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1.  INTRODUCTION 

Sponges represent one of the most diverse taxa on 
Caribbean coral reefs (Van Soest et al. 2012), have 
been reported to be increasing in density (Bell et al. 
2013), and produce a diversity of secondary metabo-

lites that play important ecological roles (Pawlik 
2011, Han et al. 2019, Wul! 2021). Due to their ses-
sile lifestyle, many sponges rely on secondary meta -
bolites for defense against predation (Pawlik 2012), 
competition (Slattery & Gochfeld 2012), microbial 
overgrowth (Newbold et al. 1999, Kelly et al. 2005, 
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Qian & Xu 2012), and/or pathogenesis (Gochfeld et 
al. 2012, Slattery & Gochfeld 2012). Optimal defense 
theory predicts that the biosynthesis of defensive 
metabolites could come at the expense of energy 
invested in primary physiological functions, such as 
growth and reproduction (Cronin 2001). Thus, it 
would be advantageous for individual sponges to 
produce these defenses in response to ephemeral 
ecological threats, such as predation or disease out-
breaks (Karban & Baldwin 1997). As these threats 
also vary across spatial gradients (e.g. predation: Loh 
et al. 2014; pathogenesis: Easson et al. 2013), it is pre-
dicted that the concentrations of defensive metabo-
lites will vary throughout a metapopulation. Intra-
specific variation in defensive chemistry has been 
documented in several sponge taxa across their bio-
geographic and depth ranges (e.g. Thompson et al. 
1987, Sacristán-Soriano et al. 2011, Rohde et al. 2012, 
Slattery et al. 2016, Reverter et al. 2016, 2018, Bay-
ona et al. 2020). 

Regulation of chemical phenotypes is predicted to 
occur at 1 of 2 levels. If ecological pressures remain 
relatively stable through time, then production of 
defensive metabolites is also predicted to remain sta-
ble (i.e. constitutive; Slattery et al. 2001). Alterna-
tively, if the ecological pressures that select for 
defensive metabolites vary over time and/or space, 
then production of certain defensive metabolites may 
also vary (i.e. inducible; Pavia & Toth 2000, Slattery 
et al. 2016), with their dynamic regulation occurring 
at the level of gene expression (Strauss & Reyes-
Dominguez 2011). 

Sponges of the genus Agelas are common con-
stituents of Caribbean reefs and represent a rich 
source of secondary metabolites (i.e. halogenated 
alkaloids: Rane et al. 2014, Zhang et al. 2017) that 
exhibit antipredator, antimicrobial, antifouling, and 
allelopathic bioactivities (e.g. Chanas et al. 1997, 
Assmann et al. 2004). Intraspecific variation in gross 
biochemical composition across broad geographic 
scales has also been observed in at least one species, 
A. tubulata (Clayshulte Abraham et al. 2021). This 
variation in primary metabolism is likely due to dif-
ferential ecological pressures across the Caribbean 
basin (e.g. predation: Loh & Pawlik 2014), which may 
also impact secondary metabolism in conspecific 
sponges collected from different sites. Likewise, an 
increase in bacterioplankton with depth (Lesser 2006, 
Lesser & Slattery 2013) might select for increased 
production of antimicrobial compounds to regulate 
bacterial communities and inhibit pathogenesis 
(Taylor et al. 2007, Slattery & Gochfeld 2012, Raina 
et al. 2016). By surveying individual A. tubulata sec-

ondary metabolite profiles and antimicrobial bioac-
tivity across a geographic and depth gradient, the 
following hypotheses were addressed: (1) the pro-
duction of A. tubulata secondary metabolites will 
vary between sites and depths, (2) sponge secondary 
metabolite profiles will exhibit phenotypic plasticity 
when transplanted between depths, and (3) variabil-
ity in secondary metabolite production will translate 
into differences in antibacterial bioactivity between 
sponge populations. 

2.  MATERIALS AND METHODS 

2.1.  Sample collection 

Samples of Agelas tubulata were collected from 
3  sites in Belize (Carrie Bow Cay: 16° 48.005’ N, 
88° 04.668’ W; Curlew Cay: 16° 47.350’ N, 88° 04.571’ W; 
Southwater Cay: 16° 48.986’ N, 88° 04.629’ W) in 
June 2017, and from 3 sites in Grand Cayman (Kit -
tiwake Anchor Chain: 19° 21.718’ N, 81° 24.138’ W; 
Sentinel Rock: 19° 22.075’ N, 81° 24.990’ W; Slaugh-
terhouse Wall: 19° 21.776’ N, 81° 24.250’ W) in January 
2018. Sponge samples (n = 5−10 per site) were col-
lected from a depth of 15 m on typical Caribbean spur-
and-groove buttresses. At Kittiwake Anchor Chain, ad-
ditional samples were collected at 22, 30, 46, and 61 m 
(n = 5 per depth). Samples were cut from individual 
sponges at each site and depth, placed in numbered 
resealable plastic bags, and returned to shore fa -
cilities where they were stored at −20°C for 1−2 wk 
prior to transport and processing at the University of 
Mississippi. 

