Chapter 7 ®)
How Does the Coral Microbiome Cause, st
Respond to, or Modulate the Bleaching
Process?

K. M. Morrow, E. Muller, and M. P. Lesser

7.1 Introduction

Coral holobionts are formed by a dynamic multipartite symbiosis with intracellular
photoautotrophs in the genus Symbiodinium, as well as a consortium of microor-
ganisms that include bacteria, archaea, viruses, fungi, and protists. The coral
holobiont functions as a unit to provide flexible stability in the face of constant
environmental stressors. Coral bleaching, or the loss of Symbiodinium and their
pigments, has caused significant global declines in the percentage cover of reef-
building corals, particularly in recent decades as global sea surface temperatures
continue to rise (Lesser 2004; Hoegh-Guldberg et al. 2007). Bleaching can be caused
by a number of environmental stressors including extreme fluctuations in seawater
temperature (increase or decrease), high solar irradiance, sedimentation, pollution,
herbicides, and reduced salinity. Hyperoxic conditions have been shown to act
synergistically with solar radiation and thermal stress to produce significantly greater
fluxes of reactive oxygen species (ROS) in both host tissues and Symbiodinium spp.
that leads to photosynthetic dysfunction, apoptosis, and bleaching (Lesser 2006,
2011; Oakley et al. 2017). We now understand that different phylotypes of
Symbiodinium sp. within each clade represent multiple phenotypes and potentially
species (Thornhill et al. 2014), and display variable rates of photosynthesis, capacity
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to photoacclimate, stress tolerance, ROS production, superoxide dismutase (SOD)
activity, and metabolic interchange with their hosts (Banaszak et al. 2006; Robison
and Warner 2006; Reynolds et al. 2008; Suggett et al. 2008; Hennige et al. 2009;
Brading et al. 2011; Lesser 2011; Buxton et al. 2012; McGinty et al. 2012; Parkinson
and Baums 2014; Roberty et al. 2014; Krueger et al. 2015; Warner and Suggett
2016; Grégoire et al. 2017).

However, much less attention has been paid to the coral microbiome, which
includes the Symbiodinium, prokaryotes and viruses, and their role in coral bleaching
and the bleaching response. Microbes can exhibit extensive diversity and abilities to
respond to and withstand environmental pressures, and, as with other multipartite
mutualisms (Hussa and Goodrich-Blair 2013), corals may be able to take advantage
of these microbial partnerships by recruiting taxa with distinct environmental toler-
ances that provide a means to adapt and/or acclimate to environmental change. Here,
we provide some context for the importance of the coral microbiome to holobiont
function. We survey what is currently known about the relationship among
Symbiodinium, temperature stress, and the associated prokaryotes and viruses. We
also examine the impact of the coral bleaching response and environmental stressors
conducive to bleaching (e.g., temperature and irradiance) on coral-associated micro-
organisms with particular emphasis on diazotrophic (nitrogen-fixing) bacteria. In
conclusion, we summarize how a shifting and potentially dysbiotic microbiome may
impact the coral host in the context of bleaching.

7.2 The Coral Holobiont

Coral-associated microorganisms form an intimate and often species-specific rela-
tionship with their hosts, aiding in a number of beneficial functions (reviewed in
Bourne et al. 2016) and potentially provide assisted acclimatization in the face of a
changing climate (Webster and Reusch 2017). Recent reviews have proposed the
term “Beneficial Microorganisms for Corals” (BMC), which defines core microbiota
or microbial consortia that maintain coral health and resilience and potentially act as
bioindicators of environmental stress (Peixoto et al. 2017). Coral-associated micro-
organisms are known to provide pathogen resistance through the production of
antimicrobial compounds (Ritchie 2006; Rypien et al. 2010), catabolism of
dimethylsulfoniopropionate (DMSP), and the production of sulfur-based antimicro-
bial compounds and antioxidants (e.g., Raina et al. 2010, 2013; Todd et al. 2010;
Howard et al. 2011), as well as the acquisition and cycling of critical nutrients (i.e.,
carbon, nitrogen, phosphorus, metals, vitamins; Wegley et al. 2007; Raina et al.
2009; Zhang et al. 2015; reviewed in Bourne et al. 2016). Microorganisms also
appear to have evolved with corals at every life history stage (Apprill et al. 2009;
Sharp et al. 2012) and may be critical to their early settlement success and meta-
morphosis onto reef substratum (Negri et al. 2001; Webster et al. 2004; Sneed et al.
2014; Sharp et al. 2015).
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Although the coral microbiome is generally found to be diverse and species
specific (Rohwer et al. 2002), recent literature has demonstrated its flexibility as a
result of host physiology and morphology (Thompson et al. 2015), life history stage
(Sharp et al. 2012), and microhabitat within the coral substructure (i.e., mucus,
tissues, gastric cavity, skeleton; Sweet et al. 2011; Ainsworth et al. 2015). The
composition of the coral microbiome also varies with season, geography, and
environmental influences (e.g., temperature, pollution, macroalgae; Hong et al.
2009; Littman et al. 2009; Zhang et al. 2015; Glasl et al. 2016). Thus, as with
many other multipartite symbioses (reviewed in Hussa and Goodrich-Blair 2013),
we are finding that the composition and function of the community are not static and
appear to be influenced by host physiology, health, and the surrounding environ-
ment, likely fluctuating in time and space. There may be low- or high-abundance
bacterial or archaeal phylotypes that play a core role, as well as consortia of
microorganisms working together to perform critical functions, but many of the
ancillary commensal microbes may simply be filling a niche or providing functional
redundancy.

