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a b s t r a c t 

Despite substantial progress in the quest of demystifying the brain basis of creativity, several questions remain 
open. One such issue concerns the relationship between two latent cognitive modes during creative thinking, 
i.e., deliberate goal-directed cognition and spontaneous thought generation. Although an interplay between de- 
liberate and spontaneous thinking is often implicated in the creativity literature (e.g., dual-process models), a 
bottom-up data-driven validation of the cognitive processes associated with creative thinking is still lacking. 
Here, we attempted to capture the latent modes of creative thinking by utilizing a data-driven approach on 
a novel continuous multitask paradigm (CMP) that widely sampled a hypothetical two-dimensional cognitive 
plane of deliberate and spontaneous thinking in a single fMRI session. The CMP consisted of eight task blocks 
ranging from undirected mind wandering to goal-directed working memory task, while also included two widely- 
used creativity tasks, i.e., alternate uses task (AUT) and remote association task (RAT). Using eigen-connectivity 
(EC) analysis on the multitask whole-brain functional connectivity (FC) patterns, we embedded the multitask FCs 
into a low-dimensional latent space. The first two latent components, as revealed by the EC analysis, broadly 
mapped onto the two cognitive modes of deliberate and spontaneous thinking, respectively. Further, in this low- 
dimensional space, both creativity tasks were located in the upper right corner of high deliberate and spontaneous 
thinking (creative cognitive space). Neuroanatomically, the creative cognitive space was represented by not only 
increased intra-network connectivity within executive control and default mode network, but also by higher cou- 
pling between the two canonical brain networks. Further, individual differences reflected in the low-dimensional 
connectivity embeddings were related to differences in deliberate and spontaneous thinking abilities. Altogether, 
using a continuous multitask paradigm and a data-driven approach, we provide initial empirical evidence for the 
contribution of both deliberate and spontaneous modes of cognition during creative thinking. 

1. Introduction 

It is commonly agreed that creativity refers to the ability to produce 
work that is both novel and appropriate ( Sternberg and Lubart, 1999 ). 
As one of the most extraordinary capacities of the human brain, cre- 
ativity drives the development of our society. From art and design to 
science and engineering, we often marvel at people’s ingenuity. Given 
its central role, there has been an ever-growing interest in studying the 
neural basis of creative cognition. Although initial neuroimaging stud- 
ies focused on revealing the contribution of individual brain regions 
to different aspects of creative thinking ( Dietrich, 2004 ; Saggar et al., 
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2017 , 2015), in recent years, this focus has shifted towards examin- 
ing the interaction between multiple brain regions (as a network) dur- 
ing creative thinking ( Beaty et al., 2019 , 2017 ; Maillet et al., 2019 ; 
Saggar et al., 2019 ). However, data-driven evidence is still needed to 
confirm whether creative thinking depends on a single brain network 
or an interplay (i.e., functional interaction/coupling) between multiple 
networks. 

As a complex high-level cognitive phenomenon, creativity likely de- 
pends on a range of other lower- and higher-order processes, such as per- 
ception, working memory, semantic memory, and sustained attention 
( Dietrich, 2004 ; Lee and Therriault, 2013 ; Smeekens and Kane, 2016 ). 
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Further, an interplay (or coupling) between two latent cognitive modes 
has been suspected during creative cognition, i.e., modes of sponta- 
neous/implicit thinking and deliberate/explicit thinking. This interplay 
has been previously referred to as a dual-process model ( Barr et al., 
2015 ; Christoff et al., 2016 ; Dietrich, 2004 ; Finke, 1996 ; Sowden et al., 
2015 ). Specifically, previous data suggest that while creative insights are 
often accompanied by defocused attention through spontaneous think- 
ing ( Baird et al., 2012 ; Eysenck, 1995 ; Gable et al., 2019 ; Zabelina et al., 
2015 ), creativity can also stem from methodical problem solving via de- 
liberate thinking ( Benedek et al., 2014 ; Boden, 1998 ; Frith et al., 2020 ; 
Nusbaum and Silvia, 2011 ). 

The interplay between deliberate and spontaneous thinking during 
creative cognition is hypothesized to correspond to two canonical brain 
networks: the executive control network (ECN) and the default mode 
network (DMN), respectively ( Beaty et al., 2016 ; 2015 ; Ellamil et al., 
2012 ). The ECN is typically elicited by tasks requiring externally driven 
attention, while the DMN is typically elicited by internally driven cog- 
nition. In the context of creativity, the ECN (or fronto-parietal network 
(FPN)) is thought to support goal-directed and strategic cognition re- 
quired to guide and direct the creative thought process, inhibiting com- 
mon ideas and strategically searching memory for task-relevant unique 
solutions ( Beaty et al., 2016 ). The DMN, in contrast, is thought to sup- 
port the spontaneous generation of candidate ideas from memory and 
imagination, consistent with its role in episodic/semantic memory re- 
trieval and mental simulation ( Buckner et al., 2008 ). The putative cog- 
nitive processes of ECN and DMN broadly map onto dual-process models 
of creativity that emphasize spontaneous thought and deliberate control 
( Beaty et al., 2015 ; Jung, 2013 ). 

Together, these studies provide insights into the putative roles of 
DMN and ECN in spontaneous and deliberate cognition during creative 
performance. However, it remains unclear as to what degree does the 
deliberate (via ECN) and spontaneous (via DMN) modes of thinking en- 
gage during creativity and whether such recruitment is comparable to 
that done during prototypical tasks for each mode of thinking. In other 
words, it is unclear whether, during creative thinking, the amount of de- 
liberate (or spontaneous) thinking recruited by the brain is comparable 
to that of being employed during a working memory task (or at rest). We 
argue that examining such evidence via a data-driven approach might 
provide direct evidence for the classic dual-process theories of creativ- 
ity. 

