
Self-Healing First-Order Distributed Optimization

Israel L. Donato Ridgley1,4, Randy A. Freeman1,3,4, and Kevin M. Lynch2,3,4

Abstract— We describe a parameterized family of first-order
distributed optimization algorithms that enable a network of
agents to collaboratively calculate a decision variable that mini-
mizes the sum of cost functions at each agent. These algorithms
are self-healing in that their convergence to the correct opti-
mizer can be guaranteed even if they are initialized randomly,
agents join or leave the network, or local cost functions change.
We also present simulation evidence that our algorithms
are self-healing in the case of dropped communication
packets. Our algorithms are the first single-Laplacian methods
for distributed convex optimization to exhibit all of these
characteristics. We achieve self-healing by sacrificing internal
stability, a fundamental trade-off for single-Laplacian methods.

I. INTRODUCTION

The distributed optimization problem contains a network

of = agents, wherein each agent calculates a decision vector

that minimizes a global additive objective function of the

form 5 (·) =
∑

8 58(·), where 58 denotes the local convex

objective function known only to agent 8. Specifically, each

agent maintains a local estimate G8 of the global minimizer

Gopt = arg min
\

∑

8

58(\), (1)

which we assume is unique. The agents reach consensus

G8 = Gopt by computing the gradients of their local objective

functions ∇ 58(G8) and passing messages along the links of

the communication network.

Distributed optimization problems of this form have broad

application. For example, a distributed set of servers or

sensors could perform a learning task (e.g., classification)

using their local data without uploading the data to a central

server for bandwidth, resiliency, or privacy reasons [1].

Swarms of robots can use distributed optimization to plan

motions to solve the rendezvous problem [2].

The optimization of a collective cost function in a

network setting has seen considerable interest over the last

decade [3]–[10]. Recently, several authors have adapted

methods from control theory to study distributed optimization

algorithms as linear systems in feedback with uncertainties

constrained by integral quadratic constraints (IQCs) [3],

[11], [12]. These works have made it possible to more easily

compare the various known algorithms across general classes

of cost functions and graph topologies.

All authors are affiliated with Northwestern University, Evanston,
IL 60208 USA (e-mail: israelridgley2023@u.northwestern.edu; free-
man@northwestern.edu; kmlynch@northwestern.edu).

1Department of Electrical & Computer Engineering; 2Department of
Mechanical Engineering; 3Northwestern Institute on Complex Systems;
4Center for Robotics and Biosystems

This material is based upon work supported by the National Science
Foundation under Grant No. CMMI-2024774.

The work [3] uses these techniques to describe several

recent distributed optimization algorithms within a common

framework, then describes a new algorithm (SVL) within that

framework that achieves a superior worst-case convergence

rate. However, all of the algorithms considered in [3] share a

common undesirable trait: to reach the correct solution, their

states must start on a particular subspace of the overall global

state space and remain in it at every time step. If for any reason

the state trajectories leave this subspace (e.g., incorrect initial-

ization, dropped packets, computation errors, agents leaving

the network, changes to objective functions due to continuous

data collection), then the system will no longer converge to

the minimizer. Such methods cannot automatically recover

from disturbances or other faults that displace their trajectories

from this subspace; in other words, they are not self-healing.

In this paper, we extend our results from dynamic average

consensus estimators [13], [14] to design a family of dis-

tributed optimization algorithms whose trajectories need not

evolve on a pre-defined subspace. We call such algorithms

self-healing. In practice, this means that our algorithms can be

arbitrarily initialized, agents can join or leave the network at

will, and agents can change their objective functions as neces-

sary, such as when they collect new data. An important conse-

quence of the self-healing property is that our algorithm can

be modified with a low-overhead packet-loss protocol which

allows the algorithm to recover from lost or corrupted packets.

We refer to distributed optimization algorithms that

communicate one or two variables (having the same vector

dimension as the decision variable G8) per time step as single-

and double-Laplacian methods, respectively. Examples of

single-Laplacian methods are SVL and NIDS, while examples

of double-Laplacian methods are uEXTRA and DIGing

[3], [5]–[8]. Our algorithms are the first self-healing single-

Laplacian methods for convex optimization that converge to

the exact (rather than an approximate) solution (see [13], [15]

for the specific case of average consensus). They achieve

self-healing by sacrificing internal stability, a fundamental

trade-off for single-Laplacian methods. In particular, each

agent will have an internal state that grows linearly in time

in steady state, but because such growth is not exponential

it will not cause any numerical issues unless the algorithm

runs over a long time horizon. Double-Laplacian methods

can achieve both internal stability and self-healing, but they

require twice as much communication per time step and

converge no faster than single-Laplacian methods [3], [14].

