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ABSTRACT

While software defined networking (SDN) has been widely de-

ployed in wired networks within the cloud data centers, its applica-

tions with both a wireless control and data channel have not been

fully realized. One particular use case is vehicular ad hoc networks

(VANET), where SDN has been touted as an effective method to

control vehicles’ data traffic in a centralized manner. Several studies

explored how SDN switches can be utilized on connected vehicles

to shape the data traffic by enabling multi-hop communications

through their Dedicated Short Range Communication (DSRC) in-

terfaces. However, evaluation of research for SDN-based VANETs

became a challenge due to lack of testbeds and realistic simulation

tools that will support VANET features in conjunction with SDN. In

this paper, we present a new framework that will enable SDN-based

VANET simulation in ns-3. Specifically, we demonstrate how ns-3

SDN module can be expanded to support DSRC interfaces in addi-

tion to their default CSMA-CD interface. By considering a platoon-

ing application use case, we implemented an SDN-based VANET

simulation that will enable multi-hop communication through the

DSRC interfaces of the vehicles and road side units (RSUs). We

not only explain the details of the implementation within the ns-3

OpenFlow (OF13) switch module but also provide some sample

experiment results under a variety of conditions. The results show

that the implementation is robust and closely simulates the actual

behavior of SDN’s control and data channels.
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1 INTRODUCTION

Software Defined Networking (SDN) is the separation of data and

control planes on switches for efficient management of data traffic

and offering flexibility against dynamic conditions through a cen-

tralized controller [3]. The concept has also been effective in dealing

with interoperability challenges that may arise due to vendor spe-

cific switch technologies. Since its inception more than a decade

ago, SDN technologies became very disruptive and has started to

be used in many modern IT infrastructures, particularly within the

data centers. This is because SDN offer a robust control channel

which can provide fast and reliable access to every switch and those

switches might need to route data around to offer load balancing

of the traffic. As such, most of the SDN technologies focused on

Ethernet-based switches and development of controllers that will

follow a standard for controller to switch communications (i.e.,

Open Flow standard [8]).

However, the implications of SDN is not limited to data centers

and wired/optical networking. There has been many research on

adapting SDN capabilities for many other applications where either

the control channel or one of the data channels would be based on

wireless technologies [2],[23]. In particular, with the maturity of 5G

technologies, the control channel of SDN can now be based on 5G

connections since it can offer the level of stability and bandwidth

that exists for wired networks. Thanks to such developments, SDN

concept can now be realized in wireless data planes to deal with the

dynamicity and mobility of the switches within their application

context.

A perfect example is vehicular ad hoc networks (VANETs) [13]

which considers networking of vehicles (i.e., vehicle-to-vehicle) and

road side units (RSUs) (i.e., vehicle-to-infrastructure) based on their

wireless interfaces specifically designed for safety purposes. DSRC

[11] was introduced to broadcast vehicle location and speed to its

neighboring vehicles to eliminate potential traffic accidents. Simi-

larly, this information can also be used by RSUs to offer information

about the traffic and road conditions to other vehicles in the vicinity.

DSRC was the protocol based on IEEE 802.11p and supplemented by

higher layer protocols such as Wireless Access for Vehicular Envi-

ronments (WAVE). SDN was introduced for VANETs to make more

flexible use of vehicle’s data forwarding capabilities by enabling an

on-board unit that can support an SDN switch. In particular, this

is meaningful when there is large number of devices that need to

be controlled in response to certain phenomena (i.e., traffic route

updates). The topic has been widely studied under different use

cases to explore how SDN’s features can be best utilized.

Nevertheless, when it comes to evaluation of SDN-based VANETs,

there has been many struggles. There are multiple factors adding to
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this challenge. First of all, there are not many tools supporting the

simulation of SDN for wireless environments. Mininet [10], which

is the main emulator for SDN-based research assumes a wired con-

troller channel through CSMA-CD-based links and supports only

addition of WiFi interface to the SDN switches. Therefore, utiliza-

tion of Mininet for VANET-like applications was not possible. As a

result, majority of the published work on SDN-based VANET either

does not offer a realistic evaluation or demonstrates a small-scale

proof-of-concept using IoT devices such as Raspberry PIs. While

ns-3 had included SDN capabilities through its Open Flow module,

this was mainly designed to work with CSMA-CD orWiFi not other

wireless standards like WAVE. This largely hindered the feasibility

of large-scale accurate evaluation of SDN-based VANETs.

