the first result addressing the orbit of any-order ROABPs, and
it subsumes the commutative ROABP result of Saha and Thankey [43]. They gave an
(ndw)O(d log w) size hitting set for the orbit of commutative ROABPs. In fact, our result
strengthens [43] in “low width” setting. Concretely, if the individual degree is poly(log n),
[43] gives quasi-polynomial time PIT for the orbit of commutative ROABPs. However,
when d ≥ n, their algorithm does not give any non-trivial PIT for the orbit of commutative
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ROABPs. On the other hand, our result gives quasi-polynomial time PIT for the orbit
of any-order ROABPs when min{d, w} = poly(log n). Also, for constant width any-order
ROABPs with unbounded individual degree, our result gives a polynomial time PIT for its
orbit. However, [43] gives polynomial time PIT for the orbit commutative ROABPs when
both d and w are constants. Thus, our result has much better dependence on the individual
degree in comparison with [43].

Now, we describe our result regarding the orbit of ROABPs.

▶ Theorem 2. Let F be a field of characteristic zero or greater than d. Let C be the set of
n-variate polynomials over F with individual degree at most d and computable by a width
w ROABP. Then there exists a hitting set for orbit(C) computable in time (ndw)O(ℓ) where
ℓ = (w2 log n) ·min{w2, 2d log w}.

Comparison with previous works

Saha and Thankey [43] gave an (nw)O(w6 log n) time PIT for the orbit of multilinear poly-
nomials computed by ROABPs. Therefore, our result can be seen as the first one which
gives PIT for the orbit of ROABPs with unbounded individual degree. Irrespective of the
value of the individual degree, our result gives a quasi-polynomial time PIT for the orbit of
ROABPs when the width w = poly(log n). Also, the time complexity of our algorithm has
better dependence on the width of ROABPs in comparison with [43].

Remark

Our results in this paper continue to hold even if we consider a more generalized definition
for the orbit of an n-variate polynomial f(x), that is orbit(f) = {f(Ay + b) | m ≥
n, A ∈ Fn×m with rank n and b ∈ Fn} where y = (y1, . . . , ym). However, we work with
the conventional definition of the orbit of polynomials for the simplicity of exposition, and
because the proofs of the results with the generalized definition of orbit is almost the same
as the proofs given in this paper.

1.2 Proof techniques
First, we briefly sketch the abstract framework followed by the proofs of our results. Let
C be a set of n-variate polynomials in y = (y1, . . . , yn) with individual degree at most d.
Then orbit(C) is the set of n-variate polynomials in x = (x1, . . . , xn) is defined as follows: for
all f(x) ∈ orbit(C) there exists a polynomial h(y) ∈ C, an invertible linear transformation
L(x) = (ℓ1, . . . , ℓn) from Fn to Fn and a point b ∈ Fn such that

f(x) = h(L(x) + b).

In this paper, we design hitting sets for the orbits of ROABPs and any-order ROABPs.
Hitting sets for ROABPs are constructed by designing a “smartly” chosen shift g(t) (a low
variate polynomial map) such that when we shift any polynomial h(y) computable by a
small size ROABP, then there exists a “low-support” monomial (with nonzero coefficient) in
h(x + g). Note that, it is straightforward to construct hitting sets when such a low-support
monomial (with nonzero coefficient) exists. However, this approach does not directly work
for a polynomial f(x) = h(L(x) + b) in the orbit of ROABPs as shifting f has a slightly
different effect. Note,

f(x + g) = h(L(x + g) + b) = h(L(x) + L ◦ g + b).

APPROX/RANDOM 2021
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That is, the shift gets composed with the affine transformation L(x)+b. The main idea in our
construction is to choose a shift such that the transformed shift (for any affine transformation)
is also “smart”. That is, for any invertible linear transformation L(x) and b ∈ Fn, there
exists a “low-support” monomial (with nonzero coefficient) in f(x + g) = h(L(x) + L ◦g + b).

Let g(t) = (g1, . . . , gn) be a polynomial map from Fm to Fn and h′(y) = h(y + L ◦g + b).
Note that, f ′(x) := f(x + g) = h′(L(x)). Our abstract format to design hitting sets for the
orbits of ROABPs and any-order ROABPs has the following two steps.
Step 1: First we find some suitable low degree polynomial map g in few variables (compare

to n) such that for all invertible linear transformation L(x) and b ∈ Fn, after shifting
h(y) ∈ C by L ◦ g + b, the new polynomial h′(y) = h(y + L ◦ g + b) has the following
property: for some small positive integer k, hom≤k(h′(y)) is a nonzero polynomial in
y over the field F(t), where hom≤k(·) denotes the degree up to k part of the input
polynomial. This step, more specifically the construction of g(t), heavily relies on the
structure of C.

Step 2: Since L(x) is an invertible linear transformation, all ℓi’s are algebraically independent.
Also, hom≤k(f ′) = hom≤k(h′)(L(x)). Therefore, hom≤k(f ′) is a nonzero polynomial in
x over the field F(t). This implies that there exists a monomial xe =

∏n
i=1 xei

i such that
the support of e is at most k and the coefficient of xe in f ′ is a nonzero polynomial in
t. There are well known constructions of hitting sets for polynomials like f ′(x). For
example, combining Lemma 23 and Observation 17 we get a hitting set for f ′ of size
around (nd)O(m+k). Thus, we design a hitting set for orbit(C). This step is independent
of the polynomial class C.

For instance, assume that C is the set of n-variate polynomials with individual degree
and sparsity are at most d and s, respectively. Then, from [15], after shifting any polynomial
h(y) ∈ C by an ααα = (α1, . . . , αn) with all αi’s are nonzero the following holds: there exists
a monomial ye such that the support of e is at most log s and its coefficient in h(y + ααα)
is nonzero. Let g(t) be the polynomial map from F to Fn defined as (t, t2, . . . , tn) and
b = (b1, . . . , bn). Then, each ℓi(g) + bi is a nonzero polynomial. Therefore, there exists
a monomial ye of support-size at most log s such that its coefficient in h′(y) is a nonzero
polynomial in t. Since the individual degree is at most d, the degree of ye is at most ≤ d log s.
Now from the step 2, there exists a monomial in x of support-size at most d log s such that
its coefficient in f ′ is a nonzero polynomial in t. Thus, we have a hitting set for orbit(C) of
size (nd)O(d log s). This gives a different (and much simpler) hitting set construction than [43,
Theorem 7] for the orbit of sparse polynomials with low individual degree.

