Semantic-Informed Driver Fuzzing Without Both the
Hardware Devices and the Emulators

Wenjia Zhao*
Xi’an Jiaotong University
University of Minnesota

Kangjie Lu
University of Minnesota

Abstract—Device drivers are security-critical. In monolithic
kernels like Linux, there are hundreds of thousands of drivers
which run in the same privilege as the core kernel. Consequently,
a bug in a driver can compromise the whole system. More
critically, drivers are particularly buggy. First, drivers receive
complex and untrusted inputs from not only the user space but
also the hardware. Second, the driver code can be developed by
less-experienced third parties, and is less tested because running
a driver requires the corresponding hardware device or the
emulator. Therefore, existing studies show that drivers tend to
have a higher bug density and have become a major security
threat. Existing testing techniques have to focus the fuzzing on
a limited number of drivers that have the corresponding devices
or the emulators, thus cannot scale.

In this paper, we propose a device-free driver fuzzing system,
DR. Fuzz, that does not require hardware devices to fuzz-
test drivers. The core of DR. FUzZZ is a semantic-informed
mechanism that efficiently generates inputs to properly construct
relevant data structures to pass the ‘“validation chain” in driving
initialization, which enables subsequent device-free driver fuzzing.
The elimination of the needs for the hardware devices and the
emulators removes the bottleneck in driver testing. The semantic-
informed mechanism incorporates multiple new techniques to
make device-free driver fuzzing practical: inferring valid input
values for passing the validation chain in initialization, inferring
the temporal usage order of input bytes to minimize mutation
space, and employing error states as a feedback to direct
the fuzzing going through the validation chain. Moreover, the
semantic-informed mechanism is generic; we can also instruct it
to generate semi-malformed inputs for a higher code coverage.
We evaluate DR. FUZZ on 214 Linux drivers. With an only 24-
hour time budget, DR. FUZZ can successfully initialize and enable
most of the drivers without the corresponding devices, whereas
existing fuzzers like syzkaller cannot succeed in any case. DR.
Fuzz also significantly outperforms existing driver fuzzers that
are even equipped with the device or emulator in other aspects:
it increases the code coverage by 70% and the throughput by
18%. With DR. Fuzz, we also find 46 new bugs in these Linux
drivers.

I. INTRODUCTION

In monolithic kernels like the Linux kernel, 70% of the
kernel code is device drivers [20]. The kernel serves as a

* The work was done at the University of Minnesota.

Network and Distributed Systems Security (NDSS) Symposium 2022
27 February - 3 March 2022, San Diego, CA, USA

ISBN 1-891562-74-6

https://dx.doi.org/10.14722/ndss.2022.23345
www.ndss-symposium.org

Qiushi Wu

University of Minnesota

Yong Qi

Xi’an Jiaotong University

hardware resource manager; its device drivers are responsible
for identifying and managing the specific devices. The drivers
are security-critical but buggy. They run in the same privilege
level as the core kernel does. If a driver is compromised,
the attacker can basically control the whole system. However,
drivers are much buggier than other components in the kernel,
with a bug density three to seven times as the rest of the
kernel [8].

Drivers are particularly vulnerable for several reasons. First,
studies have shown that the development of device drivers is
error-prone [40] [31]. The developers need to take care of many
aspects, including OS interfaces and data structures, compilers,
and integrated circuits. Second, the driver code is less tested
because testing a driver requires the corresponding hardware
device or at least an emulator. Moreover, the driver often accepts
complicated and special inputs (from both the user space and
the hardware) that are hard to cover during testing. Finally,
compared with other parts of the kernel, some drivers are no
longer actively maintained or supported, and thus tend to be
more vulnerable [35].

In addition to being vulnerable, having a larger attack
surface is another unique problem with drivers, as the untrusted
inputs can be from not only the user space but also the hardware.
With the development of programmable devices, a security
threat aggravates: specific or generalized malicious hardware
devices have become common, such as Thunderclap [29],
FaceDancer [14], ThunderSpy [41], and BadUSB [23]. There-
fore, securing the safety of drivers from hardware has become
a top priority. Recently, a lot of works have begun to focus
on vulnerabilities that are triggerable or even exploitable from
external malicious hardware [47] [2].

Recent advances have turned to fuzzing to test drivers.
Fuzzers use invalid, unexpected, or random data as inputs to
a driver to trigger different paths at runtime, and they use
sanitizers like KASAN [22], KMSAN [15], and UBSAN [42]
to monitor the abnormal behaviors to find bugs. For example,
DIFUZE [11] identifies 36 vulnerabilities in the Linux-kernel
drivers through a set of ioctl interfaces. PeriScope [44] detects
bugs in device drivers by intercepting driver accesses to commu-
nication channels based on page faults generated by mmio/dma.
It also discovered 15 unique vulnerabilities. Agamotto [45]
proposes lightweight virtual-machine checkpointing as a new
primitive that enables high-throughput kernel driver fuzzing.
These works show that fuzzing can be an effective approach
to finding vulnerabilities in the drivers.

Existing driver fuzzers however still suffer from an inherent

limitation—requiring the hardware device or an emulator. The
kernel supports many devices, e.g., there are more than 13,000
PCI devices alone [34]. Testing drivers with the corresponding
devices or emulators have clear shortcomings. If it uses the
hardware to support the driver fuzzing, both the hardware
cost and the time cost for operating the hardware can be very
high. If it uses an emulator, such as QEMU [6], it cannot
scale: existing emulators only provide emulation for a limited
number of devices. For example, there are less than 130 PCI
devices in QEMU according to our study. Meanwhile, extensive
manual efforts are required to build the emulators for the
unsupported devices. Although protocol reverse engineering
techniques [7, 12, 25] can help by automatically extracting the
format specification so as to assist the emulation, they typically
target a specific application due to the complexity. More
importantly, hardware devices or emulators may generate too
well-formed inputs that cannot broadly trigger vulnerabilities
that can only be caused by malformed inputs [29] [14] [41] [23].

In this paper, we propose a novel device-free driver fuzzer,
DRr. Fuzz, that addresses the limitations of existing driver
fuzzers. Through a characterization study of drivers, we observe
that they follow the Linux kernel device model (LKDM), and
the running of a driver requires a successful initialization of
the related data structures. More importantly, the initialization
process is essentially validation chains (code paths leading to
successful initialization) that read, check, and sometimes use
a number of inputs from the devices. Therefore, passing the
validation chains implies a successful initialization, which will
enable the driver and subsequent normal fuzzing. Based on
this observation, we propose to automatically create “driver
initializers” that properly construct the device-related data
structures to pass the validation chains. The core is a semantic-
informed mechanism that infers various classes of semantic
information to efficiently generate valid inputs for succeeding
the validation. DR. Fuzz’s approach is fully automated and
thus can scale; also, it does not require any hardware supports.
Developers, maintainers, and users can readily use DR. Fuzz
for testing drivers. The elimination of the needs for hardware
devices and emulators removes a bottleneck in driver fuzzing.

Automatically creating such “initializers” to pass validation
chains without the devices is challenging because the extremely
complex device-related data structures and diverse I/O device
addressing incur a huge input space. To address these challenges,
we propose three new techniques to make device-free driver
fuzzing practical.

(1) Byte-level, field-sensitive value inference and mapping.
We identify the I/O-dependant fields and build an I/O-
dependence graph through a field-sensitive analysis. Based
on this graph, we infer the candidate values for the
fields of related data structures involved in the validation
chains, through a byte-level analysis. Further, we develop
additional techniques to map the fields to the input bytes
at specific addresses.

(2) Byte-priority inference based on temporals. The driver
often reads a chunk of data, e.g., 8 bytes or even more.
Mutating the whole input would not be practical due to the
huge search space. We observe that the validation chain
is naturally temporal, so the byte usage follows a clear
temporal pattern. We thus propose to infer the priority of
each byte in inputs based on the temporals. By focusing

the mutation on only one or a few bytes each time, we
dramatically reduce the mutation space.

(3) Error states as fuzzing feedback. Given an input, it is
important to know whether it triggers a normal execution
or erroneous (or even the specific error), so as to guide
the fuzzer to make progress in the validation chain. This
technique exploits the rich error-handling information in
drivers and dynamically collects the error information as
the fuzzing feedback. We combine this error-state feedback
together with the code coverage to guide the fuzzer.

The semantic-informed mechanism is generic. In fact, in
addition to device-free driver fuzzing, we can also re-purpose it
for increasing the code coverage of driver fuzzing. Our intuition
is that a high-coverage driver fuzzer requires well-formed
inputs to reach deep paths but also malformed inputs to trigger
broad paths. As such, we propose to instruct our semantic-
informed mechanism to generate semi-malformed inputs. The
inferred semantics offer rich information, including expected
valid inputs and execution states (e.g., normal execution or
erroneous execution). Therefore, we also reuse the semantic-
informed mechanism as a semi-malformed input generator to
improve the code coverage and throughput of driver fuzzing.

We have implemented a prototype for DR. Fuzz and
evaluated its functionality, effectiveness, and performance. We
evaluate DR. FUzzZ on 214 Linux drivers, and the results are
impressive. With a only 24-hour time budget, DR. FUZZ can
successfully run 149 of them without the corresponding devices
or emulators, whereas existing driver fuzzers cannot succeed
in any case. We further show that when allocated with more
time, DR. FUZZ can initialize more drivers. DR. FUZZ even
outperforms existing fuzzers equipped with hardware devices in
coverage and throughput. Compared to syzkaller, our evaluation
shows that DR. FUZZ increases the code coverage by 70% and
the throughput by 18%. Interestingly, when we enable the semi-
malformed input generator, i.e., breadth first feedback, DR.
Fuzz can even improve the coverage over syzkaller by 200%.
At last, we also apply DR. Fuzz to find new bugs. With DR.
Fuzz, we find 46 new bugs in the Linux drivers.