Therefore, in this paper, we present our design and implementa-

tion for enabling the integration of SDN and WAVE to support the

realization of SDN-based VANETs in ns-3. The main contribution is

to enable the marriage of OpenFlow module with WAVE network

devices so that an SDN switch that sits on a vehicle will be able to

communicate with the SDN controller, makes rule updates on the

rule table and forward data through the WAVE interface if needed.

We also implement a 4G-based control channel and build a switch

that can support multiple interfaces such as WAVE, CSMA-CD

and others. To the best of our knowledge, this is the first realistic

implementation of SDN-based VANETs in ns-3.

To demonstrate a proof-of-concept for our ns-3 extension, we

utilized a platooning application for VANETs where two platoon

leaders try to re-connect when they move away from each other.

Since there is no long-distance communication, we propose utilizing

SDN and enable multi-hop routing from one leader to the other

through the intermediary RSUs. Through ns-3, we simulated a

variety of scenarios with different number of vehicles and RSUs

with realistic channels of 4G and WAVE supported by ns-3. We

present results that show the level of overhead of using SDN and

how the performance is impacted at scale compared to alternative

approaches.

The rest of the paper is organized as follows. In the next section,

we summarize the related work that considered SDN-based simula-

tion efforts. Section 3 provides some background on the topic. In

Section 4, we detail our design and implementation in ns-3. Section

5 presents some performance results under a platooning use case.

Finally, we conclude the paper in Section 6.

2 RELATED WORK

There are several prior studies related to SDN-based VANETs [9][7],

[12][20]. While some of these studies focused on routing among

vehicles using SDN, others used SDN to access RSUs. But in any

case, none of these studies provided an accurate and comprehensive

evaluation setup to demonstrate a proof of concept implementation.

Only a few papers in the literature have constructed and used a

simulation environment or an actual testbed to demonstrate that

their approach can allow a real evaluation beyond theoretical de-

bates and models such as [14]. In [18], Using Raspberry Pis as

Openflow switches, the authors create a realistic implementation

that was SDN-based for WiFi integration into VANETs. They show

how SDN makes resource management in networks with restricted

bandwidth available. Their drawback is that their testbed could

only handle Wi-Fi, ignoring SDN’s widespread application for long-

distance management over wired networks. In [5], the authors were

showing performance advantages in managing the communication

as well as networking services and by expanding the use of Mininet

emulator to illustrate SDN applications in SDN-based VANETs. On

the other hand, the controller-to-vehicle link is still presumed to be

wired, which is impossible in the real world. Our work introduces

4G-based wireless control for VANETs in ns-3, which is now the

only practical and realistic option for remotely controlling automo-

biles and allows the integration of WAVE with SDN switches.

Having a realistic simulation of VANETs are required to analyze

emerging technologies based on these networks and to demonstrate

the advantages derived from their evaluation [22]. The two most

important aspects of VANET simulation are network communi-

cation as well as vehicle mobility. Since the network architecture

changes dynamically as the vehicles travel, these two properties are

related to each other. Therefore, there are several useful simulators

that can run VANETs environments. However, none of them can

capture the realities of VANET environment like ns-3. In addition,

ns-3 simulation for VANETs is more scalable and easier to use, with

the major benefit being ongoing support and quick expansion due

to the huge developer community. ns-3 allows for establishing the

Ad hoc wireless networks as well as implementing several other

protocols. As such ns-3 is the most adaptable and solid tool used

in the VANET simulation platforms [19][6]. It is important to note

that more features suited for VANETs are being implemented in

ns-3, such as advances in channel and devices models as well as

the implementation of vehicle mobility models.

