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ABSTRACT

While software defined networking (SDN) has been widely de-
ployed in wired networks within the cloud data centers, its applica-
tions with both a wireless control and data channel have not been
fully realized. One particular use case is vehicular ad hoc networks
(VANET), where SDN has been touted as an effective method to
control vehicles’ data traffic in a centralized manner. Several studies
explored how SDN switches can be utilized on connected vehicles
to shape the data traffic by enabling multi-hop communications
through their Dedicated Short Range Communication (DSRC) in-
terfaces. However, evaluation of research for SDN-based VANETs
became a challenge due to lack of testbeds and realistic simulation
tools that will support VANET features in conjunction with SDN. In
this paper, we present a new framework that will enable SDN-based
VANET simulation in ns-3. Specifically, we demonstrate how ns-3
SDN module can be expanded to support DSRC interfaces in addi-
tion to their default CSMA-CD interface. By considering a platoon-
ing application use case, we implemented an SDN-based VANET
simulation that will enable multi-hop communication through the
DSRC interfaces of the vehicles and road side units (RSUs). We
not only explain the details of the implementation within the ns-3
OpenFlow (OF13) switch module but also provide some sample
experiment results under a variety of conditions. The results show
that the implementation is robust and closely simulates the actual
behavior of SDN’s control and data channels.
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1 INTRODUCTION

Software Defined Networking (SDN) is the separation of data and
control planes on switches for efficient management of data traffic
and offering flexibility against dynamic conditions through a cen-
tralized controller [3]. The concept has also been effective in dealing
with interoperability challenges that may arise due to vendor spe-
cific switch technologies. Since its inception more than a decade
ago, SDN technologies became very disruptive and has started to
be used in many modern IT infrastructures, particularly within the
data centers. This is because SDN offer a robust control channel
which can provide fast and reliable access to every switch and those
switches might need to route data around to offer load balancing
of the traffic. As such, most of the SDN technologies focused on
Ethernet-based switches and development of controllers that will
follow a standard for controller to switch communications (i.e.,
Open Flow standard [8]).

However, the implications of SDN is not limited to data centers
and wired/optical networking. There has been many research on
adapting SDN capabilities for many other applications where either
the control channel or one of the data channels would be based on
wireless technologies [2],[23]. In particular, with the maturity of 5G
technologies, the control channel of SDN can now be based on 5G
connections since it can offer the level of stability and bandwidth
that exists for wired networks. Thanks to such developments, SDN
concept can now be realized in wireless data planes to deal with the
dynamicity and mobility of the switches within their application
context.

A perfect example is vehicular ad hoc networks (VANETS) [13]
which considers networking of vehicles (i.e., vehicle-to-vehicle) and
road side units (RSUs) (i.e., vehicle-to-infrastructure) based on their
wireless interfaces specifically designed for safety purposes. DSRC
[11] was introduced to broadcast vehicle location and speed to its
neighboring vehicles to eliminate potential traffic accidents. Simi-
larly, this information can also be used by RSUs to offer information
about the traffic and road conditions to other vehicles in the vicinity.
DSRC was the protocol based on IEEE 802.11p and supplemented by
higher layer protocols such as Wireless Access for Vehicular Envi-
ronments (WAVE). SDN was introduced for VANETS to make more
flexible use of vehicle’s data forwarding capabilities by enabling an
on-board unit that can support an SDN switch. In particular, this
is meaningful when there is large number of devices that need to
be controlled in response to certain phenomena (i.e., traffic route
updates). The topic has been widely studied under different use
cases to explore how SDN’s features can be best utilized.

Nevertheless, when it comes to evaluation of SDN-based VANETs,
there has been many struggles. There are multiple factors adding to
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this challenge. First of all, there are not many tools supporting the
simulation of SDN for wireless environments. Mininet [10], which
is the main emulator for SDN-based research assumes a wired con-
troller channel through CSMA-CD-based links and supports only
addition of WiFi interface to the SDN switches. Therefore, utiliza-
tion of Mininet for VANET-like applications was not possible. As a
result, majority of the published work on SDN-based VANET either
does not offer a realistic evaluation or demonstrates a small-scale
proof-of-concept using IoT devices such as Raspberry PIs. While
ns-3 had included SDN capabilities through its Open Flow module,
this was mainly designed to work with CSMA-CD or WiFi not other
wireless standards like WAVE. This largely hindered the feasibility
of large-scale accurate evaluation of SDN-based VANETs.