To tackle this issue, using functional Magnetic Resonance Imaging 
(fMRI), we developed a novel continuous multitask paradigm (CMP) 
- with seven cognitive task blocks and a resting-state block, in a 
single fMRI session. Using our CMP, we aimed at sampling a wide 
range of cognitive processes along a hypothetical two-dimensional plane 
of deliberate and spontaneous thinking. As shown in Fig. 1 , we in- 
cluded two well-established creative tasks (i.e., alternate uses task 
(AUT) and remote associates task (RAT)), five other non-creative task 
blocks, and a resting-state block. Based on the theoretical framework 
by Christoff et al. (2016) , we hypothesized that the two latent cognitive 
processes would be differentially recruited by these eight task blocks. 
For example, tasks such as 2-back working memory that require a higher 
level of deliberate thought would occupy the lower right quadrant, i.e., 
relying heavily on deliberate thinking while inhibiting spontaneity. Sim- 
ilarly, rest or mind-wandering is likely to recruit spontaneous thinking 
with minimum deliberate control (top left quadrant). Other non-creative 
tasks, with a medium level of deliberate thought, would reside in the 
cognitive space between resting-state and working memory. Critically, 
based on the dual-process theory, we hypothesized that creative cogni- 
tion would require both deliberate and spontaneous thinking and that 
engagement of these modes of thinking would be comparable to the 
recruitment during prototypical cognitive tasks for each mode. Lever- 
aging information from a wider variety of cognitive tasks, we aimed to 
obtain a holistic overview of how creative cognition is related to other 
cognitive processes. Using our CMP, we aimed at identifying the latent 
cognitive axes that may underlie creative cognition. Similar approaches 

Fig. 1. Qualitative mapping of multitask data to a hypothetical cognitive space 
with two putatively orthogonal dimensions of deliberate and spontaneous think- 
ing. We hypothesize that tasks such as mind wandering would occupy the upper 
left quadrant as they are based on spontaneous processing with a minimum 

amount of deliberate control. In contrast, tasks with a high level of deliberate 
thought (2-back working memory or theory of mind task) would occupy the 
lower right quadrant as they are based highly on deliberate thinking. Other 
tasks like emotion classification, guessing, and visuomotor could be mapped in 
between deliberate and spontaneous thinking. Lastly, we hypothesized that if 
the creativity tasks (alternate uses and remote association) require both delib- 
erate and spontaneous thinking, they should occupy the top right quadrant. 

have been recently used to assess the neural correlates of ongoing cog- 
nition ( Gonzalez-Castillo et al., 2015 ; Krienen et al., 2014 ). 

We performed the eigen-connectivity (EC, Leonardi et al., 2013 ) 
analysis on the task-related whole-brain functional connectivity (FC) 
patterns to reveal shared latent connectivity structures across tasks and 
to validate the involvement of the two hypothetical latent cognitive pro- 
cesses (shown in Fig. 1 ). We further validated the hypothesis by examin- 
ing individual differences in the latent cognitive axes and corresponding 
behavioral domain. 

2. Methods 

2.1. Participants 

Thirty-two participants (30.4 ± 5.4 years, 13F, 4 left-handed) took 
part in our study. All participants reported no history of neurological dis- 
order or psychotropic medication, with normal or corrected-to-normal 
vision. The study was approved by Stanford University’s Institutional 
Review Board, and all participants gave written consent. Detailed de- 
mographic information can be found in Supplemental Table S1. 

2.2. Neuropsychological assessments 

A set of behavioral assessments were conducted outside the MR scan- 
ner to measure participants’ creativity and executive function as proxies 
for spontaneous/deliberate thinking. Below, we briefly introduce these 
assessments. 

2.2.1. Creativity 
The Torrance Test of Creative Thinking (TTCT-Figural; 

Torrance, 1972 ) is one of the most widely accepted tests to mea- 
sure divergent thinking ability in the visual form. This game-like test 
can engage participants’ spontaneous creativity while being unbiased 
in terms of race, culture, socioeconomic status, gender, and language 
( Kim, 2006 ). Participants were given 30 min to complete three ac- 
tivities in the TTCT-Figural assessment, i.e., picture construction, 
picture completion, and repeated figures of lines or circles. The TTCT- 
Figural assessments were scored by the Scholastics Testing Service, Inc 
( http://ststesting.com ). 
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Fig. 2. A graphic summary of the EC analysis pipeline. (a) The eight task-specific FC ( 𝐹 𝐶 𝑡𝑎𝑠𝑘 ) and a baseline-FC ( 𝐹 𝐶 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ) were computed and then vectorized for 
each participant. The baseline-FC was computed across the entire scan time. (b) For each participant, the 𝐹 𝐶 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 was regressed out from task-specific FCs using 
linear regression. (c) Baseline-removed FC patterns ( 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 ) were then concatenated across tasks and participants. (d) 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 were then submitted to singular value 
decomposition (SVD). The columns of orthonormal eigenvectors U (or equally principal components) were converted to matrix form, termed as eigen-connectivity 
(EC) patterns. 

2.2.2. Executive function 
Participants’ executive function was assessed using the Stroop Color- 

Word Interference Test (CWIT), a subtest of Delis–Kaplan Executive 
Function System (D-KEFS; Delis et al., 2001 ). CWIT consists of four parts: 
color naming, word reading, inhibition, and inhibition/switching. 

2.3. Imaging data 

2.3.1. Imaging acquisition 
Participants were scanned using a GE 3T Discovery MR750 

scanner with a 32-channel Nova Medical head-coil at the Stan- 
ford Center for Cognitive and Neurobiological Imaging. Functional 
scan parameters used are as follows: 1183 volumes, repetition time 
TR = 0.71 s, echo time TE = 30 ms; flip angle FA = 54°, field of view 

FOV = 220 × 220 × 144 mm, isotropic voxel size = 2.4 mm, #slices = 60, 
multiband acceleration factor = 6. High-resolution T1-weighted struc- 
tural images were also collected with FOV = 190 × 256 × 256 mm, 
FA = 12°, TE = 2.54 ms, and isotropic voxel size = 0.9 mm. 

