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Abstract
Background: Providers of on-demand care, such as those in urgent care centers, may prescribe antibiotics unnecessarily because
they fear receiving negative reviews on web-based platforms from unsatisfied patients—the so-called Yelp effect. This effect is
hypothesized to be a significant driver of inappropriate antibiotic prescribing, which exacerbates antibiotic resistance.
Objective: In this study, we aimed to determine the frequency with which patients left negative reviews on web-based platforms
after they expected to receive antibiotics in an urgent care setting but did not.
Methods: We obtained a list of 8662 urgent care facilities from the Yelp application programming interface. By using this list,
we automatically collected 481,825 web-based reviews from Google Maps between January 21 and February 10, 2019. We used
machine learning algorithms to summarize the contents of these reviews. Additionally, 200 randomly sampled reviews were
analyzed by 4 annotators to verify the types of messages present and whether they were consistent with the Yelp effect.
Results: We collected 481,825 reviews, of which 1696 (95% CI 1240-2152) exhibited the Yelp effect. Negative reviews primarily
identified operations issues regarding wait times, rude staff, billing, and communication.
Conclusions: Urgent care patients rarely express expectations for antibiotics in negative web-based reviews. Thus, our findings
do not support an association between a lack of antibiotic prescriptions and negative web-based reviews. Rather, patients’
dissatisfaction with urgent care was most strongly linked to operations issues that were not related to the clinical management
plan.
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the fit the model to the Google Maps data set. Topic models
identify review topics automatically without human intervention
by examining the word co-occurrence statistics within each
review [24]. For each topic, we calculated the total number of
word tokens that were found in positive reviews (4 or 5 stars)
and negative reviews (1 or 2 stars). We fitted 3 topic models
(one model with 10 topics, another with 20 topics, and another
with 50 topics) to the data. We selected the model that generated
the most coherent topics without a large increase in perplexity
(a measure of model goodness of fit that is commonly used in
natural language processing; Multimedia Appendix 2).
Afterward, we extracted antibiotic-related reviews by using a
list of keywords that was generated by one of the authors
(RH)—a pediatrician who specializes in antibiotic stewardship
(see Multimedia Appendix 3 for a keyword list). For each
review, we examined the proportion of words in each topic. We
applied the same procedure to the subset of reviews containing
antibiotic-related keywords. We then developed a qualitative
codebook to determine the content and sentiment of 200 reviews
that were sampled at random from all reviews containing these
keywords. This study was approved by The George Washington
University Committee on Human Research Institutional Review
Board (Federal Wide Assurance number: FWA00005945;
institutional review board registration number: 180804).

Data Annotation
Four authors (LR, MF, MC, and SD) affiliated with The George
Washington University Antibiotic Resistance Action Center
collectively reviewed a subset of the 200 randomly sampled
reviews to determine the types of messages that were present
in the reviews [25]. After this initial review and the development
of inductive codes, the reviews were categorized into one of the
following categories in the codebook: (1) the Yelp effect category
(the patient wanted antibiotics but did not receive them); (2)
the opposite of the Yelp effect category (the patient received
antibiotics but did not want them); (3) the convenience,
inconvenience, and wait times category; (4) the staff competence
or incompetence, courtesy and attitude, and satisfaction of care
category; (5) the cost and price of drugs per visit (including
sticker shock) category; (6) the other prescription-related
complaints category; and (7) the other or none of the above
category. Additionally, all reviews were annotated as “positive”

(eg, the patient was satisfied with their care, and the review had
4 or 5 stars) or “negative” (eg, the patient was dissatisfied with
care, and the review had fewer than 4 stars).

The four annotators then independently reviewed the same 200
randomly sampled reviews to assign them to 1 of the 7
categories. The final categories for the reviews were assigned
based on the majority category among annotators. If there was
no majority category, disagreements were resolved discursively
until a consensus category was agreed upon.

Some reviews mentioned that the reviewer did not receive an
antibiotic when it was expected, even if that was not the main
message. Thus, after assigning each message a primary category,
the same four annotators revisited all 200 reviews to determine
if they mentioned the Yelp effect in passing (ie, whether the
review mentioned an unfulfilled expectation for antibiotics). A
code for mentioning the presence or absence of the Yelp
effect—even if it was mentioned in passing—was then assigned
to each review as a secondary code. By using these 200
annotated samples, we inferred population proportions for each
category in our codebook and calculated 95% CIs.

Results
Distribution of Google and Yelp Data
By using the Yelp API, we identified 8662 unique urgent care
facilities that had 84,127 unique reviews. We collected 481,825
US-based reviews from Google Maps. Of these, 340,328
(70.63%) contained some text. The average star rating in Yelp
reviews was significantly lower than the average star rating in
Google Map reviews (t565,950=82.38; P<.001).

