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Abstract— We describe a parameterized family of first-order
distributed optimization algorithms that enable a network of
agents to collaboratively calculate a decision variable that mini-
mizes the sum of cost functions at each agent. These algorithms
are self-healing in that their convergence to the correct opti-
mizer can be guaranteed even if they are initialized randomly,
agents join or leave the network, or local cost functions change.
We also present simulation evidence that our algorithms
are self-healing in the case of dropped communication
packets. Our algorithms are the first single-Laplacian methods
for distributed convex optimization to exhibit all of these
characteristics. We achieve self-healing by sacrificing internal
stability, a fundamental trade-off for single-Laplacian methods.

I. INTRODUCTION

The distributed optimization problem contains a network
of n agents, wherein each agent calculates a decision vector
that minimizes a global additive objective function of the
form f(-) = X; fi(:), where f; denotes the local convex
objective function known only to agent i. Specifically, each
agent maintains a local estimate x; of the global minimizer

Xopt = arggmin > fi®). (1)

which we assume is unique. The agents reach consensus
X; = Xopt by computing the gradients of their local objective
functions Vf;(x;) and passing messages along the links of
the communication network.

Distributed optimization problems of this form have broad
application. For example, a distributed set of servers or
sensors could perform a learning task (e.g., classification)
using their local data without uploading the data to a central
server for bandwidth, resiliency, or privacy reasons [1].
Swarms of robots can use distributed optimization to plan
motions to solve the rendezvous problem [2].

The optimization of a collective cost function in a
network setting has seen considerable interest over the last
decade [3]-[10]. Recently, several authors have adapted
methods from control theory to study distributed optimization
algorithms as linear systems in feedback with uncertainties
constrained by integral quadratic constraints (IQCs) [3],
[11], [12]. These works have made it possible to more easily
compare the various known algorithms across general classes
of cost functions and graph topologies.
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The work [3] uses these techniques to describe several
recent distributed optimization algorithms within a common
framework, then describes a new algorithm (SVL) within that
framework that achieves a superior worst-case convergence
rate. However, all of the algorithms considered in [3] share a
common undesirable trait: to reach the correct solution, their
states must start on a particular subspace of the overall global
state space and remain in it at every time step. If for any reason
the state trajectories leave this subspace (e.g., incorrect initial-
ization, dropped packets, computation errors, agents leaving
the network, changes to objective functions due to continuous
data collection), then the system will no longer converge to
the minimizer. Such methods cannot automatically recover
from disturbances or other faults that displace their trajectories
from this subspace; in other words, they are not self-healing.

In this paper, we extend our results from dynamic average
consensus estimators [13], [14] to design a family of dis-
tributed optimization algorithms whose trajectories need not
evolve on a pre-defined subspace. We call such algorithms
self-healing. In practice, this means that our algorithms can be
arbitrarily initialized, agents can join or leave the network at
will, and agents can change their objective functions as neces-
sary, such as when they collect new data. An important conse-
quence of the self-healing property is that our algorithm can
be modified with a low-overhead packet-loss protocol which
allows the algorithm to recover from lost or corrupted packets.

We refer to distributed optimization algorithms that
communicate one or two variables (having the same vector
dimension as the decision variable x;) per time step as single-
and double-Laplacian methods, respectively. Examples of
single-Laplacian methods are SVL and NIDS, while examples
of double-Laplacian methods are uEXTRA and DIGing
[3], [5]-[8]. Our algorithms are the first self-healing single-
Laplacian methods for convex optimization that converge to
the exact (rather than an approximate) solution (see [13], [15]
for the specific case of average consensus). They achieve
self-healing by sacrificing internal stability, a fundamental
trade-off for single-Laplacian methods. In particular, each
agent will have an internal state that grows linearly in time
in steady state, but because such growth is not exponential
it will not cause any numerical issues unless the algorithm
runs over a long time horizon. Double-Laplacian methods
can achieve both internal stability and self-healing, but they
require twice as much communication per time step and
converge no faster than single-Laplacian methods [3], [14].
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II. PRELIMINARIES AND MAIN RESULTS
A. Notation and terminology

