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Abstract: Evapotranspiration (ET) connects the land to the atmosphere, linking water, energy, and
carbon cycles. ET is an essential climate variable with a fundamental importance, and accurate
assessments of the spatiotemporal trends and variability in ET are needed from regional to conti-
nental scales. This study compared eight global actual ET datasets (ETgl) and the average actual
ET ensemble (ETens) based on remote sensing, climate reanalysis, land-surface, and biophysical
models to ET computed from basin-scale water balance (ETwb) in South America on monthly time
scale. The 50 small-to-large basins covered major rivers and different biomes and climate types.
We also examined the magnitude, seasonality, and interannual variability of ET, comparing ETgl

and ETens with ETwb. Global ET datasets were evaluated between 2003 and 2014 from the fol-
lowing datasets: Breathing Earth System Simulator (BESS), ECMWF Reanalysis 5 (ERA5), Global
Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM),
MOD16, Penman–Monteith–Leuning (PML), Operational Simplified Surface Energy Balance (SSEBop)
and Terra Climate. By using ETwb as a basis for comparison, correlation coefficients ranged from
0.45 (SSEBop) to 0.60 (ETens), and RMSE ranged from 35.6 (ETens) to 40.5 mm·month−1 (MOD16).
Overall, ETgl estimates ranged from 0 to 150 mm·month−1 in most basins in South America, while
ETwb estimates showed maximum rates up to 250 mm·month−1. ETgl varied by hydroclimatic
regions: (i) basins located in humid climates with low seasonality in precipitation, including the
Amazon, Uruguay, and South Atlantic basins, yielded weak correlation coefficients between monthly
ETgl and ETwb, and (ii) tropical and semiarid basins (areas where precipitation demonstrates a strong
seasonality, as in the São Francisco, Northeast Atlantic, Paraná/Paraguay, and Tocantins basins)
yielded moderate-to-strong correlation coefficients. An assessment of the interannual variability
demonstrated a disagreement between ETgl and ETwb in the humid tropics (in the Amazon), with
ETgl showing a wide range of interannual variability. However, in tropical, subtropical, and semiarid
climates, including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay, and Atlantic basins
(Northeast, East, and South), we found a stronger agreement between ETgl and ETwb for interannual
variability. Assessing ET datasets enables the understanding of land–atmosphere exchanges in
South America, to improvement of ET estimation and monitoring for water management.
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1. Introduction

South America is a major source of water to the atmosphere, being responsible for
21.7% of global actual evapotranspiration (ET) from the continents [1]. It is also the
home of important ecosystems with high productivity, such as the Amazon, with tight
feedbacks among ET, land surface, and the atmosphere [2], with ET playing a direct
role on vegetation development [3]. Recycled precipitation (P) through ET regulates the
continent’s climate and water cycles [4]. Furthermore, South American countries are
major world food providers, and cropland expansion—in association with land cover
changes—has significantly altered the surface energy partition, and thus ET fluxes [5,6].
As an essential climate variable [7,8], monitoring ET is relevant for both supporting new
water-infrastructure projects and for regulating water uses to avoid water conflicts, as
well as to achieve the United Nations (UN) Sustainable Development Goals [9]. There
is a need to estimate water fluxes in the context of national- to continental-scale water
management, e.g., to fulfill the needs of Environmental and Economical Water Accounting
frameworks [10,11]. Understanding fluxes at the land–atmosphere interface contributes to
better estimation of land-boundary conditions in earth-surface models [12,13], consequently
improving the accuracy of short- to long-term climate modeling [14]. Accurate estimates of
ET may be also useful for the calibration of hydrological models [15,16], which ultimately
lead to better prediction of anomalously wet and dry periods and increased confidence
regarding climate-change projections.

Actual ET, the combined process of evaporation of water from the surface and transpi-
ration from vegetation, is a major component of the land-energy and hydrological cycles.
Currently, local ET measurements can be obtained through a wide range of techniques,
including—but not limited to—Bowen ratio systems, weighing lysimeters, and eddy covari-
ance flux towers [17]. Some initiatives, such as the FLUXNET network [18,19], for example,
have developed standards for data collection and created a global eddy covariance dataset
from regional networks. Yet, like in most parts of the world, South America faces a very
sparse coverage of field ET observations. In addition, recent years have seen a boom of
global datasets that allow mapping ET from regional to global scales, made possible due to
an increasing computational capacity, combined with the launching of several satellite mis-
sions [20]. Information obtained through remote-sensing datasets, from visible-to-thermal
infrared bands, can be used to retrieve land-surface temperature, vegetation phenology,
and other surface properties [21], which in turn are used as inputs to algorithms specifically
developed for estimating ET. Typical algorithms for this purpose are the surface energy
balance (SEB) approaches [22–24], physical equations based on vegetation phenology and
potential ET equations (e.g., Penman–Monteith and Priestley–Taylor) [25,26], statistical
or machine-learning models [27,28], as well as water-balance methods [29–31]. In paral-
lel, land-surface models (LSMs) simulate water and energy fluxes through physical and
conceptual representations of the terrestrial hydrological system [32], with increasing fo-
cus on the depiction of biophysical and biogeochemical processes related to plant and
carbon dynamics [33]. LSMs are able to provide global estimates of ET when forced with
meteorological data produced in combination with atmospheric models, reanalysis, and
data-assimilation techniques [34,35].

