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Abstract
Let G be a connected reductive group over an algebraically closed field k. Under
mild restrictions on the characteristic of k, we show that any G-module with a good
filtration also has a good filtration as a module for the reductive part of the centralizer
of a nilpotent element x in its Lie algebra.

1 Introduction

Let G be a connected reductive group over an algebraically closed field k of char-
acteristic p > 0, and let H be a connected reductive subgroup. Recall that (G, H)

is said to be a Donkin pair or a good filtration pair if every G-module with a good
filtration still has a good filtration when regarded as an H -module.

Now let x be a nilpotent element in the Lie algebra of G, and let Gx ⊂ G be its
stabilizer. If p is good for G, then the theory of associated cocharacters is available,
and this gives rise to a decomposition

Gx = Gx
red � Gx

unip

where Gx
unip is a connected unipotent group, and Gx

red is a (possibly disconnected)
group whose identity component (Gx

red)
◦ is reductive (cf. [11, 5.10]). The main result

of this paper is the following.

Theorem 1.1 Let G be a connected reductive group over an algebraically closed
field k of good characteristic. For any nilpotent element x in its Lie algebra,
(G, (Gx

red)
◦) is a Donkin pair.
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Now suppose that H ⊂ G is a possibly disconnected reductive subgroup, i.e., a
group whose identity component H ◦ is reductive. If the characteristic of k does not
divide the order of the finite groupH/H ◦, then the category of finite-dimensionalH -
modules is a highest-weight category, as shown in [2]. In particular, it makes sense
to speak of good filtrations for H -modules, and so the definition of “Donkin pair”
makes sense for (G, H).

In order to apply this notion in the case where H = Gx
red, we must impose

a slightly stronger condition on p: we require it to be pretty good in the sense
of [9, Definition 2.11]. (In general, this condition is intermediate between “good”
and “very good.” It coincides with “very good” for semisimple simply connected
groups, whereas for GLn, all primes are pretty good.) This is equivalent to requir-
ing G to be standard in the sense of [14, §4]. It follows from [8, Theorem 1.8]
and [3, Lemma 2.1] that when p is pretty good for G, it does not divide the
order of Gx/(Gx)◦ ∼= Gx

red/(G
x
red)

◦ for any nilpotent element x. As an immediate
consequence of Theorem 1.1 and Lemma 2.2 below, we have the following result.

Corollary 1.2 Let G be a connected reductive group over an algebraically closed
field k of pretty good characteristic. For any nilpotent element x in its Lie algebra,
(G, Gx

red) is a Donkin pair.

This corollary plays a key role in the proof of the Humphreys conjecture [1].
The paper is organized as follows: Section 2 contains some general lemmas on

Donkin pairs, along with a lengthly list of examples (some previously known, and
some new). Section 3 gives the proof of Theorem 1.1. The proof consists of a
reduction to the quasi-simple case, followed by case-by-case arguments.

Remark 1.3 It would, of course, be desirable to have a uniform proof of Theorem 1.1
that avoids case-by-case arguments, perhaps using the method of Frobenius splittings.
Thanks to a fundamental result of Mathieu [13], Theorem 1.1 would come down to
showing that the flag variety of G admits a (Gx

red)
◦-canonical splitting. According

to a result of van der Kallen [16], this geometric condition is equivalent to a certain
linear-algebraic condition (called the “pairing condition”) on the Steinberg modules
for G and (Gx

red)
◦. Unfortunately, for the moment, the pairing condition for these

groups seems to be out of reach.

2 Preliminaries

2.1 General Lemmas on Donkin Pairs

We begin with three easy statements about good filtrations.

Lemma 2.1 Let H be a possibly disconnected reductive group over an algebraically
closed field k. Assume that the characteristic of k does not divide |H/H ◦|. An H -
moduleM has a good filtration if and only if it has a good filtration as anH ◦-module.



Nilpotent Centralizers and Good Filtrations

Proof According to [2, Eq. (3.3)], any costandard H -module regarded as an H ◦-
module is a direct sum of costandard H ◦-modules. Hence, any H -module with a
good filtration has a good filtration as an H ◦-module.

For the opposite implication, suppose M is an H -module that has a good filtration
as an H ◦-module. To show that it has a good filtration as an H -module, we must
show that Ext1H (−, M) vanishes on standard H -modules. As explained in the proof
of [2, Lemma 2.18], we have

Ext1H (−, M) ∼= (Ext1H ◦(−, M))H/H ◦
,

and the right-hand side clearly vanishes on standard H -modules (using [2, Eq. (3.3)]
again).

Lemma 2.2 Let G be a connected, reductive group, and let H ⊂ G be a possibly
disconnected reductive subgroup. Assume that the characteristic of k does not divide
|H/H ◦|. Then, (G, H) is a Donkin pair if and only if (G, H ◦) is a Donkin pair.

Proof This is an immediate consequence of Lemma 2.1.

Lemma 2.3 Let G be a connected, reductive group, and let G′ be its derived sub-
group. Let H ⊂ G be a connected, reductive subgroup. Then, (G, H) is a Donkin
pair if and only if (G′, (G′ ∩ H)◦) is a Donkin pair.