Stronger rank concentration results

We describe some stronger rank concentration results, which will be very useful in designing
our hitting sets for the orbits of ROABPs and any-order ROABPs. Let G(x) be an n-variate
polynomial over the vector space Fk. The coefficient space of G is the vector space spanned
by the coefficients (from Fk) in G. In general, the coefficient space of G can be spanned
by the coefficients of any arbitrary set of monomials. In rank concentration, our goal is
to construct a polynomial map g(t) such that after shifting G(x) by g(t), the coefficient
space of the new polynomial G′(x) = G(x + g) is spanned the coefficients of a “small” set of
monomials S. For example,
1. if S is the set of monomials whose support-size is ≤ ℓ, we say G′ has ℓ-support concentration.

The support-size of a monomial is the number of variables appearing in it.
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2. if S is the set of monomials whose cone-size is ≤ ℓ, we say G′ has ℓ-cone concentration.
The cone-size of a monomial is the number of monomials dividing it.

3. if S is the set of monomials which is closed under sub-monomials, we say G′ has a
cone-closed basis.

The notion of rank-concentration was introduced in [4]. Subsequently, many PIT results
are obtained based on “low-support” rank concentration [4, 17, 23, 22, 43]. Later, [16]
introduced the notion of cone concentration and cone-closed basis. Among the three notions
of rank concentrations, cone-closed basis is stronger than the other two, then comes cone
concentration and after that support concentration. More specifically, cone-closed basis of
G′ implies that it has also k-cone concentration, and k-concentration for G′ implies it has
also log k-support concentration. For more details about the relation between these three
notions of rank concentrations see Lemma 26. The notion of cone concentration is important
for designing our improved hitting sets over [43]. Although the notion of cone concentration
was first introduced in [16] and they showed some low-cone concentration result, we are not
are aware of any “non-trivial” application of them in designing PIT algorithms. Therefore,
to the best of our knowledge, this is the first time when the notion of cone concentration is
used in designing PIT algorithms.

In this work, we strengthen some of the rank concentration results shown in [17, 16].
[17] showed that if G(x) is shifted by t = (t1, . . . , tn), the new polynomial G(x + t) has
log k-support concentration over the field F(t). Moreover, they showed that if G is shifted by a
n-wise independent monomial map g′(s, t), then the new shifted polynomial has log k-support
concentration. A polynomial map g′(s, t) from Fm × Fm′ to Fn is called ℓ-wise independent
monomial map if for every S ⊆ [n] of size ≤ ℓ there exists an ααα ∈ Fm such that polynomials
{g′(ααα, t)e}supp(e)⊆S are distinct monomials in t. Later, [16] showed that G(x + t) has a
cone-closed basis. Their result can also be extended to show that G(x + g′) has a cone-closed
basis when g′ is an n-wise independent monomial map. However, when we take composition
of g′ with an invertible affine transformation, that is b + L ◦ g′ where b ∈ Fn and L(x) is
an invertible linear transformation from Fn to Fn, the n-wise independence property of g′

breaks down. Therefore, the previous rank concentration results are not helpful in designing
hitting sets for the orbits of circuit classes. We strengthen the rank concentration results of
[17, 16] in the following way: After shifting G by a polynomial map g′ = (g1, . . . , gn) such
that all gi’s are algebraically independent, the new polynomial has a cone-closed basis, hence
k-cone concentration. Observe that the n-wise independence property implies the algebraic
independence property needed in our hypothesis. Therefore, our hypothesis is weaker than
the hypothesis used in [17, 16]. Also, algebraic independence property of g′ preserves even
after composing it with invertible affine transformations. For details see Lemma 4. This rank
concentration result will be helpful in designing the hitting sets for the orbit of any-order
ROABPs.

We show one more rank concentration result which will help in designing PIT algorithms
for the orbit of ROABPs. Assume that the coefficients of the monomials of total degree up
to D spans the coefficient space of G. Let g′(s, t) be a total degree D independent monomial
map from Fm × Fm′ to Fn, that is, there exists an ααα ∈ Fm such that the polynomials
{g′(ααα, t)e}|e|1≤D are distinct monomials in t. Then [17] showed that if G(x) is shifted by
ug′, then the new shifted polynomial has log k-support concentration over the field F(u, s, t).
Our rank concentration result differs from [17] in the following ways:
1. Our hypothesis is slightly stronger than [17]. Instead of total degree D independent

monomial map, we assume that g′(s, t) is a total degree Dk independent monomial map.

APPROX/RANDOM 2021
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2. On the other hand, we strengthen the conclusion as follows: for every invertible linear
transformation L(x) from Fn to Fn, if we shift G by uL ◦ g′, then the new shifted
polynomial has a cone-closed basis over the field F(u, s, t).

For details see Lemma 5.

Proof idea of Theorem 1

Suppose that C is the set of all n-variate polynomials in y with individual degree at most
d and computed by width w any-order ROABPs. Let f(x) be an n-variate polynomial in
orbit(C). Then there exists a polynomial h(y) ∈ C, an invertible linear transformation L(x)
and a point b ∈ Fn such that

f(x) = h(L(x) + b).

Since h(y) ∈ C, there exists a polynomial G(y) ∈ F[y]w×w with individual degree at most d

and computed by a width w any-order ROABP such that

h(y) = aT ·G(y) · c,

where a, c ∈ Fw.
Now we will describe the first step of aforementioned abstract format. First, we show

how to achieve w2-cone concentration in G(y). Let g(t) = (g1, . . . , gn) be a polynomial map
from Fm to Fn such that for any S ⊆ [n] of size k := ⌈2 log w + 1⌉, the set of polynomials
{gi | i ∈ S} are algebraically independent. Then, in Lemma 6, we prove that G(y + g) has
w2-cone concentration over the field F (t). It strengthens the rank-concentration result for
any-order ROABPs shown in [17, Theorem 4.1]. They showed that if we shift G by a k-wise
independent monomial map, then the new polynomial has 2 log w-support concentration.
Next, in Lemma 7, we show that for any invertible linear transformation L(x) and b ∈ Fn, the
polynomial map defined as the composition of L(x)+ b and Shpilka-Volkovich generator GSV

n,k

(see Definition 21, or [51]), that is L ◦ GSV
n,k + b, satisfies the property required for achieving

w2-cone concentration in G(y). Therefore, G(y + L ◦ GSV
n,k + b) has w2-cone concentration.

This implies that there exists a monomial ye of cone-size ≤ w2 such that the coefficient of
ye in h′(y) = h(y + L ◦ GSV

n,k + b) is nonzero. For any monomial of cone-size ≤ w2, its degree
is less than w2 and the support set is of size at most 2 log w. Since the individual degree is
at most d, the degree of ye is at most ℓ where ℓ := min{w2, d log w}. Therefore, hom≤ℓ(h′)
is nonzero. Now we apply the step two of the abstract format, which is independent of C,
and get our desired hitting set for orbit(C).