Despite the significant advances in remote sensing and LSM, the estimation of ET
is challenging and subject to major uncertainties. For instance, thermal remote-sensing
data required for the application of SEB models are only reliable for cloud-free condi-
tions, and such methods are very sensitive to the estimation of surface and near-surface
temperature [36]. ET models, in general, are dependent on the accuracy of surface net
radiation, which usually explains up to 80% of the ET variability [37], while methods that
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use physical equations are also subject to errors in additional meteorological variables [36],
as well as to estimation of surface and canopy resistance as in the case of the Penman–
Monteith approach [38]. Similarly, substantial uncertainties in LSMs are attributed to the
existence of a large number of parameters, errors in forcing data, and deficiencies in model
structure [32,33].

The increasing availability of global datasets, with different degrees of accuracy, urges
effective methods to understand their uncertainties in both spatial and temporal dimensions.
While global-scale assessments of ET datasets have been frequently reported over the last
decade [39–42], in South America it has been only recently conducted, but with a focus on
specific biomes, such as the Amazon basin [43–45]. In particular, Sörensson and Ruscica [46]
evaluated the similarity among nine global ET datasets based on remote sensing, LSM, and
reanalysis over continental South America, and provided a comprehensive overview of the
level of uncertainty in the water and energy limitations of ET. However, detailed validation
of global ET datasets relative to reference data in multiple basins of South America has not
been explored so far, and knowledge of their regional performance still remains a gap in
the scientific literature.

When direct measurements of ET are not available, large-scale ET datasets derived
from remote sensing (RS) and LSMs can be compared to ET computed as the water-budget
residual for a given basin [47–51]. In this approach, the water-balance equation is solved by
using observations of discharge (Q), P, and terrestrial water-storage variations (dS/dt). The
latter is currently estimated by the Gravity Recovery and Climate Experiment (GRACE)
mission with median accuracy of 20–30 mm of equivalent water thickness for basins smaller
than 100,000 km2 [52]. As errors in data from multiple sources may introduce significant
biases in the water-budget closure, the uncertainty of individual water-balance components
should be evaluated at the basin scale in such a way that the associated ET uncertainties
can be properly quantified [30,53,54].

The objective of this paper is to evaluate multiple global actual ET datasets (ETgl),
freely available and easily acessible, over South America using ET computed from water
budget (ETwb) as a proxy of observations. The following questions are addressed: (i) How
consistent are ET estimates from global datasets based on remote sensing, reanalysis, land-
surface, and biophysical models, when compared to ETwb? (ii) Do they coherently represent
the ET magnitude and seasonality? (iii) Do they agree in terms of seasonal and interannual
variability? The assessment, following [30,48,53,55], was performed on monthly time scales
for 50 medium-to-large basins from 2003 to 2014, covering eight major South American
rivers (Figure 1), including the Amazon, Tocantins, São Francisco, Parana, Uruguay, and
Atlantic basins (Northeast, East, and South).

2. Materials and Methods
2.1. Study Area

South America is characterized by a wide range of climate regimes and biomes,
with three major climate zones (tropical, arid, and temperate climates), from the humid
tropics with equatorial climates to temperate and cold arid zones in the southern part of
the continent [56], encompassing several major biomes, including the Amazon, Andes,
Atlantic Forest, Caatinga, Cerrado, Chaco, Pampa, Pantanal and Patagonia [57,58]. The
largest biome in South America is the Amazon, which has undergone in recent years high
rates of deforestation and significant changes in surface–atmosphere feedback [59–61]. The
Amazon biome is characterized by a tropical humid climate and low seasonal temperature
variability [62]. The Cerrado biome is characterized by savanna vegetation with a tropical
seasonal (wet-to-dry) climate [63]. The Caatinga biome, located in northeast Brazil, is
described as a seasonally dry tropical forest with arid and semiarid hot climates [63]. In
addition, the Chaco biome, located mostly in Argentina but also in Paraguay and Bolivia,
is also described as a dry tropical forest (the largest in South America), with a semiarid
climate [64]. While most of this biome is still native vegetation, around 25% of its area has
been cleared for agriculture and livestock production [65,66].
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Figure 1. (a) River gauges and associated drainage areas (river basins) used in this study to assess 
water balance and remote-sensing-based evapotranspiration estimates in South America. The red 
dots represent the gauge stations used to assess water balance (the bigger dots refer to the gauges 
used to illustrate the water-balance assessment in the following figures). (b) South American biomes 
from the Terrestrial Ecoregions of the World [58], with modifications based on Turchetto-Zolet et 
al. [57]. (c) Koppen’s climate zones in South America [56,63], denoted as follows: tropical rainforest 
(Af), tropical monsoon (Am), tropical wet savannah (Aw), arid hot (BWh), arid cold (BWk), semiarid 
hot (BSh), semiarid cold (BSk), temperate dry hot summer (Csa), temperate dry and warm summer 
(Csb), temperate dry and hot summer (Cwa), temperate dry winter and warm summer (Cwb), 
temperate dry winter and cold summer (Cwc), temperate without dry season and hot summer (Cfa), 
temperate without dry season and warm summer (Cfb), temperate without dry season and cold 
summer (Cfc), cold climate with dry and warm summer (Dsb), cold dry summer (Dsc), cold without 
dry season and warm summer (Dfb), cold without dry season and cold summer (Dfc), polar tundra 
(ET), and polar frost (EF). 