Proof Let T ⊂ B ⊂ G denote a maximal torus and Borel subgroup, respectively,
and suppose that G′′ is any closed connected subgroup satisfying G′ ⊆ G′′ ⊆ G.
Now let T ′′ = G′′ ∩ T , B ′′ = G′′ ∩ B, and observe that by [10, I.6.14(1)], we have

ResGG′′IndG
BM ∼= IndG′′

B ′′ResBB ′′M (2.1)

for any B-module M . Thus, for any dominant weight λ ∈ X(T )+ where we set λ′′ =
ResT

T ′′(λ) ∈ X(T ′′)+, it follows that ResG
G′′IndG

B (λ) ∼= IndG′′
B ′′ (λ′′). Thus, (G, G′′) is

always a Donkin pair. Furthermore, if we let H ′ ⊆ H be the derived subgroup and
H ′′ = (G′ ∩ H)◦, then H ′ ⊆ H ′′ ⊆ H . We can therefore apply [10, I.6.14(1)] again
to show that (H, H ′′) is a Donkin pair.

Now suppose (G, H) is a Donkin pair. In this case, it immediately follows from
above that (G, H ′′) is a Donkin pair. Moreover, if we let T ′ = G′ ∩ T and B ′ =
G′∩B, then Eq. 2.1 actually implies that for any λ′ ∈ X(T ′)+, there exists λ ∈ X(T )+
with λ′ = ResT

T ′(λ) such that

ResGG′IndG
B (λ) ∼= IndG′

B ′ (λ′).

In particular,

ResG
′

H ′′IndG′
B ′ (λ′) ∼= ResGH ′′IndG

B (λ)

has a good filtration as an H ′′-module, and hence, (G′, H ′′) is also a Donkin pair.
Conversely, suppose that (G′, H ′′) is a Donkin pair. We can first deduce that

(G, H ′′) is a Donkin pair from the fact that (G, G′) is a Donkin pair. Also, by similar
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arguments as above we can see that for any μ′′ ∈ X(H ′′ ∩ T )+, there exists some
μ ∈ X(H ∩ T )+ with μ′′ = ResH∩T

H ′′∩T
(μ), such that

ResHH ′′IndH
H∩B(μ) ∼= IndH ′′

H ′′∩B(μ′′).

This implies that an H -module M has a good filtration if and only if the H ′′-module
ResH

H ′′M has a good filtration. Therefore, (G, H) is also a Donkin pair.

2.2 Examples of Donkin Pairs

The following proposition collects a number of known examples of Donkin pairs.
The last five parts of the proposition deal with various examples where G is quasi-
simple and simply connected. For pairs of the form (Spinn, H), it is usually more
convenient to describe the image H ′ of H under the map π : Spinn → SOn. Of
course, H can be recovered from H ′, as the identity component of π−1(H). We use
the notation that

(SOn, H
′)∼ = (Spinn, H).

It should be noted that the following proposition does not exhaust the known exam-
ples in the literature: for instance, according to [5], there is a Donkin pair of type
(B3,G2), but this example is not needed in the present paper.

Proposition 2.4 Let G be a connected, reductive group, and let H ⊂ G be a closed,
connected, reductive subgroup. If the pair (G, H) satisfies one of the following
conditions, then it is a Donkin pair.

(1) G = H × · · · × H , and H ↪→ G is the diagonal embedding.
(2) H is a Levi subgroup of G.

For the remaining parts, assume that G is quasi-simple and simply connected.

(3) G is of simply laced type, and H is the fixed-point set of a diagram automor-
phism of G:

(A2n−1,Cn) = (SL2n,Sp2n) (D4,G2) = (Spin8,G2)

(Dn,Bn−1) = (SO2n,SO2n−1)
∼ (E6,F4)

(4) Certain embeddings of classical groups:

(A2n,Bn)

(A2n−1,Dn)

}
= (SLr ,SOr ) (p > 2)

(A2n−1,Cn) = (SL2n,Sp2n)

(Bn+m,BnDm)

(Dn+m,DnDm)

(Dn+m+1,BnBm)

⎫⎬
⎭ = (SOr+s ,SOr × SOs)

∼ (p > 2)

(Cn+m,CnCm) = (Sp2n+2m,Sp2n × Sp2m)
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(5) Certain maximal-rank subgroups of exceptional groups:

(E8,A2E6) (p > 5)
(E8,D8) (p > 2) (E8,A1A2A5) (p > 5)
(E8,A1E7) (p > 2) (E8,A3D5) (p > 5)
(E7,A1D6) (p > 2) (E8,A4A4) (p > 5)
(F4,B4) (p > 2) (F4,A3A1) (p > 3)

(G2,A1A1)

(6) Certain restricted irreducible representations:

(An,A1) (p > n)

(A7,A2) (p > 3)

(A6,G2) (p > 3)

(7) Tensor product embeddings of classical groups (p > 2):

(C(2n+1)m,Bn)

(C2nm,Dn)

}
= (Sp2rm,SOr )

(Bn+m+2nm,Bn)

(D(2n+1)m,Bn)

(Dnm,Dn)

⎫⎬
⎭ = (SOrs ,SOr )

∼

(D2nm,Cn) = (SO4nm,Sp2n)
∼ (Cnm,Cn) = (Sp2nm,Sp2n)

The details of the embeddings in parts (6) and (7) will be described below.