3 BACKGROUND AND PRELIMINARIES

3.1 SDN and OpenFlow

The SDN architecture contains the SDN Controller and the network

switches as shown in Figure 1. Through the OpenFlow protocol, the

SDN Controller sets the rules and the logic for the SDN switches in

order to handle the packet forwarding. The SDN controller has a

comprehensive overview of the switch network (in our case vehicles

and RSUs) and can compute the routes from host to host.

Switches in the SDN-OpenFlow architecture provide a standard

remote controller interface called OpenFlow [17]. The controller

can use this protocol to find OpenFlow compatible switches, es-

tablish matching rules for switching hardware, and gather infor-

mation from switching devices. The Controller may create, edit,

and delete the flow entries in the flow tables using the OpenFlow

re/pro-actively. In each switch, there is a flow table that consists

of several flow records which are the matching fields, counters

as well as rules to apply the matched packets. Furthermore, if a

switch receives a new packet that is not matching the flow entries,

it delivers it as a packet to the controller using the command packet

in.

3.2 OFSWITCH13 Module

ns-3 already supports OpenFlow 1.3 (the latest version of Open-

Flow) in a module called OFSWITCH13 Module [4]. This module

provides a controller application interface as well as the switch

device to the ns-3 simulator. Therefore, by using this module it is

feasible to link several ns-3 nodes to transmit and receive traffic
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Figure 1: SDN Infrastructure

using the current Ethernet (i.e., CSMA-CD) devices. In order to im-

plement a network using OFSWITCH13, the controller application

interface could be expanded to execute any needed control logic in

which the communication between the switch and the controller is

based on the standards of ns-3 in terms of devices, channels as well

as a protocol stack. Moreover, it is worth mentioning that this mod-

ule depends on external libraries to be compatible with ns-3. This

library enables the use of switch data path which includes configur-

ing the switch using the data paths command line (DPCTL) utility

tool as well as converting OpenFlow messages that are coming back

and forth from a wire format.

Figure 2: Sample OBU Interfaces [21]

3.3 WAVE Protocol Stack (IEEE 1609)

The Wireless Access in Vehicular Networks (WAVE) protocol was

developed to offer an interoperable communication interface for

the transmission of V2I as well as V2V messages. The architecture,

security mechanisms, and the message format are all defined by the

protocol stack. IEEE 802.11p which is the modified version of 802.11,

is used for the physical channel access. Therefore, as previously

stated, it is also known as DSRC. This standardization allows for a

wide range of applications, including traffic control and safety.

The On-board Unit (OBU) and RSU are the major components

that utilize this protocol stack. As illustrated in Figure 2 every OBU

on a vehicle may be equipped with several interfaces such as GPS,

WiFi, DSRC, LTE, CSMA-CD, etc. connections. These are considered

as the standard interface features for an OBU. We envision that

an SDN switch will be connected to the OBU through its CSMA-

CD interfaces while it connects to SDN controller on a separate

LTE/4G/5G interface. In this way, the DSRC interface will be used

for V2V and V2I (Vehicle to RSU) communications and CSMA-CD

will be used only to send/receive packets from the application layer

running on the OBU to the switch. Note that DSRC devices transmit

within a range that can go up to 1000 meters, and with a data

transmission rate around 27 Mbps [16]. Both Wave Short Message

Protocol (WSMP) and IP protocol are supported on top of the MAC

layer, as illustrated in Figure 3. However, there is no current support

for multi-hop communication amongWAVE devices in the standard.

The current ns-3 simulator supports use of CSMA-CD devices but

does not allow integration of other interfaces limiting its use to a

wired environment only.

Figure 3: WAVE Protocol Stack

4 NS-3 EXTENSIONS FOR INTEGRATION OF
WAVE AND SDN

The integration of WAVE module with SDN required a series of

changes in the ns-3 codes, particularly OFSWITCH13 [4] module

which supports Open Flow. In the following subsection, we explain

these changes and additions.

4.1 Motivation and Overview

The OFSWITCH13 module permits different end devices to be

connected to a single SDN switch allowing them to communicate

with each other. To achieve this, each switch associates the end

devices with a corresponding port number. Then, packets can be

forwarded by the switches to this corresponding port. Currently,

the only supported NetDevice to be connected to a switch is a

CSMANETDEVICE.