Proof idea of Theorem 2

Suppose that C is the set of all n-variate polynomials in y with individual degree at most d

and computed by width w ROABPs. Let f(x) be an n-variate polynomial in orbit(C). Then
there exists a polynomial h(y) ∈ C, an invertible linear transformation L(x) and b ∈ Fn such
that

f(x) = h(L(x) + b).

Since h(y) ∈ C, there exists a polynomial G(y) ∈ F[y]w×w and a permutation π on [n] such
that

h(y) = aT ·G(y) · c and G(y) =
n∏

i=1
Mi(xπ(i))

where a, c ∈ Fw and for all i ∈ [n], Mi(xπ(i)) is a polynomial in F[xπ(i)]w×w.
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Now like any-order ROABPs, we want to achieve w2-cone concentration in G(y). However,
our approach here will be different from any-order ROABPs. Here, we strengthen the “merge-
and-reduce” approach of [17] in the following ways:
1. In [17], the polynomial maps hj (for j = 0, 1, . . . , ⌈log n⌉) were inductively constructed

such that after shifting G by hj , in the new polynomial G(x + hj), the product of any 2j

consecutive matrices have 2 log w-support concentration. We strengthen this result by
showing w2-cone concentration at each inductive step.

2. At each induction step, since we are dealing with polynomials in orbit (of ROABPs), we
not only need to construct a polynomial map which helps to achieve w2-cone concentration,
but its composition with any invertible affine transformation also helps to achieve the
same property.

In [17], hj was constructed as follows: h0 = 0 and for all j ∈ [⌈log n⌉], hj = hj−1 +
ujg(sj , tj) where g(sj , tj) is a total degree 4d log w independent monomial map from Fm×Fm′

to Fn. They showed that the product of any 2j consecutive matrices in G(y + hj) has 2 log w-
support concentration over the field F((uk, sk, tk)k∈[j]).

Our definition of hj is very close to the definition used in [17]. For j = 0, hj = (t, t2, . . . , tn)
and for all j ∈ [⌈log n⌉], hj = hj−1+ujg(sj , tj) where g(sj , tj) is a total degree D independent
monomial map from Fm × Fm′ to Fn where D = 2w2 · min{w2, 2d log w}. We show that
for every invertible linear transformation L(x) from Fn to Fn and b ∈ Fn, the product
of any 2j consecutive matrices in G(y + L ◦ hj + b) has a cone-closed basis, hence has
w2-cone concentration, over the field F(t, (uk, sk, tk)k∈[j]). Our rank concentration results
play an important role in proving this property of hj . For more details see Lemma 9 and 10.
There are many known constructions of total degree D independent monomial map with
m = m′ = O(D). For example see Lemma 20. After constructing a polynomial map which
gives w2-cone concentration in G(y), the rest of the proof will be similar to what we did for
the any-order ROABP case.

Notations

By N we denote the set of natural numbers. For any positive integer n, [n] denotes the set
{1, 2, . . . , n}. For a variable tuple x = (x1, . . . , xn) and a tuple e = (e1, . . . , en) ∈ Nn, xe

denotes the monomial
∏n

i=1 xei
i . The degree, or total degree, of xe is |e|1 =

∑n
i=1 ei and the

individual degree of xe is |e|∞ = maxi∈[n] ei. The support of xe is the subset S of [n] such
that i ∈ S if and only if ei > 0, and the support-size denotes the cardinality of S. The cone
of xe is the set of monomials which divide it and the cone-size is the cardinality of that set,
that is

∏n
i=1(ei + 1). A monomial xf is called a sub-monomial of xe, if xe divides xf , that is

ei ≤ fi for all i ∈ [n]. A set of monomials B is called cone-closed if for every monomial in B

all its sub-monomials are also in B. For a polynomial f in x and a monomial xe, coeff (xe)
denotes the coefficient of xe in f .

2 Achieving Cone-closed basis by shift

In this section, we show our rank concentration results for polynomials over the vector space
Fk. By Mn,d, we denote the set of n-variate monomials with individual degree at most d. We
also use Mn,d to denote the exponent vectors for those monomials since there is one-to-one
correspondence between monomials and their exponent vectors. For any a, b ∈ Nn with
a = (a1, . . . , an) and b = (b1, . . . , bn),

(a
b
)

denotes
∏n

i=1
(

ai

bi

)
.
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Let G(x) be an n-variate polynomial over Fk with individual degree at most d. After
shifting G(x) by z, the coefficients of the shifted polynomial G′(x) = G(x + z) can be written
as follows: for all e ∈Mn,d,

coefxe(G′) =
∑

f∈Mn,d

(
f
e

)
coefxf (G)zf−e.

The above equation can be written in matrix form as follows:

F ′(z) = W −1(z)TW (z)F, (1)

where
F and F ′(z) are the matrices with entries from F and F[z], respectively. The rows of
both the matrices are indexed by the elements of Mn,d, and for any monomial e ∈Mn,d,
the rows indexed by e in F and F ′ are coefxe(G) and coefxe(G′), respectively.
W (z) be the diagonal matrix whose rows and columns are indexed by the elements of
Mn,d and for all e ∈Mn,d, W (z)e,e = ze.
T is a square matrix such that the rows and columns are indexed by Mn,d and for all
e, f ∈Mn,d, Te,f =

(f
e
)
. In the literature, T is known as transfer matrix.

In the following lemma, we recall a property of transfer matrix from [16].

▶ Lemma 3 (Lemma 17 [16]). Let F be a field of characteristic 0 or greater than d. Then,
for every B ⊆Mn,d, there exists a cone-closed set A ⊆Mn,d with |A| = |B| such that TA,B

is full rank over F.

Next, we show our first rank concentration result. Informally, we prove that if G(x) is
shifted by algebraically independent polynomials, the new polynomial has a cone-closed basis.

▶ Lemma 4. Let F be a field of characteristic 0 or greater than d. Let G(x) ∈ Fk[x] be an
n-variate polynomial with individual degree at most d. Let g(z) = (g1, . . . , gn) be a polynomial
map from Fn to Fn such that all gi’s are algebraically independent. Then G(x + g) has a
cone-closed basis over F(z).

Proof. First we show that G′(x) = G(x + z) has a cone-closed basis over F(z). This part of
our proof closely follows the proof outline of [16, Theorem 2]. From Equation 1, we know
that the shifted polynomial G(x + z) yields the following matrix equation:

F ′(z) = W (z)−1TW (z)F.