Proofs for parts (2)–(5) Parts (1) and (2) are due to Mathieu [13] (following earlier
work of Donkin [6] that covered most cases). Parts (3) and (4), with the exception
of the pair (E6,F4), are due to Brundan [5]. The pair (G2,A1A1) in part (5) is also
due to Brundan [5]. The pair (E6,F4) and the pairs in the first column of part (5)
are due to van der Kallen [16]. The pairs in the second column of part (5) are due to
Hague–McNinch [7].

Proof of part (6) Each pair (An, H) = (SLn+1, H) in this statement arises from
some (n + 1)-dimensional representation of H . Call that representation V . The
representations V are as follows:

• (An,A1): the dual Weyl module for SL2 of highest weight n
• (A7,A2): the adjoint representation of PGL3
• (A6,G2): the 7-dimensional dual Weyl module whose highest weight is the short

dominant root

According to [5, Lemma 3.2(iv)] or [7, §3.2.6], to prove the claim, we must show
that each exterior algebra

∧•
V has a good filtration as an H -module. For (An,A1),

this is shown in [7, §3.4.3]. For (A7,A2) and (A6,G2), explicit calculations using the
LiE software package [17] show that the character of

∧•
V is the sum of characters

of dual Weyl modules whose highest weights are restricted weights when p > 3.

Proof of part (7) To define the group embeddings in this statement, we will assume
that G is either Sp2n or SOn. However, in the latter case, the proof that (G, H) is a
Donkin pair will also imply the corresponding statement for G = Spinn.
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Let V1 be a vector space equipped with a nondegenerate bilinear form B1 satisfy-
ing B1(v, w) = ε1B1(w, v), where ε1 = ±1, and let Aut(V1, B1)

◦ be the connected
group of linear automorphisms of V1 that preserve B1. This group is either SOdimV

or SpdimV , depending on ε1. Let V2, B2, and ε2 be another collection of similar data.
Then, B1 ⊗ B2 is a nondegenerate pairing on V1 ⊗ V2, with sign ε1ε2. We obtain an
embedding

Aut(V1, B1)
◦ × Aut(V2, B2)

◦ ↪→ Aut(V1 ⊗ V2, B1 ⊗ B2)
◦.

Now restrict to just one factor:

Aut(V1, B1)
◦ ↪→ Aut(V1 ⊗ V2, B1 ⊗ B2)

◦. (2.2)

The four kinds of pairs listed in the statement are all instances of this embedding,
depending on the signs ε1 and ε2. We will now prove that

(G, H) = (Aut(V1 ⊗ V2, B1 ⊗ B2)
◦,Aut(V1, B1)

◦)
is a Donkin pair. Let r = dimV1 and s = dimV2.

Suppose first that ε2 = 1. Then, the embedding (2.2) corresponds to either
(SOrs ,SOr ) or (Sprs ,Spr ). In this case, V2 admits an orthonormal basis x1, . . . , xs ,
where

B2(xi, xj ) = δij .

Then, the group Aut(V1, B1)
◦ preserves each V1 ⊗ xi ⊂ V1 ⊗ V2. In this case, the

embedding (2.2) can be factored as

Aut(V1, B1)
◦ 1

↪→ Aut(V1, B1)
◦ × · · · × Aut(V1, B1)

◦︸ ︷︷ ︸
s copies

4
↪→ Aut(V1 ⊗ V2, B1 ⊗ B2)

◦.

The first map is a diagonal embedding; it results in a Donkin pair by part (1) of the
proposition. The second embedding gives a Donkin pair by part (4).

Next, suppose that ε2 = −1, and assume for now that dimV2 = 2. Choose a basis
{x, y} for V2 such that B2(x, y) = 1. Then, V1 ⊗ x and V1 ⊗ y are both maximal
isotropic subspaces of V1 ⊗ V2. Define an action of GL(V1) on V1 ⊗ V2 as follows:

g · (v ⊗ x) = (gv) ⊗ x,

g · (v ⊗ y) = ((gt)−1v) ⊗ y
for g ∈ GL(V1),

where gt denotes the adjoint operator to g with respect to the nondegenerate form on
V1. This action defines an embedding of GL(V1) in Aut(V1 ⊗ V2, B1 ⊗ B2)

◦. In fact,
it identifies GL(V1) with a Levi subgroup of Aut(V1 ⊗ V2, B1 ⊗ B2)

◦. (This is the
usual embedding of GLr as a Levi subgroup in either SO2r or Sp2r .) The embedding
(2.2) then factors as

Aut(V1, B1)
◦ 4

↪→ GL(V1)
2

↪→ Aut(V1 ⊗ V2, B1 ⊗ B2)
◦.

The first embedding gives a Donkin pair by part (4) of the proposition, and the second
by part (2).