Therefore, in this paper, we present our design and implementa-
tion for enabling the integration of SDN and WAVE to support the
realization of SDN-based VANETS in ns-3. The main contribution is
to enable the marriage of OpenFlow module with WAVE network
devices so that an SDN switch that sits on a vehicle will be able to
communicate with the SDN controller, makes rule updates on the
rule table and forward data through the WAVE interface if needed.
We also implement a 4G-based control channel and build a switch
that can support multiple interfaces such as WAVE, CSMA-CD
and others. To the best of our knowledge, this is the first realistic
implementation of SDN-based VANETSs in ns-3.

To demonstrate a proof-of-concept for our ns-3 extension, we
utilized a platooning application for VANETSs where two platoon
leaders try to re-connect when they move away from each other.
Since there is no long-distance communication, we propose utilizing
SDN and enable multi-hop routing from one leader to the other
through the intermediary RSUs. Through ns-3, we simulated a
variety of scenarios with different number of vehicles and RSUs
with realistic channels of 4G and WAVE supported by ns-3. We
present results that show the level of overhead of using SDN and
how the performance is impacted at scale compared to alternative
approaches.

The rest of the paper is organized as follows. In the next section,
we summarize the related work that considered SDN-based simula-
tion efforts. Section 3 provides some background on the topic. In
Section 4, we detail our design and implementation in ns-3. Section
5 presents some performance results under a platooning use case.
Finally, we conclude the paper in Section 6.

2 RELATED WORK

There are several prior studies related to SDN-based VANETSs [9][7],
[12][20]. While some of these studies focused on routing among
vehicles using SDN, others used SDN to access RSUs. But in any
case, none of these studies provided an accurate and comprehensive
evaluation setup to demonstrate a proof of concept implementation.

Only a few papers in the literature have constructed and used a
simulation environment or an actual testbed to demonstrate that
their approach can allow a real evaluation beyond theoretical de-
bates and models such as [14]. In [18], Using Raspberry Pis as
Openflow switches, the authors create a realistic implementation
that was SDN-based for WiFi integration into VANETs. They show
how SDN makes resource management in networks with restricted
bandwidth available. Their drawback is that their testbed could
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only handle Wi-Fj, ignoring SDN’s widespread application for long-
distance management over wired networks. In [5], the authors were
showing performance advantages in managing the communication
as well as networking services and by expanding the use of Mininet
emulator to illustrate SDN applications in SDN-based VANETs. On
the other hand, the controller-to-vehicle link is still presumed to be
wired, which is impossible in the real world. Our work introduces
4G-based wireless control for VANETSs in ns-3, which is now the
only practical and realistic option for remotely controlling automo-
biles and allows the integration of WAVE with SDN switches.

Having a realistic simulation of VANETs are required to analyze
emerging technologies based on these networks and to demonstrate
the advantages derived from their evaluation [22]. The two most
important aspects of VANET simulation are network communi-
cation as well as vehicle mobility. Since the network architecture
changes dynamically as the vehicles travel, these two properties are
related to each other. Therefore, there are several useful simulators
that can run VANETSs environments. However, none of them can
capture the realities of VANET environment like ns-3. In addition,
ns-3 simulation for VANETS is more scalable and easier to use, with
the major benefit being ongoing support and quick expansion due
to the huge developer community. ns-3 allows for establishing the
Ad hoc wireless networks as well as implementing several other
protocols. As such ns-3 is the most adaptable and solid tool used
in the VANET simulation platforms [19][6]. It is important to note
that more features suited for VANETSs are being implemented in
ns-3, such as advances in channel and devices models as well as
the implementation of vehicle mobility models.

3 BACKGROUND AND PRELIMINARIES

3.1 SDN and OpenFlow

The SDN architecture contains the SDN Controller and the network
switches as shown in Figure 1. Through the OpenFlow protocol, the
SDN Controller sets the rules and the logic for the SDN switches in
order to handle the packet forwarding. The SDN controller has a
comprehensive overview of the switch network (in our case vehicles
and RSUs) and can compute the routes from host to host.

Switches in the SDN-OpenFlow architecture provide a standard
remote controller interface called OpenFlow [17]. The controller
can use this protocol to find OpenFlow compatible switches, es-
tablish matching rules for switching hardware, and gather infor-
mation from switching devices. The Controller may create, edit,
and delete the flow entries in the flow tables using the OpenFlow
re/pro-actively. In each switch, there is a flow table that consists
of several flow records which are the matching fields, counters
as well as rules to apply the matched packets. Furthermore, if a
switch receives a new packet that is not matching the flow entries,
it delivers it as a packet to the controller using the command packet
in.