2.2.  Transplant experiment 

In addition to the collections of A. tubulata across 
sites and depths described above, samples from a 
transplant experiment were analyzed to determine 
whether the sponge secondary metabolites exhibited 
phenotypic plasticity when transplanted between 
depths. Briefly, at Kittiwake Anchor Chain, replicate 
sponges (n = 20) were transplanted between 22 and 
61 m in a fully orthogonal (i.e. with transplant con-
trols) genotype-controlled reciprocal experiment, as 
described by Macartney et al. (2021). Specifically, 
sponge ramets were transplanted into numbered 
PVC racks at each depth, with treatments (n = 5 
genets per treatment) consisting of ramets from deep 
(61 m) sponges transplanted to the shallow depth 
(22 m, treatment ‘D-S’) and ramets from the same 
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sponges back-transplanted to their site of origin (i.e. 
deep to deep handling controls, D-D). Similarly, ram-
ets of shallow (22 m) sponges were transplanted to 
the deep depth (61 m, S-D), and back-transplanted to 
their site of origin (i.e. shallow to shallow handling 
controls, S-S). The transplant experiment ran for 
18 mo during 2018 and 2019 (Macartney et al. 2021), 
and sponges were then collected for multiple ana -
lyses. As described by Clayshulte Abraham et al. 
(2021), sample wet mass, volume, and dry mass were 
quantified prior to chemical analyses. Approximately 
300 mg of ground freeze-dried sponge tissue were 
extracted 3 times in 10 ml of 1:1 methanol:methylene 
chloride (MeOH:DCM) in a sonicator. The solvent 
was removed via vacuum centrifugation, and the 
dried extract mass was recorded. Extract dry mass 
was then converted into a volumetric concentration 
based on sample mass:volume relationships (e.g. 
Gochfeld et al. 2012) for subsequent antibacterial 
assays (see Section 2.4). 

2.3.  Metabolomic profiling of sponge compounds 

A. tubulata extracts were dissolved in MeOH at a 
concentration of 5 mg ml−1, and 20 µl were injected 
into a Waters Alliance 2695 high performance liquid 
chromatography (HPLC) system, coupled to a Waters 
2996 photodiode array detector. Individual com-
pounds were separated across a Phenomenex Gem-
ini C18 column (4.6 × 250 mm, 5 µm) using a gradient 
solvent system comprised of HPLC grade water 
(H2O) and acetonitrile (ACN), both containing 0.1% 
trifluoracetic acid. Starting run conditions were 90% 
H2O:10% ACN, and ramped up to 45% H2O:55% 
ACN over the course of 30 min at a flow rate of 1 ml 
min−1. Peak absorbances were measured at 254 nm, 
and peak areas for 11 peaks were integrated using 
the Waters Empower2 software. For each peak, the 
area under the curve was used in statistical analyses 
to compare relative concentrations of individual 
peaks among extracts (Gochfeld et al. 2012). 

Representative extracts of A. tubulata from 15 m 
(n = 3) were selected for analysis by liquid chroma to -
graphy coupled with mass spectrometry (LC-MS) 
based on the presence, and clear distinction, of the 
greatest number of peaks. Extracts were dissolved in 
MeOH to 5 mg ml−1 and separated by HPLC (Agilent 
Series 1290 system) across an Agilent Poroshell 
120 EC C-18 column (2.1 × 150 mm, 2.7 µm) using a 
gradient solvent system comprised of HPLC grade 
H2O and ACN, both containing 0.1% formic acid. 
Starting run conditions were 99% H2O:1% ACN and 

these were ramped to 55% H2O:45% ACN over the 
course of 30 min at a flow rate of 0.2 ml min−1. Peak 
absorbances were measured at 254 nm, at a column 
temperature of 35°C. A mass spectrometric analysis 
was performed with quadrupole time of flight tan-
dem mass spectrometry (Agilent g6530A QToF-
MS/MS). All operations, acquisition, and analysis of 
data were controlled by the Agilent MassHunter 
Acquisition software (version A.05.00) and processed 
with MassHunter Qualitative Analysis software (ver-
sion B.07.00). Each sample was analyzed in both pos-
itive and negative modes in the range of m/z = 
100−2500. Accurate mass measurements were ob -
tained by means of ion correction techniques, and 
the compounds were confirmed in each spectrum. 
The identities of oroidin and sceptrin were confirmed 
using a standard practice of comparison to purified 
standards (e.g. Rohde et al. 2012). However, stan-
dards were not available for the remaining 9 com-
pounds, so the mass spectra were compared to the 
molecular masses of compounds reported to occur 
within the genus Agelas, using the online databases 
MarinLit (version 2021.0.4.0), SciFinder (version 
2021), and the Dictionary of Natural Products (ver-
sion 29.2.2020). These data must be considered with 
some caution since this approach might not distin-
guish between related isomers with the same molec-
ular mass (e.g. peak 8, see Section 3.1). 