Authorized licensed use limited to: Northwestern University. Downloaded on August 25,2022 at 13:25:52 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES AND MAIN RESULTS

A. Notation and terminology

We adopt notation similar to that in [3]. Let 1= be the

=-dimensional column vector of all ones, �= be the identity

matrix in R
=×=, and Π= = 1

=
11
ᵀ

be the projection matrix

onto the vector 1=. We drop the subscript = when the size

is clear from context. We refer to the one-dimensional linear

subspace of R= spanned by the vector 1= as the consensus

direction or the consensus subspace. We refer to the (= − 1)-

dimensional subspace of R
= associated with the projection

matrix (�= − Π=) as the disagreement direction or subspace.

The variable I represents the complex frequency of the

I-transform. Subscripts denote the agent index whereas

superscripts denote the time index. The symbol ⊗ represents

the Kronecker product. �+ indicates the Moore-Penrose

inverse of �. Symmetric quadratic forms G
ᵀ
�G are written

as [★]
ᵀ
�G to save space when G is long. The local decision

variables are 3-dimensional and represented as a row

vector, i.e., G8 ∈ R
1×3 , and the local gradients are a map

∇ 58 : R1×3 → R
1×3 . The symbol | |·| | refers to the Euclidean

norm of vectors and the spectral norm of matrices.

We model a network of = agents participating in a

distributed computation as a weighted digraph G = (V , E),

where V = {1, ..., =} is the set of = nodes (or vertices) and

E is the set of edges such that if (8, 9) ∈ E then node 8 can

receive information from 9 . We make use of the weighted

graph Laplacian L ∈ R
=×= associated with G such that −L8 9

is the weight on edge (8, 9) ∈ E , L8 9 = 0 when (8, 9) 6∈ E and

8 6= 9 , and the diagonal elements of L are L88 = −
∑

9 6=8 L8 9 , so

that L1 = 0. We define f = | |�−Π−L| |, which is a parameter

related to the edge weights and the graph connectivity.

Throughout this work we stack variables and objective

functions such that

G: =



G:
1
...

G:=



∈ R
=×3 and ∇�(G:) =



∇ 51(G:
1
)

...

∇ 5=(G:=)



∈ R
=×3 .

B. Assumptions

(A1) Given 0 < < ≤ !, we assume that the local gradients

are sector bounded on the interval (<, !), meaning

that they satisfy the quadratic inequality

[★]
ᵀ

[
−2<!�3 (! + <)�3
(! + <)�3 −2�3

] [
(G8 − Gopt)

ᵀ

(∇ 58(G8) − ∇ 58(Gopt))
ᵀ

]
≥ 0

for all G8 ∈ R
1×3 , where Gopt satisfies

∑=
8=1

∇ 58(Gopt) = 0.

We define the condition ratio as ^ = !
<

, which captures

the variation in the curvature of the objective function.

(A2) The graph G is strongly connected.

(A3) The graph G is weight balanced, meaning that 1
ᵀ
L = 0.

(A4) The weights of G are such that f = | |� − Π − L| |< 1.

Remark 1. Assumption (A1) is known as a sector IQC (for

a more detailed description see [11]) and is satisfied when

the local objective functions are <-strongly convex with

!-Lipschitz continuous gradients.

Remark 2. Throughout this paper we assume without loss

of generality that the dimension of the local decision and

state variables is 3 = 1.

Remark 3. Under appropriate conditions on the communi-

cations network, the agents can self-balance their weights in

a distributed way to satisfy (A3); for example, they can use

a scalar consensus filter like push-sum (see Algorithm 12

in [16]). Additionally, agents can enforce that their weighted

in-degrees (and thus their weighted out-degrees) sum to less

than one in order to satisfy (A4).

C. Results

In the following sections we present a parameterized

family of distributed, synchronous, discrete-time algorithms

to be be run on each agent such that, under assumptions

(A1)-(A4), we achieve the following:

Accurate convergence: in the absence of disturbances or

other faults, the local estimates G8 converge to the

optimizer Gopt with a linear rate.

Self-healing: the system state trajectories need not evolve

on a pre-defined subspace and will recover from events

such as arbitrary initialization, temporary node failure,

computation errors, or changes in local objectives.