In summary, we make the following research contributions.

o A new study and fuzzing mechanism. We perform a study
to characterize the organization and the code semantics
of device drivers. The findings indicate that device-free
driver fuzzing is feasible—the essence of a successful driver
initialization is to pass its validation chains. We then propose
a semantic-informed mechanism to automatically create
“driver initializers” that know how to properly initialize the
related data structures involved in the validation chains.

o New techniques. We propose three new techniques to make
device-free driver fuzzing practical: (1) byte-level and field-
sensitive value inference which infers expected valid values
in validation and maps them to I/O addresses, (2) byte-
priority (temporals) inference which dramatically reduces
the mutation space, as the validations chains are naturally
temporal, and (3) error state as fuzzing feedback which
directionally guides the fuzzing to trigger deep normal
execution and broad erroneous execution.

e Implementation and new bugs. We further instruct the
semantic-informed mechanism to generate semi-malformed
inputs to both broadly and deeply cover driver paths. We

implement DR. FUZZ and extensively evaluate it. We will
release source code and artifacts at https:/github.com/
secsysresearch/DRFuzz.git. DR. FUzz can successfully run
drivers without the hardware devices. DR. FUZZ even
achieves a higher code coverage and throughput than existing
fuzzers equipped with hardware devices. With DR. Fuzz,
we also find many new bugs in Linux drivers.

The rest of this paper is structured as follows. §III describes
the adversary model and the overview of DR. Fuzz. §IV
describes the design of DR. FUzz. §V shows implementation
details. §VI presents the evaluation results. §VII describes the
related works, and §VIII concludes the paper.

II. A CHARACTERIZATION STUDY ON DEVICE DRIVERS

This section aims to characterize device drivers in the
Linux kernel and to confirm the feasibility of device-free driver
fuzzing. We first show the Linux kernel device model followed
by drivers and further present the dynamic workflow of device
drivers. Finally, we present important features of device drivers,
e.g., the validation chain, that make device-free driver fuzzing
feasible.

Our study of the driver model is based on the Linux
driver implementer’s API guide [3]. For this study, combining
with the dynamic tracing techniques, we manually analyze
the subsystems under the 5 core buses, which are the most
commonly used by the device drivers [20], across different
kernel versions, including v3.1.1, v4.1.1, and v5.1. Table I
shows a small part of the drivers we analyzed.

Bus | PCI | ISA | SCSI | I2C | USB

8139c;,
tSCan 1
adVaI]SyS
Ipmj_ggjp
cdce8pg
bem2g3,

S
S
S
~
[

ath3k

Driver 5 03

TABLE I: The studied device drivers under the 5 core buses.

A. The Linux Kernel Device Model

devices (data)
device_drivers (oper)

pci_device, i2c_device, ...(data)
pci_driver, i2c_driver, ...(oper)

‘ device,,

device ,|** ‘ device,, ‘ device

'nn|

pci_dev, pci_dey, ...(data)
le1000_driver, ne2k_driver, ... (oper)

Fig. 1: The layered Linux device model. Each node contains its data
structures and operations

The current driver model, Linux Kernel Device Model
(LKDM) [32], is a uniform data model that describes the
buses, and the devices connected to these buses. LKDM
intends to augment the bus-specific drivers for devices and
bridges by merging a set of data and operations into global
data structures. As shown in Figure 1, based on LKDM, the
device organization follows a hierarchical structure with three

layers: a root, buses, and devices. Each layer has its own
data structures that represent the device states and record the
available operations (using function pointers). This hierarchical
structure significantly simplifies the device management—the
bus driver defines the interfaces that the device driver should
implement, and the kernel uses these interfaces to manage the
device. The device model shows that devices are uniformly
organized and managed through a set of data structures and
operations implemented in the corresponding drivers.

B. The Two-Stage Workflow of Drivers

This section summarizes the dynamic workflow of device
drivers. The workflow has two stages: driver initialization and
communication between the driver and device.

Stage 1: structure-centric initialization. Kernel first discov-
ers the device by scanning the bus and matching the attached
device with the corresponding driver according to device’s
characteristics. Bus driver builds the basic device structures
based on the device inputs. The device driver uses this structure
to build its more specific structures. Meanwhile, bus driver calls
the predefined interface implemented by the device driver to
configure the device, allocate necessary resources, and complete
the whole driver initialization. Once the initialization is done,
the kernel can then interact with the device through these device
structures and corresponding operation functions in the driver.

Stage 2: communication between the driver and device.
After the initialization, the kernel can check the device status
and communicate with the device through driver functions.
Most of the devices will export some userspace interfaces
such as an inode in the file system to support its usage. User
programs can operate the devices through syscall on these
userspace interfaces such as open() and ioctl(). Finally, the
user commands will pass to the device through the device driver.
Meanwhile, regardless of the first or second stage, all driver
operations will eventually be passed to the device through the
low-level operations such as in, out, readl, writel, mov.

C. Is Device-Free Driver Fuzzing Feasible? — The Input-
Validation Chains!

As we discussed in §II-B, the initialization stage is the key
for successful device-free driver fuzzing. Thus, this section
further investigates important features in the initialization stage
to confirm if automating the initialization stage is feasible.

Fortunately, we observe that the driver initialization is
essentially to pass input-validation chains. Through a device
read, the driver obtains inputs from the device. During the
initialization, the driver enforces a series of validations against
the inputs, forming a validation chain. To successfully launch
the driver, the inputs must pass through the whole validation
chain. These validations typically target parts of the whole
input (e.g., one or a few bytes) and follow the communication
protocols for the driver and its corresponding device. Interest-
ingly, such validations are pretty informative in revealing what
values in which input bytes are expected as valid. This offers
opportunities to precisely infer the input bytes for a successful
initialization. We further present important features with the
validation chains.

https://github.com/secsysresearch/DRFuzz.git
https://github.com/secsysresearch/DRFuzz.git

The temporal input usage. The bytes from the inputs are not
only checked by the validations, but also used for initializing
structures. Both the validation and the usage against the input
bytes show an important pattern—the validations and uses occur
sequentially with a temporal order, and each of them targets
only one or a few bytes, instead of the whole input obtained
from an I/O read. This finding is important because it implies
that the fuzzing does not have to mutate the input as a whole,
but potentially byte by byte, which would dramatically reduce
the mutation space.

Hard-coded I/0 address-value mappings. During the driver
initialization, the bus and device drivers read the input from the
device, and assign the input to some fields of the device-related
structures. A device read consists of two essential elements:
its address and data size; both are typically hard-coded as
constants in the driver code. Recovering such constants would
greatly help us build the mapping between the inputs with
specific offsets from the devices and their references in the
driver code.

Prevalent error handling. The driver code enforces a large
number of sanity checks against inputs and internal operations.
Whenever a check fails, the driver handles the error. Therefore,
error handling in the drivers is extremely common. The most
common way of handling errors is to pass an error code as
a return value upstream. We observe that such error codes
can serve as helpful feedback that indicates the current path-
execution states. That is, based on the return values, the fuzzer
can know if the input triggers an erroneous execution or a
normal execution. This is useful because it tells if the fuzzer
has generated the byte values in the inputs correctly.

Other findings. At the driver initialization, we also found
that I/O ports/MMIO are commonly used during the device
discovery and initialization. I/O ports use a set of I/O instruc-
tions, e.g. IN, OUT, INS, OUTS, to transfer the data between
the system and device. I/O ports have a separate I/O address
space from the physical-memory address space. They consist
of 216 (0x0~0xFFFFH) individually addressable 8-bit I/O ports.
MMIO maps the I/O address space to the physical-memory
address. The driver can use the traditional instructions, e.g. mov,
to access the device I/O address space. Except from the 1/0
ports and MMIO, some drivers also call a few Direct Memory
Access (DMA) APIs to setup the DMA at the initialization,
such as dma_alloc_*()/dma_map_*().

Example. We take 1000, a PCI driver for Intel gigabit
network card, as an example to illustrate the aforementioned
features. Figure 2 shows a part of the source code for
e1000 driver initialization. Bus driver scans the PCI bus (line
11) and reads the vendor_id and device_id (line 16). To
initialize successfully, input validations (line 17) require the
vendor_id/device_id to satisfy some requirements. According

to line 17, vendor_id/device_id cannot be OXxFFFF or 0x0000.

Meanwhile, bus driver uses them to match the device driver
(line 32) by comparing whether their value is equal to one
element in e1000_pci_tbl, which is a constant array. According

to this, their value can only be one element in e1000_pci_tbl.

Actually, the validation contains many entries, like command
and int_pin. They form a chain, the input-validation chain.

To read vendor_id and device_id, the macros (lines

1), bus, and devin together form their I/O address in
pci_bus_read_config_dword. In line 16, the driver reads them
from the address by I/O port instruction. As the bus and
devfn are fixed after the device attached to the system, the
formed addresses are hard-coded I/0O addresses. Meanwhile,
vendor_id/device_id are constant according to the input
validation. These addresses and the constant values constitute
a hard-coded I/0O address-value mapping.

Line 18-19 shows how the driver fills the vendor/device
fields. The driver first reads the 4 bytes 1 (line 16), and then
uses its lower two and higher two bytes to fill vendor (line 18)
and device (line 19) respectively. When the kernel validates
them (line 25), the vendor_id is validated first, then device_id,
which shows a temporal input usage. Due to space limitations,
we only use them as examples here. In fact, according to our
statistics, about 15% of I/O reads contained in the e1000 driver
have such characteristics.

Also, if they are not the value the driver expects, as
shown in line 17, 21, 27, the kernel will execute the error
handling. The driver codes have prevalent error handling.
When the read of the vendor_id is failed (line 17), the caller
will return a NULL pointer to the device structure. Similarly,
when the PCI device (from input) is unknown (line 20), the
error code -EIO is returned. When the e1000_probe failed to
execute, it also returns a non-zero value to show the reason.
Such feedback helps pass the validation chain to trigger deep
paths. For example, if line 17 return the NULL pointer to a
struct pci_dev variable, we know the value of 1 is incorrect.
We can change the input related to 1 and pass the validation
for the next running.