2.4.  Antibacterial assays 

Although A. tubulata is susceptible to disease 
(Deignan & Pawlik 2016, D. Gochfeld unpubl. data), 
putative pathogen(s) affecting this species have been 
neither identified nor isolated to date (Deignan et 
al. 2018). Thus, A. tubulata extracts were screened 
against a panel of bacterial pathogens associated 
with coral diseases and/or poor water quality that 
might also impact marine sponge health (Gochfeld & 
Aeby 2008, Gochfeld et al. 2012, Rohde et al. 2012). 
These bacteria included the coral pathogens Aur -
antimonas coralicida (Denner et al. 2003), Serratia 
marces cens (Patterson et al. 2002), and Vibrio corallii -
lyticus (Ben-Haim et al. 2003), as well as Yersinia 
entero colitica, a common human enteric pathogen 
that has been found in sewage runoff in coastal mar-
ine waters (Kilinc & Besler 2014). 

Bacteria were cultured following specifications by 
the American Type Culture Collection (ATCC, Man-
assas, VA, USA) and the Deutsche Sammlung von 
Mikroorganismen und Zellkulturen (DSMZ, Braun-
schweig, Germany). Briefly, all bacteria were cul-
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tured in a rocking incubator; A. coralicida and V. 
coralliilyticus in marine broth at their optimal growth 
temperature of 28°C, S. marcescens in trypticase soy 
broth at 28°C, and Y. enterocolitica in tryptose broth 
at 37°C. Bacteria were inoculated into 10 ml of their 
respective media and allowed to grow overnight, the 
optical densities at 600 nm (OD600) were measured on 
an Eppendorf Biophotometer, and the cultures were 
diluted with media to an OD600 of 0.1. Sponge ex -
tracts (n = 76) were diluted to a stock concentration of 
100 mg ml−1 in dimethyl sulfoxide (DMSO), and 10 μl 
of crude sponge extract were added to 190 μl of the 
bacterial cultures, for a final test concentration of 
5 mg ml−1. This represented 2.5−10% of the natural 
extract concentrations. The total concentration of 
DMSO by volume was maintained at 5% in order to 
prevent cytotoxicity from the solvent itself (de Brito 
et al. 2017), and concentrations of DMSO from 0.25 to 
5.5% were confirmed not to inhibit growth of the test 
bacteria (M. Ansley & D. Gochfeld unpubl. data). 
Extract-treated bacterial cultures were pipetted 
into 96-well plates, and the initial OD600 (T0) 
was recorded using a BioTek Synergy HT Multi-
Detection Microplate Reader. Plated cultures were 
allowed to grow for 24 h at their culture tempera-
tures, and the OD600 was recorded again (T24). On 
each plate, controls for the extract-treated cultures 
included 200 μl of the bacterial culture alone (nega-
tive control), and antibiotic-treated bacterial cultures 
(195 μl of bacterial culture and 5 μl of 1 mg ml−1 
ciprofloxacin, a broad-spectrum antibiotic as a posi-
tive control). In addition, wells containing media 
alone were used to confirm sterility of culture condi-
tions. To normalize for background absorbance of the 
extracts themselves, we subtracted the OD600 at T0 
from the OD600 at T24 h for each well (e.g. Wang et al. 
2010); we previously determined that the OD600 of 
extracts dissolved in media did not change signifi-
cantly during the 24 h incubation period. All 
extracts and controls were run in triplicate, with the 
3 wells for each treatment representing procedural 
controls that were later averaged for each biological 
replicate (Gochfeld & Aeby 2008). We used the ratio 
of bacterial growth in treated vs. untreated wells 
over a 24 h period to measure inhibitory or growth-
promoting activities of extracts. Ratios <1 indicated 
antibacterial activity, ratios >1 indicated growth-
 promoting activity, and ratios of 1 indicated no activ-
ity in the assay. A dose response experiment utilizing 
S. marcescens was performed in a similar manner 
but with select sponge extracts representing low, 
intermediate, and high concentrations of oroidin, 
along with purified oroidin (the only pure metabolite 

available for this analysis), serially diluted in DMSO. 
Sigmoidal dose response curves were  fitted, and 
EC25 values were calculated using Sigma Plot 14.0. 

2.5.  Statistics 

Differences in the metabolomic profiles between 
sponges collected from 15 m depth across sites (i.e. 3 
sites in Belize and 3 sites in Grand Cayman), differ-
ent depths (Grand Cayman), and transplants within 
and between depths (Grand Cayman), were assessed 
by comparing areas under the curve for HPLC peaks 
1−11 (Fig. 1) with 1-way permutational multivariate 
analyses of variance (PERMANOVAs) using the 
‘adonis2’ function in the R package ‘vegan’ (version 
2.5-7; Oksanen et al. 2020). For each of the predictor 
variables of site, depth, or transplant treatment, sep-
arate 1-way ANOVAs were also conducted on the 
individual peaks, to identify differences among 
 specific chemical constituents. Normality of each re -
sponse variable was assessed by plotting histograms 
of the residuals, and homo scedasticity of the re sponse 
variables was assessed by graphing the residuals 
against the predicted  values (Kozak & Piepho 2018). 