As mentioned before, in VANETs vehicles use a specialized com-

munication interface called DSRC which represents the Physical

layer and MAC layer (IEEE 802.11p) of the WAVE protocol stack. In

ns-3, the WAVE module provides access to NetDevices capable of
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utilizing the IEEE 1609 WAVE protocol stack and the underlying

physical DSRC devices. Therefore, there is a need to integrate the

OFSWITCH13 module with the WAVE module.

4.2 Initialization of the SDN Switch in ns-3

The OFSWITCH13 module in ns-3 assumes that multiple end de-

vices will be connected to an individual switch. This switch will

then allow the end devices to communicate with each other by

forwarding traffic from one port to the corresponding port.

However, our setup in VANET is a bit different. Specifically, we

would like to create a VANET architecture where each SDN switch

will only service one individual end device (i.e., a vehicle or RSU).

This means that on each vehicle or RSU there will be an SDN switch

installed with a direct CSMA-CD link to the vehicle’s On-Board

Unit (OBU). We will consider this to be PORT 2 for each SDN

switch. Every SDN switch will also be connected to a DSRC capable

device. In ns-3, the WAVE NetDevice has the WAVE protocol stack

alongside the lower layer DSRC communication. We will consider

this DSRC to be PORT 1 for each SDN switch. Note that PORT 1

and PORT 2 of the SDN switches are the ports that will constitute

the data plane as shown in Figure 4.

Actual Implementation.png

Figure 4: SDN Switch on Each Vehicle in ns-3

Each SDN switch will also be connected via the standard ns-3

LTE module to the SDN Controller. We will consider this to be

PORT 0 for each SDN switch. It is important to note that in the

case of the SDN controller there will be only one communication

interface which is LTE in our case. PORT 0 of the SDN switches

alongside PORT 0 of the SDN controller constitutes the Control

plane.

The SDN switch will then be able to forward the packets from

PORT 1 (OBU) to the desired interface. In order to determine the

desired interface, each switch will receive OpenFlow table updates

from the SDN controller. Due to having SDN switches on each

vehicle as well as on each RSU, we are able to achieve control of

V2V and V2I communications. In other words, the SDN switch will

provide access to control the physical communication interfaces

on the vehicle based on the logic defined by the SDN controller.

4.3 Integrating WAVE for OFSWITCH13
Module

In order to achieve the interoperability of the WAVE module with

the OFSWITCH13 module, certain modifications to the ns-3 OF-

SWITCH13 module were needed. Specifically, these changes were

made to the ofswitch13-device and ofswitch13-port

classes.

Binding the SDN Control Channel: In the ofswitch13-device,

there was no available method to explicitly bind the NETDEVICE

for the control channel with the socket that will establish the SDN

controller to SDN switch communication. As seen in Figure 5,

the class ofswitch13-device will have a modification to its

StartControllerConnection()method. Thismodification

constitutes of a call to the method BindToNetDevice() inher-

ited from the NS3::Socket class. Here, the NETDEVICE that is

used as control channel interface will be linked to a TCP socket

connecting the controller to the switch. The variable n-ctlrDev

is used to represent a positive integer which is equivalent to the

PORT number used for the control channel. Assuming the port enu-

meration as described above, the value for n-ctlrDevwould be 0.

Port Integration: The next modification we made was within the

ofswitch13-port class. As seen in Figure 5, two methods of

the ofswitch13-port class were modified. The first method to

be modified is the OFSwitch13Port::NotifyController

Connection() method. This method allows the SDN controller

to be notified which ports were added/created. This is where we link

the reception of packets at the NETDEVICE level with the higher

layer port reception abstraction. We begin by linking the MAC layer

address of our LTE NETDEVICE to the hw-addr variable of the

ofsoftswitch13 library. Since this is an external library, proper

formatting of the MAC Address is required to match the needs of

OFSwitch13Port:: NotifyControllerConnection()

method.