Packet-loss protocol: if agents are permitted a state of mem-

ory for each of their neighbors, they can implement a

packet-loss protocol that allows computations to continue

in the event communication is temporarily lost. This

extends the self-healing of the network to packet loss in

a way that is not possible if the system state trajectories

are required to evolve on a pre-defined subspace.

First we present the synthesis and analysis of our algorithm

along with its performance relative to existing methods.

Then we demonstrate via simulation that our algorithm still

converges under high rates of packet loss.

III. SYNTHESIS OF SELF-HEALING

DISTRIBUTED OPTIMIZATION ALGORITHMS

A. Canonical first-order methods

As a motivation for our algorithms, we use the canonical

form first described in [17] and later used as the SVL tem-

plate [3]. When the communication graph is constant, many

single-Laplacian methods such as SVL, EXTRA and Exact

Diffusion can be described in this form [3], [4], [9], [10], [17].

Algorithms representable by the SVL template can also be

expressed as a state space system � in feedback with an un-

certain and nonlinear block containing the objective function

gradients ∇�(·) and the Laplacian L shown in Figure 1, where

� =



� �D �E

�G �GD �GE

�H �HD �HE


=



1 V −U −W

0 1 0 −1

1 0 0 −X

1 0 0 0



⊗ �=. (2)

Authorized licensed use limited to: Northwestern University. Downloaded on August 25,2022 at 13:25:52 UTC from IEEE Xplore. Restrictions apply.

�

[
∇�(·) 0

0 L

]

[
D:

E:

] [
G:

H:

]

Fig. 1. Distributed optimization algorithms represented as a feedback
interconnection of an LTI system � and an uncertain block containing the
gradients and the graph Laplacian.

The LTI system � has two states F:
1

and F:
2

, inputs D: and

E: , and outputs G: and H: such that

D:8 = ∇ 58(G
:
8), E:8 =

=∑

9=1

L:
8 9 H

:
9 . (3)

We would like to alert the reader to a small notational

difference between our work and [3]: in this work, the

variable G is the input to the gradients and the variable H is

the input to the Laplacian (as shown in Figure 1), whereas

in [3] H is the input to the gradients and I is the input to

the Laplacian. (We cannot use I because we already use it

as the frequency variable of the I-transform.)

Algorithms described by Figure 1 contain two discrete-time

integrators in the LTI block �: one integrator is necessary

to force the steady state error to zero, and the other is

responsible for the agents coming to consensus. In the SVL

template, the output of the graph Laplacian feeds into the

integrator responsible for consensus.

Algorithms representable by the SVL template, and

more broadly all existing first-order methods with a single

Laplacian, require that the system trajectories evolve on a

pre-defined subspace. From our work with average consensus

estimators [13], [14], we know that these drawbacks arise

from the positional order of the Laplacian and integrator

blocks. When the Laplacian feeds into the integrator, the

output of the Laplacian cannot drive the integrator state away

from the consensus subspace, which leads to an observable

but uncontrollable mode. If the integrator state is initialized on

the consensus subspace, or it is otherwise disturbed there, the

estimate of the optimizer will contain an uncorrectable error.

Switching the order of the Laplacian and integrator renders the

integrator state controllable but causes it to become inherently

unstable because the integrator output in the consensus

direction is disconnected from the rest of the system. We

exploit this trade-off to develop self-healing distributed

optimization algorithms with only a single Laplacian.

B. Factorization and integrator location

To switch the order of the Laplacian and the integrator, we

first factor an integrator out of the �(I) block of Figure 1,

�(I) =



−U

I − 1
−
XI2 + (W − 2X)I + (V + X − W)

(I − 1)2

−U

I − 1
−
WI + (V − W)

(I − 1)2



⊗ �= (4)

L
XI + [− X

I − 1
�=

Fig. 2. The output of the integrator now feeds into the Laplacian,
converting an uncontrollable and observable mode in the original SVL
template to a controllable and unobservable one.

=



−U

I − 1
−
I − 1 + Z

I − 1

−U

I − 1

−WI − (V − W)

(I − 1)(XI + [− X)





1 0

0
XI + [− X

I − 1



⊗ �=, (5)

where

[= W − XZ and Z =




V

W
if X = 0

W −
√
W2 − 4VX

2X
otherwise.