Finally, suppose ε2 = −1 and s = dimV2 > 2. This dimension must still be even,
say s = 2m. Choose a basis x1, . . . , xm, y1, . . . , ym for V2 such that

B2(xi, xj ) = B2(yi, yj ) = 0, B2(xi, yj ) = δij .
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Let V (i)
2 be the 2-dimensional subspace spanned by xi and yi . Then, B2 restricts to a

nondegenerate symplectic form B
(i)
2 on V

(i)
2 . We factor the map (2.2) as follows:

Aut(V1, B1)
◦ 1

↪→ Aut(V1, B1)
◦ × · · · × Aut(V1, B1)

◦︸ ︷︷ ︸
m copies

↪→ Aut(V1 ⊗ V
(1)
2 , B1 ⊗ B

(1)
2 )◦×· · ·×Aut(V1 ⊗ V

(m)
2 , B1 ⊗ B

(m)
2 )◦

4
↪→ Aut(V1 ⊗ V2, B1 ⊗ B2)

◦.

Here, the first arrow is a diagonal embedding (part (1) of the proposition); the sec-
ond arrow is several instances of the embedding from the previous paragraph (since
dimV

(i)
2 = 2); and the last arrow comes from part (4) of the proposition. We thus

again obtain a Donkin pair.

3 Proof of Theorem 1.1

3.1 Reduction to the Quasi-Simple Case

LetG be an arbitrary connected reductive group in good characteristic. For any nilpo-
tent element x ∈ Lie(G), there exists a cocharacter τ : Gm → G and a Levi subgroup
Lτ ⊂ G such thatLτ is the centralizer of the subgroup τ(Gm), whereGx

red = Lτ ∩Gx

(cf. [11, 5.10]).
If we let G′ be the derived subgroup of G, then any nilpotent element x for G also

satisfies x ∈ Lie(G′), and by [11, 5.9], τ(Gm) ⊂ G′ ⊆ G. In particular, (G′)x =
G′ ∩ Gx and L′

τ = G′ ∩ Lτ is the centralizer of τ(Gm) in G′. Thus,

(G′)xred = G′ ∩ Gx
red.

It now follows from Lemma 2.3 that (G, (Gx
red)

◦) is a Donkin pair if and only
if (G′, ((G′)xred)◦) is a Donkin pair. So we can reduce to the case where G is
semisimple.

Suppose now that π : G � Ḡ is an isogeny (i.e., surjective with finite central ker-
nel), where G is an arbitrary connected reductive group in good characteristic. Then,
by [11, Proposition 2.7(a)], π induces a bijection between the nilpotent elements in
Lie(G) and those in Lie(Ḡ), and for any nilpotent element x ∈ Lie(G), we have
π(Gx) = Ḡπ(x). Moreover, by similar arguments as above, we can also deduce that
π(Gx

red) = Ḡ
π(x)
red (cf. [11, 5.9]). In particular,

π((Gx
red)

◦) = π(Gx
red)

◦ = (Ḡ
π(x)
red )◦,

since any surjective morphism of algebraic groups takes the identity component to
the identity component.

Let H = (Gx
red)

◦ and H̄ = (Ḡ
π(x)
red )◦, and note that for any Ḡ-module M , there is

a natural isomorphism

ResGHResḠGM ∼= ResH̄HResḠ
H̄

M .
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From this, we can see that if (G, H) is a Donkin pair, then (Ḡ, H̄ ) must also be a
Donkin pair, since it is straightforward to check that a Ḡ-module M (resp. an H̄ -
module N) has a good filtration if and only if ResḠGM (resp. ResH̄H N) has a good
filtration. This allows us to reduce to the case where G is semisimple and simply
connected.

Finally, suppose that that G = G1 × G2 where G1, G2 are connected reductive
groups in good characteristic. Let x = (x1, x2) ∈ Lie(G1) ⊕ Lie(G2) be an arbitrary
nilpotent element. We can immediately see that

(Gx
red)

◦ = ((G1)
x1
red)

◦ × ((G2)
x2
red)

◦.

It now follows from the general properties of induction for direct products (see
[10, I.3.8]) that (G, (Gx

red)
◦) is a Donkin pair if and only if (G1, ((G1)

x1
red)

◦) and
(G2, ((G2)

x2
red)

◦) are Donkin pairs. Therefore, by the well-known fact that any sim-
ply connected semisimple group is a direct product of quasi-simple simply connected
groups, we can reduce the proof of Theorem 1.1 to the case where G is quasi-simple.

3.2 Proof for Classical Groups

We now prove the theorem for the groups GLn, Spn, and Spinn. For the last case, we
will actually describe the group (Gx

red)
◦ and its embedding in G for SOn instead, but

the proof of the Donkin pair property will also apply to Spinn.
Let x be a nilpotent element in the Lie algebra of one of GLn, Spn, or SOn. Let

s = [sr1
1 , s

r2
2 , . . . , s

rk
k ] be the partition of n that records the sizes of the Jordan blocks

of x. (This means that x has r1 Jordan blocks of size s1, and r2 Jordan blocks of size
s2, etc.) The vector space V = k

n can be decomposed as

V = V (1) ⊕ V (2) ⊕ · · · ⊕ V (k)

where each V (i) is preserved by x, and x acts on V (i) by Jordan blocks of size si .
(Thus, dimV (i) = risi .) When G is Spn or SOn, the nondegenerate bilinear form on
V restricts to a nondegenerate form of the same type on each V (i).