3.2 OFSWITCH13 Module

ns-3 already supports OpenFlow 1.3 (the latest version of Open-
Flow) in a module called OFSWITCH13 Module [4]. This module
provides a controller application interface as well as the switch
device to the ns-3 simulator. Therefore, by using this module it is
feasible to link several ns-3 nodes to transmit and receive traffic
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using the current Ethernet (i.e., CSMA-CD) devices. In order to im-
plement a network using OF SWITCH1 3, the controller application
interface could be expanded to execute any needed control logic in
which the communication between the switch and the controller is
based on the standards of ns-3 in terms of devices, channels as well
as a protocol stack. Moreover, it is worth mentioning that this mod-
ule depends on external libraries to be compatible with ns-3. This
library enables the use of switch data path which includes configur-
ing the switch using the data paths command line (DPCTL) utility
tool as well as converting OpenFlow messages that are coming back
and forth from a wire format.

oBU

™ o ==

Figure 2: Sample OBU Interfaces [21]

3.3 WAVE Protocol Stack (IEEE 1609)

The Wireless Access in Vehicular Networks (WAVE) protocol was
developed to offer an interoperable communication interface for
the transmission of V2I as well as V2V messages. The architecture,
security mechanisms, and the message format are all defined by the
protocol stack. IEEE 802.11p which is the modified version of 802.11,
is used for the physical channel access. Therefore, as previously
stated, it is also known as DSRC. This standardization allows for a
wide range of applications, including traffic control and safety.
The On-board Unit (OBU) and RSU are the major components
that utilize this protocol stack. As illustrated in Figure 2 every OBU
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on a vehicle may be equipped with several interfaces such as GPS,
WIFi, DSRC, LTE, CSMA-CD, etc. connections. These are considered
as the standard interface features for an OBU. We envision that
an SDN switch will be connected to the OBU through its CSMA-
CD interfaces while it connects to SDN controller on a separate
LTE/4G/5G interface. In this way, the DSRC interface will be used
for V2V and V2I (Vehicle to RSU) communications and CSMA-CD
will be used only to send/receive packets from the application layer
running on the OBU to the switch. Note that DSRC devices transmit
within a range that can go up to 1000 meters, and with a data
transmission rate around 27 Mbps [16]. Both Wave Short Message
Protocol (WSMP) and IP protocol are supported on top of the MAC
layer, as illustrated in Figure 3. However, there is no current support
for multi-hop communication among WAVE devices in the standard.
The current ns-3 simulator supports use of CSMA-CD devices but
does not allow integration of other interfaces limiting its use to a
wired environment only.
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Figure 3: WAVE Protocol Stack

4 NS-3 EXTENSIONS FOR INTEGRATION OF
WAVE AND SDN

The integration of WAVE module with SDN required a series of
changes in the ns-3 codes, particularly OFSWITCH13 [4] module
which supports Open Flow. In the following subsection, we explain
these changes and additions.

4.1 Motivation and Overview

The OFSWITCHI13 module permits different end devices to be
connected to a single SDN switch allowing them to communicate
with each other. To achieve this, each switch associates the end
devices with a corresponding port number. Then, packets can be
forwarded by the switches to this corresponding port. Currently,
the only supported NetDevice to be connected to a switch is a
CSMANETDEVICE.

As mentioned before, in VANETSs vehicles use a specialized com-
munication interface called DSRC which represents the Physical
layer and MAC layer (IEEE 802.11p) of the WAVE protocol stack. In
ns-3, the WAVE module provides access to NetDevices capable of
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utilizing the IEEE 1609 WAVE protocol stack and the underlying
physical DSRC devices. Therefore, there is a need to integrate the
OFSWITCHI3 module with the WAVE module.

4.2 Initialization of the SDN Switch in ns-3

The OF SWITCH1 3 module in ns-3 assumes that multiple end de-
vices will be connected to an individual switch. This switch will
then allow the end devices to communicate with each other by
forwarding traffic from one port to the corresponding port.