We adopt notation similar to that in [3]. Let 1,, be the
n-dimensional column vector of all ones, I,, be the identity
matrix in R™", and II,, = %HT be the projection matrix
onto the vector 1,. We drop the subscript n when the size
is clear from context. We refer to the one-dimensional linear
subspace of R" spanned by the vector 1, as the consensus
direction or the consensus subspace. We refer to the (n — 1)-
dimensional subspace of R" associated with the projection
matrix (I, — I1,,) as the disagreement direction or subspace.

The variable z represents the complex frequency of the
z-transform. Subscripts denote the agent index whereas
superscripts denote the time index. The symbol ® represents
the Kronecker product. A* indicates the Moore-Penrose
inverse of A. Symmetric quadratic forms xTAx are written
as [x]TAx to save space when x is long. The local decision
variables are d-dimensional and represented as a row
vector, i.e., x; € R4 and the local gradients are a map
Vfi : R*4 — R4 The symbol ||| refers to the Euclidean
norm of vectors and the spectral norm of matrices.

We model a network of n agents participating in a
distributed computation as a weighted digraph G = (W, £),
where V = {1, ...,n} is the set of n nodes (or vertices) and
£ is the set of edges such that if (i, j) € £ then node i can
receive information from j. We make use of the weighted
graph Laplacian £ € R™" associated with G such that —C;;
is the weight on edge (i, j) € £, L;; =0 when (i, j) ¢ £ and
i # j, and the diagonal elements of £ are £;; = — X j4 Lij, s0
that £1 = 0. We define o = || —I1- L]|, which is a parameter
related to the edge weights and the graph connectivity.

Throughout this work we stack variables and objective
functions such that

xf VD
xk = e R™4 and VF(x*)= :
X Vfu(xk)

B. Assumptions

c RnXd

(A1) Given 0 < m < L, we assume that the local gradients
are sector bounded on the interval (m, L), meaning
that they satisfy the quadratic inequality

T —2mLId (L + m)Id

(xi — xopt)T
(L+ml,  —2I, 20

] [(Vfi(xi) = Vfilxop)) | =

for all x; € R4, where xop satisfies 2| Vf;(xop) = 0.
We define the condition ratio as x = %, which captures
the variation in the curvature of the objective function.

[*]

(A2) The graph G is strongly connected.
(A3) The graph G is weight balanced, meaning that 17£ = 0.
(A4) The weights of G are such that o = ||[I -1 - L]||< 1.

Remark 1. Assumption (A1) is known as a sector IQC (for
a more detailed description see [11]) and is satisfied when
the local objective functions are m-strongly convex with
L-Lipschitz continuous gradients.

Remark 2. Throughout this paper we assume without loss
of generality that the dimension of the local decision and
state variables is d = 1.

Remark 3. Under appropriate conditions on the communi-
cations network, the agents can self-balance their weights in
a distributed way to satisfy (A3); for example, they can use
a scalar consensus filter like push-sum (see Algorithm 12
in [16]). Additionally, agents can enforce that their weighted
in-degrees (and thus their weighted out-degrees) sum to less
than one in order to satisfy (A4).

C. Results

In the following sections we present a parameterized
family of distributed, synchronous, discrete-time algorithms
to be be run on each agent such that, under assumptions
(A1)-(A4), we achieve the following:

Accurate convergence: in the absence of disturbances or
other faults, the local estimates x; converge to the
optimizer xop With a linear rate.

Self-healing: the system state trajectories need not evolve
on a pre-defined subspace and will recover from events
such as arbitrary initialization, temporary node failure,
computation errors, or changes in local objectives.

Packet-loss protocol: if agents are permitted a state of mem-
ory for each of their neighbors, they can implement a
packet-loss protocol that allows computations to continue
in the event communication is temporarily lost. This
extends the self-healing of the network to packet loss in
a way that is not possible if the system state trajectories
are required to evolve on a pre-defined subspace.