The description of (Gx
red)

◦ in [12, Chapter 3] shows that it factors through the
appropriate embedding below:

GL(V (1)) × · · · × GL(V (k)) ↪→ GL(V )

Sp(V (1)) × · · · × Sp(V (k)) ↪→ Sp(V )

SO(V (1)) × · · · × SO(V (k)) ↪→ SO(V )

All three of these embeddings give Donkin pairs: in the case of GLn, it is an inclusion
of a Levi subgroup (Proposition 2.4(2)); and in the case of Spn or SOn, it falls under
Proposition 2.4(4).

We can therefore reduce to the case where x has Jordan blocks of a single size.
Suppose from now on that s = [sr ]. Then, there exists a vector space isomorphism

V ∼= V1 ⊗ V2

where dimV1 = r and dimV2 = s, and such that x corresponds to idV1 ⊗ N , where
N : V2 → V2 is a nilpotent operator with a single Jordan block (of size s).
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Suppose now that G = GL(V ). Then, according to [12, Proposition 3.8], we have
(Gx

red)
◦ ∼= GL(V1). Choose a basis {v1, . . . , vs} for V2. The embedding of (Gx

red)
◦ in

G factors as

GL(V1) ↪→ GL(V1 ⊗ v1) × · · · × GL(V1 ⊗ vs) ↪→ GL(V ).

The first map above is a diagonal embedding (Proposition 2.4(1)), and the second is
the inclusion of a Levi subgroup (Proposition 2.4(2)), so (G, (Gx

red)
◦) is a Donkin

pair in this case.
Next, suppose G = Sp(V ) or SO(V ). According to [12, Proposition 3.10], both

V1 and V2 can be equipped with nondegenerate bilinear forms B1 and B2 such that
B1⊗B2 agrees with the given bilinear form on V . Moreover, (Gx

red)
◦ = Aut(V1, B1)

◦.
We are thus in the setting of Proposition 2.4(7).

3.3 Proof for E8

When x is distinguished, (Gx
red)

◦ is the trivial group; and when x = 0, (Gx
red)

◦ = G.
For all remaining nilpotent orbits, we rely on the very detailed case-by-case descrip-
tions of (Gx

red)
◦ given in [12, Chapter 15]. In each case, that description shows

that the embedding (Gx
red)

◦ ↪→ G factors as a composition of various cases from
Proposition 2.4.

These factorizations are shown in Tables 1 and 2. Here is a brief explanation of
the notation used in these tables. Nearly all groups mentioned are semisimple, and
they are recorded in the tables by their root systems. However, the notation “T1”
indicates a 1-dimensional torus; this is used to indicate a reductive group with a 1-
dimensional center. In a few cases, nonstandard names for root systems—such as B1
or C1, in place of A1—are used when it is convenient to emphasize the role of a
certain classical group. The notation D1 (meant to evoke SO2) is occasionally used
as a synonym for T1.

Finally, we remark that there are two orbits—labeled by A6 and by A6A1—where
the information given in [12] is insufficient to finish the argument. In each of these
cases, (Gx

red)
◦ contains a copy of A1 that is the centralizer of a certain copy of G2

inside E7, and [12] does not give further details on this embedding A1 ↪→ E7. How-
ever, according to [15, §3.12], this A1 is in fact (the derived subgroup of) a Levi
subgroup of E7.

3.4 Proof for E7 and E6

Recall that if H ⊆ G is a closed subgroup, then there is a natural embeddingNH ↪→
NG of nilpotent cones. We also recall that a subgroup L ⊆ G is a Levi subgroup if
and only if it is the centralizer of a torus S ⊂ G.

Lemma 3.1 Let G be a reductive group, S ⊆ G a torus with L = CG(S) a Levi
subgroup, and suppose x ∈ NL ⊆ NG is such that S ⊆ (Gx

red)
◦. Then, (Lx

red)
◦ is a

Levi subgroup of (Gx
red)

◦.
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Table 1 Nilpotent centralizers in E8

Orbit (Gx
red)