(6)

Swapping the order of the component matrices yields our

new family of algorithms (where �B replaces �):

�B(I) =



1 0

0
XI + [− X

I − 1





−U

I − 1
−
I − 1 + Z

I − 1

−U

I − 1

−WI − (V − W)

(I − 1)(XI + [− X)



⊗ �=

=



−U
1

I − 1
−
I − 1 + Z

I − 1

−U
XI + [− X

(I − 1)2
−
WI + V − W

(I − 1)2



⊗ �=. (7)

Now the output of the integrator feeds directly into the

Laplacian, as depicted in Figure 2. We assume that our

parameter choices satisfy

W2 ≥ 4VX (8)

so that the zeros of �B remain real and thus the system can

be implemented with real-valued signals. The corresponding

distributed algorithm is described in Algorithm 1, where F1

and F2 are the internal states of �B, and the compact state

space form is

�B =



1 0 −U −Z

1 1 0 −1

1 0 0 −1

X [0 0



⊗ �=. (9)

Remark 4. The factorization in (5) is not unique; we chose

it because it leads to a method still having only two internal

states per agent. There may be other useful factorizations.

Remark 5. In contrast to algorithms like SVL, Algorithm 1

does not require specific initial conditions and system trajec-

tories are not restricted to a pre-defined subspace. If agents

change their local objective functions or drop out of the com-

putation, the system does not need to be reset and the system

will converge to the new minimizer. In the case of agents drop-

ping out, the connection topology must still be strongly con-

nected, otherwise Algorithm 1 with a weight balancer will con-

verge to the minimizer for only a subset of the objective func-

tions and consensus across the network will not be achieved.

Authorized licensed use limited to: Northwestern University. Downloaded on August 25,2022 at 13:25:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Self-Healing Distributed Gradient Descent

Initialization:

Each agent 8 ∈ {1, ..., =} chooses F0
18
, F0

28
∈ R

1×3

arbitrarily. L ∈ R
=×= is the graph Laplacian.

for : = 0, 1, 2, ... do

for 8 ∈ {1, ..., =} do
Local communication

H:
8

= XF:
18

+ [F:
28

E:
8

=
∑=

9=1
L8 9 H

:
9

Local gradient computation

G:
8

= F:
18
− E:

8
// Update the optimizer estimate.

D:
8

= ∇ 58(G
:
8
)

Local state update

F:+1
18

= F:
18
− UD:

8
− ZE:

8

F:+1
28

= F:
18

+ F:
28
− E:

8

end

end

return G8

IV. STABILITY AND CONVERGENCE RATES USING IQCS

A. Projection onto the disagreement subspace

As written, our family of algorithms is internally unstable.

We use the projection matrix (�−Π) to eliminate the instability

from the global system without affecting G: . This procedure

is a centralized calculation that cannot be implemented

in a distributed fashion, but it allows us to analyze the

convergence properties of the distributed algorithm.

Consider the steady-state values (F★
1
, G★, D★, E★) and

suppose F:
2

contains a component in the 1 direction. Then

that component does not affect the aforementioned values

because it is an input to the Laplacian L (and lies in its

nullspace); however, it grows linearly in time due to the

F2 update. Thus the system has an internal instability that

is unobservable from the output of the bottom block in

Figure 1. Since the component of F:
2

in the consensus

direction is unobservable to the variables (F:
1
, G: , D: , E:), we

can throw it away without affecting their trajectories. Using

the transformation F̂:
2

= (� −Π)F:
2

, our state updates become

F:+1
1 = F:

1 − UD: − ZE: (10)

F̂:+1
2 = (� − Π)F:

1 + (� − Π)F̂:
2 − (� − Π)E: (11)

G: = F:
1 − E: (12)

Ĥ: = XF:
1 + [F̂:

2 (13)

D: = ∇�(G:) (14)

E: = LĤ: , (15)

where H: was replaced with Ĥ: in (13) and (15) to accom-

modate F̂:
2
. These updates lead to the state-space system

�< =



� 0 −U� −Z �

� − Π � − Π 0 −(� − Π)

� 0 0 −�

X� [� 0 0



. (16)

B. Existence and optimality of a fixed point

Now that we have eliminated the inherent instability of

the global system, we can state the following about the fixed

points:

Theorem 1. For the system described by �<, there exists

at least one fixed point (F★
1
, F̂★

2
, G★, Ĥ★, D★, E★), and any

such fixed point has G★ in the consensus subspace such that

G★
8

= Gopt for all 8 ∈ {1, . . . , =}, i.e., any fixed point of the

system is optimal.

Proof. First, assume that the fixed point

(F★
1
, F̂★

2
, G★, Ĥ★, D★, E★) exists. To prove that the variable G★

lies in the consensus direction, we show that (� − Π)G★ = 0.