First we present the synthesis and analysis of our algorithm
along with its performance relative to existing methods.
Then we demonstrate via simulation that our algorithm still
converges under high rates of packet loss.

III. SYNTHESIS OF SELF-HEALING
DISTRIBUTED OPTIMIZATION ALGORITHMS

A. Canonical first-order methods

As a motivation for our algorithms, we use the canonical
form first described in [17] and later used as the SVL tem-
plate [3]. When the communication graph is constant, many
single-Laplacian methods such as SVL, EXTRA and Exact
Diffusion can be described in this form [3], [4], [9], [10], [17].
Algorithms representable by the SVL template can also be
expressed as a state space system G in feedback with an un-
certain and nonlinear block containing the objective function
gradients VF(-) and the Laplacian £ shown in Figure 1, where

1 - | —

Als B8] o400
G=|C[Du D |= |57 gto 5| @k @

Cy | Dyu | Dy 0l 00
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Fig. 1. Distributed optimization algorithms represented as a feedback
interconnection of an LTI system G and an uncertain block containing the
gradients and the graph Laplacian.

The LTI system G has two states W]f and w’z‘, inputs «* and
vk, and outputs x* and y* such that

n

uf =V, vi= > Lh 3)

j=1

We would like to alert the reader to a small notational
difference between our work and [3]: in this work, the
variable x is the input to the gradients and the variable y is
the input to the Laplacian (as shown in Figure 1), whereas
in [3] y is the input to the gradients and z is the input to
the Laplacian. (We cannot use z because we already use it
as the frequency variable of the z-transform.)

Algorithms described by Figure 1 contain two discrete-time
integrators in the LTI block G: one integrator is necessary
to force the steady state error to zero, and the other is
responsible for the agents coming to consensus. In the SVL
template, the output of the graph Laplacian feeds into the
integrator responsible for consensus.

Algorithms representable by the SVL template, and
more broadly all existing first-order methods with a single
Laplacian, require that the system trajectories evolve on a
pre-defined subspace. From our work with average consensus
estimators [13], [14], we know that these drawbacks arise
from the positional order of the Laplacian and integrator
blocks. When the Laplacian feeds into the integrator, the
output of the Laplacian cannot drive the integrator state away
from the consensus subspace, which leads to an observable
but uncontrollable mode. If the integrator state is initialized on
the consensus subspace, or it is otherwise disturbed there, the

estimate of the optimizer will contain an uncorrectable error.

Switching the order of the Laplacian and integrator renders the
integrator state controllable but causes it to become inherently
unstable because the integrator output in the consensus
direction is disconnected from the rest of the system. We
exploit this trade-off to develop self-healing distributed
optimization algorithms with only a single Laplacian.

B. Factorization and integrator location

To switch the order of the Laplacian and the integrator, we
first factor an integrator out of the G(z) block of Figure 1,

—a P+ (y-20)z+(B+5-7)

0z+n—90
z—-1

I, L —

Fig. 2. The output of the integrator now feeds into the Laplacian,
converting an uncontrollable and observable mode in the original SVL
template to a controllable and unobservable one.

@ _z-1+g | 0
_lz-1 z-1
T —a ~yi-B-v ||g %*tn=9 ® L, (5)
z—1 (z-Dz+n-90) z-1
where
é ifd=0
Y
n=y—-64 and { = 5 (6)
-2 -48s
u otherwise.

26
Swapping the order of the component matrices yields our
new family of algorithms (where G, replaces G):

g 0 —a'l _Z—l‘lﬁf
z- -
G(2) = oz+n—-90 —a -yz—=(B-7) ® L
z—-1 z—=1 (z-D@z+n-9)
1 z=1+7
_a -
B z—1 z-1
= 0z+n—-0  yz+B-vy ® @
_a -
(z-1)? (z—1)?