◦

A1 E7
2

↪→ E8

A2
1 B6

2
↪→ B1B6

4
↪→ D8

5
↪→ E8

A2 E6
2

↪→ A2E6
5

↪→ E8

A3
1 A1F4

3
↪→ A1E6

2
↪→ E8

A2A1 A5
2

↪→ A1A2A5
5

↪→ E8

A3 B5
2

↪→ B2B5
4

↪→ D8
5

↪→ E8

A4
1 C4

7
↪→ D8

5
↪→ E8

A2A2
1 A1B3 = B1B3

1
↪→ B1B1B1B3

4
↪→ D8

5
↪→ E8

A2
2 G2G2

3
↪→ D4D4

4
↪→ D8

5
↪→ E8

A3A1 A1B3 = C1B3
7

↪→ D2B3
2

↪→ B2D2B3
4

↪→ D8
5

↪→ E8

A4 A4
2

↪→ E8

D4 F4
3

↪→ E6
2

↪→ E8

D4(a1) D4
2

↪→ E8

A2A3
1 A1G2

6
↪→ A1A6

2
↪→ A1E7

5
↪→ E8

A2
2A1 A1G2

2
↪→ G2G2

3
↪→ D4D4

4
↪→ D8

5
↪→ E8

A3A2
1 A1B2 = B1C2

7
↪→ B1D4

2
↪→ B1D4B2

4
↪→ D8

5
↪→ E8

A3A2 B2T1 = B2D1
7

↪→ B2D3
2

↪→ B2D3B2
4

↪→ D8
5

↪→ E8

A4A1 A2T1
2

↪→ A4A4
5

↪→ E8

D4A1 C3
2

↪→ F4
3

↪→ E6
2

↪→ E8

D4(a1)A1 A3
1

2
↪→ E8

A5 A1G2
3

↪→ A1D4
2

↪→ E8

D5 B3
2

↪→ B3B4
4

↪→ D8
5

↪→ E8

D5(a1) A3
2

↪→ A3D5
5

↪→ E8

A2
2A

2
1 B2

7
↪→ B7

4
↪→ D8

5
↪→ E8

A3A2A1 A1A1
1

↪→ A1(A1A1)
6

↪→ A1(A4A2)
2

↪→ A1E7
5

↪→ E8

A2
3 C2

7
↪→ D8

5
↪→ E8

A4A2
1 A1T1

1
↪→ A1A1T1

2
↪→ A4

2
↪→ E8

A4A2 A1A1
1

↪→ A1(A1A1A1)
6

↪→ A1(A1A2A3)
2

↪→ A1E7
5

↪→ E8

D4A2 Ã2
2

↪→ F4
3

↪→ E6
2

↪→ E8

Proof We clearly have CGx (S) = Gx ∩ L = Lx . Moreover, the identity component
(Lx)◦ must be contained in (Gx)◦ ∩ L = C(Gx)◦(S). But since the centralizer of a
torus in a connected group is connected, we actually have

(Lx)◦ = C(Gx)◦(S).
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Table 2 Nilpotent centralizers
in E8, continued Orbit (Gx

red)
◦

D4(a1)A2 A2
6

↪→ A7
2

↪→ E8

A5A1 A1A1
2

↪→ A1G2
3

↪→ A1D4
2

↪→ A1E7
5

↪→ E8

D5A1 A1A1 = B1C1
7

↪→ B1D2
2

↪→ B4B1D2
4

↪→ D8
5

↪→ E8

D5(a1)A1 A1A1
6

↪→ A1Ã2
2

↪→ A1F4
3

↪→ A1E6
2

↪→ A1E7
5

↪→ E8

A6 A2
1

2
↪→ A1E7

5
↪→ E8

D6 B2
2

↪→ B2B5
4

↪→ D8
5

↪→ E8

D6(a1) A1A1 = D2
2

↪→ D2D6
4

↪→ D8
5

↪→ E8

D6(a2) A1A1 = D2
2

↪→ D2D6
4

↪→ D8
5

↪→ E8

E6 G2
3

↪→ D4
2

↪→ E8

E6(a1) A2
2

↪→ A2E6
5

↪→ E8

E6(a3) G2
3

↪→ D4
2

↪→ E8

A4A2A1 A1
1

↪→ A1A1A1
6

↪→ A1A2A3
2

↪→ E7
2

↪→ E8

A4A3 A1 = B1
7

↪→ B7
4

↪→ D8
5

↪→ E8

D5A2 T1

D5(a1)A2 A1 = B1
7

↪→ B4
2

↪→ B4B3
4

↪→ D8
5

↪→ E8

A6A1 A1
2

↪→ E8

E6A1 A1
2

↪→ G2
3

↪→ D4
2

↪→ E8

E6(a1)A1 T1

E6(a3)A1 A1
2

↪→ G2
3

↪→ D4
2

↪→ E8

A7 A1 = C1
7

↪→ D8
5

↪→ E8

D7 A1 = B1
2

↪→ B1B6
4

↪→ D8
5

↪→ E8

D7(a1) T1

D7(a2) T1

E7 A1
2

↪→ A1E7
5

↪→ E8

E7(a1) A1
2

↪→ A1E7
5

↪→ E8

E7(a2) A1
2

↪→ A1E7
5

↪→ E8

E7(a3) A1
2

↪→ A1E7
5

↪→ E8

E7(a4) A1
2

↪→ A1E7
5

↪→ E8

E7(a5) A1
2

↪→ A1E7
5

↪→ E8

Next, consider the semidirect product decomposition (Gx)◦ = (Gx
red)

◦
� Gx

unip. Let
g ∈ Gx , and write it as g = (gr , gu), with gr ∈ (Gx

red)
◦, gu ∈ Gx

unip. If g centralizes
S, then gr and gu must individually centralize S as well. In other words,

C(Gx)◦(S) = C(Gx
red)

◦(S) � CGx
unip

(S). (3.1)

Here, C(Gx
red)

◦(S) is a connected reductive group, and CGx
unip

(S) is a normal unipo-
tent group (which must be connected, because C(Gx)◦(S) is connected). We conclude
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that Eq. 3.1 is a Levi decomposition of (Lx)◦. In particular, we see that (Lx
red)

◦ =
C(Gx

red)
◦(S).