In comparison to the host, symbiotic microbes divide and evolve more rapidly,
potentially influencing the ability of the holobiont to adapt and/or acclimate to
changing environmental conditions. In this regard, van Oppen et al. (2015) hypoth-
esized that modification of the microbiome may be one way to facilitate
transgenerational acclimatization of coral reef organisms. This concept was further
developed in a commentary by Damjanovic et al. (2017), in which they proposed a
series of manipulative experiments to examine whether microbial mediation could
aid in long-term coral stability. Subsequent perspectives have also examined the
importance of microorganisms to corals as an adaptive mechanism when faced with
climate change stressors such as elevated seawater temperature and pCO, levels
(Torda et al. 2017; Webster and Reusch 2017). By shuffling community composition
of both the microbiome and Symbiodinium populations, in addition to acquiring new
genetic material through mutation and/or horizontal gene transfer, while interacting
with the surrounding seawater microbiota, the holobiont may or may not transfer
advantageous microbial alterations to new generations that could help them avoid or
withstand future bleaching events (Fig. 7.1; Webster and Reusch 2017). This theory
also feeds into the founder effect, which occurs when a new population (e.g., coral
planula microbiome) is established by a small number of individuals from a larger
population (parent colony microbiome), leading to speciation and subsequent evo-
Iution in extreme cases (Barton and Charlesworth 1984). The founder effect origi-
nates in population genetics but has been applied to the study of microbiomes for
some time. For example, founder populations from the human mother may be key to
a more natural ecological succession of the infant gut, leading to stability within
adult immune and metabolic responses (Mueller et al. 2015). In a similar manner,
vertically and horizontally transmitted founder populations from acclimated coral
holobionts may be key to the stability of future generations (Fig. 7.1). Although we
still have much to learn about the function and flexibility of the dynamic relationship
between coral host and microbiome, the theory that holobiont resilience may be
positively influenced by a flexible, and potentially manipulable, multipartite symbi-
osis is met with hesitant optimism.
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Fig. 7.1 Illustration depicts how shifts in coral microbiome and Symbiodinium populations,
coupled with acquiring new genetic material through mutation and/or horizontal gene transfer,
may be advantageous (e.g., winners) or disadvantageous (e.g., losers), to future generations of coral
holobionts. Corals may be further impacted by seawater microbial community composition as this
too will shift in response to changing environmental conditions and ecosystem structure resulting
from repeated bleaching events [Concept adapted from Bourne et al. (2016) and Webster and
Reusch (2017)]

7.3 Holobiont Response to Thermal Stress and Bleaching

For over two decades, we have known that coral bleaching events can have signif-
icant and detrimental impacts on microbial community composition (Ritchie et al.
1994), although only a handful of studies have specifically examined the impact of
bleaching and the bleaching response on the coral microbiome (n = 9; Table 7.1).
Most studies have instead focused on the impact of elevated temperature stress rather
than irradiance, sedimentation, or pollution as a bleaching catalyst (n = 15;
Table 7.1). It should be noted that although we do not include studies associated
with the Vibrio-induced bleaching model system, we describe the concepts in
Sect. 7.6.

In general, bleaching-related microbial community shifts are often characterized
by a higher proportion of taxa affiliated with opportunistic bacteria (Mouchka et al.
2010), an increase in genes associated with virulence factors (Littman et al. 2011),
and a shift toward Vibrio dominance (Bourne et al. 2008; Frydenborg et al. 2014;
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Tout et al. 2015; Table 7.1), although some corals, such as Porites lobata (Hadaidi
et al. 2017) and Orbicella faveolata (Tracy et al. 2015), are still able to maintain
stable microbiomes through bleaching events. More recently, research has specifi-
cally focused on the impact of elevated temperatures on the coral microbiome,
finding that even a single stressor can cause significant shifts in the microbiome,
often increasing diversity (McDevitt-Irwin et al. 2017; Table 7.1), and the abun-
dance of opportunistic bacteria such as Vibrio spp. (Littman et al. 2010; Frydenborg
et al. 2014; Tout et al. 2015; Gajigan et al. 2017).

The coral microbiome itself may have a temperature tolerance threshold, as it was
found that bacterial community changes occurred at temperature elevations >1 °C,
with no evidence of community shifts at lower-temperature changes (Salerno et al.
2011). Other studies have demonstrated a link between temperature stress and
bacteria associated with nitrogen cycling (reviewed in Sect. 7.3.1; Santos et al.
2014; Ziegler et al. 2017). Similar patterns emerge when corals are exposed to the
compounding effects of multiple stressors (i.e., elevated temperatures, dissolved
organic carbon, pH, and/or nutrients), causing shifts in the microbiome community
toward a dysbiotic state, or disturbance of the “normal flora,” which may be
associated with a disease state leading to bleaching and/or mortality (Rosenberg
et al. 2007; Vega Thurber et al. 2009; Zaneveld et al. 2016). Zaneveld et al. (2016),
in a 3-year field study, showed that chronic exposure to eutrophication, algal
overgrowth (e.g., simulated overfishing), and temperature stress destabilized coral
microbiomes making them more susceptible to the effects of future exposures.
Webster et al. (2016) also demonstrated a significant interactive effect of thermal
stress and ocean acidification on the microbial communities of corals and other
important calcifying species on coral reefs. These studies, and others outlined below,
demonstrate that microbiomes can change rapidly in response to moderate to severe
environmental stress, potentially aiding in the adaptability of their host (proposed in
Webster and Reusch 2017; Peixoto et al. 2017) and/or leading to their destabilization
and loss of critical functions (Zaneveld et al. 2016; McDevitt-Irwin et al. 2017,
Fig. 7.1).

A recent meta-analysis found that stress, particularly during climate anomalies, is
implicated in an increase in community diversity and a decline in the relative
abundance of potentially key coral endosymbionts in the genus Endozoicomonas
(class Gammaproteobacteria, order Oceanospirillales; McDevitt-Irwin et al. 2017).
Members of the Endozoicomonas genus are often dominant members of coral
microbiomes (Morrow et al. 2012; Bayer et al. 2013; Rodriguez-Lanetty et al.
2013) and can be found deep within coral tissues (Bayer et al. 2013; Neave et al.
2016a). They are hypothesized to prevent mitochondrial dysfunction and promote
gluconeogenesis (Ding et al. 2016), aid in sulfur cycling (Neave et al. 2016b), and
protect the coral from bleaching pathogens (Pantos et al. 2015), potentially through
the production of quorum-sensing metabolites (Mohamed et al. 2008) or antimicro-
bial compounds (Rua et al. 2014). McDevitt-Irwin et al. (2017) and others (Zaneveld
et al. 2016) provide evidence that suggests the coral microbiome becomes more
diverse (increased richness), more variable (reduced evenness), and less stable when
under stress. Interestingly, a similar pattern has emerged in human microbiome
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studies, where once it was believed that a dysbiotic state was characterized by low
diversity and overabundant opportunistic or pathogenic taxa (Lozupone et al. 2012);
more recent studies show that human microbiomes can also become more variable
under stress (reviewed in Zaneveld et al. 2017). Perhaps this discrepancy has to do
with the time frame in which we are sampling microbiomes, capturing the commu-
nity as it transitions from a healthy equilibrium through a variable dysbiotic state to
an alternate stable state characterized by pathogens and disease symptoms (reviewed
in Bourne et al. 2016). In fact, communities are more often in a transient state of
disturbance than stability, and some have suggested we shift our focus to studying
alternate transient states, rather than alternate stable states, in order to make more
relevant predictions about community assembly (Fukami and Nakajima 2011).
Nevertheless, it would likely be difficult for the coral to return to a healthy equilib-
rium after a stressor is alleviated, leading to a reduction in overall ecosystem
resilience, unless the ability of the coral microbiome to shift and acclimate to
changing environmental conditions confers some adaptive advantage to the
coral host.