Antibacterial activity of sponge extracts from differ-
ent sites, depths, and transplant treatments was as-
sessed by comparing the ratio of bacterial growth in 
treated vs. untreated wells using a Student’s 2-tailed 
t-test, with a null hypothesis that the ratio equals 1 if 
extracts exhibit no antibacterial activity. Differences 
in antibacterial activity against the 4 bacterial species 
were analyzed using 1-way ANOVAs based on the 
predictor variables of site, depth, or transplant treat-
ment. Within each analysis, pairwise comparisons be-
tween sites, depths, and transplant treatments were 
conducted using Tukey’s honestly significant differ-
ence post hoc tests, with p-values Bonferroni cor-
rected for multiple testing. To determine which com-
pounds were most likely responsible for antibacterial 
activity, multiple regression analysis was conducted 
using individual HPLC peak areas for all 11 peaks as 
the predictor variables, and the ratio of treated to un-
treated bacterial growth as the response variable. The 
magnitude of the antibacterial effects of the extracts 
were tested using Cohen's f2 effects sizes. Final mod-
els with the lowest corrected Akaike’s information cri-
terion (AICc) scores were selected. Cook’s distances 
were calculated and did not identify any outliers that 
were overly in fluencing the model. Plots were gen -
erated with the R  packages ‘dplyr,’ ‘ggplot2,’ and 
‘gridExtra.’ All statistical analyses were conducted in 
R version 4.0.2 (R Core Team 2020). 
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3.  RESULTS 

3.1.  Composition of Agelas tubulata extracts 

For the analysis of A. tubulata extract constituents, 
we quantified 11 distinct peaks representing second-
ary metabolites. The most likely compound identities 
for 9 of the peaks were assigned based on published 
molecular masses of compounds identified from the 
genus Agelas (Fig. 1; Table S1 in the Supplement 
at www.int-res.com/articles/suppl/m690p051_supp.
pdf). All identified com pounds were either bromo -
pyrrole alkaloids (peaks 1−8 and 11), or their deriva-
tives (peak 10) (Fig. 1). Peak 9 (‘unknown 1’; Fig. 1) 
was not identifiable because we could not obtain a 
molecular mass, but it was quantified for comparison 
among sponges. The molecular mass of peak 8 was 
consistent with that of both bromo sceptrin and bro-
moageliferin (Fig. 1; Table S1), which could not be 
differentiated in this analysis, so this peak is referred 
to as bromosceptrin/bromoageliferin. 

3.2.  Spatial variation in the concentration and 
composition of A. tubulata extracts 

The total tissue extract concentration for A. tubulata 
did not vary significantly across sites at 15 m (1-way 

ANOVA: df = 5, F = 1.68, p = 0.17; Fig. S1A). However, 
extract concentration increased with increasing depth 
in Grand Cayman, with significant differences be-
tween 15 and 61 m (65.4 ± 6.6 and 181.9 ± 35.8 mg 
ml−1 of sponge tissue, respectively [mean ± SE]; 1-way 
ANOVA: df = 4, F = 8.55, p < 0.0001; Fig. S1B). 

Overall, extract composition varied significantly 
both by site and across the depth gradient (PERM-
ANOVA: F ≤ 3.2; p < 0.003), but not between treat-
ments in the reciprocal transplant experiment 
(PERMANOVA: F = 2.5; p = 0.07). Although we 
quantified 11 peaks, only 9 varied significantly 
across sites or depths (Table 1). Seven compounds 
varied by site, including agelongine, debromooxy -
sceptrin, oxysceptrin, oroidin, ageliferin, unknown 
compound 1, and 4,5-dibromo-1H-pyrrole-2-carbo -
xylic acid (Table 1, Fig. 2). Four compounds, in -
cluding agelongine, dispacamide C, bromosceptrin/
bromoageliferin, and unknown 1, varied across the 
depth gradient (Table 1, Fig. 3). One compound, 
sceptrin, varied significantly across treatment groups 
in the transplant experiment (Table 1). Specifically, 
sceptrin concentrations were significantly lower at 
the deep site (61 m) and higher at the shallow site 
(22  m), and deep to shallow (D-S) transplants ap -
proached the metabolite concentrations of resident 
conspecifics (i.e. the back-transplants [S-S]; Fig. 4, 
and see Fig. S2). 
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3.3.  Antibacterial activity of A. tubulata extracts 

At the tested concentration (5 mg ml−1), which rep-
resents 2.5−10% of natural concentrations, A. tubu-
lata extracts from each site, depth, and transplant 
treatment significantly inhibited the growth of all 
bacterial species tested (Student’s t-tests: p ≤ 0.05; 
Table S2), except for Yersinia enterocolitica in the 
shallow to deep (S-D) transplant treatment (Student’s 
t-test: t = −3.97, p = 0.09; Table S2). We also found 
significant differences in the degree of inhibitory 
activity against Serratia marcescens and Vibrio co -
ralliilyticus across depths (ANOVA: df = 4, F = 5.6, 
p < 0.002 and F = 4.1, p < 0.009, respectively; Fig. 5), 
but not across sites or transplant treatments. 