From (11) and (12) we have that

(� − Π)F★
1 = (� − Π)E★ (17)

(� − Π)G★ = (� − Π)F★
1 − (� − Π)E★ (18)

= 0. (19)

Thus G★
8

= G★
9

for all 8, 9 ∈ {1, . . . , =}. Next we show that

G★
8

= Gopt. From (10) then plugging in (15), we have

−UD★ − ZE★ = 0 (20)

D★ = −
Z

U
E★ = −

Z

U
LĤ★ (21)

1
ᵀ
D★ = −

Z

U
1
ᵀ
LĤ★ (22)

=∑

8=1

D★8 = 0 (23)

→
=∑

8=1

∇ 58(G
★
8) = 0 (24)

→ G★8 = Gopt ∀ 8 ∈ {1, . . . , =}. (25)

Thus any fixed point is optimal.

Next, to construct a fixed point we define

G★ = 1Gopt, D★ = ∇ 5 (G★)

E★ = −
U

Z
D★, F★

1 = G★ + E★.
(26)

Then F̂★
2

is the solution to the equation

Z[LF̂★
2 = −U(� − XL)D★. (27)

Since F̂:
2

= L+LF:
2

(i.e., F̂:
2

is in the row space of L), we

write F̂★
2

in closed form as

F̂★
2 =

U

Z[
L+(X! − �)D★. (28)

Finally, setting Ĥ★ = XF★
1

+ [F̂★
2

completes the proof. �

Remark 6. If the graph is switching but converges in time

such that the limit of the sequence of Laplacians exists, as

with a weight balancer, then a solution to (27) still exists

and an optimal fixed point can still be found. Furthermore,

the proof techniques in the following section still hold for

switching Laplacians (see [3] for more information).

Authorized licensed use limited to: Northwestern University. Downloaded on August 25,2022 at 13:25:52 UTC from IEEE Xplore. Restrictions apply.

C. Convergence

Following the approaches in [3], [11], [12], we prove

stability using a set of linear matrix inequalities. First we

split our modified system from (16) into consensus and

disagreement components. We define

�< = �? ⊗ Π + �@ ⊗ (� − Π) (29)

�<D = �?D ⊗ Π + �@D ⊗ (� − Π) (30)

�<E = �?E ⊗ Π + �@E ⊗ (� − Π) (31)

�? =

[
1 0

0 0

]
, �?D =

[
−U

0

]
, �?E =

[
−Z

0

]

�@ =

[
1 0

1 1

]
, �@D =

[
−U

0

]
�@E =

[
−Z

−1

]
.

(32)

We also define the matrices

"0 =

[
−2<! ! + <

! + < −2

]
and "1 =

[
f2 − 1 1

1 −1

]
. (33)

Notice that "0 is associated with the sector bound from

(A1) and that "1 is associated with the (1 − f, 1 + f) sector

bound on L with inputs from the disagreement subspace.

We now make a statement analogous to Theorem 10 in [3].

Theorem 2. If there exists %,& ∈ R
2×2, _0, _1 ∈ R, and

d ∈ (0, 1), with %,& � 0 and _0, _1 ≥ 0 such that

[★]
ᵀ



% 0 0

0 −d2% 0

0 0 _0"0





�? �?D

� 0

�G �GD

0 �



� 0, (34)

[★]
ᵀ



& 0 0 0

0 −d2& 0 0

0 0 _0"0 0

0 0 0 _1"1





�@ �@D �@E

� 0 0

�G �GD �GE

0 � 0

�H �HD �HE

0 0 �



� 0, (35)

then the following is true for the trajectories of �<:

[
F:

1
− F★

1

F̂:
2
− F̂★

2

]

≤
√

cond())d:

[
F0

1
− F★

1

F̂0
2
− F̂★

2

]

(36)

for a fixed point (F★
1
, F̂★

2
, G★, Ĥ★, D★, E★), where

) = % ⊗ Π= + & ⊗ (�= − Π=) and cond()) =
_max())
_min())

is the condition number of) . Thus the output G: of

Algorithm 1 converges to the optimizer with the linear rate d.

Proof. Equation (36) follows directly from Theorem 4 of

[11]. Since the states of �< are converging at a linear rate d,

the rest of the signals in the system (including G:) converge

to an optimal fixed point at the same rate. Additionally, the

trajectories of �< and �B (Algorithm 1) are the same, save

for F̂:
2

and Ĥ: , so G: in Algorithm 1 also converges to the

optimizer with linear rate d. �

To test the performance of our algorithm, we used the

parameters V = 0.5, W = 1, X = 0.5. These parameters were

inspired by the NIDS/Exact Diffusion parameters presented in

Fig. 3. Performance of our algorithm compared with SVL for ^ = 10
and f ∈ [0, 1). Our NIDS-inspired parameter choices result in performance
identical to that of NIDS in [3]. We have not made any attempts to choose
“optimal” parameters like those of SVL.