However, our setup in VANET is a bit different. Specifically, we
would like to create a VANET architecture where each SDN switch
will only service one individual end device (i.e., a vehicle or RSU).
This means that on each vehicle or RSU there will be an SDN switch
installed with a direct CSMA-CD link to the vehicle’s On-Board
Unit (OBU). We will consider this to be PORT 2 for each SDN
switch. Every SDN switch will also be connected to a DSRC capable
device. In ns-3, the WAVE NetDevice has the WAVE protocol stack
alongside the lower layer DSRC communication. We will consider
this DSRC to be PORT 1 for each SDN switch. Note that PORT 1
and PORT 2 of the SDN switches are the ports that will constitute
the data plane as shown in Figure 4.

Actual Implementation.png
Vehicle-NS3 Node

SDN Switch
NS3-Node

Data Plane
) i
] 1
i L
DSRC CSMA

Figure 4: SDN Switch on Each Vehicle in ns-3

Each SDN switch will also be connected via the standard ns-3
LTE module to the SDN Controller. We will consider this to be
PORT 0 for each SDN switch. It is important to note that in the
case of the SDN controller there will be only one communication
interface which is LTE in our case. PORT 0 of the SDN switches
alongside PORT 0 of the SDN controller constitutes the Control
plane.

The SDN switch will then be able to forward the packets from
PORT 1 (OBU) to the desired interface. In order to determine the
desired interface, each switch will receive OpenFlow table updates
from the SDN controller. Due to having SDN switches on each
vehicle as well as on each RSU, we are able to achieve control of
V2V and V2I communications. In other words, the SDN switch will
provide access to control the physical communication interfaces
on the vehicle based on the logic defined by the SDN controller.

44

Juan Leon, Yacoub Hanna, and Kemal Akkaya

4.3 Integrating WAVE for OFSWITCH13
Module

In order to achieve the interoperability of the WAVE module with
the OFSWITCH1 3 module, certain modifications to the ns-3 OF-
SWITCH13 module were needed. Specifically, these changes were
made to the ofswitchl3-device and ofswitchl3-port
classes.

Binding the SDN Control Channel: In the ofswitchl3-device,
there was no available method to explicitly bind the NETDEVICE
for the control channel with the socket that will establish the SDN
controller to SDN switch communication. As seen in Figure 5,
the class ofswitchl3-device will have a modification to its
StartControllerConnection () method. This modification
constitutes of a call to the method BindToNetDevice () inher-
ited from the NS3: : Socket class. Here, the NETDEVICE that is
used as control channel interface will be linked to a TCP socket
connecting the controller to the switch. The variable n-ct1rDev
is used to represent a positive integer which is equivalent to the
PORT number used for the control channel. Assuming the port enu-
meration as described above, the value for n—ct 1rDev would be 0.

Port Integration: The next modification we made was within the
ofswitchl3-port class. As seen in Figure 5, two methods of
the of switchl3-port class were modified. The first method to
be modified is the OF Switchl3Port: :NotifyController
Connection () method. This method allows the SDN controller
to be notified which ports were added/created. This is where we link
the reception of packets at the NETDEVICE level with the higher
layer port reception abstraction. We begin by linking the MAC layer
address of our LTE NETDEVICE to the hw—addr variable of the
ofsoftswitchla3 library. Since this is an external library, proper
formatting of the MAC Address is required to match the needs of
OFSwitchl3Port:: NotifyControllerConnection ()
method.

Cross-layer Reception: We then proceed to link the higher layer
OFSwitchl3Port: :Receive method to the lower layer re-
ceive methods of the NETDEVICES. To do this, each NETDEVICE,
(see Figure 5) will need to add a new method called SetOpenFlow
ReceiveCallback (). This method will allow the NETDEVICES
in the lower layers to call higher layers receive method.

The other method to be modified is the OF Switchl3Port: :
Send. Similarly, there needs to be a link made between the OF
Switchl3Port: :Send () method and the Send method of the
underlying NETDEVICE. To this end, if the underlying NETDE-
VICE that calls the OFSwitchl3Port: :Send () method is a
WAVENETDEVICE, we proceed to call WaveNetDevice: : Send
X () method. This enables the SDN switch to send or receive pack-
ets through its ports without having to worry about the underlying
network protocols.