Let k′ be the rank of the matrix F . Then we divide our proof in two cases:

Case 1 (k′ < k). We reduce this case to the other one where k′ = k. Since the rank of F is
k′, there exists a S ⊆ [k] of size k′ such that FM,S is full rank where M = Mn,d. Let GS(x)
and G′

S(x) be the projections of G(x) and G′(x) on the coordinates indexed by S. Then
G′

S(x) = GS(x + z). One can observe that for any set of monomials A, if their coefficients in
GS(x) forms a basis for its coefficient space, then their coefficients in G(x) also forms a basis
for the coefficients space of G(x). Similarly, this is also true between G′

S(x) and G′(x). Now
from the case 2, G′

S(x) has a cone-closed basis over F(z), that is, there exists a cone-closed
set of monomials A such that their coefficients in G′

S(x) forms a basis for its coefficient space.
This implies that G′(x) also has a cone-closed basis over F(z).
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Case 2 (k′ = k). The rows of F are indexed by the monomials in Mn,d. Fix a monomial
ordering ≺ on the monomials in z. For example, assume ≺ is the lexicographic monomial
ordering. Then, from Lemma 13, we have a unique subset B of Mn,d with the following
properties: rank(FB,[k]) = k, and for every other subset C of Mn,d with rank(FC,[k]) = k,∏

e∈B

ze ≺
∏

e′∈C

ze′
.

Using Lemma 3, we have a cone-closed subset A of Mn,d such that TA,B has full rank. Now

det(F ′(z)A,[k]) = det(W (z)A,A)−1 · det((TW (z)F )A,[k]). (2)

Applying Lemma 14, we get that

det((TW (z)F )A,[k]) =
∑

C∈(Mn,d
k

)
det(TA,C) det(FC,[k])

∏
e∈C

ze. (3)

For every C ∈
(

Mn,d

k

)
\ {B} such that FC,[k] is a full rank matrix, the following holds:∏

e∈B ze ≺
∏

e′∈C ze′ . Therefore, the coefficient of
∏

e∈B ze in the above polynomial does not
get cancelled by other monomials. Also, the coefficient of

∏
e∈B ze, det(TA,B) det(FB,[k]) ̸=

0. Therefore, the polynomial det((TW (z)F )A,[k]) is a nonzero polynomial in z. Also,
det(W (z)A,A)−1 is a nonzero element in F(z) since det(W (z)A,A) is a nonzero polynomial in
z. Therefore, det(F ′(z)A,[k]) is nonzero in F(z). This implies that G′(x) = G(x + z) has a
cone-closed basis over F(z).

Now we show that G(x + g) has a cone-closed basis over F(z). In Equation 2, since
both det(W (z)A,A) and det((TW (z)F )A,[k]) are nonzero polynomials in z. Therefore, after
evaluating them on any n algebraically independent polynomials, they will remain nonzero.
Thus, det(F ′(g)A,[k]) remains nonzero. This implies that for the polynomial G(x + g), the
coefficients of the monomials in A form a cone-closed basis (over F(z)) for its coefficient
space. ◀

The above lemma combined Lemma 26 implies that the polynomial G(x + g) also has
k-cone concentration over F(t). Here, we would like to mention that although the above
rank concentration result is described in terms of cone-closed basis, to design our hitting
sets, proving k-cone concentration property of G(x + g) is sufficient. The similar thing is
also true for our next rank concentration result.

▶ Lemma 5. Let F be a field of characteristic zero or greater than d. Let G(x) be an n-variate
individual degree ≤ d polynomial over Fk such that the coefficients of all the monomials of
total degree up to D spans the coefficient space of G. For some N ≥ n, let L(y) = (ℓ1, . . . , ℓn)
be a linear transformation from FN to Fn such that all ℓi’s are linearly independent. Let
g(s, t) be a total degree Dk independent monomial map from Fm×Fm′ to FN . Then G(x+g′),
where g′ = uL ◦ g, has a cone-closed basis over F (u, s, t).

For proof of the above lemma see Section B.

3 Hitting set for orbit of any-order ROABPs

In this section, we describe our hitting set for the orbit of any-order ROABPs. As mentioned
earlier, the notion of low-cone concentration plays an important role is designing our hitting
sets. We begin by showing that for w-width n-variate any-order ROABPs, w2-cone concen-
tration can be established by showing w2-cone concentration for every Ω(log w)-size subset
of variables.
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▶ Lemma 6. Let F be a field of characteristic 0 or greater than d. Let G(x) ∈ F[x]w×w be
an n-variate polynomial over F with individual degree at most d and computed by a w-width
any-order ROABP. Let ℓ = ⌊2 log w⌋+ 1. Let g(t) = (g1, . . . , gn) be a polynomial map such
that for all S ⊆ [n] of size ℓ, the polynomials {gi | i ∈ S} are algebraically independent.
Then G(x + g) has w2-cone concentration over F(t).

For proof of the above lemma see the full version. Our next lemma, using Shpilka-
Volkovich generator (Definition 21), gives the construction of a polynomial map which
satisfies the condition of the above lemma.

▶ Lemma 7. Let L(x) = (ℓ1, . . . , ℓn) be an invertible linear transformation from Fn to Fn.
Let b be a point in Fn. For some k ≤ n, let g(s, t) = (g1, . . . , gn) be the polynomial map from
Fk × Fk to Fn, defined as g = L ◦ GSV

n,k + b. Then for all S ⊆ [n] of size k, the polynomials
{gi | i ∈ S} are algebraically independent.

For proof of the above lemma the full version. Combining the above two lemmas, we get the
following.

▶ Corollary 8. Let F be a field of characteristic 0 or greater than d. Let G(x) ∈ F[x]w×w

be an n-variate polynomial with individual degree at most d and computed by a width w

any-order ROABP. Let L(x) be an invertible linear transformation from Fn to Fn and b
be a point in Fn. Let k = ⌊2 log w⌋+ 1 and g = L ◦ GSV

n,k + b. Then G(x + g) has w2-cone
concentration over F (s, t).

Proof. Let g(s, t) = (g1, . . . , gn). From Lemma 7, for every subset S ⊆ [n] of size k, the
polynomials {gi | i ∈ S} are algebraically independent. Therefore, using Lemma 6, we get
that G(x + g) has w2-cone concentration over F(s, t). ◀

Now we describe the construction of our hitting set for the orbit of any-order ROABPs.

Proof of Theorem 1. Let f(x) be an n-variate individual degree ≤ d polynomial which is in
the orbit of width w any-order ROABPs. Then, there exists an n-variate individual degree
≤ d polynomial G(y) ∈ Fw×w[y] computed by a width w any-order ROABP, an invertible
linear transformation L(x) from Fn to Fn and a point b ∈ Fn such that

f(x) = aT ·G(L + b) · c,

where a, c ∈ Fn. Let g(s, t) = L ◦ GSV
n,k + b where k = ⌊2 log w⌋+ 1, and let

h(y) = aT ·G(y + g) · c.