Cross-layer Reception: We then proceed to link the higher layer

OFSwitch13Port::Receive method to the lower layer re-

ceive methods of the NETDEVICES. To do this, each NETDEVICE,

(see Figure 5) will need to add a newmethod called SetOpenFlow

ReceiveCallback(). Thismethodwill allow theNETDEVICES

in the lower layers to call higher layers receive method.

The other method to be modified is the OFSwitch13Port::

Send. Similarly, there needs to be a link made between the OF

Switch13Port::Send() method and the Send method of the

underlying NETDEVICE. To this end, if the underlying NETDE-

VICE that calls the OFSwitch13Port::Send() method is a

WAVENETDEVICE, we proceed to call WaveNetDevice::Send

X() method. This enables the SDN switch to send or receive pack-

ets through its ports without having to worry about the underlying

network protocols.

4.4 Extending TLV OXM-MATCH

As we extend OFSwitch13 module, there is also a need for cus-

tomization of the possible HEADERS to match with Openflow table

rules. To this end, OpenFlow’s Extended Match Type Length Value
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Figure 5: UML Diagram for the Extensions to OFSWITCH13

Module

(TLV) structure is used. There were two main challenges. First,

there is little or outdated documentation regarding how to include

new custom Match fields. This is because up to OFSWITCH13 ver-

sion 3.3.0 the NetBee library was used to decode and parse packets.

Starting from OFSWITCH13 version 4.0.0, the dependence on the

NetBee library was removed. Second, there were no instructions

on how to include a custom OXM Match structure. Having access

to only the predefined fields limits the functionality of the module

greatly. In this section, we detail the steps required to develop a

custom OXM TLV structure with custom fields.

By following the steps performed in [4], we are left with a new

custom OXM match field but with no way of utilizing the value

contained in the fields. This is because the NetBee dependency that

was used to parse the packets and insert/extract values into their

OXM Match fields but it was removed.

Thus, two modifications are needed to be able to use a custom

OXMTLV structure. The first is that the OXMmatch structure itself

needs to be defined. This includes its type (i.e., Protocol Number)

and which Field values it posses. Second, the size of the different

Figure 6: UML Diagram

fields that will be contained within that OXM TLV structure needs

to be known and defined. This is because depending on the size

and amount of fields, the total OXM TLV structure size will change.

In order to do this, the management utility called DPCTL and its

underlying dependencies needs to be updated to recognize its field

along with inserting/extracting the new OXM match structure.

Creating OXM TLV Fields: The DPCTL management utility exists

under the OFSOFTSWITCH 13 library in the UTILITIES directory.

Within this directory, the class declaration DPCTL.h needs to

modified in order to include a new OXM Match field. The Match

field will allow the DPCTL utility to recognize what size does

the custom match field has and consequently, the set of methods

to properly insert values to the match field. Here is where the

name of the custom field to be matched should be defined. Next,

DPCTL.c class definition needs to be modified. From here, the

method parse_match() needs to be modified to be able to rec-

ognize and then extract its actual content to parse it into a format ac-

ceptable by our custom OXM Match field. To this end, the methods

ofl_structs_match_ put16(), ofl_structs_match_

put32() and ofl_structs_match_put64() may be used

depending on the size of the variable used to contain our custom

field. We next need to create our custom OXM Match structure

to contain our OXM Match fields. This is done by modifying two

classes within the UDATAPATH directory.

Creating OXM TLV Structure: The first class to be modified is the

class declaration packet_ handle_std.c. Here, we modify

the method packet_parse() to define our custom methods to

process the OXM Match structure. Subsequently, in flow_table

.c class, we create a new oxm_id with our custom OXM Match

structure name. This allows our new OXM Match structure to

be recognized by Openflow and consequently the set of methods

required to access its OXM Match fields.