One of the best examples that the coral microbiome may actually preadapt a coral
to survive thermal stress is a recent study by Ziegler et al. (2017), which presents
experimental data demonstrating that the microbiome of heat-sensitive and heat-
tolerant corals is significantly different and that heat-tolerant corals exposed to
bleaching temperatures showed no changes in their microbiomes and bleached less
often. In these experiments, corals (Acropora hyacinthus) were exposed to both a
long-term (17-month) reciprocal transplant experiment between two thermally dis-
tinct environments and a short-term heat-stress experiment. Coral microbiomes were
shown to rapidly adjust to new environmental conditions (~20 h), and the thermal
environment from which the corals originated (17-month experiment) predicted their
microbial response to heat stress. These results suggest that long-term exposure to
environmental stress such as thermal variability allows the coral microbiome to
acclimatize, which in turn may play a role in a coral’s resistance to thermal stress
(Fig. 7.1). In an earlier laboratory-based study (Bellantuono et al. 2011), Acropora
millepora corals were exposed to temperatures 3 °C below the bleaching threshold
(generally defined as ~1 °C above summer maximum) in a short-term (10-day)
experiment, which resulted in a significant reduction in bleaching susceptibility.
However, no changes were detected in the Symbiodinium populations based on
internal transcribed spacer region 2 (ITS2) sequencing or bacterial populations
based on denaturing gradient gel electrophoresis (DGGE) results from a single
time point 6-days into the experiment. The authors concluded that rapid temperature
acclimation may be a function of host physiological plasticity rather than shifts in the
symbiont community. In another study, antibiotics were applied every day over the
course of a heat-stress experiment to reduce the bacterial activity associated with
Pocillopora damicornis corals while monitoring the coral holobiont response to
thermal stress (Gilbert et al. 2012). Microbial viability and activity were monitored
with 96-well Biolog EcoPlates™, an assay panel that measures bacterial carbon
metabolism. The heat-stressed and antibiotic-treated holobiont displayed signifi-
cantly depleted host protein levels, chlorophyll a concentrations, and tissue loss in
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comparison to corals with an intact (i.e., unmanipulated) microbiome, again
suggesting that the microbial consortium may provide some resilience against
thermal stress. Thus, although thermal acclimatization has been widely demonstrated
in reef corals (Brown et al. 2002a, b; Middlebrook et al. 2008; Barshis et al. 2010;
Palumbi et al. 2014 among others), these recent studies are the first to demonstrate
the potential role of the microbiome in host stability and thermal tolerance.

7.3.1 Diazotrophy and the Bleaching Response

Nitrogen is a critical and limiting nutrient that corals generally acquire through the
uptake of dissolved inorganic nitrogen or heterotrophic feeding. Several studies have
demonstrated the presence of nitrogen-fixing bacteria (diazotrophs) in the coral
microbiome (e.g., Lesser et al. 2004) and that “new” nitrogen can be obtained
from these members of the coral microbiome (Lesser et al. 2007a). More broadly,
there is evidence suggesting that there is a critical link between coral bleaching and
the availability of environmental nitrogen (Wooldridge 2013; Vega Thurber et al.
2014; Shantz et al. 2016; Pogoreutz et al. 2017). In fact, an increase in the acquisition
of nitrogen through heterotrophy has been shown to reduce post-bleaching
photoinhibition and recovery times (Grottoli et al. 2006; Ferrier-Pages et al. 2010;
Hoogenboom et al. 2012). To this end, Godinot et al. (2011) demonstrated that
elevated temperatures (33 °C) caused a severe decrease in nitrate and ammonium
uptake rates, even leading to release of nitrogen into seawater. Furthermore, the
combination of high temperature (33 °C) and low pH (7.5) resulted in a significant
decline in phosphate and nitrate uptake rates, although these would be the ecological
extremes for tolerable temperatures and pH (Godinot et al. 2011).

From the perspective of diazotrophy (i.e., bacteria and archaea that fix atmo-
spheric nitrogen gas into a more usable form such as ammonium), daylight
dinitrogen (N,) fixation was shown to significantly increase in corals exposed to a
6 °C temperature increase in comparison to controls (Cardini et al. 2016). Corals
exposed to nitrogen-enriched seawater also demonstrated an increase in
photoprotective pigment concentrations while maintaining rates of photosynthesis
and calcifications at ca. 60% and 100% of rates for unenriched controls that
experienced a significant decrease in photosynthesis and calcification (Beraud
et al. 2013). The authors suggest that inorganic nitrogen availability may be akin
to heterotrophic feeding in maintaining coral metabolism under stressful conditions.

