

Nilpotent Centralizers and Good Filtrations

Pramod N. Achar¹ · William Hardesty²

Received: 21 July 2021 / Accepted: 14 February 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Let G be a connected reductive group over an algebraically closed field \mathbb{k} . Under mild restrictions on the characteristic of \mathbb{k} , we show that any G -module with a good filtration also has a good filtration as a module for the reductive part of the centralizer of a nilpotent element x in its Lie algebra.

1 Introduction

Let G be a connected reductive group over an algebraically closed field \mathbb{k} of characteristic $p > 0$, and let H be a connected reductive subgroup. Recall that (G, H) is said to be a *Donkin pair* or a *good filtration pair* if every G -module with a good filtration still has a good filtration when regarded as an H -module.

Now let x be a nilpotent element in the Lie algebra of G , and let $G^x \subset G$ be its stabilizer. If p is good for G , then the theory of *associated cocharacters* is available, and this gives rise to a decomposition

$$G^x = G_{\text{red}}^x \ltimes G_{\text{unip}}^x$$

where G_{unip}^x is a connected unipotent group, and G_{red}^x is a (possibly disconnected) group whose identity component $(G_{\text{red}}^x)^\circ$ is reductive (cf. [11, 5.10]). The main result of this paper is the following.

Theorem 1.1 *Let G be a connected reductive group over an algebraically closed field \mathbb{k} of good characteristic. For any nilpotent element x in its Lie algebra, $(G, (G_{\text{red}}^x)^\circ)$ is a Donkin pair.*

✉ Pramod N. Achar
pramod@math.lsu.edu

William Hardesty
hardes11@gmail.com

¹ Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

² School of Mathematics and Statistics, University of Sydney, Camperdown, NSW 2006, USA

Now suppose that $H \subset G$ is a possibly *disconnected* reductive subgroup, i.e., a group whose identity component H° is reductive. If the characteristic of \mathbb{k} does not divide the order of the finite group H/H° , then the category of finite-dimensional H -modules is a highest-weight category, as shown in [2]. In particular, it makes sense to speak of good filtrations for H -modules, and so the definition of “Donkin pair” makes sense for (G, H) .

In order to apply this notion in the case where $H = G_{\text{red}}^x$, we must impose a slightly stronger condition on p : we require it to be *pretty good* in the sense of [9, Definition 2.11]. (In general, this condition is intermediate between “good” and “very good.” It coincides with “very good” for semisimple simply connected groups, whereas for GL_n , all primes are pretty good.) This is equivalent to requiring G to be *standard* in the sense of [14, §4]. It follows from [8, Theorem 1.8] and [3, Lemma 2.1] that when p is pretty good for G , it does not divide the order of $G^x/(G^x)^\circ \cong G_{\text{red}}^x/(G_{\text{red}}^x)^\circ$ for any nilpotent element x . As an immediate consequence of Theorem 1.1 and Lemma 2.2 below, we have the following result.

Corollary 1.2 *Let G be a connected reductive group over an algebraically closed field \mathbb{k} of pretty good characteristic. For any nilpotent element x in its Lie algebra, (G, G_{red}^x) is a Donkin pair.*

This corollary plays a key role in the proof of the Humphreys conjecture [1].

The paper is organized as follows: Section 2 contains some general lemmas on Donkin pairs, along with a lengthy list of examples (some previously known, and some new). Section 3 gives the proof of Theorem 1.1. The proof consists of a reduction to the quasi-simple case, followed by case-by-case arguments.

Remark 1.3 It would, of course, be desirable to have a uniform proof of Theorem 1.1 that avoids case-by-case arguments, perhaps using the method of Frobenius splittings. Thanks to a fundamental result of Mathieu [13], Theorem 1.1 would come down to showing that the flag variety of G admits a $(G_{\text{red}}^x)^\circ$ -canonical splitting. According to a result of van der Kallen [16], this geometric condition is equivalent to a certain linear-algebraic condition (called the “pairing condition”) on the Steinberg modules for G and $(G_{\text{red}}^x)^\circ$. Unfortunately, for the moment, the pairing condition for these groups seems to be out of reach.

