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Abstract

Previous studies have shown the efficacy of
knowledge augmentation methods in pretrained
language models. However, these methods
behave differently across domains and down-
stream tasks. In this work, we investigate
the augmentation of pretrained language mod-
els with knowledge graph data in the cause-
effect relation classification and commonsense
causal reasoning tasks. After automatically ver-
balizing triples in ATOMIC20

20, a wide cover-
age commonsense reasoning knowledge graph,
we continually pretrain BERT and evaluate
the resulting model on cause-effect pair classi-
fication and answering commonsense causal
reasoning questions. Our results show that
a continually pretrained language model aug-
mented with commonsense reasoning knowl-
edge outperforms our baselines on two com-
monsense causal reasoning benchmarks, COPA
and BCOPA-CE, and a Temporal and Causal
Reasoning (TCR) dataset, without additional
improvement in model architecture or using
quality-enhanced data for fine-tuning.

1 Introduction

Automatic extraction and classification of causal
relations in text has been an important yet challeng-
ing task in natural language understanding. Early
methods in the 80s and 90s (Joskowicz et al., 1989;
Kaplan and Berry-Rogghe, 1991; Garcia et al.,
1997; Khoo et al., 1998) mainly relied on defin-
ing hand-crafted rules to find cause-effect relations.
Starting 2000, machine learning tools were utilized
in building causal relation extraction models (Girju,
2003; Chang and Choi, 2004, 2006; Blanco et al.,
2008; Do et al., 2011; Hashimoto et al., 2012;
Hidey and McKeown, 2016). Word-embeddings
and Pretrained Language Models (PLMs) have also
been leveraged in training models for understand-
ing causality in language in recent years (Dunietz
et al., 2018; Pennington et al., 2014; Dasgupta et al.,
2018; Gao et al., 2019).

Investigating the true capability of pretrained
language models in understanding causality in text
is still an open question. More recently, Knowl-
edge Graphs (KGs) have been used in combination
with pretrained language models to address com-
monsense reasoning. Two examples are Causal-
BERT (Li et al., 2020) for guided generation
of Cause and Effect and the model introduced
by Guan et al. (2020) for commonsense story gen-
eration.
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Figure 1: Overview of our proposed framework to con-
tinually pretrain PLMs with commonsense reasoning
knowledge.

Motivated by the success of continual pre-
training of PLMs for downstream tasks (Gururan-
gan et al., 2020), we explore the impact of common
sense knowledge injection as a form of continual
pretraining for causal reasoning and cause-effect
relation classification. It is worth highlighting that
even though there are studies to show the efficacy
of knowledge injection with continual pretraining
for commonsense reasoning (Guan et al., 2020),
performance of these techniques is very dependent
on the domain and downstream tasks (Gururangan
et al., 2020). And, to the best of our knowledge,
there are limited studies on the effect of common-
sense knowledge injection with knowledge graph
data on cause-effect relation classification (Dalal
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et al., 2021). Our contributions are as follows:

• We study performance of PLMs augmented
with knowledge graph data in the less investi-
gated cause-effect relation classification task.

• We demonstrate that a simple masked lan-
guage modeling framework using automat-
ically verbalized knowledge graph triples,
without any further model improvement (e.g.,
new architecture or loss function) or qual-
ity enhanced data for fine-tuning, can signifi-
cantly boost the performance in cause-effect
pair classification.

• We publicly release our knowledge graph ver-
balization codes and continually pretrained
models.

2 Method

The overview of our method is shown in Figure 1.1

We first convert triples in ATOMIC20
20 (Hwang et al.,

2021) knowledge graph to natural language texts.
Then we continually pretrain BERT using Masked
Language Modeling (MLM) and evaluate perfor-
mance of the resulting model on different bench-
marks. Samples in ATOMIC20

20 are stored as triples
in the form of (head/subject, relation, tail/target)
in three splits including train, development, and
test. ATOMIC20

20 has 23 relation types that are clas-
sified into three categorical types including com-
monsense relations of social interactions, physical-
entity commonsense relations, and event-centric
commonsense relations. In the rest of the paper, we
refer to these three categories as social, physical,
and event, respectively.