4.4 Extending TLV OXM-MATCH

As we extend OF Switchl3 module, there is also a need for cus-
tomization of the possible HEADERS to match with Openflow table
rules. To this end, OpenFlow’s Extended Match Type Length Value
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ofswitch13-device

- m_dpId: uint64

- m_datapath: struct

- m_ports: PortList

- m_controllers: CtrlList

+ StartControllerConnection(Address)

ctriSocket -> BindToNetDevice (GetObject<Node> () ->GetDevice(n_ctlrDev));

I

ofswitch13-port

# NotifyConstructionCompleted(void){
if (IteDev){

Mac64Address IteMac = Mac64Address: : ConvertFrom (lteDev->GetAddress ());
IteMac.Copy48To (m_swPort->conf->hw_addr);

i‘f-(csmaDev){.“}
else if (IteDev){
IteDev->SetOpenFlowReceiveCallback (MakeCallback (&0OFSwitch13Port::Receive, this));
3
else if (WaveDev){
WaveDev->SetOpenFlowReceiveCallback (MakeCallback (&OFSwitch13Port::Receive, this));
b
+ Send(Ptr<Packet>,uint32,uint64){
i.i;(.WaveDev){

status = WaveDev->SendX(Ptr<Packet>,Mac48Address,uint16,TxInfo);

!

WaveNetDevice

+ WaveNetDevice::SetOpenFlowReceiveCallback
(NetDevice::PromiscReceiveCallback cb)

m_openFlowRxCallback = cb;

1

LteUeNetDevice

+ LteUeNetDevice::SetOpenFlowReceiveCallback
(NetDevice::PromiscReceiveCallback cb)

m_openFlowRxCallback = cb;

Figure 5: UML Diagram for the Extensions to OFSWITCH13
Module

(TLV) structure is used. There were two main challenges. First,
there is little or outdated documentation regarding how to include
new custom Match fields. This is because up to OFSWITCH13 ver-
sion 3.3.0 the NetBee library was used to decode and parse packets.
Starting from OFSWITCH13 version 4.0.0, the dependence on the
NetBee library was removed. Second, there were no instructions
on how to include a custom OXM Match structure. Having access
to only the predefined fields limits the functionality of the module
greatly. In this section, we detail the steps required to develop a
custom OXM TLV structure with custom fields.

By following the steps performed in [4], we are left with a new
custom OXM match field but with no way of utilizing the value
contained in the fields. This is because the NetBee dependency that
was used to parse the packets and insert/extract values into their
OXM Match fields but it was removed.

Thus, two modifications are needed to be able to use a custom
OXM TLV structure. The first is that the OXM match structure itself
needs to be defined. This includes its type (i.e., Protocol Number)
and which Field values it posses. Second, the size of the different
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fields that will be contained within that OXM TLV structure needs
to be known and defined. This is because depending on the size
and amount of fields, the total OXM TLV structure size will change.
In order to do this, the management utility called DPCTL and its
underlying dependencies needs to be updated to recognize its field
along with inserting/extracting the new OXM match structure.

Creating OXM TLV Fields: The DPCTL management utility exists
under the OFSOFTSWITCH 13 library in the UTILITIES directory.
Within this directory, the class declaration DPCTL . h needs to
modified in order to include a new OXM Match field. The Match
field will allow the DPCTL utility to recognize what size does
the custom match field has and consequently, the set of methods
to properly insert values to the match field. Here is where the
name of the custom field to be matched should be defined. Next,
DPCTL. ¢ class definition needs to be modified. From here, the
method parse_match () needs to be modified to be able to rec-
ognize and then extract its actual content to parse it into a format ac-
ceptable by our custom OXM Match field. To this end, the methods
ofl_structs_match_ putl6(),ofl_structs_match_
put32 () and ofl_structs_match_put64 () may be used
depending on the size of the variable used to contain our custom
field. We next need to create our custom OXM Match structure
to contain our OXM Match fields. This is done by modifying two
classes within the UDATAPATH directory.

Creating OXM TLV Structure: The first class to be modified is the
class declaration packet_ handle_std.c. Here, we modify
the method packet_parse () to define our custom methods to
process the OXM Match structure. Subsequently, in flow_table
. c class, we create a new oxm_1id with our custom OXM Match
structure name. This allows our new OXM Match structure to
be recognized by Openflow and consequently the set of methods
required to access its OXM Match fields.
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The next class to be modified is the class declaration packet_
handle_std. c from the same directory. We modify the method
packet_parse ().Here, we define the methods that will be used
when we identify our OXM Match structure. This implies how to
access the fields within the structure once the OXM Match type
is matched. Next, the structure definition will take place within
the LIB directory. Here, the class definition packet .h needs to
be updated to include our definition of the custom OXM Match
structure. The total size of the OXM match structure will be defined
as well as its type. Also, the fields and their variable size need to
be defined since they will affect the total structure size. In order
for Openflow to recognize our OXM Match structure type, we also
need to modify the class declaration of1_packet .h from the
directory OFLIB. This is done by linking the name of our custom
structure type to a predefined constant value. Finally, in class dec-
laration openflow.h, within the directory INCLUDE, we link
our structure to the OXM TLV format in order for Openflow to
recognize that the structure is an OXM Match structure.

