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ABSTRACT: The hydrophobicity of nanoparticles (NPs) is a crucial
physicochemical property that determines the agglomeration state of
NPs under various environmental and biological conditions. It plays a
predominant role in determining the toxicity and environmental, health,
and safety impact of NPs. However, to date, there is not yet a well-
accepted standard method for characterizing the hydrophobicity of NPs.
Here, we developed a relative dye adsorption method for determining
the hydrophobicity of NPs. This method is modified from the traditional
dye partitioning method that uses either the hydrophobic dye, rose
bengal (RB), or the hydrophilic dye, Nile blue (NB). By studying the
partitioning quotient for both RB and NB, the relative dye adsorption
method eliminates the uncertainty introduced by estimating the surface
area of NPs dispersed in liquid phases. We have demonstrated the

applicability and accuracy of this method by comparing them to the hydrophobicity of NPs determined with the maximum particle
dispersion method. It is concluded that the relative dye adsorption method can be used as a more reliable technique than RB or NB

partitioning for determining the hydrophobicity of NPs.

B INTRODUCTION

Exposure of engineered nanoparticles (NPs) to the environ-
ment has rapidly increased due to their extensive scientific and
industrial applications." Understanding interactions between
NPs and the environment as well as living organisms is of great
importance for regulation and mitigation of the environmental,
health, and safety (EHS) impact of NPs.” Effective character-
ization of physicochemical properties of NPs is a fundamental
requirement for investigating their EHS impact and for
ultimately assessing their environmental risk and toxicity.
Consequently, significant efforts have been devoted to the
development of standard characterization methods for
determining various physicochemical properties of NPs, such
as their size, shape, surface area, charge, chemical composition,
and crystal structure.””

Among all physicochemical properties, the hydrophobicity
of NPs plays a predominant role in determining the
aggregation and deposition of NPs in various environmental
conditions.”® For example, it is found that the environmental
fate and impact of microplastics and nanoplastics largely
depend on the surface properties of these particles.”® The
hydrophobicity of colloidal plastic particles significantly
influences their ability as a transport vector for environmental
pollutants.”” When interacting with biological systems,
including NP entrance into the human body via respiratory,
oral, or dermal portals, it has been found that the hydro-
phobicity of NPs regulates the formation of biomolecular
corona, cellular uptake, phagocytic clearance, immune
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response, and translocation of NPs. Hence, character-

ization of the hydrophobicity of NPs has become a necessity
for assessing the EHS impact of NPs and for the safe design of
inhaled nanomedicines.

Many methods have been developed for qualitatively and
quantitatively determining the hydrophobicity of NPs, such as
the contact angle method,'"> octanol—water partition-
ing, """ inverse gas chromatography,'® and maximum particle
dispersion (MPD)."” Among all available methods, rose bengal
(RB) partitioning is a commonly used dye partitioning
method.”””' RB is an anionic water-soluble xanthene dye
that is widely used as a photosensitizer for many biomedical
applications,”* such as a stain of the ocular surface for
diagnosis and treatment of dry eye disease.”* RB is considered
to be a hydrophobic dye as it selectively adsorbs to
hydrophobic surfaces via its xanthene ring. Figure SI1A,
Supporting Information (SI), shows the chemical structure of
the RB molecule. In general, RB partitioning measures the
partitioning quotient (PQ) of the dye, ie., the ratio of RB
bound to the NP surface to free RB suspending in the liquid
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Materials. Nanoparticles (NPs) were obtained from o 2 w a5 c§\“§
commercial sources summarized in Table 1. Rose bengal f - E:u?
(RB) and Nile blue A (NB) were purchased from Sigma- S PRI g =
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Aldrich. Phosphate-buffered saline (PBS, 10X solution) was E‘ Y g,ua :,,g 2 ? g
purchased from Fisher Scientific. Water used was Milli-Q g 5 EE SE 2 .E % =
ultra ill ith a resistivi h g 8 RESEEES EL
pure water (Ml 1pore) with a resistivity greater than 18 =} JgGJds g 83 = B
MQ:-cm at room temperature. The morphologies of NPs were « g ESFE” Q z
characterized by scanning electron microscopy (Hitachi S- o o N &
4800). The primary size of NPs was analyzed from the electron = £ 4E 0 H O%
. ) e < ZONE Z$ 53
micrographs using Image]. The hydrodynamic size and {- B BN mA 5 g
833 https://doi.org/10.1021/acs.jpcc.1¢09610