#define PCI_VENDOR_ID 0x00 Vi

#define PCI_DEVICE_ID 0x02

struct bus_type pci_bus_type = {
.probe = pci_device_probe,

16 bits */

};

struct pci_driver el@00_driver = {
.id_table = el10®00_pci_tbl,
.probe = el000_probe,

R - NV SRS TC R C R

9 3}

10 unsigned int presdue_entry(struct pci_bus *bus, int devifn){

11 struct pci_dev dev = pci_scan_device(bus, devfn);

12 if (!dev) return NULL;

13}

14 struct pci_dev *pci_scan_device(struct pci_bus *bus, int devfn){
15 u32 1;

16 pci_bus_read_config_dword(bus, devin, PCI_VENDOR_ID, &1);
17 if (%1 == Oxffffffff || *1 == 0x00000000) return NULL;

18 dev->vendor = 1 & Oxffff;

19 dev->device = (1 >> 16) & Oxffff;

20 if (pci_read_config_byte(dev, PCI_HEADER TYPE, &hdr_type))
21 return -EIO;

2 }

9
<

struct pci_device_id *
24 pci_match_device(struct pci_device_id *id, struct pci_dev *dev){

25 if((id->vendor==dev->vendor) && (id->device==dev->device))
26 return id;

27 return NULL;

28 }

29 int pci_device_probe(struct device *dev){

30 struct pci_driver *drv = to_pci_driver(dev->driver);
31 /*vendor_id, device_id are in el000_pci_tbl*/

32 id = pci_match_device(drv, pci_dev);

33 int rc = el000_probe(dev, id);

34 if (!rc) return rc;

35 }

Fig. 2: Part of source code for PCI device initialization. pseudo_entry
is an abstract entry point to scan the PCI devices.

Conclusion. The features discovered above confirm that the
driver code actually provides very informative semantics that
can be used to infer what values at which locations in the
inputs are expected to pass the validation chains for a successful
initialization. More importantly, the temporal usage and the
rich error handling will dramatically reduce the mutation space
and provide effective fuzzing feedback. As such, we conclude
that device-free driver fuzzing is feasible, which motivates us
to develop DR. Fuzz.

III. AN OVERVIEW OF DR. Fuzz

Design rationales. Based on the study presented in §II,
to enable the device-free driver fuzzing, we only need to
instruct the drivers to properly construct the corresponding
data structures to pass the validation chains for a successful
initialization stage. Therefore, we propose to automatically
create “driver initializers” that construct the related data
structures for a driver. Considering that fuzzing provides a
“trial and error” process to generate desired inputs and that our
ultimate goal is to enable device-free driver fuzzing, we decide
to also employ fuzzing to construct the initializers by figuring
out the inputs that pass the validation chains and construct
the valid device-related structures. Once the initialization is
successful, we enable the driver and can continue with the
normal fuzzing. Two strengths of such a design decision
are scalability (no path explosion, as opposed to symbolic
execution) and determinism (we confirm if the initialization
indeed succeeds by running it).

Specifically, we instruct our fuzzer to prepare the inputs
and to inject them into the kernel of a virtual machine through
its virtualization I/O stack. At this point, the main research
question becomes: how to practically and properly prepare the
valid inputs expected by the validation chains. In the rest of
this section, we will first discuss the technical challenges for
solving this question. Then, we will introduce our solutions

against these challenges and also the framework of DR. Fuzz.

A. Technical Challenges

The core of DR. FUZz is to employ fuzzing to generate the
proper inputs to construct correct device-related structures. The
proper inputs mean kernel needs to know (1) which address to
read from and (2) what value should read. However, getting
this input entails overcoming multiple challenges.

C1: Large input space caused by extremely complex data
structures. A device driver contains numerous complex
device-related data structures which usually contain many
fields, and are hard to understand and analyze. For example,
struct net_device is a data structure in e1000 driver, and it
contains 114 fields and has a large size of more than 2,000
bytes. The huge mutation space and complex data structures
will easily render the traditional fuzzing impossible to figure
out the correct value (oftentimes only one) for each field.

C2: Diverse and complicated I/O addressing. Intuitively, if
we know the value of every field, we can build the structures
by providing the expected value at I/O read. However, due to
the diversity of I/O addresses, it is challenging to figure out the
specific I/O address to inject these values. For example, 1/O

ports, as a separated I/0 address space, has 2'6 /O addresses.

Furthermore, an MMIO address can be any part of the memory
address. Even worse, the I/O interaction is frequent, and some
fields of the structure come from a dynamic address, which
means some I/O addresses change at runtime.

B. Solution Overview

In this section, we explain how DR. FUZZ overcomes these
challenges to make device-free driver fuzzing practical. Our
solution is a new semantic-informed fuzzing mechanism that
comes with multiple new techniques.

Overcome the first challenge. To address the large input
space challenge—extremely complex data structures, we should
minimize the number of relevant data structures, as well as the
range of possible values of their fields. Our idea is to select the
ones dependent on the I/O inputs. In particular, we identify the
device-related data structures in the driver and the I/O-related
fields in these data structures by building an I/O-dependent
graph using precise static analysis. We reduce the number of
these complex data structures by extracting the critical fields
in these data structures. After we ensure the fields are of
our interest, we use a byte-level and field-sensitive analysis
to identify the validation chain of a field—the validation
chain is very informative in revealing the expected values.
By analyzing the validation chain, we collect the constraints
(i.e., the dependent values) from the branch statements using
field-sensitive analysis, which helps us determine the candidate
value set of the fields.

In addition to fields whose candidate values can be deter-
mined, we also need to reduce the mutation space for unknown
fields. Validation chains are inherently sequential, following a
temporal order. That is, fields are used sequentially (concurrency
is unlikely to occur during this stage). We thus propose byte-
priority (temporal) inference to determine which bytes of the
fields should be constructed first and more importantly, which
ones can be constructed later; this byte-wise priority can help
the fuzzer to significantly reduce the input mutation space. In
addition, we employ error state as fuzzing feedback. We will
intercept the return values to understand if the current input
triggers a correct or erroneous execution, which guides the
fuzzing to generate proper input more effectively.

Overcome the second challenge. After we get the candidate
values and the byte-priority information, we also need to
associate this information with the specific I/O address of the
device, so that we can prepare the values at the right addresses.
To overcome the challenge of the diverse and complicated
I/O addressing, we exploit the hard-coded I/O address-value
mappings and dynamic mapping analysis. Specifically, we first
identify the fields whose I/O addresses are hard-coded in the
driver code and map the fields to the constant arguments of
the I/O ports/MMIO statements. Then, we can generate the I/O
address-value mappings. This way, we know which I/O address
the values should be injected to. For cases without hard-coded
mappings, we employ dynamic mapping analysis. That is, we
use runtime feedback to collect the order of byte usage and
inform the fuzzer the priority. Details will be shown in §IV-A2.

C. The Framework and Components

Figure 3 depicts the overall design of DR. FUzz. DR.
Fuzz is mainly comprised of two parts. (1) The semantic-

Qemu
‘ User mode agent ‘ Semantic-informed
- fuzzer
Call drlverl
interface
dalnstrumentation Semantic
VM kernel analysis
CommunicatiorI lConfiguration
Devices
. ®Boot Fuzzer
* Device adaptor -~ -
. snapshot Hybird
+ Virtual dev mutate
(®Corpus| |@Path state ®Feedback| [®@Corpus
KVM
Host kernel

Fig. 3: The overview of DR. Fuzz.

informed mechanism. This part statically collects the semantic
information, instructs the driver code, gets the feedback
at runtime, and mutates the current input. (2) The fuzzing
framework for drivers. It manages the VM running and injects
the fuzzer output to the VM kernel through a device adapter.
In this framework, the most important and unique design is
the I/O interception and data injection. It first intercepts the
target-device I/O access, and then forwards the address and
size to the fuzzer. Then, the framework uses the fuzzer output
as a device input to inject the data to the gemu virtual memory
regions. We briefly introduce each component as follows.

Semantic analysis. The semantic analysis extracts various
useful semantic information and generates the semantic corpus
(@3) that contains the inferred values. It also instruments the
driver code with new VMCALL instructions at locations where
error states can be captured ((D). These special instructions
will send feedback to the fuzzer through KVM at runtime. The
semantic analysis will be detailed in §IV.

Fuzzer. The fuzzer is an engine that manages the VM snapshot
(@) and generates data to the device adaptor as input ((3))
through the virtualization I/O stack. The fuzzer also receives the
error states as feedback, and performs the mutation according
to the feedback. The fuzzer boots the snapshot for the next run
after a mutation (2)).

Device adaptor. As the device address is different on the
different buses, the device adaptor is responsible for “attaching”
the given fake device address to the proper bus. The hypervisor
forwards all the input/output of I/O ports/MMIO/DMA to the
adaptor, and the fuzzer injects the mutation data as device input
and interrupts to the device driver through this adaptor (3)).

Modified KVM module. The modified KVM module captures
and parses the VM exits caused by executing new VMCALL
instructions. These VMCALL instructions are inserted by the
semantic analysis instrumentation into the driver ((3). When the
driver execution triggers these VMCALL instructions, VM-exit

happens, and this module extracts a parameter from register RCX
passed by the VM-exit. The parameter indicates the location
of the exit (@). At last, KVM model sends the VM-exit
information to fuzzer to guide its mutation ((%)).

User mode agent. The agent is a program running in the
userspace of the VM. When the driver is initialized, the control
flow is transferred to this program. It automatically executes
the pre-defined syscalls to trigger the driver-function execution.

IV. THE SEMANTIC-INFORMED MECHANISM

In this section, we present the details of the semantic-
informed mechanism which is the fundamental component that
makes the device-free driver fuzzing practical. The mechanism
aims to infer the valid inputs needed to pass the validation
chains for a successful driver initialization and to dramatically
reduce the mutation space of the input. It contains two parts,
namely semantic analysis and informing. Figure 4 depicts the
diagram of semantic-informed mechanism which incorporates
three new techniques (T1, T2, and T3) presented as follows.

A. Semantic Analysis

1) T1.1: Byte-Level and Field-Sensitive Value Inference:
The goal of this technique is to infer the candidate values of
inputs bytes that are used in initialization. Since the bytes will
propagate to fields of relevant data structures, the technique
will identify the fields in the data structures that are dependent
on I/O, and then build the mapping from the fields to the
input bytes. To facilitate the analysis and make it precise, we
will build an I/O-dependant graph through a byte-level and
field-sensitive analysis.

Identifying 1/0-dependent fields and building the graph.
DR. Fuzz provides the proper device input to help kernel
complete the driver initialization, so we should focus on the
structures and their fields that are dependent on I/O, i.e., the
fields whose values come from I/O. To make the fuzzing
practical, our principle is to minimize the number of I/O-
dependent fields, so as to minimize the input space for fuzzing.