2.3.2. Continuous multitask paradigm 

A novel continuous multitask paradigm (CMP) was conducted over 
two runs (duration for each run was ∼14 min). The CMP included seven 
cognitive task blocks and a resting state block ( Table 1 and Supplemen- 
tal Fig. S1). The cognitive tasks were chosen to sample along the two- 
dimensional hypothetical plane of deliberate and spontaneous thinking. 
Each task block lasted 90 s with a 12 s instruction between two task 
blocks. A brief summary of the task blocks is provided in Table 1 . The 

CMP was repeated in the second run in counterbalanced order with dif- 
ferent sets of stimuli/questions but fixed for all participants. Participants 
were first familiarized with the rules of each task before entering the 
scanner. For the two creative tasks, alternative uses task (AUT) and re- 
mote associates task (RAT), we recorded participants’ answers after the 
scan, consistent with previous studies ( Beaty et al., 2019 ; Benedek et al., 
2019 ). 

2.3.3. Preprocessing 
We discarded the first 12 frames of functional data, after which we 

applied a standardized preprocessing pipeline using fMRIprep (v1.2.1, 
Esteban et al., 2019 ). The functional data underwent motion correc- 
tion, slice timing correction, susceptibility distortion correction, and 
were normalized to the Montreal Neurological Institute (MNI152) tem- 
plate. Overall, we excluded 7 participants due to technical difficulty (3), 
poor structural registration (1), excessive motion (1; mean framewise 
displacement > 0.2 mm); and participants’ dropping out or inability to 
scan (2). The later analysis included 25 participants. 

For the remaining 25 participants, we removed nuisance signal by re- 
gressing out the physiological noise (white matter and CSF) and motion- 
related noise using the Volterra expansion of 6 motion parameters and 
2 physiological signals ( Friston et al., 1996 ): [ 𝑅 𝑅 2 𝑅 𝑡 −1 𝑅 2 

𝑡 −1 
]. Along 

with the nuisance signal regression, detrending and temporal filtering 
between 0.008 and 0.18 Hz were also simultaneously performed using 
AFNI 3dTproject . Despiking was performed using 3dDespike , and spatial 
smoothing was carried out using Gaussian kernel with FWHM = 6 mm. 
A parcellation with 375 regions of interest (ROIs) were defined based 
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Table 1 
Task batteries included in the continuous multitask paradigm. ITI: inter-trial interval. 

Name Task description #Trials/Duration Reference 

Alternative uses task (AUT) Silently name uncommon uses of everyday objects (e.g., 
bricks) and press a button when you think of one. 

3 trials; each trial lasted for 30 s Mayseless et al. (2015) 

Emotion task (Emotion) Match one of two simultaneously presented 
emotionally-charged faces (angry or afraid) with an 
identical target face displayed below. 

30 trials; each trial lasted 3 s Hariri et al. (2002) 

2-back working memory task (WM) Match geometric shapes with the one presented two shapes 
before (5 shapes in total). 

30 trials; each trial lasted 3 s Gonzalez-Castillo et al. (2015) 

Theory of mind task (ToM) Read a story describing false beliefs and answer a yes/no 
question 1 . 

5 trials; each trial lasted 18 s. Each trial 
consisted of 12 s for reading, 5 s for 
answering and 1 s ITI 

Dodell-Feder et al. (2011) 

Visuomotor task (VisMot) Visually cued finger-tapping of a red target on a flashing 
checkboard. 

3 trials; each trial lasted 30 s. Within each 
trial 18 s for stimuli and 12 s ITI 

Drobyshevsky et al. (2006) 

Guessing task (Guessing) View a “? ” and guess who “hides behind ” the question 
mark (baby or adult). Receive monetary feedback 
indicating whether the answer is correct. 

10 trials; each trial lasted 9 s. Within each 
trial, 3 s for guessing, 2 s for feedback and 
4 s ITI 

Delgado et al. (2000) 

Remote Associates Task (RAT) Produce a fourth related word based on the three cue 
words 2 . 

9 trials; each trial lasted 10 s Mednick (1962) 

Mind wandering (MW) Relax and fixate at the crosshair. 90 s duration Raichle et al. (2001) 

1 ToM example: Story: Laura didn’t have time to braid her horse’s mane before going to camp. While she was at camp, William brushed Laura’s horse and braided 
the horse’s mane for her. Yes/No question: Laura returns assuming that her horse’s hair isn’t braided. 
2 RAT example: Cue: dream – break – light. Answer: day. 

on the parcellation previously used by Shine et al. (2019) , which con- 
tains 333 cortical parcels from the Gordon atlas ( Gordon et al., 2016 ), 
14 subcortical regions from the Harvard–Oxford subcortical atlas (bi- 
lateral thalamus, caudate, putamen, ventral striatum, globus pallidus, 
amygdala, and hippocampus), and 28 cerebellar regions from the SUIT 
atlas ( Diedrichsen et al., 2009 ) to ensure the whole-brain coverage. Af- 
ter dropping 12 ROIs with fewer than 10 voxels, the time series were 
extracted from the remaining 363 ROIs by first converting the residual 
signal to percentage signal change (i.e., voxel intensity was divided by 
the voxel mean) and then computing the average signal within each 
ROI. The two functional runs were concatenated, and time points with 
the framewise displacement greater than 0.5 mm were excluded from 

further analysis (time points discarded = 1.62% ± 2.32%). 

2.3.4. Estimating regularized functional connectivity (FC) 
Sparse graphical models have been increasingly adopted by neu- 

roimaging researchers in recent years ( Allen et al., 2014 ; Rosa et al., 
2015 ; Smith et al., 2011 ; Xie et al., 2019 ). Here, we employed graphical 
LASSO ( Friedman et al., 2007 ) to estimate functional connectivity using 
the R package ‘glasso’. In short, graphical LASSO encourages a sparse 
solution of the task-specific precision matrix Θ (or inverse covariance 
matrix) by maximizing the following log-likelihood function 𝐿 1 

𝐿 1 = log 𝑑𝑒𝑡 Θ − 𝑡𝑟 ( 𝑠 Θ) − 𝜆‖Θ‖1 , (1) 

where 𝑑𝑒𝑡 denotes the matrix determinant; 𝑡𝑟 denotes the matrix trace; 
𝑠 represents the empirical covariance matrix; 𝜆 is a non-negative regu- 
larization parameter provided by users; ‖Θ‖1 indicates the L1 penalty 
on Θ. 