Now the output of the integrator feeds directly into the
Laplacian, as depicted in Figure 2. We assume that our
parameter choices satisfy

y* > 4B (8)

so that the zeros of G, remain real and thus the system can
be implemented with real-valued signals. The corresponding
distributed algorithm is described in Algorithm 1, where w;
and wy are the internal states of Gy, and the compact state
space form is

1 0|-a|—¢
1 1|0 |-1

G, = T ol o =1 ®1I,. 9)
6 n| 010

Remark 4. The factorization in (5) is not unique; we chose
it because it leads to a method still having only two internal
states per agent. There may be other useful factorizations.

Remark 5. In contrast to algorithms like SVL, Algorithm 1
does not require specific initial conditions and system trajec-
tories are not restricted to a pre-defined subspace. If agents
change their local objective functions or drop out of the com-
putation, the system does not need to be reset and the system
will converge to the new minimizer. In the case of agents drop-
ping out, the connection topology must still be strongly con-
nected, otherwise Algorithm 1 with a weight balancer will con-

_ _1)2
G(z) = Z_ 1 & ( lz ®1I, (4) verge to the minimizer for only a subset of the objective func-
_al _yz(+—,81)27) tions and consensus across the network will not be achieved.
Z— Z—
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Algorithm 1: Self-Healing Distributed Gradient Descent

Initialization:
Each agent i € {1,...,n} chooses wi,,w), € R!xd
arbitrarily. £ € R™" is the graph Laplacian.

for k=0,1,2,... do

for i € {1,...,n} do

Local communication

Vi = 0w+ nws,

vi = Lijy

Local gradient computation

n
i Jj=1

xl(‘ = w'fi - vl’.‘ // Update the optimizer estimate.
k k
u; = Vfi(xi )
Local state update
k+l _ k _ ok _ pok
Wi =Wy T aup =4
k+l _  k k _k
Woi =Wt Wy~
end
end
return x;

IV. STABILITY AND CONVERGENCE RATES USING IQCS

A. Projection onto the disagreement subspace

As written, our family of algorithms is internally unstable.
We use the projection matrix (/—I1) to eliminate the instability
from the global system without affecting x*. This procedure
is a centralized calculation that cannot be implemented
in a distributed fashion, but it allows us to analyze the
convergence properties of the distributed algorithm.

Consider the steady-state values (wf,x*,u*,v*) and
suppose w’z‘ contains a component in the 1 direction. Then
that component does not affect the aforementioned values
because it is an input to the Laplacian £ (and lies in its
nullspace); however, it grows linearly in time due to the
wy update. Thus the system has an internal instability that
is unobservable from the output of the bottom block in
Figure 1. Since the component of w’z‘ in the consensus
direction is unobservable to the variables (w’f,xk, uk vkY, we
can throw it away without affecting their trajectories. Using

the transformation W’z‘ =(- H)WIZ(, our state updates become

k+1 k

whtl = wh — auk - ook (10)
WAt = (1 - Thwh + (1 —TWh — (7 -k (1)
Xk = wh -k (12)
P* = owk + ik (13)
u* = VF(x*) (14)
vk = £9k, (15)

where y* was replaced with $* in (13) and (15) to accom-
modate WIZ‘ These updates lead to the state-space system

B. Existence and optimality of a fixed point

Now that we have eliminated the inherent instability of
the global system, we can state the following about the fixed
points:

Theorem 1. For the system described by G,, there exists
at least one fixed point (wT,W;,x*,y*,u*,v*), and any
such fixed point has x* in the consensus subspace such that
x* = xop for all i € {1,...,n}, ie., any fixed point of the
system is optimal.