3.4.  Putative compounds associated with 
antibacterial activity of A. tubulata extracts 

To determine which compound(s) contributed to 
the antibacterial activity of the A. tubulata extracts, 
we conducted multiple regression analyses on the 
HPLC peak areas relative to the growth of extract-
treated bacteria. We found that the relative concen-
tration of dibromoageliferin was positively correlated 
with the growth of S. marcescens and V. coralliilyticus 
(Table 2). In contrast, 4,5-dibromo-1H-pyrrole-2-car-
boxylic acid was negatively correlated with the 
growth of S. marcescens and V. coralliilyticus. Age-
longine was also negatively correlated with the growth 
of V. coralliilyticus, as well as Y. enterocolitica. Finally, 
oroidin was negatively correlated with the growth of 

S. marcescens (Table 2, Fig. 6). In contrast, the acti -
vities of debromooxysceptrin and oxy sceptrin were 
species-specific. Debromooxysceptrin was negatively 
correlated with the growth of S. marcescens, but pos-
itively correlated with the growth of Aurantimonas 
coralicida, and oxysceptrin was negatively correlated 
with the growth of S. marcescens and V. coralliilyticus, 
but positively correlated with the growth of Y. ente-
rocolitica (Table 2). Of all pairwise tests of bacterial-
compound combinations, the largest effect size was 
the effect of oroidin on the growth of S. mar cescens 
(f2 = 1.67, p < 0.0001; Table 2, Fig. 6). 

To confirm that oroidin is, at least in part, responsi-
ble for the inhibitory activity of A. tubulata extracts 
on S. marcescens growth, we performed a dose re -
sponse experiment using purified oroidin and 3 rep-
resentative A. tubulata extracts that contained low 
(KY-AGTU-200-2: peak area = 5 054 838), intermedi-
ate (BZ-AGTU-20: peak area = 16 128 295), and high 
(KY-AGTU-7: peak area = 32 252 527) relative concen-
trations of oroidin, as determined by HPLC. Consistent 
with our multiple regression model (Table 2, Fig. 6), 
we found that purified oroidin inhibited the growth 
of S. marcescens in a dose-dependent manner, with 
an EC25 of 0.48 mg ml−1 or 1.2 mM (Fig. 7). Addition-
ally, the A. tubulata extract with the highest oroidin 
content had the lowest EC25 (0.13 mg ml−1), whereas 
the extracts with the intermediate and lowest oroidin 
content had higher EC25 values (0.71 and 1.95 mg ml−1, 
respectively; Fig. 7), which is consistent with the pre-
diction that higher levels of oroidin resulted in in -
creased antibacterial activity against S. marcescens. 
The EC25 of the A. tubulata extract with the highest 
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Peak ID  Compound                                    Site                                          Depth                                       Transplant 
                                               df            F              p                 df              F              p                   df              F                p 
 
1              Agelongine                    5,33        6.73       0.0002          4,34         10.52     <0.0001           3,13          0.41         0.7474 
2              Debromooxysceptrin     5,33         12.92        <0.0001           4,34          1.15       0.3481           3,13          1.53         0.2533 
3              Dispacamide C              5,33        1.74       0.1524          4,34          6.32       0.0006           3,13          0.29         0.8309 
4              Oxysceptrin                    5,33        6.11       0.0004          4,34          1.27       0.3008           3,13          2.18         0.1391 
5              Sceptrin                          5,33        0.58       0.7106          4,34          0.37       0.8300           3,13          3.58         0.0440 
6              Oroidin                           5,33        7.03        <0.0001           4,34          2.43       0.0684           3,13          2.10         0.1494 
7              Ageliferin                       5,33         12.34        <0.0001           4,34          0.67       0.6203           3,13          1.01         0.4108 
8              Bromosceptrin/ 
                Bromoageliferin           5,33        0.73       0.6065          4,34         11.51     <0.0001           3,13          0.75         0.5403 
9              Unknown 1                    5,33        4.20       0.0046          4,34          4.27       0.0066           3,13          1.40         0.2867 
10            4,5-Dibromo-1H- 
                pyrrole-2-carboxylic 
                acid                               5,33        4.66       0.0025          4,34          1.12       0.3647           3,13          0.72         0.5550 
11            Dibromoageliferin         5,33        1.09       0.3852          4,34          2.00       0.1166           3,13          0.62         0.6225