45



WNS3 2022, June 22–23, 2022, Virtual Event, USA Juan Leon, Yacoub Hanna, and Kemal Akkaya

The next class to be modified is the class declaration packet_

handle_std.c from the same directory. We modify the method

packet_parse(). Here, we define the methods that will be used

when we identify our OXM Match structure. This implies how to

access the fields within the structure once the OXM Match type

is matched. Next, the structure definition will take place within

the LIB directory. Here, the class definition packet.h needs to

be updated to include our definition of the custom OXM Match

structure. The total size of the OXMmatch structure will be defined

as well as its type. Also, the fields and their variable size need to

be defined since they will affect the total structure size. In order

for Openflow to recognize our OXM Match structure type, we also

need to modify the class declaration ofl_packet.h from the

directory OFLIB. This is done by linking the name of our custom

structure type to a predefined constant value. Finally, in class dec-

laration openflow.h, within the directory INCLUDE, we link

our structure to the OXM TLV format in order for Openflow to

recognize that the structure is an OXM Match structure.

5 PERFORMANCE EVALUATION

In this section, we present a series of experimental evaluations to

show as a proof-of-concept of the implementation.

5.1 Simulation Setup and Assumptions

To demonstrate the use of the OFSWITCH13module with wireless

technologies we devised a series of experiments utilizing the WAVE

module alongside the LTE module. The experiments are based on

a platooning application commonly used in the VANET environ-

ment. The scenario we consider consists of two platoons as shown

in Figure 7. We assume that each platoon will be composed of a

single vehicle chosen as Platoon leader followed by series of vehi-

cles that will act as platoon followers. We assume the leaders are

equipped with an SDN enabled switch alongside an LTE module to

enable the control channel. The data channel will be composed of

DSRC communications as well as wired CSMA-CD communication

from the SDN switch to the OBU. Both platoons will be randomly

placed within a defined area. One platoon (e.g., Platoon A) will be

selected to attempt to merge the other platoon (e.g., Platoon B).

If we assume a platoon management protocol as the one defined

in [1], in order for platoons to merge they require to exchange

constantly information regarding their velocity, acceleration and

position with the platoon they are attempting to merge with. The

Beacon Safety Message (BSM) is used to convey this information in

VANET environments. Yet, due to the design of the WAVE protocol

stack, the BSM cannot use multi-hop capabilities to travel. To be

able to enable long range platoon coordination we take advantage

of the OFSWITCH13 module to enable the SDN capabilities within

ns-3 allowing multi-hop capabilities for the BSM. We achieve this

by taking into consideration the MAC addresses of the vehicles

and RSUs in relation to their actual position. Then, we can use any

route calculation algorithm such as Dijkstra’s routing algorithm to

find the best route and not introduce any unnecessary overhead to

the network. We also make the code available through Github 1

1https://github.com/JVoltagic/NS3-ADWISE.git

Figure 7: Platoon Communication through RSUs

5.2 Performance Metrics and Bench marking

We used the following metrics to measure the performance of our

approach.

• Setup Delay: This measurement is used to show how long it

takes the SDN controller to contact each individual switch

to establish a connection. The time taken to send the proper

rules is also accounted for in this metric.

• Network Overhead: The use of broadcast packets among RSUs

adds to the network’s overhead. This metric is measured by

the number of extra messages that was generated within the

network.

• Average Packet Delay: This statistic quantifies the time it

takes for a packet to reach at its target vehicle (i.e., the lead-

ing platoon leader) from the point of origin. Since CACC

communications older than 100ms are deemed outdated, the

delay is an important parameter.

To compare with an alternative approach, we considered using

Ad-hoc On Demand Distance Vector (AODV) [15] routing which is

a distributed solution to address the connectivity among the two

platoon leaders. Basically, the vehicles floods the network to reach

out to everyone and eventually find the best path for packets to

take to the lost platoon leader. We will use the same topology for

the both approaches to ensure significant results.

5.3 Simulation Results

In this section, we provide the results obtained from ns-3 simu-

lations for the metrics defined in various network environment

settings. In each experiment, we run the simulations with either

the SDN Controller or the AODV protocol handling the routing of

BSM packets.

5.3.1 Distance and RSU Density Effects on Setup Delay: To

evaluate the performance of our approach we observed the setup

delay of the SDN approach with a series of experiments. The first ex-

periment consists of increasing the distance between the controller

and the SDN enabled switches. In this experiment we utilized 50

RSUs and 12 vehicles. As shown in Table 1, even when the distance

between our controller and switches was greater than 15 km the
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setup delay was not affected. We attribute this result to the low

latency offered by the LTE module which indicates that realization

of SDN for real-time applications is possible and effective.