Figures 1–4 display the distributions of the number of reviews
and mean reviews stars from both Yelp and Google Maps on a
2-by-2 map. The distributions show an apparent difference
between various geographical regions of the United States. The
biased distribution is intriguing and can prompt many other
research questions. Therefore, all state-by-state maps featuring
the same information are being hosted on The George
Washington University cloud, which can be made available to
other researchers upon request.

Figure 1. Total number of reviews in US counties (Yelp data).
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Figure 2. Mean review stars in US counties (Yelp data).

Figure 3. Total number of reviews in US counties (Google Maps data).

Figure 4. Mean review stars in US counties (Google Maps data).

We categorized the 481,825 reviews with text from Google
Maps into the following three groups: (1) reviews without any
text (n=141,497; star rating: mean 4.53); (2) reviews with text
that did not mention antibiotic-related keywords (n=332,566;
star rating: mean 3.94); and (3) reviews with text that mentioned
antibiotic-related keywords (n=7762; star rating: mean 2.40;

Figure 5). We found significant differences in the average star
ratings across these three groups; a posthoc Tukey honestly
significant difference test for multiple comparisons showed that
reviews with antibiotic-related keywords had the lowest ratings
compared to those in reviews without text (mean
difference=−2.13; P<.001) and reviews with text but no
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keywords (mean difference=−1.54; P<.001). Reviews without
text were significantly more positive than reviews with text but

no keywords (mean difference=0.59; P<.001; all descriptive
statistics are in Multimedia Appendix 4).

Figure 5. Distribution of Google reviews. Reviews with text but no antibiotic-related keywords are shown in green. Reviews with antibiotic-related
keywords are shown in red. Reviews without text are shown in black.

Topic Modeling Results of Google Data
The LDA topic modeling analysis (Figure 6; Multimedia
Appendix 2) yielded 20 topics. The most negative topics
pertained to rude staff, wait times, billing, callbacks, and other
aspects of customer experience. Although the “infections and
symptoms” topic was also predominantly negative, this topic

did not make up a plurality of the reviews (481,760/6,795,468,
7.09%). With regard to topics with antibiotic-related keywords,
Figure 7 shows that the most common topic pertained to
infections and symptoms and was predominantly negative;
however, several other topics pertaining to customer experience
were also predominantly negative.

Figure 6. Topics generated by the latent Dirichlet allocation algorithm based on the text of all Google reviews in our data set. The size of each topic
is proportional to the number of words that were assigned to each topic by the algorithm. Words are further segmented according to the sentiment of
each review. Reviews with 4-5 stars are positive, reviews with 1-2 stars are negative, and reviews with 3 stars are neutral.
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Figure 7. Subset of topic modeling results for reviews containing antibiotic-related keywords. The size of each topic is proportional to the number of
words that were assigned to each topic by the algorithm. Words are further segmented according to the sentiment of each review. Reviews with 4-5
stars are positive, reviews with 1-2 stars are negative, and reviews with 3 stars are neutral.

Annotation Results
The annotators who labeled the seven inductive content
categories achieved moderate reliability (Fleiss κ=0.42) with
the first set of 100 reviews. All annotators agreed on sentiment.
After disagreements were resolved, a second round of annotation
for the next set of 100 reviews yielded substantial agreement
(Fleiss κ=0.65), and disagreements were again resolved by
consensus among reviewers. Table 1 summarizes the results of

these annotations. Of a total of 200 reviews, we found that only
5 reviews (2.5%; 95% CI 0.3%-4.7%) exhibited the Yelp effect
as the primary message category. By applying CIs to the full
set of 8078 reviews containing antibiotic-related keywords, we
expected that between 27 and 377 reviews would exhibit the
Yelp effect as the primary message with 95% confidence. Thus,
in our data set of 481,825 reviews, at most, 377 (0.08%) were
expected to exhibit the Yelp effect.

Table 1. The seven primary message categories of the 200 messages.

Reviews (N=200), n (%)Primary message

5 (2.5)Yelp effect (the patient expected to receive antibiotics but did not receive an antibiotic)

1 (0.5)Counter Yelp effect (the patient received antibiotics but did not want them)

36 (18)Convenience, inconvenience, and wait times (positive and negative sentiment)

138 (69)Staff competence or incompetence, courtesy and attitude, and satisfaction of care (positive and negative sentiment)

13 (6.5)Cost and price of drugs per visit (including sticker shock; positive and negative sentiment)

3 (1.5)Other complaints (positive and negative sentiment)

4 (2)Other or none of the above

The annotators also reexamined all reviews to determine if they
mentioned a Yelp effect in passing. We found that of a total of
200 reviews, 42 (21%) had some mention of reviewers not
having received antibiotics when they were expected (Fleiss
κ=0.75). Thus, with 95% confidence, between 1240 and 2152
of our 8078 reviews with antibiotic-related keywords exhibited
the Yelp effect, even if it was only mentioned in passing. In our
data set of 481,825 reviews, at most, 2152 (0.45%) were
expected to exhibit the Yelp effect.