2.1 Filtering Triples

We remove all duplicates and ignore all triples
in which the target value is none. Moreover,
we ignore all triples that include a blank. Since
in masked language modeling we need to know
the gold value of masked tokens, a triple that al-
ready has a blank (masked token/word) in it may
not help our pretraining. For instance, in the
triple: [PersonX affords another ___,
xAttr, useful] it is hard to know why or un-
derstand what it means for a person to be useful
without knowing what they afforded. This prepro-
cessing step yields in 782,848 triples with 121,681,

1Codes and models are publicly available at https://
github.com/phosseini/causal-reasoning.

177,706, and 483,461 from event, physical, and so-
cial categories, respectively. Distribution of these
relations is shown in Figure 2.
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Figure 2: Distribution of relation types in ATOMIC20
20.

PersonX accidentally fell xEffect PersonX breaks an arm
RelationSubject Target

Tracy accidentally fell. As a result, Tracy breaks an arm

PersonX creates an app xIntent To do something creative
RelationSubject Target

Tracy creates an app because Tracy wanted to do something creative

Relation Human readable template

xEffect As a result

xIntent Because PersonX wanted
PersonX Tracy

Replace by

We verbalize ATOMIC2020 knowledge graph

Figure 3: Examples of converting two triples in
ATOMIC20

20 to natural language text using human read-
able templates. Following Sap et al. (2019), we replace
PersonX with a name.

2.2 Converting Triples

Each relation in ATOMIC20
20 is associated with a

human-readable template. For example, xEffect’s
and HasPrerequisite’s templates are as a result,
PersonX will and to do this, one requires, respec-
tively. We use these templates to convert triples
in ATOMIC20

20 to sentences in natural language by
concatenating the subject, relation template, and
target. Examples of converting triples to text are
shown in Figure 3.

2.3 Checking Grammar

When we convert triples to natural language text,
ideally we want to have grammatically correct sen-
tences. Human readable templates provided by
ATOMIC20

20 are not necessarily rendered in a way
to form error-free sentences when concatenated
with subject and target in a triple. To address this
issue, we use an open-source grammar and spell
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checker, LanguageTool,2 to double-check our con-
verted triples to ensure they do not contain obvious
grammatical mistakes or spelling errors. Similar
approaches that include deterministic grammati-
cal transformations were also previously used to
convert KG triples to coherent sentences (Davison
et al., 2019). It is worth pointing out that the Data-
To-Text generation (KG verbalization) for itself is a
separate task and there have been efforts to address
this task (Agarwal et al., 2021). We leave investi-
gating the effects of using other Data-To-Text and
grammar-checking methods to future research.

2.4 Continual Pretraining

As mentioned earlier, we use MLM to continually
pretrain our PLM, BERT-large-cased (Devlin et al.,
2018). We follow the same procedure as BERT to
create the input data to our pretraining (e.g., num-
ber of tokens to mask in input examples). We run
the pretraining using ATOMIC20

20’s train and devel-
opment splits as our training and evaluation sets,
respectively, for 10 epochs on Google Colab TPU
v2 using PyTorch/XLA package with a maximum
sequence length of 30 and batch size of 128.3 To
avoid overfitting, we use early stopping with the
patience of 3 on evaluation loss. We select the best
model based on the lowest evaluation loss at the
end of training.4

3 Experiments

3.1 Benchmarks

We chose multiple benchmarks of commonsense
causal reasoning and cause-effect relation classi-
fication to ensure we thoroughly test the effects
of our newly trained models. These benchmarks
include: 1) Temporal and Causal Reasoning (TCR)
dataset (Ning et al., 2018), a benchmark for joint
reasoning of temporal and causal relations; 2)
Choice Of Plausible Alternatives (COPA) (Roem-
mele et al., 2011) dataset which is a widely used
and notable benchmark (Rogers et al., 2021) for
commonsense causal reasoning; And 3) BCOPA-
CE (Han and Wang, 2021), a new benchmark
inspired by COPA, that contains unbiased token
distributions which makes it a more challenging
benchmark. For COPA-related experiments, since
COPA does not have a training set, we use COPA’s