In order to identify I/O-dependent fields, we employ
backward field-sensitive data flow analysis against all fields
of data structures in the driver. An alternative strategy is to
employ forward analysis from I/O. However, this may not be
efficient, as I/O data can propagate to many other places. The
goal of the backward analysis is to find the sources of a field,
and if the source is device input, i.e., the destination operand of
the I/O instruction, we confirm that the corresponding field is
dependent on I/O. Then, we can get an I/O-dependent graph (as
illustrated in the left part of Figure 5) based on the data flows.
Its node represents a field variable, and its edge represents the
data flow between two variables. Through the backward data
flow analysis, we get a set (S) of all fields dependent on 1/O.

Identifying validation chains, critical fields and their values.
The goal of DR. FUZZ is to succeed in the initialization by
passing the validation chain. Therefore, this step focuses on
identifying the fields that are used in the validation chain, and
we call such fields critical fields (CS). Once we identify the
critical fields, we will also collect the expected valid values
based on the validation chain. This process starts by recognizing
the validation chain—a series of checks that either result in

Sematic analysis

Fuzzing

79

value inference

T1.1: Byte-level, field-sensitive

T1.2: I/O address-field mapping

| Generate Select

» Corpus—=>2Ct_,| Byte-priority

mutation

DRl

Failure

T2: Byte-priority inference

» T

Instrument Feedback

T3: Path state as fuzzing feedback

» Vmecall » State analyzer

Fig. 4: The semantic-informed mechanism. The IR bitcode of the kernel is the input. The semantic analysis generates the initial inputs in the
corpus. Meanwhile, it instruments the code based on the analysis to collect the state feedback and pass it to the analyzer.

Fig. 5: The I/O-dependent graph of critical fields. IO means the I/O
instruction. F is a field of structure.

a failure or continue the execution. A validation in fact has a
clear pattern. More specifically, a validation is a conditional
statement such as if that has branches, as at least one of
them leads to execution failure such as returning an error (see
the right part of Figure 5). Based on the pattern, we identify
validations and collect the validated fields as the critical fields.
Note that the identification of validation is similar to how [27]
identifies security checks. Since the handling of failures during
the initialization is nearly uniform [16, 50], the validation
identification is precise and reliable.

After obtaining the critical fields, we need to further infer
the possible values of these fields. We regard these validations
as field constraints, and extract the possible values from
these constraints. We start with the critical field, and use a
static inter-procedural and field-sensitive data-flow analysis
to collect the constraints of the field. Specifically, based on
the I/0-dependence graph, we analyze and collect the branch
conditions related to the critical fields in the graph. In our
current implementation, we focus on constant conditions. After
applying the constant folding [33], if the condition is still
a non-constant variable, we discard the condition. After the
collection, we divide the corresponding branch conditions into
four categories: equal, not equal, greater than and less than.
Finally, we provide a candidate value set that contains the
possible values of the field.

2)T1.2: I/O Address-Field Mapping: Handling hard-
coded mapping. After identifying the possible values of
critical fields, we further map the fields to the I/O addresses,
so that we can know which values should be assigned to

which bytes in the inputs. To obtain the I/O address of a field,
we exploit the I/O-dependent graph to find its source—the
I/O instruction filling the field. The source operand of this
instruction is the corresponding I/O address of the field. We
found that many of these addresses are hard-coded. Specifically,
a part of the source operand is a macro, and the bus uses this
macro and the device address to form the final I/O address.
As the device address on the bus is known at the start of the
virtual machine, we can then get the I/O address of the field.

For example, when the kernel reads a value from a PCI
device to fill one field in pci_dev, the I/O address of the field
is generated by lines 1-3 in the following code:

1 #define PCI_CONF1_ADDRESS(bus, devfn, reg) \
2 (6x80000000 | ((reg & 0xFO0) << 16) | (bus << 16) \
3 | (devfn << 8) | (reg & 0xFC))

4 ...
5 outl(PCI_CONF1_ADDRESS(bus, devfn, reg), 0xCF8);

As we can specifiy the "device" address when starting the VM,
the value of bus and devfn (line 1) is known. We can use this
macro to build the final I/O address of that field and further
generate the I/O address-field mapping.

The above recovered I/O address is the base address used in
the I/O read. Oftentimes, a field is only a part of the read data.
That is, the corresponding input bytes have an offset into the
base address. Therefore, we further precisely infer the offset of
the input bytes for the field. As Figure 2 shows, dev->vendor
and dev->device come from I/O read, namely 1. Their offsets
relative to the I/O address of 1 are 0 and 2, respectively. To
obtain the byte offset, after collecting the I/O instructions that
use the previous candidate set, we search backwardly along
the data flow of the source operand of the I/O instruction. We
identify the bitmask statement and find the byte corresponding
to the non-zero bit in bitmask. In the same way, for the value
obtained after shifting, we only need to obtain the bitmask
when shifting. This can be seen as the offset of an I/O access.
Then, we use this information to update I/O address-value
mapping. In this way, we can achieve the byte-level address
mapping for fields.

Handling dynamic mapping. In addition to fields that
have hard-coded I/O addresses, there are other fields whose
corresponding I/O addresses are dynamically generated. In this
case, static analysis alone cannot figure out the I/O address. To
address the problem, we propose a dynamic address mapping
technique. The basic idea is that if DR. FUzZZz does not prepare
the right values at the right I/O address, there must be an error
state (i.e., a failure) which will be collected as feedback in
DRr. Fuzz. We design the error state information to contain

a special parameter that will be fed back to the fuzzer. This
parameter includes the critical field information that caused
the initialization failure. To achieve this, we first number the
critical field, and then use code instrumentation to write the
number into the relevant register during path state feedback
to complete the parameter transfer. More details about the
error-state feedback will be presented in §IV-BI.

3) T2: Byte-Priority Inference: The value inference effec-
tively narrows down the possible values of inputs. It however
still has two limitations. First, its results may not be precise,
so the fuzzer still has to test them. Second, parts of inputs
cannot be inferred due to the lack of semantic information. In
these cases, the fuzzer has to mutate the inputs in a huge space
the guess the valid values at specific addresses. To address the
limitations, we propose priority-based byte mutation based on
the fact that the validation chains are inherently sequential; the
fuzzer will not mutate bytes that are not used yet in the current
runs, but focus on only the ones that are being used. After all,
as described in §II-C, during initialization, the byte usage of
the input obtained from an I/O read follows a clear temporal
order. We can extract the temporal semantics of the input bytes
based on the validation chain and byte usage.

The temporal validation-chain pattern. We find that the
validation-chain follows a specific temporal pattern. First, the
code execution starts with a device read. The read gets a value
(V) from the I/O address (Addry). Second, the value (V) will
then be used as a source operand and a bitmask for bit operation
to generate a new intermediate value (I = V&bitmask). Third,
this value (I) will have validation(s) before the value (V) is
used. Forth, the value is used. In this execution pattern, the value
(V) is read in once, but it is referenced subsequently. Therefore,
when fuzzer provides device input for current address at next
running, it should mutate the part covered by bitmask first,
then validation, uses, and so forth.

Extracting temporals. To extract the byte-priority semantics,
we need to match the fields to the temporal pattern. We check
the nodes in the I/O-dependence graph, and identify the relevant
operations against the nodes, including bitmask, validation, and
usage. Since the I/O-dependence graph is constructed in a flow-
sensitive manner, we can easily infer the temporal order of
the operations. That is, we know the temporal order of fields
used in the driver. After that, we reuse the I/O address-field
mapping constructed in §IV-A2 to finally recover the priority of
bytes in inputs. The inferred byte priority serves as a guidance
instead of a guarantee. Therefore, we will still employ the error
states at runtime to fix incorrect inferences. For example, if
the fuzzing focuses the mutation on a late-used byte, it would
not make progress. In this case, we will deprioritize the byte
during fuzzing.

B. Semantic Informing

1) T3: Path State as Fuzzing Feedback: Existing fuzzers
commonly use code-coverage as a feedback. This kind of
feedback would not work well during the initialization of the
device. The main reason is that our major goal in this stage
is to pass the validations instead of to increase code coverage.
We thus propose to use error states as a new feedback. As
mentioned in §II-C, error handling is particularly popular in

the driver code. The error states will provide very informative
feedback regarding the states of the current execution.

As we need the kernel to initialize the driver successfully,
we should prioritize normal execution states. If the driver
initialization failed (i.e., with an error state), we need to re-run
the driver with a new input. We classify the state to two types,
normal state or error state. Normal state means the initialization
code path can still be triggered by input, while error state means
the driver has entered into a failure, and the initialization cannot
be done if the fuzzer continues along the direction.

Error locations. The error-state feedback can provide the
following useful information for the fuzzer. First, through this
feedback, the fuzzer can know that the driver initialization has
failed as soon as possible, which can make the fuzzer run the
next time earlier. Second, the fuzzer can more accurately know
which input caused the initialization failure, which can make
the fuzzer more effective when selecting the next input. To
generate this feedback, we need to identify the driver execution
states. We found that when the driver execution failed, the
most common way is to pass an error code as a return value
to its upstream. Except that, there are functions in the driver
that return a pointer to the device structure. When this type of
function returns a null value, it means that the device’s structure
has failed to be obtained, and the null will be returned to the
caller. The caller will change the return value to non-zero and
continue to pass it to the upstream. Since the initialization code
of drivers nicely follows the uniform error handling, we use
the non-zero return values of the driver function as a flag to
indicate the error state of the driver.

Collecting error states. To feed back this state information, we
first collect the locations of all driver functions that can return
errors. These marked locations are used to send the feedback
to fuzzer. Then, we insert a stub before these marked locations.
This stub is a small piece of code with a special vmcall. At
runtime, when the driver enters the error state, the driver code
will call the vmcall instruction which causes the system exit.
DR. Fuzz notifies this behavior to the fuzzer. The special
vmecall takes a parameter that contains useful information for
the state analyzer. This parameter can indicate whether the
input meets the expected value since the last mutation, and
the state analyzer uses this parameter to hint the byte-priority
mutation, so as to improve the mutation for the next input.

2) New Mutation Strategy: Code coverage is a very useful
feedback to guiding the fuzzing, where the input triggering
new code paths is used to produce more inputs. It is worth
noting that having a successful initialization requires to not
only trigger the paths (control flow) but also to prepare valid
data structures (data flow). Therefore, code coverage alone is
not sufficient in DR. Fuzz.