This implies that

f ′(x) = f(x + GSV
n,k ) = h(L(x)). (4)

From Corollary 8, G(y + g) has w2-cone concentration over F(s, t). This implies that there
exists a monomial ye in h with cone-size ≤ w2 such that coefye(h) is nonzero. For a monomial
of cone-size ≤ w2, its total degree is less than w2 and the support-size is ≤ log w2. Since the
individual degree of each variable in G(y) is at most d, Therefore, the degree of ye is ≤ ℓ

where ℓ = min{w2, 2d log w}. Hence, hom≤ℓ(h(y)) is a nonzero polynomial in y. Since

hom≤ℓ(h(L(x))) = (hom≤ℓ(h))(L(x)),
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from Lemma 24, hom≤ℓ(h(L(x))) is a nonzero polynomial. Therefore, from Equation 4,
hom≤ℓ(f ′(x)) is a nonzero polynomial over F(s, t). This implies that there exists a monomial
xe of support-size ≤ ℓ such that its coefficient in f ′ is nonzero. Thus, from Lemma 23,
f ′(GSV

n,ℓ ) = f(GSV
n,k+ℓ) is a k + ℓ-variate nonzero polynomial over F. The total degree of f is

at most nd, and from Observation 22, the individual degree of each coordinate of GSV
n,k+ℓ is

at most n. Also, GSV
n,k+ℓ is poly(ndw)-explicit. Thus, from Observation 17, f has a hitting

set computable in time (ndw)O(ℓ). ◀

4 Hitting Set for orbit of ROABPs

Here, we discuss the construction of our hitting set for the orbit of ROABPs. Towards
that, first we need to construct some polynomial map which helps us in achieving low-cone
concentration for ROABPs. At this step, we also have to be more careful as we are dealing
with the orbit of ROABPs. Lemma 10 describes inductive construction of a polynomial map,
by taking sum of logarithmically many variable disjoint copies of total degree D independent
monomial maps (Definition 19) for some small D, such that the following holds: by shifting its
composition with any invertible affine transformation we can achieve low-cone concentration
for ROABPs. We begin by showing how to achieve cone-closed basis for the product of two
polynomials in a disjoint set of variables, with the property that each polynomial also has a
cone-closed basis.

▶ Lemma 9. Let y and z be two disjoint sets of variables. Let G(y) ∈ F[y]w×w and
H(z) ∈ F[z]w×w be two n-variate individual degree ≤ d polynomials such that both have cone-
closed bases. Let L(x) = (ℓ1, . . . , ℓ|y⊔z|) be a linear transformation from F|x| to F|y| × F|z|

such that all ℓis are linearly independent. Let D = 2w2 · min{w2, 2d log w}, g(s, t) be a
total degree D independent monomial map form F|s| × F|t| to F|x|, and g′ = uL ◦ g. Then
G(y + g′|y)H(z + g′|z) has a cone-closed basis over F (u, s, t), where g′|y and g′|z are the
restrictions of g′ over y and z, respectively.

For proof of the above lemma see the full version. Applying the above lemma repeatedly,
the next one gives the construction of a polynomial map which helps us to achieve low-cone
concentration for ROABPs.

▶ Lemma 10. Let n ≥ 0, N = 2n and d, w ≥ 1. Let D = 2w2 ·min{w2, 2d log w}. Let g(s, t)
be a total degree D independent monomial map from Fm×Fm′ to FN . Let t0 = (t, t2, . . . , tN ).
Let

Gn,d,w = t0 +
n∑

i=1
uig(si, ti),

where all si’s and ti’s are disjoint set of variables.
Let π be permutation on [N ]. Let F (x) =

∏N
i=1 Mi(xπ(i)) such that each Mi(xπ(i)) is a

polynomial in Fw×w[xπ(i)] with individual degree at most d. Then for every invertible linear
transformation L(x) from FN to FN and b ∈ FN , F (x + b + L ◦ Gn,d,w) has a cone-closed
basis over the field F(t, (ui, si, ti)i∈[n]).

Proof. Let L(x) = (ℓ1, . . . , ℓN ). Let h0 = b + L(t0), and for all k ∈ [n],

hk = hk−1 + ukL ◦ g(tk, sk).

Then hn = b + L ◦ Gn,d,w. For all 1 ≤ i ≤ j ≤ N , let

Fij [x] =
j∏

r=i

Mr(xπ(r)).
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Using induction, we show that for all k ∈ {0, 1, . . . , n} and i, j ∈ [n] with j − i + 1 = 2k,
Fij [x + hk] has a cone-closed basis over F(t, (ui, si, ti)i∈[k]).

For k = 0. Let b = (b1, . . . , bN ). We need to show that for all i ∈ [N ], Mi(xπ(i) +ℓπ(i)(t0)+
bπ(i)) has a cone-closed basis over F(t). Since L(x) is an invertible linear transformation,
each ℓi is a nonzero linear polynomial over x. Therefore, ℓi(t0) is a non-contant polynomial
in t. Hence, using Lemma 3, for all i ∈ [N ], Mi(xπ(i) + ℓπ(i)(t0) + bπ(i)) has a cone-closed
basis over F(t).

For k > 0. Let i, j ∈ [N ] such that j − i + 1 = 2k. Let y and z be a partition of the
variables (xπ(i), . . . , xπ(j)) into two equal halves such that they respect the permutation π.
Then Fij [x] can be written as G(y)H(z) where G(y) ∈ F[y]w×w and H(z) ∈ F[z]w×w. From
the induction hypothesis, we know that both

G′(y) = G(y + hk−1|y) and H ′(z) = H(z + hk−1|z)

have cone-closed bases over F(t, (ui, si, ti)i∈[k−1]). Let F ′
ij(x) = G′(y)H ′(z). Then, using

Lemma 9,

Fij(x + hk) = F ′
ij(x + ukL ◦ g(sk, tk))

has a cone-closed basis over F(t, (ui, si, ti)i∈[k]). This completes our proof. ◀

From Lemma 20, using Klivans-Spielman generator (Lemma 18), we can construct a total
degree D independent monomial map. Therefore, Klivans-Spielman generator combined with
the above lemma we get the following corollary.