Proof. First, assume that the fixed point
(w’l", W;,x*,ﬁ*, u*,v*) exists. To prove that the variable x*
lies in the consensus direction, we show that (I — IT)x* = 0.
From (11) and (12) we have that

(I -IDhwy = —TI* 17)
(I -IDx* = (I - Ihw} — (I —TI* (18)
=0. (19)
Thus x} = x;‘ for all i,j € {1,...,n}. Next we show that
x¥ = xopt- From (10) then plugging in (15), we have
—au* - {v*=0 (20)
u* ——év*——éﬁfi* (21)
a o
17u* gﬂTﬁA* (22)
a
n
u: =0 (23)
i=1
- > Vi) =0 (24)
i=1
—>x;‘=xop[Vi€{1,...,n}. (25)
Thus any fixed point is optimal.
Next, to construct a fixed point we define
xF = Txgp,  u* = V(")
y* = —%u*, wi =x*+v*. (26)
Then 3 is the solution to the equation
LWy = —a(l - §Lyu*. 27

k

Since Wk = L*Lwh (ie., Wi

write W; in closed form as

is in the row space of L), we

W = %ﬁ((n ~ Du*. (28)

Finally, setting * = 6w} + W3 completes the proof. |

Remark 6. If the graph is switching but converges in time
such that the limit of the sequence of Laplacians exists, as
with a weight balancer, then a solution to (27) still exists

1 0 —al —¢I and an optimal fixed point can still be found. Furthermore,
G = r-1m r-1m| 0 |-(-1p (16)  the proof techniques in the following section still hold for
! 0 0 -1 switching Laplacians (see [3] for more information).
ol nl 0 0
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C. Convergence

Following the approaches in [3], [11], [12], we prove
stability using a set of linear matrix inequalities. First we
split our modified system from (16) into consensus and
disagreement components. We define

Ap= Ay, ®T+A, (T (29)
Bu = Bpu ® T+ By ® (I =T (30)
Buy = Bpy @114 By © (1 = T) G31)
1 0 -a -

A= o 0]’ B"”=[0]’ pr=[o] (32)

1 0 - -
LU I B ) R
We also define the matrices

-2mL L+m
L+m -2

2 _
M0=[ ] anc1M1=[‘Tl1 _11] (33)
Notice that M is associated with the sector bound from
(A1) and that M, is associated with the (1 — o, 1 + o) sector
bound on £ with inputs from the disagreement subspace.

We now make a statement analogous to Theorem 10 in [3].

Theorem 2. If there exists P,Q € R>?, 1y,1; € R, and
p € (0,1), with P,Q > 0 and Ay, A1 = 0 such that

Poo | o 7 B
xI"| 0 —p’P| O ||l-—pF =0, (4
0 0 ‘ AoMy Ox Ix”
Ay Bgu By,
0 0 0 0 I 0 O
0 —p*Q| 0 0 Cy Dy D
T X xu pa
X190 ] o ||o 1 o [ZO6Y
0 0 0 |[A4iM;||Cy Dy, Dy,
0 0 I
then the following is true for the trajectories of G,,:
k * 0 *
wy —w wi —w
[A H Ail < Neond(M)pk|l | 0 L (36)
Wy =Wy 27 W)
for a fixed point (W}, W}, x*, %, u*,v*),  where
T =PI, +0® (I, —I1,) and cond(T) = jog;
mjn

is the condition number of T. Thus the output x* of
Algorithm 1 converges to the optimizer with the linear rate p.

Proof. Equation (36) follows directly from Theorem 4 of
[11]. Since the states of G, are converging at a linear rate p,
the rest of the signals in the system (including x*) converge
to an optimal fixed point at the same rate. Additionally, the
trajectories of G,, and G (Algorithm 1) are the same, save
for W’2‘ and 9%, so x* in Algorithm 1 also converges to the
optimizer with linear rate p. O

To test the performance of our algorithm, we used the
parameters 8 = 0.5,y = 1,6 = 0.5. These parameters were
inspired by the NIDS/Exact Diffusion parameters presented in

100 |-
QOurs / J,J
- - SVL '
. — — — Lower Baund il i
= / ’
5 !
%085k i’
g /
= f
z '
aL- I
: /
_§ L JJ
= !
% !
= i
- !
2 /
2 !
= 085 |
l
!
!
________________________________ !
000 025 050 075 100
a=||I-TI— 4
Fig. 3. Performance of our algorithm compared with SVL for « = 10

and o € [0, 1). Our NIDS-inspired parameter choices result in performance
identical to that of NIDS in [3]. We have not made any attempts to choose

“optimal” parameters like those of SVL.