A zero entry in the precision matrix reflects conditional indepen- 
dence between the signals of two brain regions, after regressing out all 
other ROI timeseries. A higher 𝜆 yields a sparser representation at the 
cost of goodness-of-fit. To achieve a good balance between the sparsity 
and goodness-of-fit, we tested a range of 𝜆 (0 - 0.2, step size = 0.02) and 
found an optimal 𝜆 (0.06 & 0.08) for each individual that maximizes the 
following log-likelihood 𝐿 2 ( 𝜆) 

𝐿 2 ( 𝜆) = 

𝐾 ∑

𝑘 =1 

log 𝑑𝑒𝑡 Θ𝑘 − 𝑡𝑟 
(
𝑠 0 Θ𝑘 

)
. (2) 

Here, 𝑠 0 is the empirical covariance matrix estimated using all the 
time points, and 𝐾 is the total number of tasks. This objective function 

was chosen given the expectation that task-specific FCs should be sim- 
ilar across multiple cognitive tasks for a given participant ( Finn et al., 
2015 , also see Supplemental Fig. S2). Upon choosing the optimal reg- 
ularization parameter, we estimated the regularized covariance matrix 
and subsequently converted it to regularized whole-brain FC, followed 
by Fisher-z transformation. Here, we chose not to use different lambdas 
for each task mainly because we did not want different levels of sparsity 
to drive the task-specific connectivity profiles. 

2.3.5. Multitask eigen-connectivity analysis 
To delineate the latent cognitive processes sampled by the CMP, we 

extracted the latent FC structure from the multitask-FC using eigen- 
connectivity (EC) analysis developed by Leonardi et al. (2013) . The 
EC analysis was originally developed to study time-varying FC dynam- 
ics during rest. Briefly, after computing task-specific FC matrices, we 
first vectorized the upper triangular FC matrices and regressed out the 
subject-specific baseline-FC to better reveal task-specific FC patterns 
( Xie et al., 2018a ). Here, baseline-FC was characterized as the FC pattern 
estimated using time points from all eight task blocks for each partici- 
pant. We then concatenated the residual FC vectors across participants 
and tasks, resulting in a 65,703 × 200 group-level residual FC matrix 
( 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 ) across 8 task blocks and 25 participants. Singular value de- 
composition (SVD) was applied on the group-level 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 . 

𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 = 𝑈Σ𝑉 𝑇 , (3) 

where 𝑈 is a 65,703 × 200 unitary matrix and the columns of 𝑈 are 
orthonormal eigenvectors; 𝑉 is a 200 × 200 unitary matrix; Σ is a 
200 × 200 diagonal matrix of singular values. 

The column vectors of 𝑈 were reshaped back into the matrix form 

(#ROIs × #ROIs). The first few column vectors of 𝑈 , explaining large 
variance, can be used to define the low-dimensional connectivity-based 
embedding that is shared across all eight task blocks. The latent embed- 
dings were referred to as EC patterns by Leonardi et al. (2013) when 
studying dynamic functional connectivity. The EC weights correspond 
to the projections of these ECs, i.e., columns of 𝑉 multiplied by the sin- 
gular values of Σ. Given our goal to anchor the cognitive processes into 
lower dimensions that can be visualized, we focused on the first two ECs 
that explained the most variance in the group-level 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 , as well as 
the corresponding weights, in order to match the latent cognitive pro- 
cesses of interest. 
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Fig. 3. (a) Visualization of the first two eigen-connectivity (EC) patterns with intra-network connectivity highlighted. EC1: the upper-triangle, EC2: the lower-triangle. 
Aud: auditory; Vis: visual; CinO: cingulo-opercular; CinP: cingulo-parietal; DMN: default mode network; FPN: frontal-parietal network; DAN: dorsal attention network; 
VAN: ventral attention network; RsT: retrosplenial temporal; SM: sensorimotor; SN: salience network; SC: subcortical; CB: cerebellum; None: network not specified. 
The network assignment of cortical ROIs mostly follows the Gordon atlas ( Gordon et al., 2016 ). (b) A line plot of the average intra-network coupling strength of 
major large-scale functional networks. 

3. Results 

3.1. Characterizing the latent connectivity dimensions as revealed by EC 
analysis 

We projected vectorized residual task-FCs to a low-dimensional 
space using the EC analysis. Here, we focused on the first two dimen- 
sions/ECs in terms of the variance explained, per our hypothesis. Fig. 3 a 
shows EC patterns for the first two ECs. The strength of intra-network 
coupling of the first two ECs is shown as a line chart in Fig. 3 b. Each 
EC pattern can be understood as a latent low-dimensional embedding 
or spatial mode that captures shared variations across the multitask 
FCs. We employed the statistical enrichment analysis ( Maron-Katz et al., 
2016 ) to examine whether a type of connection (e.g., DMN-FPN) is more 
prevalent than what would be expected by chance. After retaining 5% 

edges with the largest positive/negative edge strength, we conducted 
a degree preserving randomization on EC patterns, and compared the 
intra-/inter-network degree between the real and permutated EC pat- 
terns using 2000 permutation tests, followed by FDR correction. Focus- 
ing on DMN and FPN, we found EC1 is associated with significantly 
more negative edges within-DMN and between DMN and FPN, while 
significantly more positive edges within FPN. For EC2, we observed sig- 
nificantly more positive edges within DMN and between DMN and FPN. 

In sum, the latent space revealed by our multitask EC analysis sug- 
gested two dominant latent dimensions: one dimension for deliberate 
thinking (characterized by high intra-ECN connectivity) and the other 
for spontaneous thinking (characterized by high intra-DMN connectiv- 
ity). 