Based on the above experiments, it is, therefore, not surprising that recent
research has also documented an increase in the abundance and diversity of coral-
associated diazotrophic bacteria during thermal stress events. Diazotroph diversity
and richness within Mussismilia harttii corals increased by threefold during both a
2.5 and 4 °C experimental temperature increase (Santos et al. 2014). Pogoreutz et al.
(2017) also documented a significant increase in diazotrophic activity during a
28-day, sugar-induced bleaching experiment with Pocillopora verrucosa corals.
Although the Pogoreutz et al. (2017) study may not be ecologically relevant, they
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demonstrated the impact of bleaching on the diazotrophic community without the
confounding effects of heat and light stress. High temperature and light also increase
rates of organic matter release by corals into seawater which could further enhance
pelagic N, fixation rates (Bottjer et al. 2016). Ainsworth et al. (2015) identified two
potential N,-fixing bacteria as intracellular within Symbiodinium and within
Symbiodinium-containing coral cells (Actinomycetales and Ralstonia, respectively),
using fluorescent in situ hybridization (FISH) and 16S rRNA gene-targeted sequenc-
ing (454 tag sequencing). Both identified phylotypes can also form diazotrophic
symbiotic associations in other photosynthetic systems (Chen et al. 2003; Sellstedt
and Richau 2013). Finally, although diazotrophs were not specifically examined,
Ziegler et al. (2017) identified bacteria affiliated with the class Alphaproteobacteria
(e.g., Rhodospirillaceae, Rhizobia) as responsible for a large fraction of the func-
tional enrichment within heat-tolerant corals, as opposed to Gammaproteobacteria
(e.g., Hahellaceae, Alteromonadaceae, Vibrionaceae), within heat-sensitive corals.
Similarly, Lee et al. (2016) documented an increase in Alphaproteobacteria,
Verrucomicrobiae, and Cyanobacteria in the mucus of thermally stressed corals
preceding a bleaching event. Members of the Alphaproteobacteria and
Cyanobacteria are often associated with nitrogen cycling in host-associated
microbiomes (Lesser et al. 2004, 2007b; Tsoy et al. 2016).

As noted above, an increase in available nitrogen may benefit corals under
thermal stress; however, too much may interfere with the internal equilibrium
between host and Symbiodinium, potentially contributing to the bleaching response.
Diazotrophy in corals has been shown to increase the in hospite growth rates of
Symbiodinium under normal environmental conditions without an increase in bio-
mass (Lesser et al. 2007a), presumably from a host-controlled increase in symbiont
losses. This was hypothesized to be offset by an increase in daily turnover rates of
Symbiodinium (Lesser et al. 2007a). Higher levels of nitrogen supplied by
diazotrophic bacteria would likely release Symbiodinium completely from
N-limited growth and cause high rates of cell division and reduced translocation of
photosynthates to the coral (Falkowski et al. 1993; Dubinsky and Jokiel 1994;
Suesciin-Bolivar et al. 2016). Pogoreutz et al. (2017) theorize that retaining photo-
synthates could result in the energy limitation of coral carbon-concentrating mech-
anisms (CCMs), which would result in carbon (i.e., CO,) limitation within
photosynthetic dark reactions, causing a heightened susceptibility to photodamage
and subsequent bleaching (i.e., sink limitation). Stimulated nitrogenase activity due
to elevated temperatures leading to a further increase in coral-associated
diazotrophic activity is believed to be another mechanism by which the internal
nutrient equilibrium within the coral holobiont becomes imbalanced, disrupting the
N-limited state of Symbiodinium and potentially inducing or prolonging bleaching
events (Ridecker et al. 2015; Fig. 7.2). Pernice et al. (2012) clearly demonstrated the
importance of ammonium (NH,") uptake from the surrounding seawater, while
Cardini et al. (2015) demonstrated that on a seasonal basis some corals could become
more dependent on the contribution of fixed N, for their nitrogen budgets. These
studies suggest that coral-associated nitrogen fixers may be more intimately tied with
Symbiodinium and the coral bleaching response than we currently understand
(Fig. 7.2).
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7.3.2 Coral Mucus and the Mucus Microbiome in Response
to Bleaching

Thermal stress and bleaching can also cause a compositional change in coral mucus
(Wooldridge and Done 2009), which is a protective boundary layer between the
coral tissues and external environment where the majority of the microbiome takes
up residence, in a similar manner to the mucosal community of the human gut
(Smillie et al. 2011). The surface mucus layer is loosely defined as a polysaccharide-
protein-lipid complex secreted by epithelial mucocytes onto the coral surface
(reviewed in Brown and Bythell 2005). Mucus production by corals not only aids
in feeding and self-cleaning but also provides protection against pathogens, desic-
cation, UV radiation, pollutants, and other physical damage (Brown and Bythell
2005; Bythell and Wild 2011; Barr et al. 2013a). Much of the fixed carbon within the
mucus layer originates from the Symbiodinium and serves as a rich food source for
bacteria (Ritchie and Smith 2004). By providing a stable growth medium for both
beneficial and detrimental bacteria, mucus plays a key role in a coral’s innate
immune function, enhancing susceptibility or providing protection from pathogens
(Ducklow and Mitchell 1979; Banin et al. 2001; Lipp and Griffin 2004). However, as
the composition of coral mucus is altered by thermal stress events, so will the
stability of the mucus- and tissue-associated microbiome.

Coral bleaching and thermal stress increase organic matter and mucus production
in some corals (Niggl et al. 2009) while decreasing mucus thickness in others (i.e.,
Diploria sp.; Pratte and Richardson 2014). For example, the chemical composition
of Acropora muricata coral mucus was altered in experimentally thermally stressed
corals (26-33 °C), causing a change in the proportion of simple sugars (e.g., fucose,
glucose, and mannose) and a reduction in the proportion of N-acetyl glucosamine
and C6 sugars, which also correlated with a shift in the coral-associated microbial
community (Lee et al. 2016). A drop in the relative abundance of
Gammaproteobacteria was associated with a change in the content of fucose and
mannose sugars, and an increase in Cyanobacteria was correlated with shifts in
arabinose and xylose (Lee et al. 2016). Furthermore, these changes in the composi-
tion of the mucus and microbiome began at 29 °C, prior to visual signs of bleaching,
which occurred at 31 °C, suggesting that mucus composition could be used as a
bioindicator of pre-bleaching conditions.

In a seminal paper describing the coral mucus microbiome, Ritchie (2006)
demonstrated that healthy Acropora palmata mucus selected for bacteria that pro-
duced antibiotics active against a putative coral pathogen (Serratia marcescens
PDL100). Not only was antibiotic activity lost during a summer bleaching event
(i.e., increased temperatures), but coral tissues were dominated by bacteria affiliated
with the genus Vibrio. Since then, several studies have also shown a reduction in
antibacterial activity of mucus-associated bacteria under elevated temperature stress
(Shnit-Orland and Kushmaro 2009; Rypien et al. 2010). Recent work has suggested
additional mechanisms for the suppression of opportunistic pathogens by coral-
associated commensal bacteria. For example, Frydenborg et al. (2014) demonstrated
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that Vibrio spp. were better able to use key substrates found in coral mucus (e.g., a-
D-glucopyranosidase), allowing them to outcompete commensal coral bacteria under
elevated temperatures. Lee et al. (2015) also demonstrated that the relative abun-
dance of Vibrio spp. increased and the putative symbiont, Endozoicomonas spp.,
decreased at pre-bleaching temperatures (29 °C). Interestingly, this declining trend
continued for Endozoicomonas spp., but the abundance of Vibrio-related OTUs also
declined in the tissues but increased in the mucus layer as the coral reached
bleaching temperatures (31 °C; Lee et al. 2015), perhaps avoiding the toxic envi-
ronment developing within the coral tissues.