2https://tinyurl.com/yc77k3fb
3%99.99 of ATOMIC20

20 instances have 30 tokens or less.
4We use Huggingface’s BertForMaskedLM implementa-

tion.

development set for fine-tuning our models and
testing them on COPA’s test set (COPA-test) and
BCOPA-CE. For hyperparameter tuning, we ran-
domly split COPA’s development set into train
(%90) and dev (%10) and find the best learning rate,
batch size, and number of train epochs based on the
evaluation accuracy on the development set. Then
using COPA’s original development set and best set
of hyperparameters, we fine-tune our models and
evaluate them on the test set. In all experiments,
we report the average performance of models using
four different random seeds. For TCR, we fine-tune
and evaluate our models on train and test splits, re-
spectively.

3.2 Models and Baseline

We use bert-large-cased pre-trained model in all ex-
periments as our baseline. For COPA and BCOPA-
CE, we convert all instances to a SWAG-formatted
data (Zellers et al., 2018) and use Huggingface’s
BertForMultipleChoice –a BERT model with a
multiple-choice classification head on top. And for
TCR, we convert every instance by adding special
tokens to input sequences as event boundaries and
use the R-BERT 5 model (Wu and He, 2019). We
chose R-BERT for our relation classification since
it not only leverages the pretrained embeddings but
also transfers information of target entities (e.g.,
events in a relation) through model’s architecture
and incorporates encodings of the targets entities.
Examples of COPA and TCR are shown in Figure 4.
BCOPA-CE has the same format as COPA.

𝑃: The computer crashed. 𝐻!: I backed up my files.
asks-for=”cause"

𝐻": I downloaded a virus.

C
O
PA

TC
R

The death toll <e1> climbed </e1> to 99 on Sunday after a 
suicide car bomb <e2> exploded </e2> Friday in the middle 
of a group of men playing volleyball in northwest Pakistan, 
police said. Cause-Effect(e1,e2)

[CLS] The computer crashed. [SEP] I backed up my files. [SEP]
[CLS] The computer crashed. [SEP] I downloaded a virus. [SEP]

Figure 4: COPA and TCR examples. The COPA in-
stance is converted to Multiple Choice format.

4 Results and Discussion

Results of our experiments on TCR are shown in
Table 1. As can be seen, our model significantly
outperforms both our baseline and the joint infer-

5We use the following implementation of R-BERT:
https://github.com/monologg/R-BERT
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ence framework by Ning et al. (2018) formulated
as an integer linear programming (ILP) problem.

Model Acc (%)
Joint system (Ning et al., 2018) 77.3
BERT-large (baseline) ❈ 75.0
ATOMIC-BERT-largeMLM ❈ 91.0

Table 1: TCR Accuracy results. ❈ Our models

Results of experiments on COPA-test are shown
in Table 2. We initially observed that a continually
pretrained model using all three types of relations
has a lower performance than our baseline. By
taking a closer look at each relation type, we de-
cided to train another model, this time only using
the event relations. The reason is that event-centric
relations in ATOMIC20

20 specifically contain com-
monsense knowledge about event interaction for
understating likely causal relations between events
in the world (Hwang et al., 2021). In addition,
event relations have a relatively longer context (#
of tokens) than the average of all three relation
types combined which means more context for a
model to learn from. Our new pretrained model out-
performed the baseline by nearly %5 which shows
the effect of augmented pretrained language model
with commonsense reasoning knowledge.