Discussion
Principal Findings
Our data suggest that the Yelp effect is quite rare. Out of a set
of almost half a million reviews (N=481,824), fewer than 1 in
1250 (0.08%) seemed to contain the Yelp effect as the primary
message (with 95% confidence). Furthermore, with 95%
confidence, fewer than 1 in 225 (0.45%) reviews seemed to
contain the Yelp effect as the primary or secondary message.

In contrast, we found that (138/200) 69% of the reviews in our
annotated data set focused primarily on assessments of staff
competence and the quality of personal interactions. This
suggests that in terms of the extent that a Yelp effect exists,
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patients express this effect by questioning the expertise or
personal qualities of urgent care staff. This may put urgent care
providers in a bind; although they should not prescribe
antibiotics inappropriately, a failure to explain to patients why
the patients' preferred treatment is ineffective may lead to
reviews that are designed to undermine care providers'
credibility, expertise, and personal qualities. Thus, it is of
paramount importance that both care providers and urgent care
staff provide high-quality care and leave patients with a
meaningful understanding of why they received the treatment
that they did. For example, prior work has shown that patients'
expectations for antibiotics are associated with categorical gist
perceptions of the risks and benefits of antibiotics [26-28] and
that patients more likely to be satisfied when they understand
the gist of appropriate prescribing. This promotes the need to
better communicate rationales for prescribing antibiotics in a
manner that enhances patients' insights into why decisions are
made and, by extension, their assessments of care providers'
competence. Naturally, care providers' attitudes toward patient
care are also important.

We aimed to answer the following question: is there a Yelp
effect? The 2.28% (7762/340,328) of Google Maps reviews that
mentioned antibiotics were indeed significantly more negative
than those without antibiotic-related keywords (P<.001).
Furthermore, our results show that reviews of urgent care centers
on Yelp are significantly more negative compared to those on
Google Maps (P<.001). Thus, we cannot rule out the existence
of a Yelp effect on either Yelp or Google Maps. However, our
results show that antibiotic prescription is merely one of the
many potentially addressable issues in doctor-patient
communication and may not be the primary source of negative
web-based reviews. Indeed, patient satisfaction seems to have
been most strongly linked to customer service issues (eg, wait
times, rude staff, billing practices, etc). Thus, we must question
whether claims regarding the impact of antibiotic prescriptions
on negative reviews of urgent care centers are exaggerated. In
recent years, some authors have suggested the presence of an
effect that is similar to the Yelp effect in the context of opioid

prescription [29,30]. However, similar to our findings, other
studies have shown that these negative reviews are primarily
comments on physicians’ attributes or administrative attributes
[31].

Limitations
The limitations of our work include our inability to
hand-annotate all of the 481,825 reviews in our data set. Instead,
we annotated 200 of the 7762 (2.58%) messages that were
identified to have antibiotic-related keywords. This limitation
was mitigated by the fact that these 200 messages were selected
uniformly at random, meaning that they are likely to be
representative of messages with antibiotic-related keywords. It
is possible that our choice of keywords might have introduced
selection bias; specifically, we assumed that patients who
expected to (but did not) receive antibiotics would have said so
in their reviews. Thus, we cannot rule out the possibility that
patients were insincere when providing their reasons for negative
reviews. However, our findings clearly indicate that patients
were willing to express dissatisfaction with several other topics
that do not directly pertain to antibiotics. Web-based reviews
also often lack key patient information (eg, visit reason, medical
history, and demographics). Finally, we do not claim that our
results generalize beyond urgent care settings.

Conclusion
Our analysis shows that the Yelp effect may not be a major
driver of negative sentiments in web-based reviews. Rather than
compromise medical and public health recommendations by
acceding to the potentially faulty perceptions resulting from
patients' desires, urgent care facilities should instead invest in
efforts for improving patients' overall experience, such as
reducing wait times, making billing practices transparent, and
investing in training staff members to adhere to the best
standards of customer service. Although these steps may not
prevent all negative reviews, our analysis suggests that antibiotic
prescribing need not be the focal point for patient satisfaction
in urgent care settings.
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