J. Phys. Chem. C 2022, 126, 832—837


https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c09610/suppl_file/jp1c09610_si_001.pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c09610?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry C

pubs.acs.org/JPCC

Figure 1. Scanning electron microscopy (SEM) micrographs showing the morphology of the studied nanoparticles (NPs). (A)
Triethoxycaprylysilane-coated zinc oxide (TCS-ZnO), (B) zinc oxide (ZnO), (C) boron nitride (BN), and (D) polystyrene (PST).

potential of NPs were determined using Zetasizer Nano ZS
(Malvern Panalytical).

Relative Dye Adsorption Method. The relative dye
adsorption method requires separately determining the
partitioning quotient (PQ) of both the hydrophobic dye, RB,
and the hydrophilic dye, NB. About 2 mg/mL dye (RB or NB)
solution was diluted to 20 pug/mL using the PBS solution.
Stock solutions for NPs were prepared at the following
concentrations: triethoxycaprylysilane-coated zinc oxide (TCS-
Zn0), zinc oxide (ZnO), and boron nitride (BN) NPs each at
S mg/mlL, and polystyrene (PST) NPs at 10 mg/mL. A series
of NP stock solutions were added to the dye solution to create
a wide array of dye—NP suspensions. Controls were prepared
by adding the same volume of dispersion liquid to the dye
solution to account for the slight increasing volume due to the
added NP stock solution. All suspensions were incubated at
room temperature for 3 h and subsequently centrifuged at
16 000g for 1 h. Supernatants were collected, and dye
molecules in supernatants were analyzed with a UV—vis
spectrometer (Epoch, BioTek) at 549 nm for RB and 620 nm
for NB, respectively. The PQ was calculated by the ratio of the
dye bound onto the NP surface (Dyoy,q) to free dye molecules
in the liquid phase (Dg.), i-e, PQ = Dpouna/Dgee- PQ vs the
surface area of NPs was plotted, and the slope of the linear
regression line was obtained using OriginPro. The total surface
area of NPs dispersed in the suspension was calculated from
the hydrodynamic size of these NPs determined with dynamic
light scattering, by assuming a spherical shape. The relative dye
adsorption was calculated by taking the ratio between the
slopes for the linear regression of RB and NB. As demonstrated
in eqs S1—S7 in the SI, the use of relative dye adsorption
eliminates uncertainties in determining the surface areas of the
dispersed NPs.

Maximum Particle Dispersion Method. The maximum
particle dispersion (MPD) method was implemented as
previously described.'” The MPD is an optical method for
quantitatively determining the surface free energy of NPs. It
relies on a novel measuring principle of quantitatively
evaluating the colloidal stability of NP suspensions determined
by the balance between van der Waals attraction and
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electrostatic repulsion. In brief, a trace amount of the NP
stock solution was added to a series of probing liquids of 0.5
mL each. The probing liquids consist of a nonpolar liquid set,
including six alkanes ranging from Cg to C,4 and covering the
surface tension range of 16—27 mJ/m? and a polar liquid set
made of water/ethanol mixtures, covering the surface tension
range of 22.3—71.4 mJ/m”> After vortexed, the mixtures were
centrifuged at 100g for S min for ZnO and BN NPs, and at
800g for 10 min for PST NPs to allow particle sedimentation.
Subsequently, 160 #L of the supernatant from each suspension
was transferred to a 96-well microplate without disturbing the
sediment. The optical density at 400 nm (OD,y) was
measured using a microplate reader (Epoch, BioTek). The
optical density was plotted against the surface tensions of the
probing liquids, and the surface free energy of NPs was
determined at the maximum optical density value obtained by
optimal peak fitting using OriginPro. Each measurement was
repeated at least three times, and the results were shown as
mean =+ standard deviation.