Thermally bleached corals have also demonstrated a reduced capacity to remove
sediments (Bessell-Browne et al. 2017), which are laden with bacteria and viruses
(Breitbart et al. 2004). Sedimentation and water turbidity can result from both
anthropogenic activities (e.g., dredging, coastal runoff) and weather events. The
removal of sediments is not only energetically costly (Peters and Pilson 1985; Riegl
and Branch 1995) but has also been associated with the transmission of pathogens
(Hodgson 1990) and increased disease prevalence (Haapkyla et al. 2011; Pollock
et al. 2016). Bleaching may further interfere with sediment removal by reducing the
number of epithelial mucocytes (Fitt et al. 2009; Piggot et al. 2009), as well as
reduced mucus within the deeper gastrodermal layers (Fitt et al. 2009). Increased
accumulation of sediments on bleached corals can lead to mucus sheet formation
(Bessell-Browne et al. 2017), necrosis (Weber et al. 2012), and ultimately mortality.
These studies indicate that the structure and composition of coral mucus can change
under thermal stress and bleaching events (see also Krediet et al. 2009; Mao-Jones
et al. 2010), which may lead to an environment that is less stable and more attractive
to opportunistic microorganisms and pathogens than beneficial symbionts (Fig. 7.2).

Bacteriophages (i.e., a virus that infects and replicates within a bacterium) also
play a dynamic and little recognized role in the development and maintenance of
coral mucosal communities and have been shown to shift their community compo-
sition during environmental changes, including disease states (Columpsi et al. 2016;
Soffer et al. 2015). Bacteriophage adherence to mucus (BAM) describes how phage
can directly attach and interact with coral mucins (Barr et al. 2013a), displaying
specific bacterial hunting behavior and potentially aiding in phage-mediated immu-
nity (Barr et al. 2013b). The coral mucus layer is thought to be spatially structured in
a similar manner to other metazoans (Johansson et al. 2011), forming a gradient from
the seawater interface where microbial abundance is highest to the coral epithelium
where microbial abundance is lowest and mucin production is greatest (Fig. 7.2).
Silveira and Rohwer (2016) proposed that this gradient supports greater viral
lysogeny at the mucosal-seawater interface, protecting coral commensals from
superinfection and increasing their fitness, while deeper layers are protected from
invading pathogens via higher levels of phage infection and cell lysis. High lytic
activity within the intermediary mucus layers likely facilitates diversification of the
bacterial community, aiding in the maintenance and assembly of a healthy microbial
community by providing spatial refuges and coexistence stabilization (Schrag and
Mittler 1996; Klimenko et al. 2016). Therefore, shifts in the structure and thickness
of mucus resulting from environmental stress or disease may increase the proximity
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of microbes to the coral epithelium (Earle et al. 2015), shifting the phage-mediated
immunity mechanisms and potentially allowing for invasion by lysogenic pathogens
leading to the onset of infection (Fig. 7.2).

7.4 Microbiome-Symbiodinium Interactions

The control of the composition of the coral microbiome may be dependent on
multiple factors, including host age, genotype and clade, Symbiodinium phylotype,
and/or the environment (Hernandez-Agreda et al. 2016). In particular, the presence
of photosymbionts is believed to influence the composition of host microbiomes
through the release of a complex array of organic exudates (e.g., DMSP, amino
acids, and polysaccharides; Bourne et al. 2013). Habitat-specific environmental
differences have also been shown to drive the composition of the microbiome in
sponges (Morrow et al. 2016) and in corals (Pantos et al. 2015). This may be why
Hernandez-Agreda et al. (2016) identified a distinct group of bacteria associated with
one coral species across multiple habitat types. Other studies have identified addi-
tional features of the host that are deterministic for the community structure of the
coral microbiome (Williams et al. 2015; Apprill et al. 2016).

The growth and density of in hospite Symbiodinium populations are highly
dependent on nitrogen availability; therefore, microorganisms that mediate nitrogen
cycling within the holobiont may have consequences for the stability of these critical
dinoflagellate populations (see Sect. 7.3.1). For example, diazotrophs (N,-fixing
bacteria and archaea) have been estimated to provide as much as 11% of the
Symbiodinium nitrogen requirements (Cardini et al. 2015). Recent research has
also confirmed earlier observations (Lesser et al. 2007a) that the majority of fixed
nitrogen is translocated to the Symbiodinium compartment and is largely driven by
bacteria affiliated with the Alpha- and Gammaproteobacteria, including the orders
Rhizobiales and Rhodobacterales (Olson and Lesser 2013; Lesser et al. 2017).
Members of the Cyanobacteria (Lesser et al. 2007a), fungi (Wegley et al. 2007),
and archaea (Siboni et al. 2012) are also implicated in nitrogen cycling within corals.
Also, common diazotrophs such as Rhizobia are found in early life stages,
suggesting that these relationships develop early and provide critical photosymbiont
stability within the holobiont (Lema et al. 2014).