[17]; however, we have done no work to find parameters that

optimize the convergence rate. We then solved the LMIs (34)

and (35) using Convex.jl [18] with the MOSEK solver [19],

performing a bisection search on d to find the minimum worst-

case convergence rate for a given ^, f, and U. We used Brent’s

method from Optim.jl [20] to determine the optimal U. We

plot our results for ^ = 10 in Figure 3 and include the results

for SVL (reproduced from [3]) for comparison. Our algorithm

with these parameter choices achieves the same performance

as NIDS for the NIDS parameter choice ` = 1 as shown in [3].

The worst-case convergence rate of our algorithm is subject

to the same lower bound, d ≥ max(^−1
^+1

, f), found in [3].

Remark 7. In Algorithm 1, the signal G: converges to the

optimizer with linear rate d but the internal signals F:
2

and H: grow only linearly. Therefore, F:
2

and H: will not

become large enough to cause overflow errors until well

after the algorithm has converged to the optimizer.

Remark 8. We tested the convergence rates for our

algorithm with Zames-Falb IQCs in place of Sector IQCs

but saw no improvement.

V. SELF-HEALING DESPITE PACKET LOSS

A. Packet-loss protocol

We next give our agents some additional memory so

that they can substitute previously transmitted values when

a packet is lost. Each agent 8 ∈ {1, . . . , =} maintains an

edge state 4:
8 9

for each 9 ∈ Nin(8) (the set of neighbors who

transmit to 8). Whenever agent 8 receives a message from

agent 9 , it updates the state 48 9 accordingly; however, if

at time : no message from neighbor 9 is received, agent 8

must estimate what would have likely been transmitted. One

potential strategy is to substitute in the last message received,

but because H 9 is growing linearly in quasi steady state, this

naive strategy would ruin steady-state accuracy. Instead we

must account for the linear growth present in our algorithm,

Authorized licensed use limited to: Northwestern University. Downloaded on August 25,2022 at 13:25:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Self-Healing Distributed Gradient

Descent with Packet-loss protocol

Initialization: Each agent 8 ∈ {1, ..., =}

chooses F0
18
, F0

28
∈ R

1×3 arbitrarily. L ∈ R
=×=

is the graph Laplacian. All 48 9 are initialized

the first time a message is received from a neighbor.

for : = 0, 1, 2, ... do

for 8 ∈ {1, ..., =} do
Local communication

H:
8

= XF:
18

+ [F:
28

for 9 ∈ Nin(8) do

if Packet from 9 received by 8 then

4:
8 9

= H:
9

else

4:
8 9

= [G:−1
8

+ 4:−1
8 9

end

end

E:
8

=
∑=

9=1
L8 94

:
8 9

Local gradient computation

G:
8

= F:
18
− E:

8
// Update the optimizer estimate.

D:
8

= ∇ 58(G
:
8
)

Local state update

F:+1
18

= F:
18
− UD:

8
− ZE:

8

F:+1
28

= F:
18

+ F:
28
− E:

8

end

end

return G8

which we can do by analyzing the quantity H:
9
− H:−1

9
at the

quasi fixed point (F★
1
, G★, D★, E★):

H:9 − H:−1
9 = X(F★

1 9 − F★
1 9) + [(F:

2 9 − F:−1
2 9) (37)

= [(F★
1 9 − E★9) (38)

= [G★9 ≈ [G:8 (39)

Therefore, when a packet is not received by a neighbor, agent 8

scales its estimate of the optimizer and adds it to its previously

received (or estimated) message. The packet-loss protocol is

summarized in Algorithm 2. By construction, the modifica-

tions included in Algorithm 2 will not alter the quasi fixed

points of Algorithm 1, though we do not have a stability con-

dition like Theorem 2 to present at this time. Instead, we show

simulation evidence that Algorithm 2 does indeed converge,

and packet loss does not appear to have a substantial impact

on the convergence rate, even when the rate of packet loss is

large. In the absence of dropped packets, the state trajectories

of Algorithm 2 are equivalent to those of Algorithm 1.

Remark 9. Algorithm 2 can be modified to include a for-

getting factor @. If agent 8 does not receive a packet from

neighbor 9 in @ time steps, then agent 8 assumes that the com-

munication link has been severed and clears 48 9 from memory.