3.2. Embedding tasks into the latent cognitive space 

To better examine the relationship between different cognitive tasks 
with respect to the revealed deliberate and spontaneous EC dimensions, 
we projected task-FCs through the first two ECs. Noticeably, and as hy- 
pothesized, the task-FCs projected into the low-dimensional plane were 
separable and highly resembled the hypothetical cognitive space (shown 
as an inset in Fig. 4 a). Specifically, we observed that the task-FCs associ- 
ated with two creative tasks (i.e., AUT and RAT) were projected together 
in the upper right quadrant. The mind wandering (MW) together with 
the visuomotor (VisMot) task were observed mostly in the upper left 

quadrant, as both required minimum deliberate control. 1 Working mem- 
ory (WM) and theory of mind (ToM) tasks were also projected together 
to the lower right quadrant. These two tasks were arguably among the 
most cognitively demanding tasks while requiring very limited sponta- 
neous thinking. Further, based on our hypothesis, we grouped the tasks 
into four types: deliberate (WM and ToM), spontaneous (MW), moder- 
ate (Emotion, Guessing, and VisMot), and creative (AUT and RAT) tasks. 
We found the projections of creativity tasks to be high on EC1 (reflect- 
ing deliberate thinking) and on EC2 (reflecting spontaneous thinking) 
( Fig. 4 b-c). Altogether, we provided data-driven evidence that creative 
cognition does require recruitment of both deliberate and spontaneous 
thinking and that recruitment is comparable to that of prototypical cog- 
nitive tasks for each mode of thinking, respectively. 

Additionally, we showed EC3 to EC10 and the low-dimensional pro- 
jection using the first 3 ECs in the Supplemental Materials (Fig. S3). 
We also quantitatively evaluated the task separability of weights of all 
200 ECs using one-way ANOVA given the task labels. We found ECs be- 
yond the first two can inform us of underlying tasks, where EC weights 
from one task were significantly different from the rest (FDR-corrected 
p < 0.05, Supplemental Fig. S4). To ensure that the EC patterns ob- 
served here were not due to chance or noise, we performed a valida- 
tion analysis. We simulated surrogate data using phase randomization 
and repeated the EC analysis ( Handwerker et al., 2012 ). We compared 
EC components from the real data with those from the surrogate data 
in terms of variance explained. A one-sample t -test was used to assess 
whether the variance explained by a given EC had a significantly higher 
mean from the real data as opposed to the surrogate data. We found that 
the first 28 EC components explained significantly more variance in the 
real data (FDR corrected p < 0.05, Supplemental Fig. S4), while the EC 
patterns from the surrogate data also lacked the structure observed in 
EC patterns extracted from the real data. 

3.3. Revealing the functional architecture of creative cognition 

To further understand the functional architecture of the creative cog- 
nition space, we examined the aggregated functional connectome across 

1 It should be noted that participants spent 40% of the time during the visuo- 
motor task on fixation in between trials, which could have explained VisMot-FCs 
being projected together with MW. 
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Fig. 4. (a) Low-dimensional projection of task-FCs with the first two EC components, color-coded based on task labels. Each symbol represents a projection of a 
task FC, for a total of 200 symbols (25 per participant over eight tasks). Inset: the hypothetical cognitive space spanning across two putative cognitive axes, i.e., 
deliberate thinking (EC1) and spontaneous thinking (EC2). (b-c) Graphical summary of low-dimensional projections along with the EC1 and EC2, grouped based on 
the hypothesis. Creativity tasks: AUT and RAT; deliberate tasks: WM and ToM; spontaneous task: MW; tasks requiring moderate level of spontaneous and deliberate 
thinking: Emotion, Guessing, and VisMot. 

Fig. 5. (a) The aggregated EC combining EC1 and EC2. (b) Ten ROIs with the most positive node strength. (c) Ten ROIs with the most negative node strength. The 
node size is proportional to the node strength, and the network label of each ROI is color-coded. 

deliberate (EC1) and spontaneous (EC2) latent dimensions. We hypothe- 
sized that given the observation that creative tasks were both embedded 
in the top right corner of the EC latent space, suggesting an interplay 
between both deliberate (EC1) and spontaneous (EC2) modes, a better 
understanding of the functional architecture of creative cognitive space 
can be acquired by examining the aggregated connectivity pattern of 
EC1 and EC2. The aggregated pattern of EC1 and EC2, through numer- 
ical addition, is shown in Fig. 5 a. Besides the expected enhanced intra- 
network coupling within default mode and fronto-parietal networks, we 

also observed high inter-network coupling between default mode and 
fronto-parietal, cingulo-opercular, and cingulo-parietal networks. 

In an attempt to understand the large-scale network architecture un- 
derlying the aggregated EC pattern, we computed the node strength, 
and for visualization purposes, we showed the ten ROIs with the high- 
est/lowest node strength in Fig. 5 (b)&(c). In terms of hubs with the 
positive node strength (i.e., highly coupled regions), the majority was 
found in the brain regions that form the DMN as well as some in the 
anterior temporal lobe. The ROI with the highest positive node strength 

6 



H. Xie, R.E. Beaty, S. Jahanikia et al. NeuroImage 243 (2021) 118531 

Fig. 6. Brain-behavior relationship using EC 
weights during AUT. The EC weights and be- 
havioral scores are z-scored. (a) The scatterplot 
of EC1 wt vs deliberate thinking score; (b) EC2 
wt vs spontaneous thinking scores. Dotted lines 
represent 95% confidence intervals. 

was found to be the right medial prefrontal cortex (mPFC, MNI coor- 
dinate: 4.8 65.1 − 7.1) of the DMN. On the other hand, hubs with the 
largest negative node strength (i.e., regions decoupled from other re- 
gions) were found in the visual network and the DAN (left-lateralized). 
The ROI with the highest negative node strength was found in the left 
inferior frontal gyrus (IFG, MNI coordinate: − 45.2 2.7 32.4) within the 
DAN. 