▶ Corollary 11. Let n ≥ 0, N = 2n and d, w ≥ 1. Let D = 2w2 ·min{w2, 2d log w}. Let

G′
n,d,w = t0 +

n∑
i=1

uiGKS
N,d,ND (si, ti). (5)

Let π be permutation on [N ]. Let F (x) =
∏N

i=1 Mi(xπ(i)) such that each Mi(xπ(i)) is a
polynomial in F[xπ(i)]w×w with individual degree at most d. Then,
1. for every invertible linear transformation L(x) from FN to FN and b ∈ FN , the polynomial

F (x + b + L ◦ G′
n,d,w) has a cone-closed basis over the field F(t, (ui, si, ti)i∈[n]).

2. b + G′
n,d,w is a polynomial map from F× (F× Fm × Fm)n to FN where m = O(D).

3. G′
n,d,w is poly(dND)-explicit polynomial map and its each coordinate is a polynomial of

individual degree at most poly(dN).

Proof. From Lemma 20, GKS
N,d,ND (s, t) is a poly(NDd)-explicit total degree D independent

monomial map from Fm × Fm to FN , where m = O(D). Also, each coordinate of GKS
N,d,ND is

a polynomial of individual degree at most poly(dN). Now this combined with Lemma 10
prove the above corollary. ◀

Now we describe the construction of hitting set for orbit of ROABPs.

Proof of Theorem 2. Let f(x) be an n-variate individual degree ≤ d polynomial which
is in the orbit of width w ROABPs. Then, there exists an n-variate individual degree
≤ d polynomial G(y) ∈ F[y]w×w computed by a w-width ROABP, an invertible linear
transformation L(x) from Fn to Fn and b ∈ Fn such that

f(x) = aT ·G(L(x) + b) · c,



V. Bhargava and S. Ghosh 30:15

where a, c ∈ Fn. Let D = 2w2 ·min{w2, d log w2}. Let G′
⌈log n⌉,d,w be defined as Equation 5

in Corollary 11, that is

G′
⌈log n⌉,d,w = t0 +

⌈log n⌉∑
i=1

uiGKS
n,d,nD (si, ti),

where t0 = (t, t2, . . . , tn). Then, G′
⌈log n⌉,d,w is a polynomial map from F×(F×Fm×F m)⌈log n⌉

to Fn where m = O(D). This implies that the number of variables used in G′
⌈log n⌉,d,w is

O(D log n). Let

g(y) = aT ·G(y + b + L ◦ G′
⌈log n⌉,d,w) · c.

Then

f ′(x) = f(x + G′
⌈log n⌉,d,w) = g(L(x)). (6)

From Corollary 11,

G′(y) = G(y + b + L ◦ G′
⌈log n⌉,d,w)

has a cone-closed basis over F(t, (ui, si, ti)i∈[⌈log n⌉]). Therefore, from Lemma 26, G′(y) has
also w2-cone concentration. This implies that g(y) has a monomial of nonzero coefficient and
its cone-size is at most w2. For every monomial of cone-size at most w2, its degree is also at
most w2 and its support-size is at most 2 log w. Therefore, for every monomial of cone-size
≤ w2 and individual degree ≤ d, its degree is at most k = min{w2, 2d log w}. Therefore,
hom≤k(g(y)) is a nonzero polynomial in y over F(t, (ui, si, ti)i∈[⌈log n⌉]). Since

hom≤k(g(L(x))) = (hom≤k(g))(L(x)),

from Lemma 24, hom≤k(g(L(x))) is also nonzero polynomial. Therefore, from Equation 6,
hom≤k(f ′(x)) is also a nonzero polynomial. This implies that there exists a monomial xe of
support-size at most k such that coefxe(f ′) is nonzero. Thus, from Lemma 23,

f ′(GSV
n,k ) = f(GSV

n,k + G′
⌈log n⌉,d,w)

is a nonzero polynomial. Let G = GSV
n,k + G′

⌈log n⌉,d,w. Then, G is a polynomial map in
O(kw2 log n) many variables and the individual degree of each coordinate is at most poly(ndw).
Since both GSV

n,k and G′
⌈log n⌉,d,w both are poly(ndw)-explicit, G is also poly(ndw)-explicit.

Thus, applying Observation 17, we have a hitting set for f computable in time (ndw)O(ℓ)

where ℓ = (w2 log n) ·min{w2, d log w2}. ◀

5 Conclusion

In this paper, we studied the hitting set problem for the orbits of ROABPs and any-order
ROABPs. We have designed improved hitting sets for these two polynomial classes. In
low-width but high-individual-degree setting, our hitting sets are more efficient than the
previous ones given by Saha and Thankey. On the technical front, we have shown some
stronger rank concentration results by establishing low-cone concentration for polynomials
over vector spaces. These new rank concentration results have played a significant role in
designing our hitting sets. However, our hitting sets for the orbits of ROABPs and any-order
ROABPs are yet to match the time complexity of hitting sets known for ROABPs and its
variants. Therefore, it is an interesting open question to close this gap.
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A Preliminaries

We start with the following observation.

▶ Observation 12. For a monomial of cone-size at most k, its degree is less that k and the
support-size is at most log k.

A monomial ordering is a total ordering on the set of all monomials in x with following
properties:
1. for all a ∈ Nn \ {0 = (0, . . . , 0)}, 1 ≺ xa.
2. for all a, b, c ∈ Nn, if xa ≺ xb then xa+c ≺ xb+c.
For more on monomial ordering, see [8, Chapter 2].

Suppose that M is a matrix whose rows and columns are indexed by A and B, respectively.
Then for every S ⊆ A and T ⊆ B, MS,T denotes the submatrix of M with rows and columns
are indexed by S and T , respectively. The next lemma is a well known phenomenon in
matroid theory which, informally, says that given distinct weights to the elements of a
matroid there exists a unique minimum weight base. Here, we describe it in a language
which is suitable for our context.

▶ Lemma 13. Let k be a positive integer and Mn,d be the set of all n-variate monomials
in x with individual degree ≤ d. Let M be a matrix over F of rank r such that its rows
are indexed by [k] and the columns are indexed by Mn,d. Let ≺ be a monomial ordering
on the set of monomials in x. Then there exists a unique subset B ⊆ Mn,d of size r

such that rank(M[k],B) = r and for every other subset B′ ⊆ Mn,d with rank(M[k],B′) = r,∏
e∈B xe ≺

∏
e′∈B′ xe′ .