B. Classification example

To test the performance of our algorithm under packet

loss, we solved a classification problem using the COSMO

1

2
3

4

5

6
7

Fig. 4. The directed network topology for the classification example. All
edge weights are 1/4.

chip dataset [21]. The problem setup is as follows: a

network of = agents would like to collaboratively compute

a binary classifier that identifies whether or not a computer

chip will pass a quality assurance test using data gathered

independently by each agent in the network; furthermore, they

would like to do so in a distributed fashion without sharing

their datasets. In order to simulate this problem, we divide the

COSMO chip dataset into = local subsets and denote agent

8’s set of local data indices as (8 . To improve the performance

of their classifier, the agents employ a polynomial embedding

where each 2-dimensional data point 3 9 = [3 91, 3 92] is

embedded in a 28-dimensional space given by

"(3 9) = [1, 3 91, 3 92, 3
2
91, 3 913 92, 3

2
92, 3

3
91, . . . , 3 913

5
92, 3

6
92].

The agents use the logistic loss function with !2-

regularization, yielding local cost functions given by

58(G8) =
∑

9∈(8

log(1 + 4−; 9 G
ᵀ

8
" (3 9)) +

1

=
| |G8 | |

2, (40)

where ; 9 ∈ {−1, 1} is the label of data point 9 , and each agent

computes the label of unseen data by using the operation

; = sgn(G
ᵀ

8 "(3)). Using the cost in (40), the corresponding

sector bound (<, !) is approximated as < = 2
=

and

!8 ≤

2

=
� +

1

4
"
ᵀ

8 "8

, ! = max
8

!8 , (41)

where the rows of "8 are "(3 9) for 9 ∈ (8 . The agents’

connection topology is described by an = = 7 node directed

ring lattice, shown in Figure 4, such that (8, 9) ∈ E when

9 ∈ {8 + 1, 8 + 3, 8 + 5} mod =. All edge weights in the graph

are set to 1/4 and f = | |� − Π − L| |= 0.562.

Using (<, !) and f, we computed the optimal step size

U for our algorithm using Brent’s method and computed the

SVL parameters as detailed in [3]. We then simulated both

Algorithm 2 and SVL with and without packet loss and took

the maximum error between the distributed algorithms and a

centralized solution found using Convex.jl and MOSEK. We

ran Algorithm 2 using random initial conditions on the interval

[0, 1] and the SVL algorithm using zero initial conditions. For

the packet loss run of SVL, we held the previous message on

each edge so that the fixed points would be unaffected. At each

time step, packets had a 30% chance of being lost, indepen-

dent of each other and time. The results of these simulations

are shown in Figure 5. In this scenario, Algorithm 2 with

Authorized licensed use limited to: Northwestern University. Downloaded on August 25,2022 at 13:25:52 UTC from IEEE Xplore. Restrictions apply.

lossy channels still converges to the optimum at a similar rate

as Algorithm 2 with lossless channels, despite the high rate

of packet loss that causes SVL to converge with high error.

Fig. 5. Simulation of Algorithm 2 and SVL in lossless as well as lossy
channels. The lossy channels are modeled with an independent 30% packet
loss. Error is the maximum error.

VI. SUMMARY AND FUTURE WORK

In this paper, we demonstrated the existence of a param-

eterized family of first-order algorithms for distributed opti-

mization that do not require system trajectories to evolve on a

pre-defined subspace, despite having a single communicated

variable. These algorithms are self-healing; they do not require

the system to be initialized precisely and will recover from

events such as agents dropping out of the network or changes

to objective functions that might otherwise introduce uncor-

rectable errors. Furthermore, our algorithms can be augmented

with our packet-loss protocol, thereby allowing the system

to converge to the optimizer even in the presence of heavily

lossy communication channels. Our algorithms converge with

a linear rate to the optimizer but contain an internal instability

that grows linearly in time; however, this instability is unlikely

to cause issues unless run over long time horizons.

There is much left to investigate: we need to characterize

the properties of other factorizations of �(I) in (4), and possi-

ble factorizations of algorithms that are not subsumed by the

SVL template. We need to explore the parameter space of the

algorithm presented in this paper and, particularly, investigate

if an optimization like that used to find the SVL parameters

can be carried out. We need to devise a formal proof that

Algorithm 2 still converges in the presence of packet loss.

Finally, we will consider the important practical issue of

adapting our algorithm to the case of asynchronous updates.

REFERENCES

[1] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based
distributed support vector machines.,” Journal of Machine Learning

Research, vol. 11, no. 5, 2010.