Some of South American biomes, such as the Cerrado, the Pantanal (one of the largest 
wetland complexes on Earth), and the Atlantic Forest (which has both tropical and 
subtropical humid climates) are facing environmental and economic threats, including 
deforestation, fire, cropland expansion, and drought occurrences [67–69]. The Pampa 
biome, located in Southern Brazil, Uruguay, and Argentina, has a seasonal (cold and hot) 
subtropical climate and temperate grassland vegetation [70], playing an important role in 
cropland production. Finally, Patagonia reaches the extreme south of South America, and 
is mainly covered by temperate grassland and steppe vegetation interspersed with shrubs 
characterized by temperate and arid cold climates [56]. 

2.2. Global Evapotranspiration Datasets 
A total of eight global datasets were used in this study (Table 1), which were divided 

into two approaches: (i) remote-sensing-based, and (ii) comprehensive-model-based, 
including land-surface models, biophysical processes, and simplified water-balance 
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Figure 1. (a) River gauges and associated drainage areas (river basins) used in this study to assess
water balance and remote-sensing-based evapotranspiration estimates in South America. The red
dots represent the gauge stations used to assess water balance (the bigger dots refer to the gauges used
to illustrate the water-balance assessment in the following figures). (b) South American biomes from
the Terrestrial Ecoregions of the World [58], with modifications based on Turchetto-Zolet et al. [57].
(c) Koppen’s climate zones in South America [56,63], denoted as follows: tropical rainforest (Af),
tropical monsoon (Am), tropical wet savannah (Aw), arid hot (BWh), arid cold (BWk), semiarid hot
(BSh), semiarid cold (BSk), temperate dry hot summer (Csa), temperate dry and warm summer (Csb),
temperate dry and hot summer (Cwa), temperate dry winter and warm summer (Cwb), temperate
dry winter and cold summer (Cwc), temperate without dry season and hot summer (Cfa), temperate
without dry season and warm summer (Cfb), temperate without dry season and cold summer (Cfc),
cold climate with dry and warm summer (Dsb), cold dry summer (Dsc), cold without dry season and
warm summer (Dfb), cold without dry season and cold summer (Dfc), polar tundra (ET), and polar
frost (EF).

Some of South American biomes, such as the Cerrado, the Pantanal (one of the
largest wetland complexes on Earth), and the Atlantic Forest (which has both tropical and
subtropical humid climates) are facing environmental and economic threats, including
deforestation, fire, cropland expansion, and drought occurrences [67–69]. The Pampa
biome, located in Southern Brazil, Uruguay, and Argentina, has a seasonal (cold and hot)
subtropical climate and temperate grassland vegetation [70], playing an important role in
cropland production. Finally, Patagonia reaches the extreme south of South America, and
is mainly covered by temperate grassland and steppe vegetation interspersed with shrubs
characterized by temperate and arid cold climates [56].
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2.2. Global Evapotranspiration Datasets

A total of eight global datasets were used in this study (Table 1), which were di-
vided into two approaches: (i) remote-sensing-based, and (ii) comprehensive-model-based,
including land-surface models, biophysical processes, and simplified water-balance ap-
proaches. We also computed the ensemble mean (ETens) as the arithmetic average of all
available ETgl datasets. Given data availability, we used the 2003–2014 period to assess
ETgl estimates in South America.

2.2.1. Remote-Sensing-Based Datasets

Four ETgl datasets relied primarily on remote sensing, which can be divided into
vegetation (VI)-based and surface temperature (Ts)-based methods. VI-based methods
include the Global Land Evaporation Amsterdam Model (GLEAM) [26,71], MOD16 [25,72]
and Penman-Monteith-Leuning (PML) [73], while (Ts)-based ones are represented here by
the operational Simplified Surface Energy Balance (SSEBOP) algorithm [24,74].

Table 1. Summary of global evapotranspiration datasets assessed in this study.

Model Methods Spatial
Resolution

Temporal
Resolution

Remote
Sensing
Source

Remote
Sensing
Drivers

Meteorological
Drivers References

BESS

Biophysical
process-
based
model

5 km 8 days MODIS

Atmospheric
data (aerosol,
water vapor,
cloud,
atmospheric
profile)
Surface
properties
(surface
temperature,
land cover, leaf
area index,
albedo)

Global
meteorology
(MODIS, ERA
Interim and
NCEP/NCAR)

Jiang and
Ryu [75];
Ryu et al. [18]

ERA5
(v. Land)

Land-surface
model
(CHTESSEL)

0.1 degree Hourly
MODIS,
SPOT-
Vegetation

Vegetation
phenology (leaf
area index,
vegetation
index)
Surface
properties
(land cover)

Global
meteorology
(ERA5)

Hersbach
et al. [35];
Nogueira
et al. [76]

GLDAS
(v. 2.1)

Land-surface
model
(NOAH)

0.25 degree 3-hourly MODIS
GPCP

Surface
properties
Precipitation

Global
meteorology
(AGRMET)
and global data
assimilation
(GDAS)

Rodel
et al. [34]
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Table 1. Cont.