Additional interactions between Symbiodinium and bacteria have been identified;
for example, bacteria affiliated with the order Roseobacterales (within the class
Alphaproteobacteria) were shown to form obligate associations with Symbiodinium
in laboratory cultures and may increase Symbiodinium growth rates (Ritchie 2012).
The Roseobacterales, along with other coral-associated bacteria (e.g.,
Endozoicomonas, Halomonas), are also affiliated with sulfur cycling in the coral
holobiont (Raina et al. 2009; Todd et al. 2010). Sulfur compounds such as
dimethylsulfoniopropionate (i.e., DMSP) and its breakdown products can act as
antioxidants that may protect Symbiodinium from photosynthesis-derived oxidative
stress (Sunda et al. 2002; Deschaseaux et al. 2014). Furthermore, a strong negative
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correlation has been demonstrated between the abundance of bacterial pathogens
and the abundance of the proposed symbiont Endozoicomonas in bleaching corals
(Pantos et al. 2015). This protective benefit was further alluded to in a study by
Meyer et al. (2014), in which disease lesions on the coral Porites astreoides
correlated with a low relative abundance of bacteria affiliated with Endozoicomonas
spp. rather than with a specific pathogen. Although multiple studies indicate desta-
bilization of the bacterial community is associated with stress (Vega Thurber et al.
2009), pathogen exposure (Welsh et al. 2017), or disease symptoms (Sunagawa et al.
2009), ultimately it is difficult to separate correlation from causation to determine
whether Endozoicomonas spp. are responsible for protecting the coral from patho-
gens (Glasl et al. 2016) or are simply declining in response to stress and/or disease
(Morrow et al. 2015, 2017).

It is clear that very little is known about the specific interactions between the
microeukaryote Symbiodinium and prokaryotic components of the coral
microbiome. The emerging story of the coral microbiome was preceded by theory
and technical approaches pioneered by studies on the human microbiome. Similarly,
the oceanographic community has been intensely interested in metabolic exchanges
between phytoplankton, including dinoflagellates, and bacterioplankton in what has
been called the “phycosphere” (Tang et al. 2010; Hu et al. 2015; Bolch et al. 2017).
These studies have demonstrated that unique metabolic interdependencies exist
within many pelagic eukaryotic-prokaryotic associations that could act as model
systems to guide studies on similar interactions in symbiotic systems such as corals.
One of the most well-studied examples is the Roseobacter-algae interaction,
whereby Roseobacter bacteria supply vitamins, phytohormones, and antibacterial
compounds to the alga (Sharifah and Eguchi 2011). However, when algal
populations decline and release cell wall degradation products (i.e., p-coumaric
acid), the Roseobacter shift from mutualistic partner to opportunistic pathogen,
releasing 11 types of troponoids that eventually kill the alga and switch the
Roseobacter from a sessile lifestyle to a motile, free-living cell (Sule and Belas
2013; reviewed in Ramanan et al. 2016). Thus, there is certainly potential for
bacteria to play a critical role in the growth, stability, and perhaps demise of the
coral-Symbiodinium relationship as was previously suggested in the ‘“bacteria-
induced bleaching” hypothesis (see Sect. 7.6).

7.5 Coral Bleaching in Relation to Coral Disease

While overfishing, pollution, and coastal development have long been drivers of
coral reef degradation, the dominant cause of reef decline is climate change, which
primarily manifests itself as coral bleaching. However, diseases with etiological
agents, either primary or secondary in nature, are largely responsible for a 30%
decline in worldwide coral cover over the past 30 years (Hughes et al. 2003). More
recent research has predicted that coral diseases may cause as much mortality as
bleaching within future decades (Maynard et al. 2015). While the assumptions of the
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model of Maynard et al. (2015) have been questioned (Lesser and van Woesik 2015),
several other models have revealed that many coral diseases are not infectious (i.e.,
transmissible) and do not fit into a contagious disease model (Yee et al. 2011). Most
studies are more consistent with disease prevalence being secondary to environmen-
tal stress, which leads to opportunistic coral disease outbreaks (Lesser et al. 2007b;
Muller and van Woesik 2012; Randall and van Woesik 2015). A disease is defined as
any impairment that interferes with or modifies the performance of normal functions,
including responses to environmental factors, infectious agents, inherent or congen-
ital defects, or combinations of these factors (Wobeser 2006). Identifying disease
within corals is surprisingly difficult as there are very few macroscopic signs
produced by corals to indicate poor physiological functioning. There is still little
agreement on whether coral diseases are infectious or are opportunistic in nature, and
many of the etiological agents still remain elusive (Lesser et al. 2007b; Apprill et al.
2013; Lesser and Jarett 2014).

Environmental stress causes coral bleaching (Fitt et al. 2001; Lesser 2011) and is
also a prerequisite for the occurrence of many coral diseases (Burge et al. 2014).
Indeed, environmental stress mediates the occurrence of coral disease by lowering
host resistance, by increasing pathogen abundance and virulence, or through com-
binations of these responses (Bruno et al. 2007; Brandt and McManus 2009;
Sokolow 2009; Reed et al. 2010; Muller and van Woesik 2014; Randall et al.
2014; Zvuloni et al. 2015). Even apparently healthy corals are often infected with
microbes that may negatively impact health and host physiology (Miller et al. 2014).
Despite improved efforts to identify the primary pathogens responsible for infection,
most studies remain dependent on the macroscopic disease appearance for diagnosis
(Ainsworth et al. 2007), with its associated limitations. Corals may show visual signs
of disease such as bleached tissue, discoloration (darkening or abnormal pigmenta-
tion), abnormal growth, or tissue loss. But, the lack of baseline and basic epizoot-
iological information has hindered our understanding of the relative importance of
specific pathogens and environmental factors in the spread of disease epizootics.
Interestingly, coral bleaching has also been associated with bacterial pathogens (see
Sect. 7.6) and possibly viruses (Lawrence et al. 2015; Levin et al. 2017; see Sect.
7.7). Environmentally induced bleaching events can also increase the prevalence of
infectious disease outbreaks on reefs through immune system suppression (Mydlarz
et al. 2009), which could lead to an increase in disease susceptibility and longevity
once infected. Furthermore, thermal stress conditions that often accompany coral
bleaching can increase pathogen growth rates (Alker et al. 2001; Ward et al. 2007)
and virulence (Ben-Haim et al. 2003; Kimes et al. 2012), changing commensal or
mutualistic bacteria into pathogens.