[2] G. G. Rigatos, “Distributed gradient and particle swarm optimization
for multi-robot motion planning,” English, Robotica, vol. 26, no. 3,
pp. 357–370, May 2008, Copyright - Cambridge University Press;
Last updated - 2015-08-15.

[3] A. Sundararajan, B. Van Scoy, and L. Lessard, “Analysis and design
of first-order distributed optimization algorithms over time-varying
graphs,” IEEE Transactions on Control of Network Systems, vol. 7,
no. 4, pp. 1597–1608, 2020.

[4] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Jour-

nal on Optimization, vol. 25, no. 2, pp. 944–966, 2015. eprint:
https://doi.org/10.1137/14096668X. [Online]. Avail-
able: https://doi.org/10.1137/14096668X.

[5] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient
method with network independent step-sizes and separated con-
vergence rates,” IEEE Transactions on Signal Processing, vol. 67,
no. 17, pp. 4494–4506, 2019.

[6] D. Jakovetić, “A unification and generalization of exact distributed
first-order methods,” IEEE Transactions on Signal and Information

Processing over Networks, vol. 5, no. 1, pp. 31–46, 2019.
[7] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric con-

vergence for distributed optimization over time-varying graphs,”
SIAM Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.
eprint: https://doi.org/10.1137/16M1084316. [Online].
Available: https://doi.org/10.1137/16M1084316.

[8] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 3, pp. 1245–1260, 2018.

[9] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion
for distributed optimization and learning—part i: Algorithm devel-
opment,” IEEE Transactions on Signal Processing, vol. 67, no. 3,
pp. 708–723, 2019.

[10] ——, “Exact diffusion for distributed optimization and learn-
ing—part ii: Convergence analysis,” IEEE Transactions on Signal

Processing, vol. 67, no. 3, pp. 724–739, 2019.
[11] L. Lessard, B. Recht, and A. Packard, “Analysis and design of

optimization algorithms via integral quadratic constraints,” SIAM J.

Optim., vol. 26, no. 1, pp. 57–95, 2016.
[12] A. Sundararajan, B. Hu, and L. Lessard, “Robust convergence anal-

ysis of distributed optimization algorithms,” in 2017 55th Annual

Allerton Conference on Communication, Control, and Computing

(Allerton), 2017, pp. 1206–1212.
[13] I. L. Donato Ridgley, R. A. Freeman, and K. M. Lynch, “Private and

hot-pluggable distributed averaging,” IEEE Control Systems Letters,
vol. 4, no. 4, pp. 988–993, 2020.

[14] S. S. Kia, B. Van Scoy, J. Cortés, R. A. Freeman, K. M. Lynch, and S.
Martı́nez, “Tutorial on dynamic average consensus: The problem, its
applications, and the algorithms,” IEEE Control Systems Magazine,
vol. 39, no. 3, pp. 40–72, Jun. 2019.

[15] C. N. Hadjicostis, N. H. Vaidya, and A. D. Domı́nguez-Garcı́a,
“Robust distributed average consensus via exchange of running sums,”
IEEE Transactions on Automatic Control, vol. 61, no. 6, pp. 1492–
1507, 2016.

[16] C. N. Hadjicostis, A. D. Domı́nguez-Garcı́a, and T. Charalambous,
Distributed Averaging and Balancing in Network Systems, ser. Foun-
dations and Trends (R) in Systems and Control. Now Publishers,
2018, vol. 13.

[17] A. Sundararajan, B. Van Scoy, and L. Lessard, “A canonical form
for first-order distributed optimization algorithms,” in 2019 American

Control Conference (ACC), 2019, pp. 4075–4080.
[18] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd,

“Convex optimization in Julia,” SC14 Workshop on High Performance

Technical Computing in Dynamic Languages, 2014.
[19] MOSEK ApS, MOSEK Optimizer API for C 8.0.0.81, 2017. [Online].

Available: http://docs.mosek.com/8.0/capi/index.
html.

[20] P. K. Mogensen and A. N. Riseth, “Optim: A mathematical optimiza-
tion package for Julia,” Journal of Open Source Software, vol. 3,
no. 24, p. 615, 2018.

[21] M. Garstka, M. Cannon, and P. Goulart, “COSMO: A conic operator
splitting method for large convex problems,” in European Control

Conference, Naples, Italy, 2019.

Authorized licensed use limited to: Northwestern University. Downloaded on August 25,2022 at 13:25:52 UTC from IEEE Xplore. Restrictions apply.