[17]; however, we have done no work to find parameters that
optimize the convergence rate. We then solved the LMIs (34)
and (35) using Convex.jl [18] with the MOSEK solver [19],
performing a bisection search on p to find the minimum worst-
case convergence rate for a given «, o, and . We used Brent’s
method from Optim.jl [20] to determine the optimal . We
plot our results for « = 10 in Figure 3 and include the results
for SVL (reproduced from [3]) for comparison. Our algorithm
with these parameter choices achieves the same performance
as NIDS for the NIDS parameter choice u = 1 as shown in [3].
The worst-case convergence rate of our algorithm is subject

to the same lower bound, p > max(i—;ll, o), found in [3].

Remark 7. In Algorithm 1, the signal x* converges to the
optimizer with linear rate p but the internal signals w’2c
and y* grow only linearly. Therefore, w5 and y* will not
become large enough to cause overflow errors until well
after the algorithm has converged to the optimizer.

Remark 8. We tested the convergence rates for our
algorithm with Zames-Falb IQCs in place of Sector IQCs
but saw no improvement.

V. SELF-HEALING DESPITE PACKET LOSS

A. Packet-loss protocol

We next give our agents some additional memory so
that they can substitute previously transmitted values when
a packet is lost. Each agent i € {l,...,n} maintains an
edge state ef]. for each j € My (i) (the set of neighbors who
transmit to 7). Whenever agent i receives a message from
agent j, it updates the state e;; accordingly; however, if
at time k£ no message from neighbor j is received, agent i
must estimate what would have likely been transmitted. One
potential strategy is to substitute in the last message received,
but because y; is growing linearly in quasi steady state, this
naive strategy would ruin steady-state accuracy. Instead we
must account for the linear growth present in our algorithm,
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Algorithm 2: Self-Healing Distributed Gradient
Descent with Packet-loss protocol

Initialization: Each agent i € {1,...,n}
chooses w,, w). € R arbitrarily. £ € R™"
is the graph Laplacian. All e;; are initialized
the first time a message is received from a neighbor.
for k=0,1,2,... do
for i € {1,...,n} do
Local communication
Y = 0w +ws,
for j € N;,(i) do
if Packet from j received by i then
ek =3k
VAR
else
‘ efj = nxf‘ +e;;
end
end
vi = 2 ‘Ci]'ef‘{j
Local gradient computation

xl{‘ = w’l‘i - vf // Update the optimizer estimate.
k k
I/ti = Vﬁ(-xi )
Local state update
k+l _ k _ ok _ pok
Wi =W aup =4
k+l _  k k _k
Woi =Wt Wy — Y
end
end
return x;

which we can do by analyzing the quantity y;‘. - yj?_l at the
quasi fixed point (w?,x*, u*,v>):

k

i =y =8l —wip vy —wirh  (B)
= n(wTj — v;‘) (38)
=}~ nxk (39)

Therefore, when a packet is not received by a neighbor, agent i
scales its estimate of the optimizer and adds it to its previously
received (or estimated) message. The packet-loss protocol is
summarized in Algorithm 2. By construction, the modifica-
tions included in Algorithm 2 will not alter the quasi fixed
points of Algorithm 1, though we do not have a stability con-
dition like Theorem 2 to present at this time. Instead, we show
simulation evidence that Algorithm 2 does indeed converge,
and packet loss does not appear to have a substantial impact
on the convergence rate, even when the rate of packet loss is
large. In the absence of dropped packets, the state trajectories
of Algorithm 2 are equivalent to those of Algorithm 1.

Remark 9. Algorithm 2 can be modified to include a for-
getting factor g. If agent i does not receive a packet from
neighbor j in g time steps, then agent i assumes that the com-
munication link has been severed and clears ¢;; from memory.