Table 1. Summary of 1-way ANOVAs comparing relative concentration of each compound in terms of peak area within Agelas 
tubulata extracts among collection sites (at 15 m), depths (15− 61 m), and transplant treatments (shallow to shallow, shallow to  

deep, deep to shallow, and deep to deep)
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oroidin content was actually lower than that of puri-
fied oroidin (EC25 = 0.13 v. 0.48 mg ml−1; Fig. 7), sug-
gesting that the extract contained additional antibac-
terial metabolite(s) acting in concert with oroidin. 
Importantly, this extract also had the highest relative 
concentration of peak 10 (4,5-dibromo-1H-pyrrole-2-
carboxylic acid; peak area = 1 197 583), relative to its 
concentrations in the extracts with intermediate and 
low amounts of oroidin (peak area = 331 034 and 
63 649, respectively). This is also consistent with the 
multiple regression model, which predicted that 4,5-
dibromo-1H-pyrrole-2-carboxylic acid was correlated 

with antibacterial activity against S. marcescens, albeit 
with a lower effect size (f2 = 0.2) than oroidin (Table 2). 

4.  DISCUSSION 

4.1.  Site- and depth-specific variability in Agelas 
tubulata secondary metabolites 

A. tubulata exhibits variability in the production of 
several secondary metabolites between sites in Belize 
and Grand Cayman; however, there were no signifi-
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compounds 5 and 11 are not included since they did not exhibit significant changes across sites
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cant differences in total extract concentration be -
tween sponges from the same depth (15 m) across 
sites. This disparity between variation in relative 
concentrations of constituent metabolites and the 
total extract concentration suggests some degree 
of  trade-off between the biosynthetic end products 
(Fig. S3). Variation in concentrations of specific com-
pounds among sites may be due to differences in 
levels of constitutive defenses relative to ecological 
or environmental conditions (e.g. predation pressure: 
Slattery et al. 2001). However, Belize and Grand 
Cayman have comparable levels of sponge predation 

(Lesser & Slattery 2013, Loh & Pawlik 2014, D. Goch -
feld unpubl. data), so spongivory likely does not 
account for the differences in defensive metabolites 
between sites. The concentrations of agelongine, 
debro mooxysceptrin, and ageliferin were higher at 
sites within Belize compared to sites within Grand 
Cayman, which parallels differences in the proxi-
mate biochemical composition of these same sponges 
(Clayshulte Abraham et al. 2021). Carbohydrate con-
tent was higher in sponges from Belize, while lipid 
content was higher in sponges from Grand Cayman 
(Clayshulte Abraham et al. 2021). Since these sam-
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ples were collected during the winter in Grand Cay-
man and the spring in Belize, these differences could 
be due to trade-offs with sponge reproductive status, 
which could also impact energy allocation to defen-
sive metabolite production. Alternatively, seasonal 
variation in biotic and abiotic factors can affect 
defensive metabolite production (e.g. trophic subsi-
dies: Page et al. 2005; microbiome: Anderson et al. 
2010; temperature: Reverter et al. 2016). However, 
dissolved organic carbon accounts for 97.4% of car-
bon consumption by shallow-water Agelas spp. (Slat-
tery & Lesser 2015), and these levels were essentially 
equivalent at our 2 sites during collections (Clayshulte 
Abraham et al. 2021, Macartney et al. 2021), so food 
resources were likely not the cause of differences in 
defensive metabolites. 

The depth gradient in Grand Cayman represents a 
much narrower spatial scale (hundreds of meters) 
than between Belize and Grand Cayman (hundreds 
of kilometers), but the ecological differences between 
shallow and mesophotic reefs are much greater than 
those between shallow reefs (Lesser et al. 2018). 
Specifically, the light gradient is extreme enough to 
affect biosynthesis of sponge metabolites (Turon et 
al. 2009), and depth-specific differences in predation 
(Slattery et al. 2016), competition (Slattery & Lesser 
2014, 2021), or sponge-associated microbial assem-
blages (Olson & Gao 2013) could also affect defen-
sive metabolite production. Tissue extract concentra-
tions in deep reef sponges (61 m) were 3 times higher 
than extract concentrations in shallow sponges (15 m). 
However, it is unlikely that the differences in extract 
concentrations were due to differential predation, 
since Macartney et al. (2021) reported no differences 
in bite scars on A. tubulata across the depth gradient. 
Instead, the increase in extract concentration could 
be a direct and/or indirect consequence of increased 
particulate organic matter (POM), a major source of 
sponge nutrition at depth (Lesser 2006, Lesser & Slat-
tery 2013, Lesser et al. 2019, 2020, Macartney et al. 
2021). If defensive metabolites are energetically costly 
to produce (e.g. Uriz et al. 1995, Machado et al. 2017), 
then the increased availability of POM resources with 
increasing depth may provide the energetic surplus 
to facilitate their production (Ferretti et al. 2009). It 
is  also possible that greater competition for space 
at mesophotic depths (Slattery & Lesser 2014, 2021) 
might select for increased production of metabolites 
with allelopathic activities (Assmann et al. 2004, Slat-
tery & Gochfeld 2012). 