Model Methods Spatial
Resolution

Temporal
Resolution

Remote
Sensing
Source

Remote
Sensing
Drivers

Meteorological
Drivers References

GLEAM
(v. 3.3b)

Remote
sensing
(Priestley–
Taylor
equation)

0.25 degree Daily

AIRS, CERES,
MODIS,
ESA-CCI,
SMOS

Atmospheric
data (radiation,
precipitation,
air
temperature,
lightning
frequency)
Surface
properties
(snow water
equivalent,
multisource
soil moisture,
vegetation
cover fraction,
vegetation
optical depth)

–

Martens
et al. [71];
Miralles
et al. [26]

MOD16
(v. 6)

Remote
sensing
(Penman–
Monteith
equation)

500 m 8 days MODIS

Vegetation
phenology (leaf
area index)
Surface
properties
(land cover,
albedo,
emissivity)

Global
meteorology
(MERRA-2)

Mu
et al. [25,77]

PML
(v. 2)

Remote
sensing
(Penman–
Monteith
equation)

500 m 8 days MODIS

Vegetation
phenology (leaf
area index,
fraction of pho-
tosynthetically
active
radiation)
Surface
properties
(land cover,
albedo)

Global
meteorology
(GLDAS)

Zhang
et al. [73]

SSEBOP
(v. 4)

Remote
Sensing
(Simplified
surface
energy
balance)

1 km Monthly MODIS

Thermal data
(land surface
temperature)
Multispectral
data (surface
reflectance)

Global
meteorology
(GLDAS)

Senay
et al. [24,78]

Terra
Climate

One-
dimensional
water balance
(modified
Thornthwaite–
Mather
equation)

2.5 arcmin Monthly – –

Global
meteorology
(WorldClim
and JRA55)

Abatzoglou
et al. [29]

GLEAM is based on the Priestley–Taylor equation and was developed to estimate sur-
face evaporative fluxes at a spatial resolution of 0.25◦ and daily temporal resolution [26,71].
GLEAM estimates canopy transpiration, bare-soil evaporation, canopy interception and
open-water evaporation, combining multiple sources of data, including snow-water equiv-
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alent, soil moisture, and vegetation optical depth and vegetation cover fraction. The algo-
rithm also provides a root-zone soil-moisture profile, infiltration, and evaporative stress
conditions, used as constraints on soil evaporation and canopy transpiration. GLEAM
version 3.3.b adopted here uses only remote-sensing observations (optical and microwave
datasets, and dynamic land-cover classification), including data from CERES (Clouds
and Earth’s Radiant Energy System), AIRS (Atmospheric Infra-Red Sounder), SMOS (Soil
Moisture and Ocean Salinity) and ESA-CCI (European Space Agency—Climate Change
Initiative) [26,71].

MOD16 [25,72] is based on the Penman–Monteith equation and uses vegetation indices
to estimate canopy conductance. The total ET includes soil and canopy evaporation, and
canopy transpiration at a spatial resolution of 500 m and temporal resolution of 8 days. To
estimate ET, the algorithm includes remote-sensing and global meteorological reanalysis
data. Remote-sensing inputs that represent land-surface processes are derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS) datasets, including land-cover
classification, leaf area index (LAI), fraction of photosynthetically active radiation ( f PAR),
and albedo. As meteorological inputs, the algorithm uses reanalysis from MERRA-2
(Modern-Era Retrospective analysis for Research and Applications), with spatial resolution
of 0.5◦ × 0.65◦. To combine meteorological and remote-sensing inputs, meteorological data
are interpolated from coarse spatial resolution to match THE MODIS spatial resolution and
to remove abrupt changes from the meteorological reanalysis data [79].

PML [73] is a physically based model that estimates ET using the Penman–Monteith
equation. Input data are from MODIS, including LAI, albedo, and emissivity, while mete-
orological inputs are from the Global Land Data Assimilation System (GLDAS) rescaled
to 500 m using a bilinear interpolation. PML computes total ET by accounting for the
evaporation from soil and canopy interception and vegetation transpiration. Spatial and
temporal resolution are 500 m and 8 days, respectively.

SSEBOP [24,78] is based on a simplified SEB approach with a simple parameteriza-
tion for operational applications. The algorithm combines ET fractions derived from Ts
and surface reflectance from MODIS and meteorological reanalysis from GLDAS. The
one-source algorithm estimates total ET at a spatial resolution of 1 km and monthly
temporal resolution.

2.2.2. Comprehensive-Model-Based Approaches

Four ETgl datasets were based on land-surface models, including ERA5 [35,80] and
GLDAS [34]; biophysical-process-based models, including the Breathing Earth System
Simulator (BESS) [18,75]; and simplified water-balance approaches from Terra Climate [29].
ERA5 is a global atmospheric-reanalysis dataset [35,80] generated by the European Centre
for Medium-Range Weather Forecasts (ECMWF). ERA5 combines observed and simulated
data to estimate meteorological parameters. ERA5-Land uses the ECMWF land-surface
model Carbon Hydrology-Tiled Scheme for Surface Exchanges over Land (CHTESSEL) to
compute hydrological fluxes [76]. Vegetation characteristics are derived from global land-
cover datasets, while vegetation density and phenology are obtained from lookup tables as
a function of the respective dominant type of vegetation [76]. The dataset is available at
hourly, daily, and monthly temporal resolutions, with a spatial resolution of 0.1◦.

GLDAS reanalysis dataset [34] is based on in situ and remote-sensing datasets, in-
cluding MODIS and Global Precipitation Climatology Project (GPCP), forced with the
Global Data Assimilation System (GDAS) and Agricultural Meteorological Modeling Sys-
tem (AGRMET). GLDAS includes four different land-surface models, and in this study we
used NOAH, which uses a Penman–Monteith approach to compute potential ET (PET)
with a parameterization based on surface–atmosphere interactions, vegetation conditions,
and water availability to estimate actual ET. GLDAS is available at 3-hourly, daily, and
monthly temporal resolutions, with a spatial resolution of 0.25◦.