B RESULTS AND DISCUSSION

Figure 1 shows the electron micrographs of four nanoparticles
(NPs), ie, triethoxycaprylysilane-coated zinc oxide (TCS-
ZnO0), zinc oxide (ZnO), boron nitride (BN), and polystyrene
(PST) NPs. As shown in Table 1, TCS-ZnO, ZnO, and BN
NPs have similar hydrodynamic sizes of 467, 470, and 475 nm,
respectively. These are much larger than their corresponding
primary sizes. PST NPs, on the other hand, have a
hydrodynamic size of 796 nm, which is close to their primary
size of 707 nm. Figure S2 shows the size distributions of these
four NPs in PBS. Except for PST NPs, which demonstrate a
narrower size distribution, the other three NPs display a
bimodal distribution with a majority of particles distributed in
the size range between 100 and 1000 nm, and hence they show
a larger polydispersity index (PDI) than PST NPs.

The {-potentials of TCS-ZnO, ZnO, and BN NPs in PBS are
—33.4, —47.7, and —48.3 mV, respectively, while PST NPs
have a significantly more negative {-potential of —77.2 mV,
thus indicating more electrostatic repulsion between PST NPs
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Figure 2. Determination of the hydrophobicity/hydrophilicity of four NPs, i.e., TCS-ZnO, ZnO, BN, and PST NPs. (A) Linear regression of the
partitioning quotient (PQ) of rose bengal (RB) against the surface areas of NPs. (B) RB adsorption, corresponding to the rank of NP
hydrophobicity, determined with the RB partitioning method. (C) Linear regression of the PQ of Nile blue (NB) against the surface areas of NPs.
(D) NB adsorption, corresponding to the rank of NP hydrophilicity, determined with the NB partitioning method.

than the other NPs. This {-potential measurement is consistent
with the lack of aggregation found for PST NPs.

Figure 2A shows the hydrophobicity measurement with the
RB partitioning method, in which the slope of the plot, i.e,, RB
adsorption, is proportional to the hydrophobicity of NPs. As
shown in Figure 2B, the hydrophobicity of these NPs is ranked
as TCS-ZnO > BN > PST > ZnO. Figure 2C shows the dye
partitioning method with NB, in which the slope of the plot,
i.e, NB adsorption, is proportional to the hydrophilicity of
NPs. As shown in Figure 2D, the hydrophilicity of these NPs is
ranked as PST = BN > TCS-ZnO > ZnO. Comparing results
obtained with both RB and NB partitioning, an obvious
discrepancy occurs to ZnO NPs. While RB partitioning
predicts that ZnO is the least hydrophobic out of the four
NPs studied, NB partitioning predicts that ZnO is the least
hydrophilic (i.e., the most hydrophobic) among the four NPs
tested.

In general, it is found that the adsorption capacity of NB for
all tested NPs is significantly higher than that of RB (Figure 2B
vs 2D). It should be noted that the adsorption of dyes onto NP
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surfaces is not only affected by hydrophobic interactions but
also by electrostatic interactions. The isoelectric points for
TCS-ZnO, ZnO, BN, and PST NPs are reported to be around
2.7, 3.9, 43, and 3.8, 1'espectively.28_3’0 Consequently, all of
these NPs are negatively charged at pH 7.4 (Table 1), thus
attracting more the cationic dye NB than the anionic dye RB.
Hence, it is not meaningful to directly compare the adsorption
capacity of RB and NB onto NPs. In addition, the adsorption
kinetics is highly sensitive to the surface area of NPs, which
cannot be measured in situ. It is found that the PQ slope is
highly dependent on the estimation of NPs’ surface area. In the
traditional dye (RB or NB) partitioning method, the
hydrodynamic size of NPs is used to calculate their surface
area by assuming a spherical shape of NP aggregates in the dye
solution. When the NPs’ surface area is calculated with other
means, e.g., using the primary size of NPs (Figures S3 and S$4),
the hydrophobicity results determined with either RB or NB
portioning were found to be varying.