3.4. Examining whether individual differences in embedding can predict 
behavior 

Individual differences were characterized in terms of EC-based 
latent-space embedding. We hypothesized that the observed individual 
differences in the latent-space embedding could be associated with in- 
dividual differences in behavior. We limited this analysis to the two cre- 
ativity tasks only. Specifically, the individual differences in the weights 
of deliberate dimension (EC1) could be related to deliberate thinking 
ability, while the variability in the weights of spontaneous dimension 
(EC2) could be related to spontaneous thinking ability. The behavioral 
correlates of deliberate and spontaneous thinking were computed as fol- 
lows. We used the behavioral performance on the color-word interfer- 
ence task (CWIT) as a proxy of participants’ deliberate thinking ability. 
To operationalize the behavioral performance of spontaneous thinking, 
we regressed the CWIT score from the Torrance Test of Creative Think- 
ing task score (TTCT-F). Hence, by removing the variance associated 
with deliberate thinking from the creativity score, we attempted to use 
the residuals as a proxy for spontaneous thinking. 

After controlling for age, handedness, and gender, we found that the 
weights of EC1 during the AUT were significantly positively correlated 
with deliberate thinking score ( r = 0.45, p = 0.030), and EC2 during the 
AUT was significantly positively correlated with spontaneous thinking 
score ( r = 0.43, p = 0.038), as shown in Fig. 6 . We did not observe any 
significant brain-behavior relationship using EC weights for the second 
creativity task (RAT). We also conducted a control analysis using EC3 
and EC4 and did not find any significant relationship ( ps > 0.1). 

4. Discussion 

Human creativity is a vast construct, seemingly intractable to sci- 
entific inquiry, partially due to its multifaceted nature ( Jung, 2013 ). 
It has been long suspected that creative cognition is supported by two 
latent cognitive modes (i.e., deliberate and spontaneous modes of think- 
ing). However, the neural evidence for the contribution of spontaneous 
and deliberate thinking in creativity has been somewhat inconsistent 
( Mok, 2014 ). Here, we utilized an 8-task continuous multitask paradigm 

(CMP) and sampled across a wide range of cognitive space, including 
creative and non-creative tasks, which requires various degrees of spon- 
taneous and deliberate thinking. We aimed to use the well-known cog- 
nitive tasks to anchor the multifaceted creative cognition to facilitate 
direct comparison between creative cognition and normative cognitive 

processing within the same study, which has never been carried out be- 
fore according to the best of our knowledge. We employed a data-driven 
approach to extract the latent connectivity structure shared across tasks 
as a first step toward validating the involvement of the latent cognitive 
modes. 

Since creative cognition does not seem to be confined to any lo- 
calized brain region ( Dietrich and Kanso, 2010 ), we decided to fo- 
cus on examining the large-scale network architecture using whole- 
brain functional connectivity (FC). We first computed the task-FCs and 
then extracted latent connectivity patterns across all tasks using eigen- 
connectivity (EC) analysis ( Leonardi et al., 2013 ). The first two latent 
dimensions were observed to represent the deliberate and spontaneous 
modes of thinking, respectively. When the task-FCs were embedded into 
a 2-dimensional latent space of deliberate/spontaneous thinking, we ob- 
served creativity tasks to be embedded in the region with both strong 
deliberate and spontaneous thinking. The embeddings of other tasks 
also followed as expected. For example, the cognitively demanding tasks 
such as the theory of mind and n-back working memory appeared to tax 
deliberate thinking heavily while requiring little spontaneous thinking. 
On the contrary, resting state (mind wandering) and visuo-motor task 
were embedded higher on the spontaneous mode of thinking. Further, 
the individual differences in EC weights were related to behavioral dif- 
ferences in the ability of deliberate and spontaneous cognition during 
a creative task. Altogether, our findings demonstrate the potential of 
using a data-driven approach to pool information across multiple cogni- 
tive processes in order to extract latent cognitive dimensions associated 
with creative cognition. 

Early research on creative cognition focused on isolating specific 
brain regions associated with creative performance. Although domain- 
specific assessment of creative cognition proved somewhat successful 
in teasing out regions specific to each domain, e.g., musical ( Limb and 
Braun, 2008 ), verbal ( Bechtereva et al., 2004 ), and figural ( Ellamil et al., 
2012 ; Saggar et al., 2017 ; 2015 ), the domain-general assessment of cre- 
ativity revealed a large variance in findings across studies ( Boccia et al., 
2015 ). Recently, researchers have shifted gear towards studying the 
whole-brain functional architecture related to creative cognition. These 
network-based studies have highlighted a putative role of the default 
mode network (DMN) and executive control network (ECN) during cre- 
ative thinking ( Beaty et al., 2015 ; Zhu et al., 2017 ). In general, while 
the DMN has been suggested to support spontaneous cognition, such as 
mind-wandering, introspection, autobiographical memory, and mental- 
ization ( Raichle, 2015 ), the ECN (operationalized as the frontal-parietal 
network (FPN)), is commonly considered as a key player in deliberate, 
goal-directed cognition. With regards to creative thinking, the current 
consensus is that an interplay between deliberate (ECN) and sponta- 
neous thinking (DMN) is required for creative cognition. However, no 
data-driven validation exists regarding how this interplay facilitates cre- 
ativity. 