7.5.1 Bleaching-Induced Disease

Coral bleaching events are often followed by infectious disease outbreaks (Guzman
and Guevara 1998; Harvell et al. 2002; Bruno et al. 2007; Muller et al. 2008; Brandt
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and McManus 2009; Créquer and Weil 2009; McClanahan et al. 2009; Miller et al.
2009), which may be due to a reduction in immune system function (e.g., Mydlarz
et al. 2009). As discussed above most of the accumulating evidence supports the
compromised host hypothesis, which suggests that the condition of the coral host,
not necessarily the presence of a novel pathogen, is the primary reason for higher
disease prevalence on many contemporary reefs (Lesser et al. 2007b; Muller and van
Woesik 2014; Randall and van Woesik 2015). For example, during the 2005 coral
bleaching event in the US Virgin Islands, Muller et al. (2008) showed that corals that
had previously bleached also exhibited higher disease mortality than those that had
not bleached. Corals that were resistant to high water temperatures were also more
resistant to infectious diseases, which may have been because the immune system of
temperature-tolerant corals was less impacted. Ritchie (2006) showed a significant
reduction in antimicrobial properties within the mucus of bleached Acropora
palmata, which allowed the proliferation of potential pathogens. Pinzén et al.
(2015) also showed that genes that regulate the immune system within corals are
downregulated up to a year after bleaching occurs. Therefore, as corals allocate
resources in order to persist through a bleaching event, the immune system is
suppressed and remains so for many months, likely increasing the probability of
successful disease infection.

Although the host condition may play a critical role in disease dynamics, other
research suggests thermal stress conditions may influence the behavior and patho-
genicity of putative pathogens. Garren et al. (2014) showed that a bacterial pathogen,
Vibrio coralliilyticus, uses chemotaxis and chemokinesis to target heat-stressed
corals, using DMSP solely as a chemical cue to locate potential hosts. General
behavior of coral pathogens also changes under different temperature conditions.
For example, Garren et al. (2016) showed that V. coralliilyticus also increased
chemotactic ability toward coral mucus when temperatures exceeded 23 °C,
denoting an enhanced capability to track host-derived chemical cues. Further ele-
vated temperatures (>30 °C) increased the pathogen’s chemokinetic abilities,
denoted by accelerated cell movement under favorable, mucus-rich, chemical con-
ditions. Thermal stress has also been associated with an increase in virulence genes
(Banin et al. 2003), lysis of coral cells (Ben-Haim et al. 2003), and infection by coral
pathogens (Kushmaro et al. 1998; Ben-Haim and Rosenberg 2002). Thus, coral
bleaching and the environmental parameters that are conducive to bleaching impact
both host physiology and microbial community structure and function, setting the
stage for subsequent and prolonged infections.

7.6 Bacteria-Induced Bleaching

Although region-wide mass coral bleaching events are most commonly attributed to
unusually warm seawater temperatures, bleaching of the coral Oculina patagonica
during the summer in the Mediterranean Sea was previously identified as the result
of an infection with the bacterial pathogen Vibrio shilonii (previously referred to as
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V. shiloi; Kushmaro et al. 1997). This particular Vibrio bacterium produces an
extracellular superoxide dismutase (SOD) at 30 °C, but not at 16 °C, indicating a
temperature-related virulence (Banin et al. 2003). The extracellular production of
SOD protects the pathogen within the coral, allowing it to infect and persist within
host tissue, producing an extracellular peptide toxin that inhibits algal photosynthe-
sis ultimately leading to coral bleaching (Banin et al. 2000, 2003; Rosenberg et al.
2009). Extractions of the proline-rich toxin from V. shilonii also caused a reduction
in the quantum yield of photosystem II (i.e., a sign of impending bleaching) of
O. patagonica and Acropora eurystoma, but not several other Caribbean coral
species, suggesting a regional or species-specific response to this potential phenom-
enon (Gil-Agudelo et al. 2017).

Although bacterial bleaching was documented a number of times prior to 2002,
no additional cases of bacterial bleaching in O. patagonica have been found. This
phenomenon led to the creation of the “probiotic hypothesis” (Reshef et al. 2006),
whereby corals develop resistance to bacterial infection via an innate immune
response or beneficial shift in their microbiome. Thus, the probiotic hypothesis
was proposed as the mechanism of resistance to bacterial bleaching (Rosenberg
et al. 2007), but this has been challenged based on the absence of bacteria-induced
bleaching in O. patagonica after 2002 (Ainsworth et al. 2008). To date, corals have
only been shown to possess a very basic innate immune system, although adaptive-
like properties, reminiscent of higher organisms, have been documented in some
coral species (Reed et al. 2010). For example, both soft and hard corals have shown a
type of immunological memory and specificity for self-/nonself-recognition, with
faster immunological responses after initial exposure (Hildemann et al. 1977; Salter-
Cid and Bigger 1991; Jokiel and Bigger 1994). One study directly tested the
probiotic hypothesis by treating colonies of O. patagonica with a broad-spectrum
antibiotic and then exposing the coral to V. shilonii to determine whether infection
and subsequent bleaching were influenced by the resident microbiome. As hypoth-
esized, antibiotic-treated corals became sensitive to V. shilonii infection and
bleached after 14 days, but non-treated corals remained healthy, presumably because
beneficial members of the microbiome inhibited V. shilonii growth (Mills et al.
2013).

7.7 Virus-Induced Bleaching

Virus-like particles (VLPs) are present in all tissue layers of apparently healthy and
diseased corals including the gastrodermis, mesoglea, and epidermis, as well as in
the coral surface mucus layer (Patten et al. 2008; Leruste et al. 2012; Bettarel et al.
2013; Nguyen-Kim et al. 2014; Pollock et al. 2014; Wood-Charlson et al. 2015). It
has been hypothesized that elevated temperatures and other stress events may trigger
viral infections that contribute to coral bleaching and disease (Vega Thurber et al.
2008; Vega Thurber and Correa 2011; Wilson 2011; Lawrence et al. 2015; Levin
et al. 2017). Wilson et al. (2001) documented VLPs associated with heat-stressed
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anemones, Anemonia viridis, and were the first to suggest that viruses may be
involved in the cellular pathogenesis of bleaching. There is now growing evidence
of specific and dynamic interactions between Symbiodinium cells and viruses or
VLPs. For example, type C1 Symbiodinium cultures have been found to host
multiple intracellular viral infections (Weynberg et al. 2017). In another study,
Symbiodinium cultures exposed to UV demonstrated rapid cellular lysis, postulated
to be from latent viral infections, although this response could also be a result of
photochemical damage (Lawrence et al. 2015). Furthermore, all bleached corals
exhibited large viral loads in a naturally occurring bleaching event, caused by low
tide and heavy rainfall, with some VLPs specifically associated with the
Symbiodinium cells (Correa et al. 2016).