Several compounds were differentially produced 
across the depth gradient, including agelongine, dis-
pacamide C, and bromosceptrin/bromoageliferin. Al -
though these compounds are constituents of a puta-
tive shared biosynthetic pathway (Fig. S3, and see 
Rane et al. 2014), it is interesting that most of the 
compounds that varied across depths are different 
from those that varied between shallow reef sites. 
Mesophotic reef structure and function are very dif-
ferent than that of shallow coral reefs (Lesser et al. 
2018), resulting in unique physiological adaptations 
(Lesser et al. 2010, 2019) that select for distinct bio-
chemical phenotypes (Slattery et al. 2016, Slattery & 
Lesser 2021). Despite significant differences in sponge 
growth as a function of transplant treatment (Ma -
cartney et al. 2021), only 1 metabolite, sceptrin, var-
ied between transplanted sponges and their back-
transplanted controls. Sceptrin is a feeding deterrent 
against Thalassoma bifasciatum (Assmann et al. 
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Fig. 5. Antibacterial activity of Agelas tubulata extracts by (A) collection site (at 15 m), (B) depth, and (C) transplant treatment. 
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treated (with sponge extracts) vs. untreated wells for each bacterial species: Aurantimonas coralicida, Serratia marcescens, 
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Bacteria                                         Compound                                          β                    t               p             f2     Effect on growth 
 
A. coralicida                          Debromooxysceptrin                          4.14 × 10−8         4.04        0.0001         −            Positive 

 Full linear model: df = 1,72; F = 16.3; p = 0.0001; R2 = 0.17; intercept = −0.756 

S. marcescens                       Debromooxysceptrin                           −1.69 × 10−8          −5.27         <0.0001       0.65         Negative 
                                                      Oxysceptrin                                  −2.22 × 10−7            −3.2             0.002        0.24         Negative 
                                                         Oroidin                                      −1.52 × 10−8            −10.1           <0.0001       1.67         Negative 
                            4,5-Dibromo-1H-pyrrole-2-carboxylic acid        −8.01 × 10−8          −2.38             0.02           0.2          Negative 
                                                Dibromoageliferin                            1.73 × 10−7         4.16        0.0001      0.41          Positive 

 Full linear model: df = 5,368; F = 11.5; p < 0.0001; R2 = 0.40; intercept = −0.287 

V. coralliilyticus                            Agelongine                                  −4.43 × 10−7          −4.03         <0.0002       0.39         Negative 
                                                      Oxysceptrin                                  −5.53 × 10−7          −4.50         <0.0001       0.40         Negative 
                            4,5-Dibromo-1H-pyrrole-2-carboxylic acid        −7.61 × 10−7          −1.51             0.14          0.15         Negative 
                                                Dibromoageliferin                            3.79 × 10−7         5.42         <0.0001       0.46          Positive 

 Full linear model: df = 4,294; F = 11.1; p < 0.0001; R2 = 0.45; intercept = −0.77 

Y. enterocolitica                           Agelongine                                  −6.05 × 10−7               −3                0.004        0.15         Negative 
                                                      Oxysceptrin                                    4.3 × 10−7            −1.95             0.06          0.05          Positive 

 Full linear model: df = 2,146; F = 5.57; p = 0.006; R2 = 0.13; intercept = −0.820

Table 2. Summary of multiple regression models predicting antibacterial activity against 4 bacterial strains (Aurantimonas 
coralicida, Serratia marcescens, Vibrio coralliilyticus, and Yersinia enterocolitica), based on ratios of bacterial growth in 
treated vs. untreated wells and relative compound concentrations in terms of peak area within Agelas tubulata extracts. Slope 
coefficients (β), t-and p-values, and Cohen’s f2 effect sizes are presented for individual compounds included in models. Also in -
cluded is the predicted directional effect of each compound, as either promoting or inhibiting growth, for individual bacterial  

strains. Statistics for complete linear models are also reported
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2000), Stegastes partitus (Richelle-Maurer et al. 
2003), and Canthigaster rostrata (D. Gochfeld & M. 
Slattery unpubl. data), but not against C. solandri 
(Rohde et al. 2012), and it exhibits antimicrobial 
(Kelly et al. 2005) and allelopathic activity (Richelle-
Maurer et al. 2003). Experimental wounding increased 
sceptrin production (Richelle-Maurer et al. 2003), but 
in the present study, this compound varied in con-
centration even in the absence of an apparent in -
ductive cue (e.g. bite scars: Macartney et al. 2021), 
although we cannot rule out effects of microbial or 
allelopathic origin. It is possible that the growth tags 
we inserted into the sponges could have induced 
sceptrin production in the transplants, but the fact 
that tags were attached to all transplant sponges, and 
concentrations were comparable in transplants and 
back-transplants, suggests that any artifacts of this 
stress were likely ephemeral at best. Overall, the re -
sults of the transplant experiment indicate that phe-
notypic plasticity is rare in A. tubulata, and most 
metabolites are expressed at depth-specific constitu-
tive levels. 