To address this issue, here, we used a continuous multitask fMRI 
paradigm consisted of a wide range of cognitive tasks including creativ- 
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ity, and explored the latent dimensions using eigen-connectivity analy- 
sis. Interestingly, the first two latent dimensions were mapped onto two 
putative cognitive axes, i.e., deliberate (FPN dominated intra-network 
coupling) and spontaneous (DMN dominated intra-network coupling) 
axes. We also examined the extent of inter-network coupling for each 
latent dimension. For the deliberate axis, i.e., EC1, we observed greater 
inter-network connectivity between DMN and task-positive networks 
(including FPN, dorsal attention network (DAN), and cingulo-opercular 
network (CinO)). Our observation coincided with an earlier finding 
of increased DMN connectivity with task-promoting regions across six 
tasks regardless of task-associated activation ( Amanda Elton and Wei 
Gao, 2015 ). For the spontaneous axis, i.e., EC2, we observed reduced 
intra-network coupling of the FPN as well as stronger within-network 
connectivity in the DMN. The weakened within-FPN coupling might al- 
low for flexible reconfiguration during spontaneous thinking, which has 
been shown to positively correlate with creativity across the visual and 
verbal domains ( Zhu et al., 2017 ). Moreover, an overall decoupling was 
observed for DAN, possibly reflecting down-regulated top-down atten- 
tion modulation ( Zabelina and Andrews-Hanna, 2016 ). Lastly, as cre- 
ativity requires both cognitive modes (EC1 and EC2), we aggregated 
the first two EC patterns and revealed strengthened within-network cou- 
pling in the DMN and FPN, as well as an overall increase in inter-network 
connectivity between the two. Overall, our findings extend network neu- 
roscience research on creative cognition by identifying patterns of intra- 
and inter-network connectivity associated with latent cognitive modes 
during creative task performance. 

To pinpoint the key regions in the aggregated EC pattern underly- 
ing creative cognition, we examined the regions with the highest ab- 
solute node strength. The regions with the highest positive functional 
coupling were found in the DMN, such as mPFC, angular gyrus (AG), 
and posterior cingulate cortex (PCC), as well as regions in the ante- 
rior temporal lobe. The involvement of DMN in creative cognition has 
been well-documented. For example, higher creativity has been associ- 
ated with increased FC between the mPFC and the PCC ( Takeuchi et al., 
2012 ). A lesion study found that lesions in the mPFC were associated 
with impaired originality ( Shamay-Tsoory et al., 2011 ). Moreover, us- 
ing connectome-based predictive modeling ( Rosenberg et al., 2015 ), a 
recent study found regions in the DMN were among the top contribu- 
tors to the so-called “high-creative network ”, the FC strength of which 
positively predicted creativity scores ( Beaty et al., 2018 ). Moreover, the 
anterior temporal lobe (or temporal pole) has an important role in many 
cognitive processes, including creative cognition, theory of mind, emo- 
tion processing, and semantic processing ( Wong and Gallate, 2012 ). In 
short, our findings suggested that whole-brain integration of regions in 
DMN plays a pivotal role in creative cognition. 

As for the ROIs with the greatest decrease in the connectivity of the 
aggregated EC, the majority were found in the DAN and visual network. 
The decoupling of the visual network is consistent with past work linking 
the deactivation of the visual cortex to the suppression of external stim- 
uli during creative thinking ( Benedek et al., 2016 ; Ritter et al., 2018 ). 
Along similar lines, as it is well-known that the DAN is responsible for 
external attention ( Maillet et al., 2019 ), decoupling of the DAN may 
also signal loosened top-down attention to external stimuli, potentially 
allowing for allocating more cognitive resources toward an introspec- 
tive stream of consciousness ( Zabelina and Andrews-Hanna, 2016 ). In- 
terestingly, we observed left-lateralized decoupling for the DAN. This 
left-over-right decoupling pattern in DAN mirrors lesion studies linking 
left hemisphere lesions to increases in creativity ( Seeley et al., 2008 ; 
Shamay-Tsoory et al., 2011 ; c.f. Chen et al., 2019 ). It has been sug- 
gested that, under an inhibitory mechanism, the right hemisphere’s pre- 
dominance in creative cognition may be inhibited by the left hemi- 
sphere in typical people, while such inhibition is weakened after dam- 
ages to the left hemisphere, thus boosting creativity ( Huang et al., 
2013 ). In our case, the decoupled left-lateralized DAN (especially L IFG 
and surrounding ROIs) could be linked to the release of inhibition of 
the left hemisphere in a similar fashion that facilitates creativity, al- 

though the lateralized involvement may depend on the creativity do- 
main ( Chen et al., 2019 ). Moreover, Lotze et al. (2014) also noted that 
a reduced left- and inter-hemispheric connectivity of language areas, 
namely the left posterior area BA44 (left IFG), may lead to a more spon- 
taneous and less constraining cognition. It has been argued that the loos- 
ened top-down regulatory control (hypofrontality), characterized as di- 
minished prefrontal functioning, may paradoxically boost creative cog- 
nition ( Chrysikou et al., 2013 ; Thompson-Schill et al., 2009 ). The above 
findings are consistent with our observation that the left IFG showed the 
greatest decoupling in the aggregated EC pattern. Taken together, down- 
regulation in regions responsible for top–down externally-directed at- 
tentional control in the left prefrontal cortex (e.g. left IFG) appears to 
be a key neural feature for both creative cognition and other sponta- 
neous cognitive processes ( Christoff et al., 2009 ; Julia W. Y. Kam et al., 
2013 ). 

To sum up, our work sheds new light on the complex interaction 
between DMN and FPN during creative cognition. Our data-driven ap- 
proach suggests these typically opposing networks may indeed cooper- 
ate during creative cognition as revealed by our EC analysis. Further- 
more, decoupling of key regions in DAN and visual networks may also 
correspond to the shielding of internally directed attention from the ex- 
ternal environment during creative thinking ( Maillet et al., 2019 ), fur- 
ther facilitating creative cognition. 

4.1. Limitations and future directions 

There are some methodological limitations associated with our 
study. The first issue concerns the relatively small sample size ( N = 25) 
as well as the short duration for each task. The sample size limited our 
statistical power in the brain-behavior analysis and short duration may 
affect our ability to fully capture the latent cognitive processes and un- 
derstand the associated canonical brain networks. Future studies with 
more participants and longer task duration are needed to further val- 
idate our findings, as a recent study suggests that it may require a 
consortium-level sample size to obtain a reproducible brain-behavior 
relationship ( Marek et al., 2020 ). 