Although our understanding of viruses and their role in host-associated microbial
communities is currently limited, evidence is beginning to suggest that they play a
significant role in bacterial bleaching events. Virulence factors located on chromo-
somal pathogenicity islands exist in some strains of V. coralliilyticus. The presence
of these genetic signatures suggests that V. coralliilyticus virulence is driven by
prophages and other horizontally acquired elements (Weynberg et al. 2015). During
a bleaching event in the Caribbean, Marhaver et al. (2008) documented explicit
changes in the absolute abundance and relative composition of viruses that infect the
coral, Symbiodinium, and bacteria within partially bleached colonies of the massive
coral, Diploria strigosa. More recent work has tested the theory that Symbiodinium
are more susceptible to viral infections when exposed to heat stress. Lawrence et al.
(2017) demonstrated upregulation of virus-like gene expression in cultured
Symbiodinium cells following temperature stress experiments. Therefore,
Symbiodinium cells may host latent or persistent viral infections that are induced
via stress. These results were supported by analysis of host gene expression, which
also showed changes consistent with viral infection after exposure to stress. Further
to these experiments, transcriptomics were used to compare viral gene expression
within thermosensitive and thermotolerant populations of Symbiodinium type Cl
cells at ambient and elevated temperatures (+4 °C; Levin et al. 2017). This was the
first study to indicate that the viruses infecting Symbiodinium may also be adversely
affected by heat stress, further contributing to the endosymbiont’s thermal sensitiv-
ity. If these results can be replicated in Symbiodinium cells in hospite, then we may
begin to explain alternative hypotheses for the breakdown of the coral-
Symbiodinium symbiosis that ultimately leads to bleaching.

7.8 Conclusions and Future Directions

Global climate change is currently ongoing and has already had a broad impact
across every ecosystem on Earth (Scheffers et al. 2016). Global average tempera-
tures have increased by 1 °C since preindustrial levels (Chap. 1). Thus, we are seeing
the impact of temperature stress on the physiology and diversity of marine and
terrestrial organisms around the world. Increasing global sea surface temperatures,
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specifically, are having a significant impact on both the macroscopic and micro-
scopic composition of the coral reef benthos (Hughes et al. 2017), carving out space
through bleaching and disease, whereby competitive dominants such as macroalgae
and sponges, as well as opportunistic and heterotrophic microorganisms, will take
over (reviewed in Rohwer and Youle 2010; Garren 2016). As the tropics continue to
experience an increase in both the frequency and severity of high sea surface
temperature events, research efforts aimed at understanding the impact of such
events on both the seawater microbiome and coral-associated microorganisms will
be critical to coral conservation efforts.

Coral bleaching correlates with a number of other triggers, but the combination of
high temperatures and irradiance is thought to be primarily responsible (Lesser 20006,
2011). As discussed in this chapter, the impact of elevated temperature stress has
been the subject of a number of coral microbiome studies, but the impact of
irradiance (i.e., UV radiation; UV-R) independently or coupled with temperature
stress has yet to be examined. UV-R has been demonstrated to suppress the immune
system and immune response to pathogenic microorganisms in humans (Chapman
et al. 1995; reviewed in Patra et al. 2016) and has been known for some time to
trigger and/or exacerbate herpes simplex virus infections (Norval 2006). Studies
conducted with seawater bacterioplankton communities also demonstrate that solar
UV-R can differentially impact microbial activity, with greater sensitivity demon-
strated by Alphaproteobacteria and greater resistance demonstrated by
Gammaproteobacteria and Bacteroidetes (Alonso-Sdez et al. 2006). In one of the
only studies to examine the impact of UV-R on the coral microbiome, solar radiation
was shown to rapidly kill intracellular Vibrio shiloi and prevent bacteria-induced
bleaching in the coral Oculina patagonica (Fine et al. 2002). These studies highlight
the important role UV-R may have in structuring shallow-water microbial commu-
nities, particularly on coral reefs where solar irradiance has had an important
influence on community structure over their evolutionary history (reviewed in
Banaszak and Lesser 2009). However, because of the attenuation of UV-R with
depth, and the differential effects of UV-B (290-320 nm) and UV-A (320-400 nm),
most of the significant effects of UV-R may occur in shallow-reef environments (<
30 m depth; Shick et al. 1996; Banaszak and Lesser 2009). There is, therefore, a need
for comparative studies along depth gradients from 3 to 30 m as well as across the
latitudinal extent of coral reefs, particularly in areas where temperature may remain
elevated while irradiance is low.

A particularly interesting new area of research focuses on the extent to which the
coral microbiome (prokaryotic and eukaryotic partners) can increase or decrease
coral tolerance to specific environmental disturbances. This concept is based on
defining the coral as a polygenomic metaorganism (i.e., hologenome) whereby the
coral phenotype is a product of the transcriptomic, proteomic, and metabolic
responses of all symbiotic partners (Putnam et al. 2017). Thus, a highly flexible
microbiome that confers mechanisms for rapid holobiont acclimatization to envi-
ronmental stressors associated with global climate change is met with hesitant
optimism (van Oppen et al. 2015; Torda et al. 2017; Webster and Reusch 2017).
Ideally, molecular-based omic techniques would be combined with microscopy
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approaches to allow for identification of fundamental symbionts within specific
compartments (Sweet et al. 2011) and cellular microniches within the coral, for
example, identifying whether microbial relationships exist with either coral or
Symbiodinium cells and/or between specific bacterial strains. Mathematical models
and network-based analytical approaches can also aid in identifying these specific
microbial relationships (Sweet and Bulling 2017), followed by validation with
molecular methods. Robust controls should be established for experimental studies
examining the impact of environmental stressors on the coral hologenome, with the
realization that experimental manipulation (e.g., transplantation, aquaria rearing)
may have consequences for the stability of the microbiome leading to ecologically
unrealistic conclusions (Morrow et al. 2017). Corals have demonstrated natural
resilience in the face of extreme bleaching events, whereby some corals retain
their symbionts and others recover their symbionts over time (Cunning et al. 2016;
Hughes et al. 2017). Future research needs to take a holistic perspective, identifying
the mechanisms driving resilience as a function of the coral metaorganism (Boulotte
et al. 2016; Putnam et al. 2017; Torda et al. 2017).
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