5 PERFORMANCE EVALUATION

In this section, we present a series of experimental evaluations to
show as a proof-of-concept of the implementation.

5.1 Simulation Setup and Assumptions

To demonstrate the use of the OF SWITCH1 3 module with wireless
technologies we devised a series of experiments utilizing the WAVE
module alongside the LTE module. The experiments are based on
a platooning application commonly used in the VANET environ-
ment. The scenario we consider consists of two platoons as shown
in Figure 7. We assume that each platoon will be composed of a
single vehicle chosen as Platoon leader followed by series of vehi-
cles that will act as platoon followers. We assume the leaders are
equipped with an SDN enabled switch alongside an LTE module to
enable the control channel. The data channel will be composed of
DSRC communications as well as wired CSMA-CD communication
from the SDN switch to the OBU. Both platoons will be randomly
placed within a defined area. One platoon (e.g., Platoon A) will be
selected to attempt to merge the other platoon (e.g., Platoon B).
If we assume a platoon management protocol as the one defined
in [1], in order for platoons to merge they require to exchange
constantly information regarding their velocity, acceleration and
position with the platoon they are attempting to merge with. The
Beacon Safety Message (BSM) is used to convey this information in
VANET environments. Yet, due to the design of the WAVE protocol
stack, the BSM cannot use multi-hop capabilities to travel. To be
able to enable long range platoon coordination we take advantage
of the OFSWITCH13 module to enable the SDN capabilities within
ns-3 allowing multi-hop capabilities for the BSM. We achieve this
by taking into consideration the MAC addresses of the vehicles
and RSUs in relation to their actual position. Then, we can use any
route calculation algorithm such as Dijkstra’s routing algorithm to
find the best route and not introduce any unnecessary overhead to
the network. We also make the code available through Github !

Uhttps://github.com/JVoltagic/NS3-ADWISE.git

46

Juan Leon, Yacoub Hanna, and Kemal Akkaya
SDN Controller

EliE
()
' LTE
LTE Antenna
SDN-Switch SDN-Switch
,
v <> ‘9(---» *
P2P P2P

[80Z.11p] [802.11p
[ X X J a«—» >

Platoon A Leader RSU# Platoon B Leader

Figure 7: Platoon Communication through RSUs

5.2 Performance Metrics and Bench marking

We used the following metrics to measure the performance of our
approach.

o Setup Delay: This measurement is used to show how long it
takes the SDN controller to contact each individual switch
to establish a connection. The time taken to send the proper
rules is also accounted for in this metric.

o Network Overhead: The use of broadcast packets among RSUs
adds to the network’s overhead. This metric is measured by
the number of extra messages that was generated within the
network.

o Average Packet Delay: This statistic quantifies the time it
takes for a packet to reach at its target vehicle (i.e., the lead-
ing platoon leader) from the point of origin. Since CACC
communications older than 100ms are deemed outdated, the
delay is an important parameter.

To compare with an alternative approach, we considered using
Ad-hoc On Demand Distance Vector (AODV) [15] routing which is
a distributed solution to address the connectivity among the two
platoon leaders. Basically, the vehicles floods the network to reach
out to everyone and eventually find the best path for packets to
take to the lost platoon leader. We will use the same topology for
the both approaches to ensure significant results.

5.3 Simulation Results

In this section, we provide the results obtained from ns-3 simu-
lations for the metrics defined in various network environment
settings. In each experiment, we run the simulations with either
the SDN Controller or the AODV protocol handling the routing of
BSM packets.

5.3.1 Distance and RSU Density Effects on Setup Delay: To
evaluate the performance of our approach we observed the setup
delay of the SDN approach with a series of experiments. The first ex-
periment consists of increasing the distance between the controller
and the SDN enabled switches. In this experiment we utilized 50
RSUs and 12 vehicles. As shown in Table 1, even when the distance
between our controller and switches was greater than 15 km the
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setup delay was not affected. We attribute this result to the low
latency offered by the LTE module which indicates that realization
of SDN for real-time applications is possible and effective.