Table 1: Distance Vs Setup Delay for our SDN Controller

Distance Setup Delay

1km 8.127s

5km 8.127s

10km 8.127s

20km 8.127s

The next experiment consisted on changing the total amount of

RSUs available. In other words, changing the amount of nodes that

will receive rule updates from the SDN controller. Since we want to

observe the effects on the Setup Delay we perform this experiment

in a 250x250 meter size field with a total of 12 vehicles producing

noise. We first try a low density of RSU in order to observe the

effects of progressively increasing it until the density of RSUs is

enough to saturate the field area. From Figure 8 we can observe

a considerable difference in the SDN setup delay as we increase

the number of RSUs. The difference stems from the nature of SDN

communications. The more nodes that require rules the bigger the

setup delay will be because the SDN controller will need to contact

each additional node to establish a connection and only then can

he start transmitting the rules. Yet, one important observation is

the fact that the setup delay will increase linearly in relation to the

node count even in extreme high node count scenarios.

Figure 8: Setup Delay for SDN

5.3.2 Scalability Experiments: In these evaluations, we explore

how the number of vehicles affects the performance of the SDN-

based network. When comparing the vehicles noise (increasing

the number of vehicles) we will compare the performance of our

approach against the AODV benchmark. We expect to see the same

benefits from using traditional SDN technologies but now in con-

junction with the WAVE module. The vehicle count has been modi-

fied from 20, 40, 60, 80, and 100. Our experiments are performed in

a 250x250 meter field with a total of 50 RSUs.

Network Overhead:When we increase the number of vehicles

producing background traffic, as shown in Figure 9, the overhead

for AODV increases exponentially. In the case of the SDN approach,

there is an increase but its growth is linear. We determined that

this behavior occurs because our SDN approach can deal with the

background traffic very easily by filtering at the MAC layer the

sending address of the packet. If the packet is not supposed to

transit through that RSU or vehicle, it gets dropped. Meanwhile, for

AODV, overhead increases because it relies on finding routes on the

fly, and it may take many extra messages for AODV to understand

that a specific node may not have any available paths to send the

message or that it is not part of the most optimal route.

Figure 9: Network Overhead

Average Packet Delay:We can observe in Figure 10 an upward

trend in the delay for AODV as the amount of background traffic

grows with the increasing number of vehicles. This issue can be

attributed to the need for AODV to find routes on the fly while

contending with background traffic. In comparison to our SDN

approach, where the rules are previously installed, we can easily

distinguish between background noise and an actual BSM since the

SDN switches only need to inspect the packet’s MAC addresses to

know if it is supposed to be dropped or re-transmitted.

Figure 10: Average Packet Delay
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6 CONCLUSION

In this paper, we introduced extensions to ns-3 OFSWITCH13 Mod-

ule to support an enriched set of functions for the SDN switches.

Specifically, we introduced how WAVE module can be integrated

with OFSWITCH13 module to support for an SDN based VANET

architecture. We also extended the possible OXM TLV structures

that are available for the module in order to be able to match the

new header fields that introduced by utilizing the WAVE protocol

stack. The steps detailed here can also serve as guide to anyone

interested in developing custom headers or implementing newmod-

ules in conjunction with the OFSWITCH13 module. By leveraging

SDN technology in the VANET environment we are enabling the

uncoupling of the data and control plane in order to enable multi

hop capabilities for DRSC (WAVE protocol stack) communications.

We explained in details how this implementation was done and

demonstrated its feasibility in a use-case scenario based on vehicle

platooning application. Through this application, we showed that

our approach will support multi-hop routing for enabling efficient

communication among platoon leaders which is much more effec-

tive than an existing benchmark solution such as AODV. As future

works, we propose developing the OXM TLV structures required

to handle additional fields and header structures required to follow

the specifications of the WAVE protocol stack. This in turn will

enable further research on the available applications in the VANET

environment and their performance.
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