The Breathing Earth System Simulator (BESS) is a process-based model designed to es-
timate ET and gross primary productivity at global scale with fine spatial resolution [18,75].
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It couples a one-dimensional atmospheric radiative transfer module, a two-leaf canopy
radiative transfer module, and an integrated carbon assimilation and energy balance mod-
ule, fully based on MODIS land-surface (Ts, land cover, LAI, albedo) and atmospheric
(aerosol, water vapor, cloud, atmospheric profile) datasets. It uses global meteorology
from ERA-Interim to gap-fill missing atmospheric data, and global reanalysis from the
National Center for Environmental Prediction–National Center for Atmospheric Research
(NCEP-NCAR) to compute aerodynamic resistances. The spatial and temporal resolution
of the adopted BESS dataset is 5 km and 8 days, respectively.

Terra Climate [29] is a monthly climate dataset that spans from 1958 to present, based
on the high-spatial-resolution WorldClim climate data, in addition to Climate Research
Unit (CRU) and Japanese 55-year Reanalysis (JRA55) datasets. ET is computed from a
one-dimensional simplified water balance based on a modified Thornthwaite–Mather
approach, that uses P, PET (calculated using Penman–Monteith equation), soil moisture,
and snowpack water storage. The model data are available at a monthly temporal resolution
and 2.5 arcminutes spatial resolution.

2.3. Water-Balance Estimation of Evapotranspiration

We computed ETwb, from 2003 to 2014, as the residual of the water-balance
equation (Equation (1)).

ETwb = P−Q− dS
dt

(1)

where P was taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP)
version 2.2 [81,82], dS/dt from Gravity Recovery and Climate Experiment (GRACE) [83–85]
and Q measurements from the Brazilian Water and Sanitation Agency (ANA) and the Ar-
gentinian Hydrological Database System (SNIH).

MSWEP dataset was designed specifically for hydrological modeling and assessment,
with a spatial resolution of 0.1◦ and temporal resolution from 3 h to 30 days. MSWEP
merges multiple high-quality P datasets, including measurements, satellite observations,
and reanalysis data [81,82].

Monthly Q was integrated from daily streamflow measurements from ANA (available
at https://www.snirh.gov.br, last accessed on 18 August 2021) and SNIH (available at
https://snih.hidricosargentina.gob.ar/, last accessed on 18 August 2021). We did not
gap-fill the data, so we selected basins with complete data, and months with missing data
were excluded from analysis. All stations used to compute the water balance are presented
in Supplementary Information Table S1.

Changes in storage (dS/dt) were computed using changes in terrestrial water storage
(TWS) from GRACE, which detects changes in the Earth’s gravitational field by mea-
suring the distance between two orbiting satellites [83–85] (Equation (2)). The available
GRACE TWS data are anomalies relative to the 2004–2009 time-mean baseline, with a
spatial resolution of 1◦ in both latitude and longitude, and monthly temporal resolution
(approximately). Considering the irregular time intervals, we computed these changes as
the difference between two GRACE observations (t + 1 and t), representing the average
change in TWS [86].

dS
dt
≈ ∆TWS

∆t
≈ TWSt+1 − TWSt

∆t
(2)

We used a simple average of the three different GRACE spherical harmonic solutions
(from GFZ (GeoForschungsZentrum), CSR (Center of Space Research from the University
of Texas), and NASA JPL (Jet Propulsion Laboratory)) to reduce the noise in the gravity
fields [87].

2.4. Seasonal and Interannual Assessments of Evapotranspiration

To remove the seasonal cycle of the ET estimations and compute ET anomalies, we
standardized the time series by subtracting the monthly long-term average from each
monthly ET estimate, dividing by the standard deviation [88]. To assess the agreement in

https://www.snirh.gov.br
https://snih.hidricosargentina.gob.ar/
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terms of average, phase, and amplitude between the ET time series derived from multiple
global datasets, we computed the similarity index (Ω) [46,89] for monthly ET and monthly
ET anomaly (Equation (3)).

Ω =
mσ2

b − σ2

(m− 1)σ2 (3)

where m is the number of ensemble members (m = 8), σ2
b is the ensemble variance of the

time series, and σ2 is the total variance of all ensemble members concatenated. A value
of Ω equal to 1 indicates identical series, whereas values around 0 indicate poor-to-no
agreement. Although values below zero are mathematically possible, they are very unlikely
to happen, especially with an increasing number of members (m) [89].

2.5. Assessment of the Accuracy of Global Evapotranspiration

To compare ETgl and ETwb, we resampled all global ET datasets to monthly time scales
and then we aggregated the basin-wide ET using a simple average, since this scheme has
the best performance in preserving the mass balance [90]. To assess the accuracy of the ETgl
estimates, we used nonprobabilistic metrics [88] of Pearson’s coefficient of correlation (r),
bias, and root-mean-squared error (RMSE) between ETwb and ETgl .