Figure 3 shows the results of the relative dye adsorption
method. By taking the ratio between the RB adsorption and
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Figure 3. Hydrophobicity of four NPs, i.e.,, TCS-ZnO, ZnO, BN, and
PST NPs, determined with the relative dye adsorption method. The
RB/NB dye adsorption ratio is defined as the ratio between the
hydrophobic dye, RB (Figure 2B), and the hydrophilic dye, NB
(Figure 2D). Results suggest that the hydrophobicity of these NPs
ranks as TCS-ZnO > ZnO > BN > PST.

the NB adsorption, the dye adsorption ratio is proportional to
the hydrophobicity of NPs while eliminating uncertainties
introduced from the estimation of NP’s surface area. Based on
dye adsorption ratio values, the hydrophobicity of NPs can be
ranked in the order of TCS-ZnO > ZnO > BN > PST. To
verify this result, we have measured the surface free energy
(SFE) of these NPs using the independent maximum particle
dispersion method (Figure S5)."” The SFEs of TCS-ZnO,
ZnO, BN, and PST NPs are determined at 21.2, 29.3, 32.9, and
36.4 mJ/m? respectively (Table 1), which correspond to a
hydrophobicity rank of TCS-ZnO > ZnO > BN > PST, in
good agreement with the rank determined with the relative dye
adsorption method.

It should be noted that Crandon et al. also used these two
dyes to determine the hydrophobicity of NPs.’’ In their
method, adsorption isotherms were obtained by varying the
dye concentration at a constant NP concentration. The
adsorption isotherms were fit to linear, Langmuir, and
Freundlich models, and a dimensionless parameter termed
hydrophobicity ratio was defined by the ratio of adsorption
constant of RB and NB obtained from the linear fitting model.
This procedure also eliminates the necessity for the calculation
of the surface area of NPs. However, the slope of the linear
fitting curve represents the adsorption kinetics, instead of the
relative hydrophobicity or hydrophilicity of NPs. In addition,
varying the dye concentration may introduce uncertainties as
the absorption peak of the dye depends on its concentration. It
was reported that the adsorption peak of NB derivatives shifts
to blue with increasing concentrations from 4.0 to 32.0 uM.>
In contrast, the dye concentration used in our method is fixed.

B CONCLUSIONS

We have developed a relative dye adsorption method for
determining the hydrophobicity of NPs. This method is
modified from the traditional dye partitioning method that
uses either the hydrophobic dye, rose bengal (RB), or the
hydrophilic dye, Nile blue (NB). By studying the partitioning
quotient for both RB and NB, the relative dye adsorption
method eliminates the uncertainty introduced by estimating
the surface area of NPs dispersed in liquid phases. We have
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demonstrated the applicability and accuracy of the method by
comparing it to the hydrophobicity of NPs determined with
the maximum particle dispersion method. It is concluded that
the relative dye adsorption method can be used as a more
reliable technique than RB or NB partitioning for determining
the hydrophobicity of NPs.

B ASSOCIATED CONTENT
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Chemical structures of rose bengal and Nile blue (Figure
S1); size distribution of NPs in PBS (Figure S2);
uncertainties of RB and NB partitioning methods when
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area of NPs (Figures S3 and S4); surface free energy of
NPs determined with the maximum particle dispersion
method (Figure S5); and calculation of the dye
adsorption ratio (eqs S1—S7) (PDF)
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