We now let G denote the simple, simply connected group of type E8. If G0
is the simple, simply connected group of type E7 or E6, then as explained in
[12, Lemma 11.14], there is a simple subgroup H of type A1 or A2, respectively,
such that G0 = CG(H). Moreover, by [12, 16.1.2], there exists a torus S ⊂ H ⊂ G

such that G0 is the derived subgroup of the Levi subgroup L = CG(S). Explicitly,
let α1, . . . , α8 be the simple roots for G, labelled as in [4], and let α0 be the highest
root. The groups H and G0 can be described as follows.

(3.2)

Now it is explained in [12, 16.1.1], that if x ∈ NG0 = NL ⊂ NG, then the
subgroup (Gx

red)
◦ must contain a conjugate of H . Without loss of generality we can

assume that x is chosen so that H ⊆ (Gx
red)

◦. Hence, we can also assume that S ⊆
(Gx

red)
◦. Thus, by Lemma 3.1, (Lx

red)
◦ is a Levi subgroup of (Gx

red)
◦ and we also have

(Lx
red)

◦′ ⊆ ((Gx
0)red)

◦ ⊆ (Lx
red)

◦.

By Lemma 2.3, Proposition 2.4(2) and Section 3.3 we deduce that (G, (Gx
0)red))

◦) is
a Donkin pair.

Finally, to show that (G0, ((G
x
0)red)

◦) is a Donkin pair, it will be sufficient to show
that every fundamental tilting module for G0 is a summand of the restriction of a
tilting module forG. In more detail, let π : XG � XG0 be the map on weight lattices.
It is well known that if λ is a dominant weight for G, then the G0-tilting module
TG0(π(λ)) occurs as a direct summand of ResGG0

(TG(λ)). So it is enough to show
that every fundamental weight for G0 occurs as π(λ) for some dominant G-weight
λ. Let 	1, . . . , 	8 be the fundamental weights for G. A short calculation with the
table (3.2) shows that π(	1), . . . , π(	7) are precisely the fundamental weights for
E7, and that π(	1), . . . , π(	6) are the fundamental weights for E6.

Remark 3.2 One can also prove the theorem for E7 and E6 directly by writing down
the embedding of each centralizer, as we did for E8. Here is a brief summary of
how to carry out this approach. Let G be of type E8, and let G0 and H be as in the
discussion above. As explained in [12, §16.1], we have

((Gx
0)red)

◦ = C(Gx
red)

◦(H).

The computation of C(Gx
red)

◦(H) is explained in [12, §16.1.4], and the results are
recorded in Tables 3, 4, and 5, following the same notational conventions as in the E8
case.
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Table 3 Nilpotent centralizers in E7

Orbit (Gx
red)

◦

A1 D6
2

↪→ E7

A2
1 A1B4 = B1B4

4
↪→ D6

2
↪→ E7

A2 A5
2

↪→ E7

A2A1 A3T1
2

↪→ E7

(A3
1)

′ F4
3

↪→ E6
2

↪→ E7

(A3
1)

′′ A1C3
3

↪→ A1A5
2

↪→ E7

A3 A1B3 = B1B3
4

↪→ D5
2

↪→ E7

A4
1 C3

7
↪→ D6

2
↪→ E7

A2A2
1 A1A1A1 = B1A1B1

7
↪→ B4A1B1

4
↪→ A1D6

5
↪→ E7

A2
2 A1G2

3
↪→ A1D4

1
↪→ A1A1A1D4 = A1D2D4

4
↪→ A1D6

5
↪→ E7

A4 A2T1
2

↪→ E7

D4 C3
3

↪→ A5
2

↪→ E7

D4(a1) A1A1A1
2

↪→ E7

A2A3
1 G2

6
↪→ A6

2
↪→ E7

A2
2A1 A1A1

1
↪→ (A1A1A1)G2

3
↪→ A1D2D4

4
↪→ A1D6

5
↪→ E7

(A3A1)
′ B3

4
↪→ D4

2
↪→ E7

(A3A1)
′′ A1A1A1 = C1A1B1

7
↪→ D2A1B1

4
↪→ D2A1D2

4
↪→ A1D4

2
↪→ E7

A3A2
1 A1A1

1
↪→ A1(A1A1)

2
↪→ A1A3

2
↪→ E7

A3A2 A1T1 = B1D1
7

↪→ B1D3
2

↪→ B1D3B1
4

↪→ D6
2

↪→ E7

A4A1 T2

D4A1 C2
3

↪→ A3
2

↪→ E7

D4(a1)A1 A1A1
2

↪→ E7

(A5)
′ G2

3
↪→ D4

2
↪→ E7

(A5)
′′ A1A1

1
↪→ A1(A1A1A1)