Here we give a very brief sketch of the proof. Using the monomial ordering ≺, greedily
choose r linealy independent columns of M as follows: at each step pick the least ≺-indexed
column of M such that it increases the rank of the chosen vectors, and denote that set by
B = {m1, . . . , mr} with m1 ≺ · · · ≺ mr. Let B′ be another subset of Mn,d with r linearly
independent columns of M , and B′ = {m′

1, . . . , m′
r} with m′

1 ≺ · · · ≺ m′
r. Then one can

show that B ⪯ B′ point-wise, that is mi ⪯ m′
i for all i ∈ [r], and there exists an i0 ∈ [r] such

that mi0 ≺ m′
i0

. This implies that
∏

i∈[r] mi ≺
∏

i∈[r] m′
i. For more details one can see [17,

Lemma 5.2 and 5.3].
Next, we give an expression for the product of a “fat” matrix with a “tall” matrix. It is

known as Cauchy-Binet formula. It will be useful to prove the rank concentration results in
Section 2.
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▶ Lemma 14 (Cauchy-Binet formula, [56]). Let n ≥ m be two positive integers. Let M and
N two m× n and n×m matrices, respectively, over F. Then

det(AB) =
∑

S∈([n]
m )

det(M[m],S) · det(MS,[m]).

A.1 Hitting sets
▶ Definition 15. Let C be a set of n-variate polynomials over a field F. A set of points
H ⊆ Fn is called a hitting set for C if for every polynomial f ∈ C, f is nonzero if and only
if there exists a point ααα ∈ H such that f(ααα) ̸= 0.

We say a hitting set H is computable in time T if there exists an algorithm which computes
all the points in the set H in time T . When F is a finite field, we are allowed to pick points
from Kn where K is a polynomially large extension of F. In PIT literature, a common method
of designing hitting sets is via hitting set generator.

▶ Definition 16. Let C be a set of n-variate polynomial class over a field F. A polynomial
map g(t) from Fm to Fn is called hitting set generator for C if for every f ∈ C, f is nonzero
if and only if f(g) ̸= 0.

Furthermore, g(t) is called t(m, n)-explicit if there exists an n-output circuit which
computes g(t) and the circuit is computable in t(m, n) time.

Hitting set generators immediately give us hitting sets.

▶ Observation 17. Let C be an n-variate polynomial class over a field F such that the degree
of each polynomial is at most d. Let g(t) : Fm ← Fn be a hitting set generator for C such
that the individual degree of each coordinate of g is at most r. Let S be a subset of F of
size dr + 1. Then H := g(Sm) is a hitting set for C. Moreover, if g(t) is t-explicit then the
hitting set H is computable in poly(t(dr)m) time.

Proof. Since g is a hitting set generator for C and each coordinate of g is a m-variate
polynomial, for every nonzero f ∈ C, f(g) is a nonzero m-variate polynomial. Also, the
individual degree of f(g) is at most dr. Thus, there exists a point ααα ∈ Sm such that
f(g(ααα)) ̸= 0. Therefore, H is a hitting set for C. Since g is t-explicit, each point in H is
computable in time poly(t). Therefore, H is computable in time poly(t(dr)m). ◀

A.2 Some useful polynomial maps
Suppose that g(t) = (g1, . . . , gn) be a polynomial map from Fm to Fn. Then, we say g is a
t(m, n)-explicit polynomial map if there exists an n-output circuit C which computes the
polynomials (g1, . . . , gn) and the circuit C is computable in time t(m, n). Let g(y) be a
polynomial map from Fm to Fn and h(x) = (h1, . . . , hk) be a polynomial map from Fn to
Fk. Then h ◦ g denotes the composition of g with h, that is h(g) = (h1(g), . . . , hk(g)). A
polynomial map L(x) = (ℓ1, . . . , ℓn) from Fn to Fn is called an invertible linear transformation
if each ℓi is a linear polynomial of form ℓi1x1 + . . .+ℓinxn and all ℓi’s are linearly independent.
An invertible affine transformation is a polynomial map of form L(x) + b where L(x) is an
invertible linear transformation and b ∈ Fn. Next, we describe some well known polynomial
maps and their properties which are frequently used in designing PIT algorithms, and they
also will be useful for us. First, we describe the generator for sparse polynomial due to
Klivans and Spielman [30].
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▶ Lemma 18 (Klivans-Spielman generator [30]). Let n, d, s, m be positive integers such that
m = Θ(lognd s). Let F be a field of size ≥ poly(nd). Then there exists a poly(nd)-explicit
polynomial map GKS

n,d,s(s, t) from Fm × Fm to Fn such that
1. for all i ∈ [n], (GKS

n,d,s)i is a polynomial of individual degree ≤ poly(nd).
2. for every subset S of at most s monomials in n-variables with individual degree at most

d, there exists an ααα ∈ Fm such that the polynomials {(GKS
n,d,s(ααα, t))e}e∈S are nonzero,

distinct monomials in t.
The above generator is a slight variation of the construction given in [30], but it can be
constructed from their techniques. For a proof-sketch see [17, Theorem 2.3]. Next, we define
total degree D independent monomial map from [17].

▶ Definition 19. For some positive integers n and D, a polynomial map g(s, t) from Fm×Fm′

to Fn is called total degree D independent monomial map if there exists an ααα ∈ Fm such
that the polynomials {g(ααα, t)e}|e|1≤D are nonzero, distinct monomials in t.

In the following lemma, we describe a construction of total degree D independent monomial
map using Klivans-Spielman generator.

▶ Lemma 20. Let n, d, D be positive integers. Let |F| ≥ poly(nd). Then, GKS
n,d,nD is a

poly(ndD)-explicit total degree D independent monomial map from Fm × Fm to Fn where
m = O(D).

For proof see [17, Lemma 6.4]. Next, we describe a polynomial map introduced by Shpilka
and Volkovich [51]. It is a widely used tool in PIT and other related results [51, 17, 52, 37,
33, 36, 43], and also crucial for proving our results.

▶ Definition 21 (Shpilka-Volkovich generator [51]). Fix a positive integer n and a set of
n distinct elements A = {α1, . . . , αn} ⊆ F. Let Li(t) be the ith Lagrange interpolation
polynomial for the set A. That is, Li(t) is a univariate polynomial of degree n− 1 such that
Li(αj) = δij. Let s = (s1, . . . , sk) and t = (t1, . . . , tk). Then GSV

n,k (s, t) is the polynomial
map from Fk × Fk to Fn defined as follows: for all i ∈ [n]

(GSV
n,k )i =

k∑
j=1

Li(sj)tj .

The above definition gives the following properties of Shpilka-Volkovich generator.

▶ Observation 22. Fix a set of k distinct elements S = {i1, . . . , ik} ⊆ [n]. Let ααα =
(αi1 , . . . , αik

). Then, for all j ∈ [k], (GSV
n,k (ααα, t))ij

= tj, and the other coordinates of
GSV

n,k (ααα, t) are zero. Furthermore, for all i ∈ [n], the degree of the polynomial (GSV
n,k )i is at

most n.

Using Shpilka-Volkovich generator, the following lemma describes a nonzeroness preserving
variable reduction for polynomials having a “low-support” monomial with nonzero coefficient.