3. Results and Discussion
3.1. Evapotranspiration Comparison between Water Balance and Global Datasets

To assess how consistent ETgl estimates are on a monthly time scale, a comparison be-
tween the water-balance approach and global datasets is presented in Figure 2. Results showed
moderate correlation coefficients, with values ranging from 0.45 (SSEBOP) to 0.60 (ETens),
while RMSE ranged between 35.6 (ETens) and 40.5 (MOD16) mm·month−1. ETgl rates ranged
between 0 and 150 mm·month−1 in most basins, while ETwb estimates presented maximum
rates up to 250 mm·month−1. Overall, ETens performed slightly better than the other global
datasets, yielding correlations around 0.60 and RMSE of 35.6 mm·month−1. From an assess-
ment based on major basins (Supplementary Information Table S2), two main results can
be highlighted: (i) basins located in humid climates (including the Amazon, Uruguay, and
South Atlantic basins) exhibited weaker correlation, with average values ranging between
0.37 and 0.48 (between 0.17 and 0.56 in the Amazon, and between 0.37 and 0.51 in the
Uruguay and South Atlantic basins), with average RMSE around 39.6 mm·month−1 and
bias between 11.6 and 23.4 mm·month−1; and (ii) tropical and semiarid basins located in
areas where P has a strong seasonality (including the São Francisco, Northeast Atlantic,
Paraná/Paraguay, and Tocantins basins), exhibited stronger correlation, with average val-
ues ranging between 0.59 and 0.81, average RMSE between 32.5 and 43.1 mm·month−1,
and smaller negative bias ranging between 1 and−14 mm·month−1. These differences may
be related to different ET driving factors. While in the Amazon and other basins located in
Southern Brazil, ET is mainly driven by available energy (with global radiation showing
a strong seasonality in the Uruguay and South Atlantic basins) [91–93], in the northeast
and central areas of Brazil, water availability is the main driver [91,94,95]. Therefore, our
results suggest that global ET datasets have closer agreement with ETwb in basins with
stronger P seasonality, where ET is mainly driven by water availability, while in basins
with humid climate, global ET products yield a low range of seasonal variation due to
abundant water availability.
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A statistical assessment based on all 50 basins is summarized in Figure 3. Overall,
our results indicate a slight overestimation by most ETgl models compared to ETwb, with
median bias ranging between −2.4 and 11.2 mm·month−1 and an interquartile range
between −20 (for MOD16) and 30 (for ERA5) mm·month−1. In addition, median RMSE
smoothly ranged between 34.8 and 39.7 mm·month−1, with some models showing a higher
interquartile range (e.g., ERA5, GLDAS, GLEAM), with errors up to 60 mm·month−1.
However, higher correlation values were found for ERA5, GLEAM, MOD16, and ETens
(median higher than 0.7), while the other ETgl models showed median correlations between
0.51 and 0.65). Overall, our results suggest small discrepancies between global datasets,
although some models performed slightly better than others, similarly to other reported
results [41]. In the long term, all ET datasets presented moderate-to-low bias, with higher
bias in humid climates, despite some of the datasets having high monthly errors, similarly
to results found in other studies [41,51].
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Figure 3. Statistical assessment of monthly evapotranspiration derived from global datasets, relative
to the water-balance approach. The analysis is performed for the period 2003–2014 considering
50 medium-to-large basins located in South America. The black dots represent the statistics for all
assessed basins, the blue boxes represent the inter-quartile range (IQR) and the median, the whiskers
indicate variability outside the upper and lower quartiles (1.5 IQR), whilst the black diamonds
represent the outliers.

3.2. Seasonal and Interannual Assessment of Evapotranspiration

The long-term ET seasonal average for the 2003–2014 period is presented in Figure 4
for major South American basins, where ETwb standard deviations are highlighted as
shaded areas. Most ETgl presented a similar seasonal pattern in the assessed basins, with
ET estimates generally falling within the ETwb deviation range. In basins where P presents
a stronger seasonality (i.e., Tocantins, Northeast Atlantic, São Francisco, and Paraná), our
results indicate a closer agreement between ETwb and ETgl , yielding a similar seasonal
pattern with smaller ET values during the dry season and its smaller deviation. In these
basins we found a predominant underestimation (during the wet season and wet-to-
dry seasons transition), with average bias between −30 (at Tocantins, for MOD16) and
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19 mm·month−1 (at Northeast Atlantic, for SSEBOP). In addition, SSEBOP estimated higher
ET rates during the dry season in semiarid climates, especially in the São Francisco and
Northeast Atlantic basins, while all other models agreed and yielded lower rates during
the dry season. Some overestimation was also found in subtropical humid basins such as
the Uruguay and South Atlantic basins, mostly during summer months, with average bias
between 7 and 36 mm·month−1 and up 29 mm·month−1, respectively.
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In the humid equatorial climate zone, especially in the Amazon Basin, where water
availability is not a limiting factor, since P is relatively well-distributed throughout the
year, and available energy is the main driver for ET [92], the seasonal pattern shown by
the ETwb was not followed by most of the ETgl , with models showing different timing and
magnitude when compared to ETwb, as previously discussed [92]. Overall, our results show
that ETgl is overestimated in the humid tropics (mainly in central-west Amazon, such as
Itapeua and Obidos, with bias between 2.5 and 51.8 mm·month−1) when compared to ETwb,
even though an underestimation is seen in eastern parts of the basin (at Itaituba) mostly
during the wet season (average bias between −8 and 46 mm·month−1). This could be due



Remote Sens. 2022, 14, 2526 13 of 22

to the largest P contribution on the terrestrial water balance; consequently, P variations
will strongly affect the ETwb patterns [47]. As in the mainly humid Amazon region, ET
is not only controlled by P and water availability, but also by radiation and vegetation
phenology [92]; consequently, the water-balance approach will be less accurate in humid
tropics [51].