To complement it, our state-based feedback offers a more
direct and effective way for guiding the fuzzing because it tells
if the fuzzing is passing validations required by a successful
initialization. To use two feedback mechanisms together, we
employ a new mutation strategy that knows how to incorporate
the two feedbacks. In particular, in the process of driver
initialization, we prioritize the error-state feedback over the
code-coverage feedback because it is more relevant to the
initialization progress. When there is progress according to the
error-state feedback, DR. Fuzz will deprioritize the progress

in code coverage; however, when the fuzzers does not make
progresses in the error-state feedback, DR. FUZz then chooses
to use the code coverage as feedback. This way, DR. Fuzz
combines both feedback, but with a preference for the error-
state feedback.

V. IMPLEMENTATION

We implement DR. Fuzz based on LLVM, Syzkaller,
and QEMU. Specifically, we use LLVM to perform the
semantic analysis and instrumentation. We implement the
semantic-informed mechanism based on the Syzkaller. The
implementation complexity is shown in Table II. In this section,
we present important implementation details.

Technique LoC Base Framework
Semantic analysis and instrumentation 3,308 LLVM

QEMU and KVM 642

Fuzzer 1,132 Syzkaller

Others 682 -

TABLE II: The implementation complexity of DR. FUZZ in Linux.
Our implementation involves modifying the source code of the
syzkaller and instrumenting kernel code using LLVM [10].

Device adaptor. We implement the adaptor as a module in
QEMU. The adaptor registers some I/O handlers to the VM
exit handler of the QEMU; these handlers parse the exit events
caused by accessing the IO portsyMMIO/DMA address of our
adaptor. Every read/write operation from the guest OS’s kernel
is dispatched to the registered functions provided by the adaptor.
Meanwhile, the adaptor creates multiple MemoryRegions for
passing the fuzzer output to the target I/O address. Adaptor
reads the fuzzer-generated data through file socket and writes
the value to the MemoryRegions.

User mode agent. Its implementation is specific to the device;
that is, it provides corresponding fuzzing logic according to
the functions of the specific device. Therefore, its fuzzing logic
should be provided by the driver tester. The implementation
of the agent can determine whether it can trigger some of the
functions provided by the driver. As the specific implementation
of the agent is not our focus, so we reuse the syscall generator
of syzkaller to generate the user mode agent automatically.

Semantic analysis. To perform the semantic analysis, we first
configure the kernel to enable the device drivers and generates
the IR files of the driver code. These IR files will be analyzed
by our LLVM pass. The LLVM pass outputs the semantic
information to a corpus file. The fuzzer generates the proper
values as the device output according to this file. When doing
the semantic analysis, our pass will insert the pre-implemented
hypercall function to the target locations. hypercall is a piece
of assembly code that finally executes the vmcall instruction.
For each device driver, the semantic analysis will generate the
instrumented version through the LLVM pass.

Currently, the most representative Linux fuzzer tool,
syzkaller, uses kcov [49] to collect coverage information. kcov
exposes kernel code coverage information in a form suitable
for coverage-guided fuzzing. Coverage data of a running kernel
is exported via the “kcov” debugfs file. However, the driver

code is enabled at the kernel startup; the “kcov” debugfs is not
ready to read at that time, so it is not suitable for our driver
fuzzing at the initialization stage. To overcome this problem,
we use Intel PT to trace the execution at the startup process,
which is similar to KAFL [43]. When we use the user mode
agent to test the driver, we switch back to the kcov as it can
capture precise coverage of a single system call.

VM snapshots. In the fuzzing process, we use two VM
snapshots. The first one is in the device initialization phase.
In order to improve throughput, we skip some kernel-related
initialization codes. We create a snapshot at the beginning of
the actual bus scan. When the fuzzer receives an error feedback,
we restart execution from the snapshot. The second snapshot is
after the device driver is initialized; that is, after the relevant
probe function is successfully executed, we create a snapshot
of the actual point of the user mode agent, so that the userspace
program can be executed more quickly without re-executing
the kernel. After the successful execution of probe(), the VM
will continue to the boot, and then the agent configured in
rc.local will be executed. This agent will call a VMCALL
instruction through a new syscall to suspend the VM and create
the second snapshot. After that, the fuzzer will use this snapshot
to perform the driver fuzzing, and the agent executes the testing
functions.

VI. EVALUATION

In this section, we extensively evaluate DR. Fuzz from
the following perspectives: the effectiveness for driver initial-
ization, bug findings, and performance. Our experiments were
performed on a Dell workstation, with an Intel Xeon W-2133
CPU and 32G RAM, running an Ubuntu 16.04 Server, and
LLVM v9.0.

Methodology. We choose the device drivers that use 5 common
buses (PCI, ISA, SCSI, 12C, USB) and use DR. Fuzz to fuzz
the drivers without the corresponding devices. In linux-v5.9,
there are more than 2,000 drivers attached to these 5 buses.
Considering each driver may support a series of devices, it
may contain lots of devices. It is thus hard to choose which
one is used more than the other for each bus type. Because
of the trial-and-error characteristics of fuzzing itself, it takes a
relatively long time to successfully initialize the device driver.
Considering the large number of drivers, we randomly choose
10% of device drivers of each bus, then use DR. FUZZ to test
whether the drivers can be discovered and enabled without the
hardware.

DRr. Fuzz is implemented based on syzkaller, which
is a state-of-the-art fuzzing system. While vanilla syzkaller
does not support device-free driver fuzzing, after DR. Fuzz
integrates the semantic-informed mechanism into syzkaller
through the device adaptor, it can support device-free driver
fuzzing. For comparison purpose, we create a new syzkaller
(namely syzkaller-dev) by adding the device adaptor (V) to
the vanilla syzkaller. Syzkaller-dev tries to complete the driver
initialization by injecting random data. We will compare DR.
Fuzz with syzkaller-dev to confirm its effectiveness.

A. The effectiveness for driver initialization

We first evaluate the effectiveness of DR. FUZzz for the driver
initialization without the devices. Note that driver initialization

1404

1201

1004

PCI

801

Numbers,

12C

60 -

40

usB

20

SCSI

<

VI+BP

(a) One hour

VI+BP+PF

B2 Match
K Initialize

Fuzz

Numbers

140

120

100

80

60

40

PCI

12C

CSI|

VI

usB

VI+BP

(b) Three hours

B2 Match 140 B2 Match
K3 Initialize K Initialize
4
g
2
€
]
z
VI+BP+PF Fuzz Vi VI+BP VI+BP+PF FUZZ

(¢) Twenty-four hours

Fig. 6: The number of device Match/Initialization with each technique. VI denotes only enabling byte-level value inference. BP denotes enabling
byte-priority inference. PF denotes enabling path state feedback. FUZZ denotes syzkaller-dev, which is a the traditional fuzzing based only on

code coverage.

Devices Driver

#Match/#Initialize/#Devs

Average time

PCI drivers 90/46/90 401s
ISA drivers 24/16/24 382s
SCSI drivers 10/4/10 388s
12C drivers 59/56/59 126s
USB interface drivers 31/27/31 661s

TABLE III: The number of device drivers initialized by DR. Fuzz.
Match denotes the number of drivers DR. FUZZ can match. Initialize
denotes the number of device drivers DR. FUZZ can initialize. The
difference between these two is whether the probe function can return
successfully. Average time denotes the average time for matching.

also includes driver matching. The difference between the two
is that initialization additionally includes the execution of the
probe function. Thus, initialization is more complicated than
matching, and we separately evaluate the effectiveness for these
two steps.

We allocate a time budget of 24 hours for each driver.
Table III shows the results. DR. FUZZ successfully matched
all of these drivers. That is, DR. Fuzz successfully triggers
the execution of the probe function for all drivers. DR. Fuzz
further successfully initialized 149 drivers, with a success rate
of almost 70%. The drivers under I2C has a higher success
rate. This is mainly because the protocol of 12C bus is simpler
than others, with less structures. We analyzed some drivers that
DR. Fuzz cannot initialize, by checking the implementation of
their probe and the fuzzing input logs. We find the main reason
to be that the number of critical structures is too large, so that
the budgeted fuzzing time is not enough. To further confirm
our cause analysis, we run the failed drivers again with 3
hours more. Not surprisingly, DR. FUZZ is able to successfully
initialize 6 more drivers. This indicates that, once we allocate
more time budget for DR. FUZZ, more device drivers will be
successfully initialized.

Meanwhile, the average time for matching is short. As
Table III shows, the shortest cost is the 12C driver is 126s.
This is because our static analysis successfully identifies the
valid values for the fields. PCI drivers and USB drivers
both need more time to initialize because their structures
are more complex. For example, e1000 obtains 204 bytes
from inputs, and DR. Fuzz identifies the values for 86 bytes.

10

The remaining 118 bytes have to be guessed through fuzzing
at runtime. Since the time for each driver to complete the
initialization is very different, the average calculation time is
not statistically significant, so we only show the shortest time of
driver initialization. Among the tested drivers, driver aat2870,
only costs 6 minutes to be initialized successfully, which costs
the shortest. The more complex PCI device driver still has a
large number of drivers that failed to complete the initialization
after more than 24 hours.

Comparison to syzkaller-dev in initialization. To show the
effectiveness of the semantic-informed mechanism, we compare
DR. Fuzz with the syzkaller-dev. We count the number of
drivers initialized by syzkalle-dev. As shown in Figure 6, almost
no driver can be matched after running for 1 hour. Even after
running for 24 hours, only a few I2C drivers can be matched;
however, syzkaller-dev can still not initialize any of them.
This result confirms the effectiveness of the semantic-informed
mechanisms in DR. Fuzz.

The contributions of each technique. In order to analyze
the contribution of each technique for device initialization, we
break down our evaluation results. For the same device drivers,
we enable the combination of byte-level value inference, byte-
priority inference, and error state feedback to complete the
driver initialization. We run each device driver for up to one
hour, three hours, and 24 hours. Figure 6 shows the results
with each technique.