Table 1: Distance Vs Setup Delay for our SDN Controller

Distance | Setup Delay
1km 8.127s
5km 8.127s

10km 8.127s
20km 8.127s

The next experiment consisted on changing the total amount of
RSUs available. In other words, changing the amount of nodes that
will receive rule updates from the SDN controller. Since we want to
observe the effects on the Setup Delay we perform this experiment
in a 250x250 meter size field with a total of 12 vehicles producing
noise. We first try a low density of RSU in order to observe the
effects of progressively increasing it until the density of RSUs is
enough to saturate the field area. From Figure 8 we can observe
a considerable difference in the SDN setup delay as we increase
the number of RSUs. The difference stems from the nature of SDN
communications. The more nodes that require rules the bigger the
setup delay will be because the SDN controller will need to contact
each additional node to establish a connection and only then can
he start transmitting the rules. Yet, one important observation is
the fact that the setup delay will increase linearly in relation to the
node count even in extreme high node count scenarios.

Setup Delay (S)

o- g T T T
2 4 6 8 10 20 40 60
Number of RSU

Figure 8: Setup Delay for SDN

5.3.2 Scalability Experiments: In these evaluations, we explore
how the number of vehicles affects the performance of the SDN-
based network. When comparing the vehicles noise (increasing
the number of vehicles) we will compare the performance of our
approach against the AODV benchmark. We expect to see the same
benefits from using traditional SDN technologies but now in con-
junction with the WAVE module. The vehicle count has been modi-
fied from 20, 40, 60, 80, and 100. Our experiments are performed in
a 250x250 meter field with a total of 50 RSUs.
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Network Overhead: When we increase the number of vehicles
producing background traffic, as shown in Figure 9, the overhead
for AODV increases exponentially. In the case of the SDN approach,
there is an increase but its growth is linear. We determined that
this behavior occurs because our SDN approach can deal with the
background traffic very easily by filtering at the MAC layer the
sending address of the packet. If the packet is not supposed to
transit through that RSU or vehicle, it gets dropped. Meanwhile, for
AODV, overhead increases because it relies on finding routes on the
fly, and it may take many extra messages for AODV to understand
that a specific node may not have any available paths to send the
message or that it is not part of the most optimal route.

100000
T 80000
(]
<
g 600007 —*— SDN
< —+— AODV
§ 400001
[
=2
20000 1
0L . . . :
20 40 60 80 100

Number of Car
Figure 9: Network Overhead

Average Packet Delay: We can observe in Figure 10 an upward
trend in the delay for AODV as the amount of background traffic
grows with the increasing number of vehicles. This issue can be
attributed to the need for AODV to find routes on the fly while
contending with background traffic. In comparison to our SDN
approach, where the rules are previously installed, we can easily
distinguish between background noise and an actual BSM since the
SDN switches only need to inspect the packet’s MAC addresses to
know if it is supposed to be dropped or re-transmitted.

=
o
1

—¥— SDN
—+— AODV

Average Packet Delay (ms)

Number of Car

Figure 10: Average Packet Delay
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6 CONCLUSION

In this paper, we introduced extensions to ns-3 OFSWITCH13 Mod-
ule to support an enriched set of functions for the SDN switches.
Specifically, we introduced how WAVE module can be integrated
with OFSWITCH13 module to support for an SDN based VANET
architecture. We also extended the possible OXM TLV structures
that are available for the module in order to be able to match the
new header fields that introduced by utilizing the WAVE protocol
stack. The steps detailed here can also serve as guide to anyone
interested in developing custom headers or implementing new mod-
ules in conjunction with the OFSWITCH13 module. By leveraging
SDN technology in the VANET environment we are enabling the
uncoupling of the data and control plane in order to enable multi
hop capabilities for DRSC (WAVE protocol stack) communications.
We explained in details how this implementation was done and
demonstrated its feasibility in a use-case scenario based on vehicle
platooning application. Through this application, we showed that
our approach will support multi-hop routing for enabling efficient
communication among platoon leaders which is much more effec-
tive than an existing benchmark solution such as AODV. As future
works, we propose developing the OXM TLV structures required
to handle additional fields and header structures required to follow
the specifications of the WAVE protocol stack. This in turn will
enable further research on the available applications in the VANET
environment and their performance.
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