Based on an assessment of the seasonal and interannual variability (Figure 5), a strong
disagreement between ETwb and ETgl estimates was found in the Amazon Basin, leading to
a wide range of variability. On the other hand, in tropical, subtropical, and semiarid basins
(including the Tocantins, São Francisco, Paraná, Paraguay, Uruguay and Atlantic basins), a
stronger agreement was found. Despite the wide range of variability, most models agreed in
positive anomalies during the drought of 2010 (Amazon at Itapeua) [96,97] and during the
anomalously wet year of 2009 (at Itaituba) [98–100], while ETwb showed negative anomalies
in the same period.
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In tropical and semiarid climates (Tocantins, São Francisco, Northeast Atlantic, Paraná
and Paraguay basins), we found moderate-to-strong agreements between global ETgl and
ETwb estimates for most of the ET models and the ensemble mean. Most of the ETgl
datasets accurately represented wet and dry anomalous events in these climates. For the
long-lasting floods of 2009–2010 that affected the Amazon region, including the Tocantins
(at Tucuruí) [98] and the Paraná (at Porto São José) [101] basins, all models consistently
estimated a positive ET anomaly over the flooding period, in agreement with water-balance
estimates. Another hydrological extreme event well-captured by global models was the
long drought that affected the Northeast region in Brazil over the 2012–2016 period [100],
in the Northeast Atlantic and São Francisco basins (at Luzilândia and Traipu), with neg-
ative strong anomalies being observed since 2012. Furthermore, in subtropical humid
climates, drought events that occurred in Southern Brazil (Uruguay and South Atlantic
basins) over 2005, 2009, and 2012 [96], were only partially represented by ETgl datasets.
Overall, most of the global ET datasets yielded a moderate agreement with ETwb; how-
ever, in some situations, MOD16, GLDAS, and SSEBOP showed a higher amplitude of
anomalies than other models in most of the basins. SSEBOP showed higher variations
than other models in the Northeast Atlantic basin (at Luzilandia) for both positive and
negative anomalies. MOD16 showed negative anomalies before 2007/2008 and positive
anomalies for 2009–2012 in Paraguay (at Puerto Pilcomayo), and Paraná (at Timbues)
basins, in contrast to other global models. This MOD16 behavior resulted in a positive ET
trend. Similar results were previously reported in the Pantanal biome, with changes in the
interannual variability from 2001–2006 to 2007–2012 [102]. MOD16 errors may arise from
the algorithm structure [103], meteorological forcing data and possible biases [25,104], and
land-cover parameterization [105], and further research is needed to identify this source
of uncertainties.

From a climatic viewpoint of water-limited versus energy-limited ET estimates in
South America, an assessment based on the agreement among the global datasets, rep-
resented by the similarity index Ω (Figure 6a), indicates (i) higher similarity (Ω higher
than 0.7) from the northeast to the southeast parts of the continent, including the Cerrado,
Caatinga, Pantanal, Atlantic Forest, and Pampa biomes, where ET is driven by water and
radiation combined [46]; (ii) lower similarity (Ω between 0.2 and 0.4) in the extreme south of
the continent, in the Patagonia biome, where ET is mainly driven by water availability [46];
and (iii) very low similarity (Ω lower than 0.2) in the Amazon biome and Andes regions,
where ET is mainly driven by radiation [46], but also by a combination with radiation and
vegetation phenology [92]. The similarity of seasonal variability (ET monthly anomalies,
Figure 6b) is relatively higher in northeast Brazil (Caatinga biome) and in central parts of
Brazil (Cerrado biome), while moderate similarity was found in southern Brazil (Pampa
biome, including areas in Central Argentina, and Uruguay), and lower similarity was found
in the Amazon.

In some regions, as in southeastern, central, and northeastern Brazil, the global ET
datasets consistently agree on monthly ET, but to a lower degree on ET anomalies. Some
opposite behavior was found for the Amazon and Patagonia, with higher agreement
on monthly anomalies. Considering different dataset sources (remote-sensing-driven
models, including GLEAM, MOD16, PML, and SSEBOP; and reanalysis, land-surface, and
process-based models, including BESS, ERA5, GLDAS, and Terra Climate), a slightly higher
similarity was found for the second group of assessed models for both monthly ET and ET
anomalies in the Amazon (Supplementary Information Figure S1). Our findings are similar
with another study [46], even though different ET datasets were used. As they indicate,
when the similarity is higher, less uncertainty is found, and thus the selection of a particular
dataset is less important, while when the similarity of ET anomalies is higher, seasonal
variability is better represented by the models, which can be important for studies where
this is of particular interest.
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3.3. Water-Balance Closure

We assessed the water-balance closure (imbalance) using monthly averages
from 2003 to 2014 as P − ET − Q − dS/dt, considering ET estimates from the global

datasets. Figure 7 summarizes the spatial variability of the long-term average (2003–2014)
imbalance for major South American hydrological regions. There is a larger imbalance in
the Amazon basin, and most global models showed a negative imbalance in the western
Amazon (Itapeua and Obidos) and a positive imbalance in the eastern Amazon (Itaituba).
The water balance using BESS, PML, SSEBOP, and Terra Climate models led to the lowest
imbalance range in the Amazon. The other tropical basins exhibited a smaller positive
imbalance. For the Tocantins basin, most global models showed an imbalance average of
around 13 mm·month−1, ranging between 6 and 17.8 mm·month−1, except MOD16, whose
median value was 30.2 mm·month−1. In the Paraná Basin, the median imbalance ranged
between −18 mm·month−1 and 11.5 mm·month−1, with BESS, ETens, PML, SSEBOP, and
Terra Climate yielding imbalances lower than 5 mm·month−1. In the São Francisco basin,
ETgl showed an average imbalance from 3 to 11 mm·month−1, except MOD16, which
showed a larger imbalance (median of 21 mm·month−1). In the Northeast Atlantic basin,
SSEBOP showed an average imbalance around −19 mm·month−1, while for the other mod-
els the average imbalance ranged from −8 to 9 mm·month−1. Basins located in Southern
Brazil (South Atlantic and Uruguay) showed lower imbalance values for BESS, PML, and
SSEBOP models (average imbalance from −7 to −17 mm·month−1), while with the other
models a higher imbalance was verified (higher than −20 mm·month−1).
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From the spatial assessment of the long-term water-balance closure (Figure 7, three
main results can be highlighted: (i) in the Amazon basin, our results showed higher negative
imbalances, ranging from −60 up to 20 mm·month−1 using most of the ETgl datasets;
(ii) in the southern basins (Uruguay and South Atlantic), higher negative imbalances were
also found, mainly for ERA5, GLDAS, GLEAM, and MOD16; and (iii) most of the ETgl