2
↪→ E7

D5 A1A1
1

↪→ A1(A1A1)
2

↪→ E7

D5(a1) A1T1
2

↪→ E7

A3A2A1 A1
1

↪→ A1A1
6

↪→ A4A2
2

↪→ E7

A4A2 A1
1

↪→ A1A1A2
6

↪→ A1A2A3
2

↪→ E7

A5A1 A1
2

↪→ G2
3

↪→ D4
2

↪→ E7

3.5 Proof for F4

Let G be the simple, simply connected group of type E8. Then, [12, Lemma 11.7]
implies that G contains a simple subgroup H of type G2, and that its centralizer
G0 = CG(H) is a simple group of type F4. The embeddings of centralizers of
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Table 4 Nilpotent centralizers
in E7, continued Orbit (Gx

red)
◦

D5A1 A1
1

↪→ A1A1
2

↪→ E7

D5(a1)A1 A1
6

↪→ Ã2
2

↪→ F4
3

↪→ E6
2

↪→ E7

A6 A1
2

↪→ E7

D6 A1
1

↪→ A1A1
2

↪→ E7

D6(a1) A1
2

↪→ E7

D6(a2) A1
2

↪→ E7

E6 A1
1

↪→ A1A1A1
2

↪→ E7

E6(a1) T1

E6(a3) A1
1

↪→ A1A1A1
2

↪→ E7

nilpotent elements for G0 = F4 can then be computed using the method explained
in Remark 3.2. One caveat is that the name (i.e., the Bala–Carter label) of a nilpo-
tent orbit usually changes when passing from F4 to E8. The correspondence between
these names is given in [12, Proposition 16.10].

Table 5 Nilpotent centralizers
in E6 Orbit (Gx

red)
◦

A1 A5
2

↪→ E6

A2
1 B3T1

4
↪→ D4T1

2
↪→ E6

A2 A2A2
2

↪→ E6

A3
1 A2A1

1
↪→ (A2A2)A1

2
↪→ E6

A2A1 A2T1
2

↪→ E6

A3 B2T1
4

↪→ D3T1
2

↪→ E6

A2A2
1 A1T1 = B1T1

7
↪→ B4T1

4
↪→ D5T1

2
↪→ E6

A2
2 G2

3
↪→ D4

2
↪→ E6

A3A1 A1T1 = C1T1
7

↪→ D2T1
2

↪→ E6

A4 A1T1
2

↪→ E6

D4 A2
1

↪→ A2A2
2

↪→ E6

D4(a1) T2

A2
2A1 A1

1
↪→ A1A1A1

2
↪→ E6

A4A1 T1

A5 A1
2

↪→ E6

D5 T1

D5(a1) T1
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Table 6 Nilpotent centralizers
in F4 Orbit (Gx

red)
◦

A1 C3
2

↪→ F4

Ã1 A3
2

↪→ A3Ã1
5

↪→ F4

A1Ã1 A1Ã1
6

↪→ A1Ã2
2

↪→ F4

A2 Ã2
2

↪→ F4

Ã2 G2
3

↪→ D4
4

↪→ B4
5

↪→ F4

B2 A1A1
2

↪→ B4
5

↪→ F4

A2Ã1 Ã1
2

↪→ F4

Ã2A1 A1
2

↪→ G2
3

↪→ D4
4

↪→ B4
5

↪→ F4

B3 A1
6

↪→ Ã2
2

↪→ F4

C3 A1
2

↪→ F4

C3(a1) A1
2

↪→ F4

We remark that in some cases, the book [12] does not quite give enough details
about embeddings of subgroups to establish our result, but in these cases, the relevant
details can be found in [15, §3.16]. Here is an example illustrating this. The F4-orbit
labelled Ã1 corresponds (by [12, Proposition 16.10]) to the E8-orbit labelled A2

1. Let
x be an element of this orbit. We have see that in E8, (Gx

red)
◦ = B6, which embeds in

the Levi subgroup D7 ⊂ E8. The group (Gx
red)

◦ has a subgroup of type D3B3, which
embeds in D3D4 ⊂ D7 ⊂ D8. The explicit construction of H = G2 in [15, §3.16]
shows that it is contained in the second factor in each of D3B3 ⊂ D3D4. It follows that
D3 = A3 is contained in ((Gx

0)red)
◦ = C(Gx

red)
◦(H), and then a dimension calculation

shows that in fact ((Gx
0)red)

◦ = A3.
The results of these calculations are recorded in Table 6.

3.6 Proof for G2

In this case, there are only two nilpotent orbits that are neither distinguished nor triv-
ial. From the classification, both of these orbits meet the maximal reductive subgroup
A1Ã1 ⊂ G2, and an argument explained in [12, §16.1.4] shows that if x belongs to
either of these orbits, then the reductive part of its centralizer in A1Ã1 is equal to the
reductive part of its centralizer in G2. See Table 7.

Table 7 Nilpotent centralizers
in G2 Orbit (Gx

red)
◦

A1 Ã1
2

↪→ A1Ã1
5

↪→ G2

Ã1 A1
2

↪→ A1Ã1
5

↪→ G2
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