Using value inference, running for 1 hour, 57 drivers were
successfully matched, and no driver was successfully initialized.
When using value inference and byte priority both, 112 drivers
can be successfully matched. The rate is increased by 2X.
However, they both still cannot initialize any drivers. This is
mainly because the main I/O access methods of match and
initialization are different, which leads to the reduction of
hard-code address, which further makes byte-priority unable to
work. With the introduction of path state feedback, 68 drivers
can be successfully initialized. Path state not only allows the
fuzzer to generate more appropriate values, but also provides
byte-priority information when part of the value is mutation.
Finally, after enabling all of the three techniques, DR. Fuzz
can successfully initialize 149 of 214 device drivers, within 24
hours.

It can be seen from the analysis that value inference can
only complete the initialization of part of the driver. While the
value inference is effective in matching, it is not effective in
completing the whole initialization—the value inference alone
cannot succeed in initialization. With the help of byte-priority
technique, we matched more device drivers. However, without
the help of the state feedback, it is difficult for byte-priority
alone to produce great results, and the best results can only be
produced when all three are enabled.

B. Bug Finding

Although LKDM is uniformly followed after Linux-v2.6.
We chose Linux v5.9-rc8 as the target as it was the latest
version as of the evaluation. To show the ability of DR. Fuzz
in finding new bugs, we run DR. Fuzz for each device driver
for 24 hours after the device driver is enabled. Overall, we run
four instances for about four weeks with our desktop.

Across the 214 drivers, we in total found 46 unique new
memory bugs. The vulnerabilities are summarized in Table IV.
In these bugs, DR. Fuzz detected 6 via a kernel warning or
crash, and the checkers (KASAN [22]) caught the remaining
40. These 40 bugs include slab-out-of-bounds access (8), use-
after-free (13), NULL pointer dereference (19). All these bugs
are critical, as they will result in memory corruption or kernel
crash. For examples, pluto2 and ens1371 both are the slab-out-
of-bounds access bugs which can be used to compromise the
system. We have submitted these findings to developers through
patches and Bugzilla [1]; 27 have been confirmed and applied
by Linux maintainers, while the remaining 19 are pending.

Bug Type New Bugs Crash/Checker
slab-out-of-bounds access 8 KASAN
use-after-free access 13 KASAN
general protection 6 Crash
NULL-pointer dereference 19 KASAN

TABLE IV: Summary of new bugs found

C. Performance

To further show the performance of DR. FUzZZ, we analyze
the execution logs. We aim to show the code coverage and the
throughput of the fuzzer after introducing new feedback.

Code coverage. We collect the accumulated code coverage
in the driver-related code. We use different ways of collecting
coverage for system boot and driver loading. The code coverage
after testing 214 drivers have reached 5%, compared to the 3%
without DR. Fuzz; that is, DR. FUZZ increases the coverage by
66.7%. The reason for the small coverage is that the coverage
is compared to the entire system code. Because the driver
codes we tested account for a very small proportion of the
entire kernel code, the overall coverage is not high even after
the driver is initialized. To show the coverage changes more
clearly, we analyze parts of the drivers. We randomly select
some drivers with different scales of code lines to investigate
the details. The results are shown in Table V.

For the selected drivers, the average coverage of driver code
is less than 3% after running syzkaller for 24 hours. However,
with DR. Fuzz, the average coverage of driver code is more

11

Driver Locs Funs Coverage
aat2870 541 8 5.8%
pluto2 621 8 3.9%
8139too 1,826 23 1.2%
maestro 1,897 12 1.6%
di2k 2,121 18 0.9%
pcnet32 2,544 21 1.4%
be2net 3,542 24 1.1%
forcedeth 5,624 24 1.1%
etl31x 8,455 32 1.5%
e1000 14,861 43 0.8%

TABLE V: Code coverage. Locs describes the total lines of the driver
code. Funcs is the number of the executed functions.

than 5% after running for only 24 hours. aat2870 has the
highest coverage as the I12C protocol is simpler than other bus
drivers. It has 16 functions. The number of executed functions
is 8. The function coverage is 50%. As the unexecuted functions
include complicated ones, the code coverage is only 18%.

Indeed, the overall coverage is not high. It is worth noting
that in this experiment, we only target system calls and fuzz
for only 24 hours. According to the comparison (Table V)
in HFL [24], syzkaller has already outperformed many other
kernel fuzzers. Even in their much higher-performance testing
environment, syzkaller achieves only a 7.9% of code coverage
after 50 hours, and HFL is only slightly better than syzkaller,
with a 33% increase. Therefore, DR. FUzZ’s achievement in
increasing coverage is actually significant.

Fuzzing Throughput. Figure 7 shows the execution speed of

—e—e1000 —e—38139too

0 1H 2H 3H 0 1H 2H 3H

(a) e1000 (b) 8139too

Fig. 7: DR. Fuzz fuzzing throughput (execs/second) measured every
10 minutes for 3 hours

DR. Fuzz in a sampled period of 3 hours. The figure shows that
DR. Fuzz achieves a fuzzing throughput ranging from 21-33
exec/sec, much lower than the fuzzers for userspace program
where fuzzer often achieve up to thousands of executions per
second. However, driver fuzzing is generally slow. In fact, DR.
Fuzz outperforms existing driver fuzzers in throughput. To
compare with the syzkaller, the average throughput is actually
increased from 24.2/s to 28.7/s, i.e., by 18%. The main reason is
that the feedback of error states execution effectively accelerates
the fuzzing process.

D. The semi-malformed input generation

As we mentioned in §I, the semantic-informed mechanism
is generic. After a successful initialization, we can also use
our semantic-informed mechanism to generate semi-malformed
inputs to improve the code coverage and throughput of driver

fuzzing. To show its effectiveness, we further collect the
coverage after the kernel initializes the driver successfully
with 24 hours. In this experiment, we instead employ our state
feedback to prioritize error states instead of normal states, i.e.,
breadth first, as opposed to depth first in initialization. Figure 8
shows the coverage.

81 o Drivers ° ° e
A Average °
o

) cas o
I Bo'o 08
o 4 =" ° o
> \'r' o 055
&1 . S at
H EERC ORI e .
?““? . “. -i'..%'. . r k::'
21 ofghe s SRR i,
P i : o F 19t
1 "-#_.._-‘ o .0 08% . :?-‘.'.' é
O P

VI+BP VI+BP+PF FUzZzZ

Fig. 8: The coverage of using each technique after the device
initialization. VI denotes only enabling byte-level value inference.
BP denotes enabling byte-priority inference. PF denotes enabling path
state feedback. FUZZ denotes the baseline—coverage-only fuzzing.

From the figure, we can see that compared to the original
syzkaller, the coverage of all drivers increased. Among them,
the improvement is the most significant when all of the three
techniques are used. The average code coverage has increased
from 1.6% to about 4.8%, by 200% or 3X. When we only
use byte-level value inference, the coverage of DR. FUzz is
closer to syzkaller, and the average coverage has increased
from 1.6% to 1.8%. After the device is initialized, the 1/O
operations are mainly composed of a large number of MMIO
and DMA operations, and these operations rarely contain fixed
candidate values, so the effect of value inference is reduced.
And state feedback still provides a good fuzzing guidance.
This is mainly due to the large number of error states before
and after initialization, so it can guide fuzzing to generate
malformed data which makes the fuzzer execute broader paths.

E. Compared to Related Tools

We compare DR. FUZZ against other driver testing/bug
finding tools to demonstrate its importance and uniqueness.

Fuzzer Device Multiple g i~ Coverage New

free buses guide feedback
USBFuzz v % % v %
Syzkaller % < X v =
Dr.Fuzz / V4 V4 Y 7

TABLE VI: Comparison of Virtual-Device Fuzzers

We compare DR. Fuzz with syzkaller and USBFuzz.
USBFuzz is a portable, flexible, and modular framework for
fuzz-testing USB drivers. At its core, USBFuzz uses a software-
emulated USB device to provide random device data to drivers
(when they perform IO operations). Syzkaller, a state-of-the-
art kernel fuzzer, is an unsupervised coverage-guided kernel

12

fuzzer. We reused its sysgen as our user mode agent. Syzkaller
supports fuzzing the Linux kernel USB subsystem.

We compare these three tools from multiple aspects, and
the results are shown in Table 6. Although syzkaller is currently
the most widely used kernel fuzzing tool, there are still many
problems with this tool in driver fuzzing. Though syzkaller
currently provides support for USB hardware, it is still unable
to test other bus device drivers. USBFuzz solves the USB
device driver testing problem very well, but as it implements
an emulated USB device in the QEMU, it cannot be used to test
other device drivers such as PCI devices. We both implement
fake device to attach to the target system through the Qemu.
However, USBFuzz only focuses on the USB bus drivers. More
importantly, there is a large amount of interesting information
in the device driver code, and USBFuzz does not make full
use of the semantics to help the fuzzing. DR. FUZZ is generic
and can support multiple buses and provide the byte-priority
of input mutation. It also provides new feedback using error
states.

VII. RELATED WORK

Device emulation. Thunderclap [29] develops a peripheral
device emulation platform that utilizes a CPU on the FPGA
to implement a full software model of an arbitrary peripheral
device. It needs hardware (FPGA) and depends on the gemu
device simulation code. POTUS [37] is a bug-detection system
that is built on the S2E framework and can automatically
identify vulnerabilities in USB device drivers for Linux. It
presents a new method for simulating a virtual USB device
based on the QEMU, allowing people to test arbitrary client
drivers. MARSS [36] provides a simulation framework for x86
full system, which can simulate various 10 devices. However,
these simulation both needs manual analysis and only supports
limited devices. They are inefficient and time-consuming to be
used for Linux drivers testing.

Code analysis on driver. Dr. CHECKER [28] is a bug-
finding tool for Linux kernel drivers based on program analysis
techniques. Microsoft’s Static Driver Verifier (SDV) [48]
identifies API-misuse using static data-flow analysis. Linux
Driver Verification (LDV) [5] is a tool based on BLAST which
offers precise pointer analysis. The liberal use of pointers in
the kernel makes the result not precise. Charm [46] is a system
that can dynamically analyze device drivers of mobile systems.
Charm can execute device drivers in a virtual machine of
workstations based on remote device driver execution. These
tools both have a high false positive rate, whose results need to
be confirmed manually. Agamotto [45] is a dynamic-analysis
system around lightweight VM checkpointing primitives and
can fuzz USB and PCI drivers of Linux. However, it cannot
do the fuzzing for the specific device driver. SADA [4] is a
static-analysis approach to automatically detect unsafe DMA
accesses in device drivers. It cannot support the device driver
running to provide the specific input to trigger the bugs.