B. Classification example

To test the performance of our algorithm under packet
loss, we solved a classification problem using the COSMO

Fig. 4. The directed network topology for the classification example. All
edge weights are 1/4.

chip dataset [21]. The problem setup is as follows: a
network of n agents would like to collaboratively compute
a binary classifier that identifies whether or not a computer
chip will pass a quality assurance test using data gathered
independently by each agent in the network; furthermore, they
would like to do so in a distributed fashion without sharing
their datasets. In order to simulate this problem, we divide the
COSMO chip dataset into n local subsets and denote agent
i’s set of local data indices as S;. To improve the performance
of their classifier, the agents employ a polynomial embedding
where each 2-dimensional data point d; = [d;i,d)] is
embedded in a 28-dimensional space given by

M(d;) = [l,djl,djz,dz dj1dj2,d§2,d3

5
j1» j],...,djld

6
J2 dﬂ]‘

The agents use the logistic loss function with L,-
regularization, yielding local cost functions given by

T 1
fitx) = > log(1+ e ¥ MUy 4 — ||, ]|,
I n

(40)

where [; € {—1, 1} is the label of data point j, and each agent
computes the label of unseen data by using the operation
l = sgn(xl.T M(d)). Using the cost in (40), the corresponding
sector bound (m, L) is approximated as m = % and

2

1
Li< |1+ oMy, L=maxLy, @1)
n 4 i

where the rows of M; are M(d;) for j € §;. The agents’
connection topology is described by an n = 7 node directed
ring lattice, shown in Figure 4, such that (i, j) € £ when
je{i+1,i+3,i+5} mod n. All edge weights in the graph
are set to 1/4 and o = ||I — I - L]||= 0.562.

Using (m, L) and o, we computed the optimal step size
a for our algorithm using Brent’s method and computed the
SVL parameters as detailed in [3]. We then simulated both
Algorithm 2 and SVL with and without packet loss and took
the maximum error between the distributed algorithms and a
centralized solution found using Convex.jl and MOSEK. We
ran Algorithm 2 using random initial conditions on the interval
[0, 1] and the SVL algorithm using zero initial conditions. For
the packet loss run of SVL, we held the previous message on
each edge so that the fixed points would be unaffected. At each
time step, packets had a 30% chance of being lost, indepen-
dent of each other and time. The results of these simulations
are shown in Figure 5. In this scenario, Algorithm 2 with
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lossy channels still converges to the optimum at a similar rate
as Algorithm 2 with lossless channels, despite the high rate
of packet loss that causes SVL to converge with high error.

—— Alg 2, lossless

& — —— Alg 2 lossy

s - SVL, lessless
s SVL, lossy

o 50 100 150 200
iterations

Fig. 5. Simulation of Algorithm 2 and SVL in lossless as well as lossy
channels. The lossy channels are modeled with an independent 30% packet
loss. Error is the maximum error.

VI. SUMMARY AND FUTURE WORK

In this paper, we demonstrated the existence of a param-
eterized family of first-order algorithms for distributed opti-
mization that do not require system trajectories to evolve on a
pre-defined subspace, despite having a single communicated
variable. These algorithms are self-healing; they do not require
the system to be initialized precisely and will recover from
events such as agents dropping out of the network or changes
to objective functions that might otherwise introduce uncor-
rectable errors. Furthermore, our algorithms can be augmented
with our packet-loss protocol, thereby allowing the system
to converge to the optimizer even in the presence of heavily
lossy communication channels. Our algorithms converge with
a linear rate to the optimizer but contain an internal instability
that grows linearly in time; however, this instability is unlikely
to cause issues unless run over long time horizons.

There is much left to investigate: we need to characterize
the properties of other factorizations of G(z) in (4), and possi-
ble factorizations of algorithms that are not subsumed by the
SVL template. We need to explore the parameter space of the
algorithm presented in this paper and, particularly, investigate
if an optimization like that used to find the SVL parameters
can be carried out. We need to devise a formal proof that
Algorithm 2 still converges in the presence of packet loss.
Finally, we will consider the important practical issue of
adapting our algorithm to the case of asynchronous updates.
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