Second, previous studies have shown the inter-subject differences in 
FC patterns are dominated by stable individual differences other than 
transient cognitive/task modulation ( Finn et al., 2015 ; Gratton et al., 
2018 ; Xie et al., 2018a ). We circumvented this issue by removing indi- 
vidual baseline-FCs (i.e., FC fingerprints). However, this is a rather sim- 
plified means of removing individual differences using ordinary least 
squares regression, which may be inadequate for handling zero-inflated 
FC patterns. Moreover, EC analysis assumes linearity. Therefore, it can 
only capture linear relations among connectivity pairs. Future studies 
can consider nonlinear decomposition methods such as general princi- 
pal component analysis ( Vidal et al., 2005 ) and geometry-aware prin- 
cipal component analysis ( Harandi et al., 2018 ). These nonlinear meth- 
ods could help us more efficiently explore the nonlinear relationships 
between task FCs. 

Third, given our goal of anchoring latent deliberate and spontaneous 
thinking during creative cognition based on the dual-process theory of 
creative cognition ( Christoff et al., 2016 ; Dietrich, 2004 ), we narrowed 
our focus to the first two EC components. We designed our study to 
examine the dual-process model by ensuring the tasks would induce 
mental states varying mainly across these two latent putative cognitive 
axes. Our choice was partially justified by linking EC weights with be- 
havioral data ( Fig. 6 ), and matching EC patterns with previous neu- 
roimaging findings in creative research. However, we cannot rule out 
the possibility that there may exist alternative interpretations or theories 
that can better explain our findings, which requires future investigation. 
For example, the Matched Filter Hypothesis (MFH) ( Chrysikou, 2019 ; 
Chrysikou et al., 2014 ), provides a complementary and alternative 
framework for creative cognition. Similar to the dual-process model, the 
MFH also proposes two cognitive axes, namely abstraction (top-down 
vs. bottom-up) and filtering (cognitive control; high vs. low control de- 
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mands). It argues that different types of creative cognition may require 
a different level of abstraction and filtering. Stimulus-driven idea gen- 
eration, for example, may benefit from a lower level of filtering (down- 
regulated cognitive control) and lower abstraction (bottom-up), while 
rule-based idea evaluation may benefit from a higher level of filtering 
(upregulated cognitive control) and higher abstraction (top-down). Fu- 
ture work could test the MFH by employing a CMP with a different set of 
tasks and a similar analytical approach (i.e., eigen-connectivity). Addi- 
tionally, given the relatively modest variance explained by the first two 
ECs (4.4% and 3.3%, respectively), there is no doubt that higher-order 
ECs may be cognitively meaningful, as many of them also explained 
significantly more variance than the chance level and provided some 
task separability (Supplemental Fig. S4). Indeed, some interesting work 
has been conducted using EC analysis on the multitask data from Hu- 
man Connectome Project, which looked at higher-order EC components 
to better identify individuals and tasks ( Abbas et al., 2020 ; Amico and 
Goñi, 2018 ). However, as is often the case with any latent factor anal- 
ysis, increasing the number of latent components/factors comes at the 
cost of interpretability. Although the analysis was data-driven, it was 
also hypothesis-constrained (i.e., we opted to only analyze the compo- 
nents of a-priori/theoretical interest). Thus, we believe that for our spe- 
cific question, limiting our focus to the first two ECs was a reasonable 
trade-off. 

Another potential limitation of the current study relates to the re- 
sponse collection method for the AUT and RAT. Participants were asked 
to recall their ideas post-scan, which added a memory component that 
could have been reflected in neural activity. Although the correlations 
between in-scanner and post-scan responses were high for both tasks ( p 
< 0.001; see Supplemental Fig. S5) —providing a partial validation of the 
post-scan method —the added memory component is important to con- 
sider. When designing future neuroimaging experiments requiring ver- 
bal responses, creativity researchers should weigh the pros and cons of 
different response collection methods, but it is generally recommended 
to separate thinking from (verbal) responding (cf. Benedek et al., 2019 ). 

Lastly, the rich spatiotemporal dynamics of the brain remain un- 
tapped in this study. Future work can also investigate the time-varying 
FC during task performance ( Gonzalez-Castillo and Bandettini, 2018 ; 
Vergara et al., 2019 ; Xie et al., 2018b ) as well as instantaneous acti- 
vation patterns using Topological Data Analysis (TDA; Geniesse et al., 
2019 ; Saggar et al., 2018 ) and Gaussian process latent variable models 
(GPLVM; Bahg et al., 2020 ). Moreover, as non-neuronal artifacts (e.g., 
head motion) could still have confounded our results, we have made our 
best attempts to mitigate these artifacts by adopting a state-of-art fMRI 
preprocessing pipeline ( Esteban et al., 2019 ). Additionally, our anal- 
ysis also assumed that the functional parcellation remained unchanged 
despite the changing cognitive demands, which is subject to future eval- 
uation ( Salehi et al., 2019 ). 

5. Conclusions 

Creativity theories have long emphasized dual-process models of 
spontaneous and deliberate thought, but bottom-up data-driven evi- 
dence supporting these theories has been largely absent. Using a data- 
driven eigen-connectivity (EC) analysis with a continuous multitask 
paradigm (CMP), we extracted latent connectivity patterns shared across 
multitask FCs - corresponding to deliberate and spontaneous thinking 
- and showed that creative cognition may require a balance of these 
two latent cognitive modes. The EC pattern underlying creative cog- 
nition revealed a complex interaction between the two canonical and 
typically-opposite brain networks. We observed creative cognition re- 
quires stronger intra-network connectivity in the default mode network 
(DMN) and fronto-parietal network (FPN), as well as stronger inter- 
network coupling between the two. We also found higher decoupling in 
the left-lateralized dorsal attention network (DAN) and visual network, 
which may facilitate creative thinking by shielding the brain from ex- 
ternal stimuli. In sum, our work provided exciting initial evidence of the 

latent cognitive modes of creative cognition, potentially offering novel 
neural evidence for the classic theory of creativity. 
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