SymDrive [40] is a symbolic execution system that can test
drivers of the Linux kernel and FreeBSD through symbolize the
devices and corresponding input without accessing the devices.
SymDrive proposes favor-success path-selection algorithm that
also exploits the function’s return value. However, its aggressive
path pruning may terminate paths that lead to bugs. In addition,

as a symbolic execution—based system, SymDrive is limited
in scalability and performance. The I/O address is very large
in the Linux kernel, and symbolizing the large input space
would be impractical; also, symbolic execution often leads to
path explosion. In particular, SymDrive tested only 21 Linux
drivers. Mousse [26] is a system that analyzes programs that
cannot be virtualized, such as OS services managing I/O devices.
FirmUSB [18] is a domain informed firmware analysis tool,
which uses domain knowledge of USB protocol to test firmware
images through symbolic execution. Considering the challenges
in modeled OS services and complicated driver code, the works
are still hard to support all drivers.

Driver Fuzzing. USBFuzz [38] is a flexible and modular
tool for fuzz-testing USB drivers. It uses a software-emulated
USB device to generate random device inputs and further
test USB drivers in the Linux kernel, macOS, etc. It only
focuses on the USB drivers and does not exploit semantic
information. DIFUZE [11] is an interface-aware fuzzing, which
can effectively test Linux kernel drivers through a set of
ioctl interfaces. DIFUZE focuses on the userspace-kernel
boundary, while our work focuses on the hardware-OS boundary.
PeriScope [44] is a generic probing framework that can detect
bugs in device drivers, which addresses the analysis needs of
two types of peripheral interface mechanisms, MMIO and DMA.
Wdev-Fuzzer [30] is a fuzzer that can analyze device drivers of
communication protocols, such as Wi-Fi device driver. Sylvester
Keil et al. [21] presented a fuzzing system for 802.11 devices
by moving the target system into a simulated environment and
replacing the complex communication with high-level inter-
process communication. They both do not use any semantic
information to improve the fuzzing.

Firmware re-hosting. HALucinator [9] can re-host firmware
with the virtual device. It provides replacements for hardware
abstraction layers (HAL) functions to support the firmware
execution. However, HAL is now deprecated on most Linux
distributions. P2IM [13] generates processor-peripheral inter-
face models to enable hardware independent and scalable
firmware testing. It only focuses on microcontrollers that is
simple than the general processor. Jetset [19] uses directed
symbolic execution to info the values that need to be read
from devices to progress toward the goal address. It does not
use the semantics of the device drivers. Pretender [17] records
the low-level hardware interactions and creates the modeled
peripherals to provide full-system emulation of the embedded
firmware. It requires recording the interactions first, which is
almost impossible when doing the driver fuzzing without the
device. EASIER [39] proposes a dynamic ex-vivo device driver
analysis for Android phones. It utilizes the evasion kernel to
load and initialize drivers by copying the device tree from
host kernel or generating the device tree entry from random
content. Its evaluation shows it cannot build the proper struct
to initialize the driver without the host device tree. However,
DR. Fuzz automatically create "driver initializers" to construct
the proper structure.

VIII. CONCLUSION

In this paper, we presented DR. FUZZ, a new device-free
driver fuzzer. DR. Fuzz eliminates a bottleneck in existing
driver fuzzing. At the core of DR. FUzz is the new semantic-
informed mechanism. The mechanism is based on two insights.

13

First, based on our characteristics study of the device drivers,
we find that the device drivers enforce validation chains for
initialization, so properly constructing the data structures to
pass the validation chains will allow us to enable the driver
without the devices. Second, we find that the driver code
contains rich and useful semantic information that can help
use figure out expected valid inputs from the devices. We
proposed three new techniques to make the semantic-informed
mechanism practical: the byte-level and field-sensitive value
inference, byte-priority inference, and error state as feedback.
We implemented DR. FUzz and thoroughly evaluated its
effectiveness and performance. DR. FUzz successfully run
drivers without the corresponding devices. Evaluation results
show that DR. FUZz even outperforms existing driver fuzzers
equipped with hardware—increasing the code coverage by 70%
and the throughput by 18%. With DR. Fuzz, we also find 46
new bugs in the Linux drivers.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
feedback and suggestions. Wenjia Zhao was supported in part
by China Scholarship Council. Kangjie Lu and Qiushi Wu were
supported in part by NSF awards CNS-1815621, CNS-1931208
and CNS-2045478. Yong Qi was supported in part by the
Blockchian Core Technology Strategic Research Program under
Grant 2020KJ010801. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

REFERENCES

[1] “Bugzilla,” http://www.bugzilla.org/.
[2] “Usbguard.” [Online]. Available: https://usbguard.github.

o/
[3] “The linux driver implementer’s api guide,”
2020, https://www.kernel.org/doc/html/v4.11/driver-

api/index.html.

J. Bai, T. Li, K. Lu, and S. Hu, “Static detection
of unsafe DMA accesses in device drivers,” in 30th
USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, M. Bailey and R. Greenstadt,
Eds. USENIX Association, 2021, pp. 1629-1645.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity2 1/presentation/bai

T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and
A. Ustuner, “Thorough static analysis of device drivers,”
in Proceedings of the 2006 EuroSys Conference,
Leuven, Belgium, April 18-21, 2006, Y. Berbers and
W. Zwaenepoel, Eds. ACM, 2006, pp. 73-85. [Online].
Available: https://doi.org/10.1145/1217935.1217943

F. Bellard, “Qemu, a fast and portable dynamic
translator,” in Proceedings of the FREENIX Track:
2005 USENIX Annual Technical Conference, April
10-15, 2005, Anaheim, CA, USA. USENIX, 2005, pp.
41-46. [Online]. Available: http://www.usenix.org/events/
usenix(05/tech/freenix/bellard.html

J. Caballero, H. Yin, Z. Liang, and D. X. Song, “Polyglot:
automatic extraction of protocol message format using
dynamic binary analysis,” in Proceedings of the 2007
ACM Conference on Computer and Communications

[4]

http://www.bugzilla.org/
https://usbguard.github.io/
https://usbguard.github.io/
https://www.usenix.org/conference/usenixsecurity21/presentation/bai
https://www.usenix.org/conference/usenixsecurity21/presentation/bai
https://doi.org/10.1145/1217935.1217943
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Security, CCS 2007, Alexandria, Virginia, USA, October
28-31, 2007, P. Ning, S. D. C. di Vimercati, and P. F.
Syverson, Eds. ACM, 2007, pp. 317-329. [Online].
Available: https://doi.org/10.1145/1315245.1315286

A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler,
“An empirical study of operating systems errors,” in Pro-
ceedings of the eighteenth ACM symposium on Operating
systems principles, 2001, pp. 73-88.

A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen,
D. Fritz, C. Kruegel, G. Vigna, S. Bagchi, and M. Payer,
“Halucinator: Firmware re-hosting through abstraction
layer emulation,” in 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, S. Capkun
and F. Roesner, Eds. USENIX Association, 2020, pp.
1201-1218. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/clements

T. L. compiler infrastructure. [Online], 2019, https:
/Mvm.org/.

J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili,
S. Hao, C. Kruegel, and G. Vigna, “DIFUZE: interface
aware fuzzing for kernel drivers,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu,
Eds. ACM, 2017, pp. 2123-2138. [Online]. Available:
https://doi.org/10.1145/3133956.3134069

W. Cui, M. Peinado, K. Chen, H. J. Wang, and
L. Irin-Briz, “Tupni: automatic reverse engineering
of input formats,” in Proceedings of the 2008 ACM
Conference on Computer and Communications Security,
CCS 2008, Alexandria, Virginia, USA, October 27-
31, 2008, P. Ning, P. F Syverson, and S. Jha,
Eds. ACM, 2008, pp. 391-402. [Online]. Available:
https://doi.org/10.1145/1455770.1455820

B. Feng, A. Mera, and L. Lu, “P2IM: scalable and
hardware-independent firmware testing via automatic
peripheral interface modeling,” in 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020,
S. Capkun and F. Roesner, Eds. USENIX Association,
2020, pp. 1237-1254. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity20/presentation/feng
T. Goodspeed and S. Bratus, “Facedancer usb: Exploiting
the magic school bus,” in Proceedings of the REcon 2012
Conference, 2012.

Google, “Kernelmemorysanitizer, a detector of uses of
uninitialized memory in the linux kernel,” 2018, https:
//github.com/google/kmsan.

H. S. Gunawi, C. Rubio-Gonzdlez, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and B. Liblit, “Fio: Error handling
is occasionally correct.” in FAST, vol. 8, 2008, pp. 1-16.
E. Gustafson, M. Muench, C. Spensky, N. Redini,
A. Machiry, Y. Fratantonio, D. Balzarotti, A. Francillon,
Y. R. Choe, C. Kruegel, and G. Vigna, “Toward
the analysis of embedded firmware through automated
re-hosting,” in 22nd International Symposium on
Research in Attacks, Intrusions and Defenses, RAID
2019, Chaoyang District, Beijing, China, September
23-25, 2019. USENIX Association, 2019, pp. 135-150.
[Online]. Available: https://www.usenix.org/conference/
raid2019/presentation/gustafson

G. Hernandez, F. Fowze, D. Tian, T. Yavuz, and K. R.

14

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Butler, “Firmusb: Vetting usb device firmware using
domain informed symbolic execution,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2245-2262.

E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway,
S. Savage, and K. Levchenko, “Jetset: Targeted
firmware rehosting for embedded systems,” in 30th
USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, M. Bailey and R. Greenstadt,
Eds. USENIX Association, 2021, pp. 321-338.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity2 1/presentation/johnson

A. Kadav and M. M. Swift, “Understanding modern
device drivers,” in Proceedings of the 17th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2012,
London, UK, March 3-7, 2012, T. Harris and M. L.
Scott, Eds. ACM, 2012, pp. 87-98. [Online]. Available:
https://doi.org/10.1145/2150976.2150987

S. Keil and C. Kolbitsch, “Stateful fuzzing of wireless
device drivers in an emulated environment,” Black Hat
Japan, 2007.

L. kernel document, “The kernel address sanitizer (kasan),”
2018, https://www.kernel.org/doc/html/v4.12/dev-tools/
kasan.html.