Model Acc (%)
PMI (Roemmele et al., 2011) 58.8
b-l-reg (Han and Wang, 2021) 71.1
Google T5-base (Raffel et al., 2019) 71.2
BERT-large (Kavumba et al., 2019) 76.5
CausalBERT (Li et al., 2020) 78.6
BERT-SocialIQA (Sap et al., 2019)∗ 80.1
BERT-large (baseline) ❈ 74.4
ATOMIC-BERT-largeMLM ❈

- Event only 79.2
Google T5-11B (Raffel et al., 2019) 94.8
DeBERTa-1.5B (He et al., 2020) 96.8

Table 2: COPA-test Accuracy results. ❈ Our models.
∗ For a fair comparison, we report BERT-SocialIQA’s
average performance.

We further experiment on the Easy and Hard
question splits in COPA-test separated by Kavumba
et al. (2019) to see how our best model performs
on harder questions that do not contain superficial
cues. Results are shown in Table 3. As can be
seen, our ATOMIC-BERT model significantly out-
performs both the baseline and former models on
Hard and Easy questions.

Model Easy ↑ Hard ↑
(Han and Wang, 2021) - 69.7
(Kavumba et al., 2019) 83.9 71.9
BERT-large (baseline) ❈ 83.0 69.2
ATOMIC-BERT-large ❈ 88.9 73.1

Table 3: COPA-test Accuracy results on Easy and Hard
question subsets. ❈ Our models.

It is worth mentioning three points here. First,
our model, BERT-large, has a significantly lower
number of parameters than state-of-the-art models,
Google T5-11B (∼32x) and DeBERTa-1.5B (∼4x)
and it shows how smaller models can be compet-
itive and benefit from continual pretraining. Sec-
ond, we have not yet applied any model improve-
ment methods such as using a margin-based loss
introduced by Li et al. (2019) and used in Causal-
BERT (Li et al., 2020), an extra regularization loss
proposed by Han and Wang (2021), or fine-tuning
with quality-enhanced training data, BCOPA, intro-
duced by Kavumba et al. (2019). As a result, there
is still great room to improve current models that
can be a proper next step. Third, we achieved a per-
formance on par with BERT-SocialIQA (Sap et al.,
2019) 6 while we did not use crowdsourcing or any
manual re-writing/correction, which is expensive,
for verbalizing KG triples to create our pretraining
data.

Model Acc (%)
b-l-aug (Han and Wang, 2021) 51.1
b-l-reg (Han and Wang, 2021) 64.1
BERT-large (baseline) ❈ 55.8
ATOMIC-BERT-largeMLM ❈

- Event only 58.1

Table 4: BCOPA-CE Accuracy results. ❈ Our models.
∗ Base model in b-l-* is BERT-large.

4.1 BCOPA-CE: Prompt vs. No Prompt

Results of experiments on BCOPA-CE are shown
in Table 4. As expected based on the results also
reported by Han and Wang (2021), we initially ob-
served that our models are performing nearly as
random baseline. Since we do not use the type
of question when encoding input sequences, we
decided to see whether adding question type as a
prompt to input sequences will improve the perfor-
mance. We added It is because and As a

6Our best random seed run achieved %81.4 accuracy.
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result, as prompt for asks-for="cause"
and asks-for="effect", respectively. Inter-
estingly, the new model outperforms the baseline
and Han and Wang (2021)’s b-l-aug model that is
fine-tuned with the same data as ours, when ques-
tion types are added as prompts to input sequences
of correct and incorrect answers in the test set. We
also ran a similar experiment on COPA-test (Ta-
ble 5) in which adding prompt did not help with
performance improvement.

Train / Test ✗ Prompt ✓ Prompt

✗ Prompt 79.2 76.4
✓ Prompt 75.5 77.9

Table 5: COPA-test Accuracy ablation study results for
prompt vs. no prompt.

5 Conclusion

We introduced a simple framework for augmenting
PLMs with commonsense knowledge created by
automatically verbalizing ATOMIC20

20. Our results
show that commonsense knowledge-augmented
PLMs outperform the original PLMs on cause-
effect pair classification and answering common-
sense causal reasoning questions. As the next
step, it would be interesting to see how the pre-
viously proposed model improvement methods
or using unbiased fine-tuning datasets can poten-
tially enhance the performance of our knowledge-
augmented models.
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