datasets yielded lower imbalance, ranging between −10 to 20 mm·month−1 in basins
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located in tropical and semiarid climates (Northeast Atlantic and São Francisco basins),
with MOD16 showing higher positive imbalances. Overall, despite some differences among
all global models, the long-term water-balance closure demonstrated similar patterns over
South American basins, with higher imbalance in the humid tropics and lower imbalance
in tropical and semiarid climates. Overall, our results agree with other research findings,
indicating that ET datasets demonstrate hydrological consistency, especially in water-
limited conditions, while in humid climates, biases are relatively higher [51]. Furthermore,
our results also indicate similarities between different approaches to estimate ET, with
no obvious divergences, since most of the models yielded similar statistics. Some models
performed relatively better than others, which was concluded in previous studies [41].

4. Conclusions

The main goal of this research paper was to assess publicly available and easily
accessible global ET datasets across multiple climate conditions in South America. We
evaluated eight global ET datasets based on remote-sensing, reanalysis, land-surface,
and biophysical-process-based modeling, as well as the ensemble mean, and compared
them with ET estimated from water balance in 50 medium-to-large basins to answer the
following questions:

i. How consistent are ET estimates from global datasets based on remote-sensing, reanalysis,
land-surface, and biophysical models when compared to ETwb? Our results indicate sim-
ilar errors when ETgl are compared with the water-balance approach (ETwb), with
moderate correlations and a slight tendency of overestimation in most of South Amer-
ican climates. However, basins located in tropical (and subtropical) humid climates
presented lower accuracy and weaker correlations when compared to basins located
in tropical seasonal (wet-to-dry) and semiarid climates, suggesting that global ET
datasets have closer agreement with ETwb in basins with stronger P seasonality, when
ET is mainly driven by water availability.

ii. Do they coherently represent its magnitude and seasonality? Most ETgl presented a similar
seasonal pattern in the assessed basins, with ET estimates generally falling within the
ETwb deviation range, with basins located in tropical seasonal (wet-to-dry) climates
achieving a closer agreement. Nevertheless, in humid climates (especially in the trop-
ics) we found higher differences, with ETgl yielding different timing and magnitude
when compared to ETwb, with an overall tendency of overestimation.

iii. How do they agree in terms of seasonal and interannual variability? Our results indicate a
strong disagreement in the seasonal and interannual variability between ETwb and
ETgl in the humid tropics. However, in tropical seasonal (wet-to-dry) and subtropical
climates, we found higher agreement between ETgl for detection of wet and dry
anomalous events. These findings also agree with the similarity assessment, with
lower similarity in the humid tropics (Amazon biome) and higher similarity in the
Cerrado, Caatinga, Pantanal, Atlantic Forest and Pampa biomes. Overall, similarities
were higher for monthly ET than monthly anomalies in these biomes.

The spatial and temporal assessment of the water-balance closure indicated a moderate
hydrological consistency in the long-term annual average for most of the ETgl , including
ETens; however, higher imbalances were found in the humid tropics and subtropics. Im-
provements are needed to achieve lower uncertainties and higher accuracy of ET estimates
mostly in the humid tropics, especially for seasonal and interannual variability. The use of
ETens can reduce uncertainties related to single models and their forcing data [41], improv-
ing the quality of ET estimates at regional and continental scales for water management
purposes [1]. ET estimates based on multiple models can also be enhanced based on spatial
refinements of the water-balance approach and the use of eddy covariance networks to
better understand ET drivers and thus improve models’ calibration and validation [55].

Achieving a consistent large-scale water-balance closure still remains a challenge in
the humid tropics, and optimization strategies could be used to improve ET estimates [106],
and its seasonal and interannual variability [107]. Assessing the sources of uncertainties in
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the water-balance approach from all hydrological variables is a critical issue that deserves
further investigation, especially to achieve a higher accuracy on each water cycle component
and to consistently close the water balance [55]. However, results from this study provided
important information about the ET dynamics at basin scale and a basis for the future
development of optimized ET based on the combination of multiple datasets at continental
scale in South America. Therefore, future research is needed to improve ET estimates for
water resources management and hydrological applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14112526/s1: Figure S1: Similarity index for all global evapotranspiration datasets,
remote-sensing-based models, including GLEAM, MOD16, PML, and SSEBOP, and land-surface,
process-based models, and simplified water balance, including BESS, ERA5, GLDAS, and Terra Cli-
mate. Maps are provided for monthly absolute and monthly anomaly evapotranspiration estimates.
Table S1: Summary of the discharge stations used to assess the water-balance evapotranspiration in
major South American river basins. Table S2: Summary of the statistical assessment by evapotranspi-
ration model and by major basins in South America.
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