D. Kierznowski, “Badusb 2.0: Usb man
in the middle attacks,” Retrieved from
RoyalHolloway: https://www. royalholloway. ac.

uk/isg/documents/pdf/technicalreports/2016/rhul-isg-
2016-7-david-kierznowski. pdf, 2016.

K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and
B. Lee, “Hfl: Hybrid fuzzing on the linux kernel.”

Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic
protocol format reverse engineering through context-aware
monitored execution,” in Proceedings of the Network and
Distributed System Security Symposium, NDSS 2008, San
Diego, California, USA, 10th February - 13th February
2008. The Internet Society, 2008. [Online]. Available:
https://www.ndss-symposium.org/ndss2008/automatic-
protocol-format-reverse-engineering-through-context-
aware-monitored-execution/

Y. Liu, H. Hung, and A. A. Sani, “Mousse: a system for
selective symbolic execution of programs with untamed
environments,” in EuroSys ’20: Fifteenth EuroSys
Conference 2020, Heraklion, Greece, April 27-30, 2020,
A. Bilas, K. Magoutis, E. P. Markatos, D. Kostic, and
M. L. Seltzer, Eds. ACM, 2020, pp. 34:1-34:15. [Online].
Available: https://doi.org/10.1145/3342195.3387556

K. Lu, A. Pakki, and Q. Wu, “Detecting missing-check
bugs via semantic-and context-aware criticalness and
constraints inferences,” in 28th {USENIX} Security Sym-
posium ({USENIX} Security 19), 2019, pp. 1769-1786.
A. Machiry, C. Spensky, J. Corina, N. Stephens,
C. Kruegel, and G. Vigna, “DR. CHECKER: A soundy
analysis for linux kernel drivers,” in 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017, E. Kirda and T. Ristenpart,
Eds. USENIX Association, 2017, pp. 1007-1024.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity 1 7/technical-sessions/presentation/machiry
A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce,
P. G. Neumann, S. W. Moore, and R. N. M.

https://doi.org/10.1145/1315245.1315286
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://llvm.org/
https://llvm.org/
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/1455770.1455820
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://www.usenix.org/conference/usenixsecurity20/presentation/feng
https://github.com/google/kmsan
https://github.com/google/kmsan
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/usenixsecurity21/presentation/johnson
https://www.usenix.org/conference/usenixsecurity21/presentation/johnson
https://doi.org/10.1145/2150976.2150987
https://www.kernel.org/doc/html/v4.12/ dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.12/ dev-tools/kasan.html
https://www.ndss-symposium.org/ndss2008/automatic-protocol-format-reverse-engineering-through-context-aware-monitored-execution/
https://www.ndss-symposium.org/ndss2008/automatic-protocol-format-reverse-engineering-through-context-aware-monitored-execution/
https://www.ndss-symposium.org/ndss2008/automatic-protocol-format-reverse-engineering-through-context-aware-monitored-execution/
https://doi.org/10.1145/3342195.3387556
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry

Watson, “Thunderclap: Exploring vulnerabilities in
operating system IOMMU protection via DMA from
untrustworthy peripherals,” in 26th Annual Network and

Distributed System Security Symposium, NDSS 2019,

San Diego, California, USA, February 24-27, 2019.

The Internet Society, 2019. [Online]. Available: https:

/lwww.ndss-symposium.org/ndss-paper/thunderclap-

exploring-vulnerabilities-in-operating-system-iommu-

protection-via-dma-from-untrustworthy-peripherals/

M. Mendonga and N. Neves, “Fuzzing wi-fi drivers to

locate security vulnerabilities,” in 2008 Seventh European

Dependable Computing Conference. 1EEE, 2008, pp.

110-119.

B. P. Miller, L. Fredriksen, and B. So, “An empirical

study of the reliability of UNIX utilities,” Commun. ACM,

vol. 33, no. 12, pp. 32—-44, 1990. [Online]. Available:
https://doi.org/10.1145/96267.96279

[32] P. Mochel, “The linux kernel device model,” in Ottawa
Linux Symposium, 2002, p. 368.

[33] S. Muchnick et al., Advanced compiler design implemen-
tation. Morgan kaufmann, 1997.

[34] L. of PCI ID’s. [Online], 2018, /usr/share/misc/pci.ids.

[35] R. on Component That is Not Updateable. [Online],
2020, https://cwe.mitre.org/data/definitions/1329.html.

[36] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: a full

system simulator for multicore x86 cpus,” in 2011 48th

ACM/EDAC/IEEE Design Automation Conference (DAC).

IEEE, 2011, pp. 1050-1055.

J. Patrick-Evans, L. Cavallaro, and J. Kinder, “{POTUS}:

Probing off-the-shelf {USB} drivers with symbolic fault

injection,” in 11th {USENIX} Workshop on Offensive

Technologies ({WOOT} 17), 2017.

H. Peng and M. Payer, “Usbfuzz: A framework for fuzzing

{USB} drivers by device emulation,” in 29th {USENIX}

Security Symposium ({USENIX} Security 20), 2020, pp.

2559-2575.

I. Pustogarov, Q. Wu, and D. Lie, “Ex-vivo dynamic

analysis framework for android device drivers,” in

2020 IEEE Symposium on Security and Privacy, SP

2020, San Francisco, CA, USA, May 18-21, 2020.

IEEE, 2020, pp. 1088-1105. [Online]. Available:

https://doi.org/10.1109/SP40000.2020.00094

M. J. Renzelmann, A. Kadav, and M. M. Swift,

“Symdrive: Testing drivers without devices,” in [0th

USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2012, Hollywood, CA, USA,

October 8-10, 2012, C. Thekkath and A. Vahdat,

Eds. USENIX Association, 2012, pp. 279-292.

[Online]. Available: https://www.usenix.org/conference/

osdil2/technical-sessions/presentation/renzelmann

B. Ruytenberg, ‘“Breaking Thunderbolt Protocol Security:

Vulnerability Report,” 2020, public version. [On-

line]. Available: https://thunderspy.io/assets/docs/breaking-

thunderbolt-security-bjorn-ruytenberg-20200417.pdf

[42] A. Ryabinin, “Ubsan: run-time undefined behavior sanity
checker,” Retrieved April, vol. 10, p. 2020, 2014.

[43] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and
T. Holz, “kafl: Hardware-assisted feedback fuzzing for
{OS} kernels,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 167-182.

[44] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na,
S. Volckaert, G. Vigna, C. Kruegel, J. Seifert, and

[30]

[31]

[37]

[38]

[39]

[40]

[41]

15

M. Franz, “Periscope: An effective probing and fuzzing

framework for the hardware-os boundary,” in 26th Annual

Network and Distributed System Security Symposium,

NDSS 2019, San Diego, California, USA, February 24-27,

2019. The Internet Society, 2019. [Online]. Available:

https://www.ndss-symposium.org/ndss-paper/periscope-

an-effective-probing-and-fuzzing-framework-for-the-
hardware-os-boundary/

D. Song, F. Hetzelt, J. Kim, B. B. Kang, J.-P. Seifert, and

M. Franz, “Agamotto: Accelerating kernel driver fuzzing

with lightweight virtual machine checkpoints,” in 29th

{USENIX} Security Symposium ({USENIX} Security 20),

2020, pp. 2541-2557.

S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A.

Sani, and Z. Qian, “Charm: Facilitating dynamic analysis

of device drivers of mobile systems,” in 27th USENIX

Security Symposium, USENIX Security 2018, Baltimore,

MD, USA, August 15-17, 2018, W. Enck and A. P.

Felt, Eds. USENIX Association, 2018, pp. 291-307.

[Online]. Available: https://www.usenix.org/conference/

usenixsecurity 1 8/presentation/talebi

J. D. Tian, A. Bates, and K. R. B. Butler, “Defending

against malicious USB firmware with goodusb,” in

Proceedings of the 31st Annual Computer Security

Applications Conference, Los Angeles, CA, USA, Decem-

ber 7-11, 2015. ACM, 2015, pp. 261-270. [Online].

Available: https://doi.org/10.1145/2818000.2818040

[48] M. D. Verifier., May 2010.,
http://www.microsoft.com/whdc/devtools/tools/sdv.mspx.

[49] D. Vyukov., “kernel: add kcov code coverage,” https:
/Nwn.net/Articles/671640/.

[50] Q. Wu, A. Pakki, N. Emamdoost, S. McCamant, and K. Lu,
“Understanding and detecting disordered error handling
with precise function pairing,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[45]

[46]

[47]

https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
https://www.ndss-symposium.org/ndss-paper/thunderclap-exploring-vulnerabilities-in-operating-system-iommu-protection-via-dma-from-untrustworthy-peripherals/
https://doi.org/10.1145/96267.96279
/usr/share/misc/pci.ids
https://cwe.mitre.org/data/definitions/1329.html
https://doi.org/10.1109/SP40000.2020.00094
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/renzelmann
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/renzelmann
https://thunderspy.io/assets/docs/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://thunderspy.io/assets/docs/breaking-thunderbolt-security-bjorn-ruytenberg-20200417.pdf
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.ndss-symposium.org/ndss-paper/periscope-an-effective-probing-and-fuzzing-framework-for-the-hardware-os-boundary/
https://www.usenix.org/conference/usenixsecurity18/presentation/talebi
https://www.usenix.org/conference/usenixsecurity18/presentation/talebi
https://doi.org/10.1145/2818000.2818040
https://lwn.net/Articles/671640/
https://lwn.net/Articles/671640/

	Introduction
	A Characterization Study on Device Drivers
	The Linux Kernel Device Model
	The Two-Stage Workflow of Drivers
	Is Device-Free Driver Fuzzing Feasible? – The Input-Validation Chains!

	An Overview of Dr. Fuzz
	Technical Challenges
	Solution Overview
	The Framework and Components

	The Semantic-Informed Mechanism
	Semantic Analysis
	T1.1: Byte-Level and Field-Sensitive Value Inference
	T1.2: I/O Address-Field Mapping
	T2: Byte-Priority Inference

	Semantic Informing
	T3: Path State as Fuzzing Feedback
	New Mutation Strategy

	Implementation
	Evaluation
	The effectiveness for driver initialization
	Bug Finding
	Performance
	The semi-malformed input generation
	Compared to Related Tools

	Related Work
	Conclusion