Sponge-associated bacteria are assumed to play a 
role in the production of secondary metabolites, par-
ticularly those that are halogenated (Agarwal et al. 
2014, Rua et al. 2018, but see Richelle-Maurer et al. 
2003). Thus, the similar metabolite profiles among 
the transplanted sponges might suggest a lack of 

microbial variation within these transplants (e.g. 
Anderson et al. 2010). In fact, microbiomes did not 
vary among A. tubulata that occur naturally across 
the depth gradient (Macartney et al. 2022), yet 
metabolite profiles varied across these depths. Olson 
& Gao (2013) also found minimal variation in bacter-
ial assemblages in A. conifera (now known to be A. 
tubulata: Pankey et al. 2022) in Little Cayman. These 
data are inconsistent with secondary metabolism 
being driven solely by changes in the composition of 
the A. tubulata microbiome. 

4.2.  Differences in antibacterial activity between 
populations of A. tubulata 

The extracts from A. tubulata exhibited antibacter-
ial activity against the panel of marine pathogens. 
These results were not surprising, since the A. tubu-
lata extracts contained at least 8 bromopyrrole alka-
loids, many of which are known to exhibit antimicro-
bial activity (Richelle-Maurer et al. 2003, Rane et al. 
2014, Zhang et al. 2017). While there was some 
degree of species-specificity in antibacterial activity 
of the sponge extracts (i.e. greater activity against 
Aurantimonas coralicida and Serratia marcescens), 
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Fig. 7. Dose response curves for Serratia marcescens to puri-
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there was no difference in antibacterial activity rela-
tive to site. However, there were differences in anti-
bacterial activity against both S. marcescens and 
Vibrio coralliilyticus across the shallow to mesophotic 
depth gradient, likely due to depth-specific selective 
pressures (Lesser et al. 2019). Transplanting sponges 
between depths, or back-transplanting them to their 
native depths, did not alter antimicrobial activity. In 
contrast, Plakortis angulospiculatus transplanted from 
mesophotic to shallow depths exhibited in duced re -
sponses to increased spongivory on shallow reefs 
(Slattery et al. 2016). A priori we expected higher anti-
bacterial activity at mesophotic depths (30−150 m) 
where bacterioplankton levels are highest (e.g. 
Macartney et al. 2021); however, antibacterial acti -
vity was highest at intermediate depths (22−30 m). 
This may be indicative of greater microbial diversity, 
and thus a greater chance of pathogen exposure, at 
transitional depths (= shallow to upper mesophotic 
reefs), where coral reef biodiversity is particularly 
high (Lesser et al. 2019). 

The predicted activity of specific metabolites based 
on the multiple regression models supports sponge 
selectivity for or against certain bacteria. For exam-
ple, both debromooxysceptrin and oroidin inhibited 
growth of S. marcescens, but debromooxysceptrin 
could promote growth of A. coralicida. The relative 
tissue concentration of debromooxysceptrin in sponges 
from Carrie Bow Cay in Belize was approximately 4 
times higher than in sponges from Kittiwake Anchor 
Chain in Grand Cayman, while the concentration of 
oroidin in sponges collected from Carrie Bow Cay 
was about half that of sponges collected from Kitti-
wake Anchor Chain. Thus, site-specific ecological 
pressures likely favor specific bioactive metabolites 
within a biosynthetic product pool (Arndt & Riedrich 
2008, Rane et al. 2014) that have overlapping, but 
also unique, ecological roles (i.e. broad spectrum vs. 
selective microbial control; Gochfeld et al. 2012). 
Sponges such as A. tubulata host complex symbiotic 
microbial assemblages (Gloeckner et al. 2014), and 
the ability to tailor selectivity against potential patho-
gens while promoting the growth of beneficial bacte-
ria may be critical in regulating microbial popula-
tions of the constituent host (Ritchie 2006, Kvenne fors 
et al. 2012, Raina et al. 2016). The production of a 
suite of metabolites via a common biosynthetic path-
way may be one adaptation to fine-tune control over 
the composition of a sponge microbiome. 

This study demonstrated intraspecific variation in 
the production of secondary metabolites in popula-
tions of A. tubulata across sites and depths, and phe-
notypic plasticity in the compound sceptrin when 

sponges were transplanted between depths. These 
data are consistent with the presence of an in -
ducible defense system that is locally adapted to site- 
or depth-specific cues (Karban & Baldwin 1997), al -
though the specific cues were not identified in this 
study. This chemical variability corresponds to differ-
ences in antibacterial activity, which can aid in selec-
tion against specific bacterial species relative to local 
ecological conditions. This chemical tailoring may 
help to explain the relative stability observed in the 
microbiome of A. tubulata across environmental gra-
dients (Olson & Gao 2013, Macartney et al. 2022). 
Given a future where sponge density increases, 
resulting in reduced distances between individuals, 
the likelihood of increased sponge disease (sensu 
Slattery & Gochfeld 2012) may result in the biosyn-
thesis of, and selection for, antibacterial compounds 
that have significant implications for disease resist-
ance in sponges, and contributions to the resilience 
of coral reef communities in the Anthropocene. 
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