▶ Lemma 23. Let f(x) be an n-variate polynomial over F such that there exists a monomial
xe with nonzero coefficient in f and the support-size of e is at most ℓ. Then f ◦ GSV

n,ℓ ̸= 0.

Proof. Let {xi1 , . . . , xiℓ
} be the support set of the monomial xe. Then, from Observation 22,

there exists an ααα ∈ Fα such that for all j ∈ [ℓ], (GSV
n,ℓ (ααα, t))ij = tj and the other coordinates

of GSV
n,ℓ (ααα, t) are zero. This implies that f(GSV

n,ℓ (ααα, t)) ̸= 0, and therefore f ◦ GSV
n,ℓ ̸= 0. ◀
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A.3 Algebraic independence
Suppose that A = {g1, . . . , gk} is a set of n-variate polynomials over a field F. We say that
the set of polynomials A are algebraically dependent over F if there exists a nonzero k-variate
polynomial A(z1, . . . , zk) over F such that A(g1, . . . , gk) = 0. Otherwise, they are called
algebraically independent (over F). In the following lemma, we describe a well known criteria
regarding algebraic independence of a set of linear polynomials.

▶ Lemma 24. Let m ≥ n be two positive integers. Let L(x) = (ℓ1, . . . , ℓn) be a linear
transformation from Fm to Fn such that all ℓi’s are linearly independent. Then, all ℓi’s are
also algebraically independent.

Proof. For the sake of contradiction, assume that all ℓi’s are not algebraically independent.
Then there exists a nonzero polynomial A(z1, . . . , zn) such that A(L(x)) = A(ℓ1, . . . , ℓn) = 0.
Let x = (x1, . . . , xm) and A′(x) = A(L(x)). Since all ℓi’s are linearly independent, there
exists a tuple of linear polynomials U(x) = (u1, . . . , um) and a subset {i1, . . . , in} of [m] such
that for all j ∈ [n],

ℓj(U(x)) = xij
.

This implies that A′(U(x)) = A(xi1 , . . . , xim) = 0 which is a contradiction. Therefore, all
ℓi’s are algebraically independent. ◀

A.4 Various notions of rank concentration
We define various notions of rank concentration and show the relation between them. Suppose
that G(x) be an n-variate polynomial over the vector space Fk. The coefficient space of G is
the vector space spanned by the coefficient vectors of G.

▶ Definition 25 (Rank Concentration). We say that G has
1. ℓ-support concentration if there exists a set of monomials B such that the support-size of

each monomial in B is at most ℓ and their coefficients form a basis for the coefficient
space of G.

2. ℓ-cone concentration if there exists a set of monomials B such that the cone-size of each
monomial in B is at most ℓ and their coefficients form a basis for the coefficient space of
G.

3. a cone-closed basis if there is a cone-closed set of monomials B whose coefficients in G

form a basis of the coefficient space of G.

In the next lemma, we show that cone-closed basis notion subsumes the other two notions
of rank concentration.

▶ Lemma 26. Let G(x) be a polynomial in F[x]k. Suppose that G(x) has a cone-closed basis.
Then, G(x) has k-cone concentration and log k-support concentration.

Proof. Let B be a cone-closed set of monomials whose coefficients in G form a basis for
the coefficient space of G. Since the cardinality of B is at most k and it is closed under
submonomials, the cone-size of each monomial B is at most k. Therefore, G has k-cone
concentration.

Let m ∈ B and S be the support set of m. Let m′ be the monomial defined as
m′ =

∏
i∈S xi. Since B is cone-closed, every sub-monomial m′ is also in B. Thus the

cardinality of S can be at most log k. Therefore, G has log k-support concentration. ◀



V. Bhargava and S. Ghosh 30:23

B Proof of Lemma 5

Proof of Lemma 5. First we study the shifted polynomial G′(x) = G(x + uz). To do so, we
revisit the proof of our Lemma 4. There we considered the lexicographic monomial ordering
over the monomials in z. Here we consider the deg-lex monomial ordering, that is, first order
the monomials from lower degree to higher degree and then within each degree arrange them
in lexicographic order. Like Equation 1, the matrix equation for the shifted polynomial G′(x)
will be

F ′(uz) = W −1(uz)TW (uz)F, (7)

that is scaling of each variable in Equation 1 by u. Applying Lemma 13, let B be the unique
subset of Mn,d such that the rows of F indexed by B form the least basis for the row-space
of F with respect to the deg-lex monomial ordering. From the hypothesis of the lemma,
there exists a subset C ⊆ Mn,d such that the rows in F indexed by C forms a basis for
the row-space of F (same as the coefficient space of G) and deg(C) =

∑
e∈C |e|1 ≤ Dk.

Therefore, deg(B) is also ≤ Dk since the rows indexed by B forms the least basis (with
respect to deg-lex monomial ordering) for the row-space of F . As promised by Lemma 3, let
A be a cone-closed subset of Mn,d such that TA,B is full rank. Now we see how Equation 2
and 3 in the proof of Lemma 4 change here. Like Equation 2, we get

det(F ′(uz)A,[k]) = det(W (uz)A,A)−1 · det((TW (uz)F )A,[k]) (8)

and Equation 3 changes as follows:

det((TW (uz)F )A,[k]) =
∑

i

 ∑
C∈(Mn,d

k
):deg(C)=i

det(TA,C) det(FC,[k])
∏
e∈C

ze

 ui. (9)

Since B is the least basis (with respect to deg-lex monomial ordering), the coefficient of
udeg(B) is a nonzero degree deg(B) homogeneous polynomial in z. Thus, det(F ′(uz)A,[k])
is a nonzero-polynomial in (u, z). This implies the coefficients of the monomials in A is a
cone-close basis for G(x + uz). For G(x + uL), the polynomial det((TW (uL)F )A,[k]) looks
like the following:

det((TW (uL)F )A,[k]) =
∑

i

 ∑
C∈(Mn,d

k
):deg(C)=i

det(TA,C) det(FA,C)
∏
e∈C

Le

 ui.

Since all ℓi’s are linearly independent, from Lemma 24, they are also algebraically independent.
Therefore, the coefficient of udeg(B) in det((TW (uL)F )A,[k]) is also a nonzero degree deg(B)
homogeneous polynomial in y. Also, deg(B) ≤ Dk. Therefore, after substituting z by L ◦ g
in Equation 9, we get det((TW (g′)F )A,[k]) which is a nonzero polynomial in (u, s, t). Since
det(W (g′)) is also a nonzero polynoimal in (u, s, t), det(F ′(g′)A,[k]) is nonzero in F(u, s, t).
This implies that G(x + g′) has a cone-closed basis over F(u, s, t). ◀
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