2 Preliminaries

2.1 General Lemmas on Donkin Pairs

We begin with three easy statements about good filtrations.

Lemma 2.1 *Let H be a possibly disconnected reductive group over an algebraically closed field \mathbb{k} . Assume that the characteristic of \mathbb{k} does not divide $|H/H^\circ|$. An H -module M has a good filtration if and only if it has a good filtration as an H° -module.*

Proof According to [2, Eq. (3.3)], any costandard H -module regarded as an H° -module is a direct sum of costandard H° -modules. Hence, any H -module with a good filtration has a good filtration as an H° -module.

For the opposite implication, suppose M is an H -module that has a good filtration as an H° -module. To show that it has a good filtration as an H -module, we must show that $\text{Ext}_H^1(-, M)$ vanishes on standard H -modules. As explained in the proof of [2, Lemma 2.18], we have

$$\text{Ext}_H^1(-, M) \cong (\text{Ext}_{H^\circ}^1(-, M))^{H/H^\circ},$$

and the right-hand side clearly vanishes on standard H -modules (using [2, Eq. (3.3)] again). \square

Lemma 2.2 *Let G be a connected, reductive group, and let $H \subset G$ be a possibly disconnected reductive subgroup. Assume that the characteristic of \mathbb{k} does not divide $|H/H^\circ|$. Then, (G, H) is a Donkin pair if and only if (G, H°) is a Donkin pair.*

Proof This is an immediate consequence of Lemma 2.1. \square

Lemma 2.3 *Let G be a connected, reductive group, and let G' be its derived subgroup. Let $H \subset G$ be a connected, reductive subgroup. Then, (G, H) is a Donkin pair if and only if $(G', (G' \cap H)^\circ)$ is a Donkin pair.*

Proof Let $T \subset B \subset G$ denote a maximal torus and Borel subgroup, respectively, and suppose that G'' is any closed connected subgroup satisfying $G' \subseteq G'' \subseteq G$. Now let $T'' = G'' \cap T$, $B'' = G'' \cap B$, and observe that by [10, I.6.14(1)], we have

$$\text{Res}_{G''}^G \text{Ind}_B^G M \cong \text{Ind}_{B''}^{G''} \text{Res}_{B''}^B M \quad (2.1)$$

for any B -module M . Thus, for any dominant weight $\lambda \in \mathbf{X}(T)^+$ where we set $\lambda'' = \text{Res}_{T''}^T(\lambda) \in \mathbf{X}(T'')^+$, it follows that $\text{Res}_{G''}^G \text{Ind}_B^G(\lambda) \cong \text{Ind}_{B''}^{G''}(\lambda'')$. Thus, (G, G'') is always a Donkin pair. Furthermore, if we let $H' \subseteq H$ be the derived subgroup and $H'' = (G' \cap H)^\circ$, then $H' \subseteq H'' \subseteq H$. We can therefore apply [10, I.6.14(1)] again to show that (H, H'') is a Donkin pair.

Now suppose (G, H) is a Donkin pair. In this case, it immediately follows from above that (G, H'') is a Donkin pair. Moreover, if we let $T' = G' \cap T$ and $B' = G' \cap B$, then Eq. 2.1 actually implies that for any $\lambda' \in \mathbf{X}(T')^+$, there exists $\lambda \in \mathbf{X}(T)^+$ with $\lambda' = \text{Res}_{T'}^T(\lambda)$ such that

$$\text{Res}_{G'}^G \text{Ind}_B^G(\lambda) \cong \text{Ind}_{B'}^{G'}(\lambda').$$

In particular,

$$\text{Res}_{H''}^{G'} \text{Ind}_{B'}^{G'}(\lambda') \cong \text{Res}_{H''}^G \text{Ind}_B^G(\lambda)$$

has a good filtration as an H'' -module, and hence, (G', H'') is also a Donkin pair.

Conversely, suppose that (G', H'') is a Donkin pair. We can first deduce that (G, H'') is a Donkin pair from the fact that (G, G') is a Donkin pair. Also, by similar

arguments as above we can see that for any $\mu'' \in \mathbf{X}(H'' \cap T)^+$, there exists some $\mu \in \mathbf{X}(H \cap T)^+$ with $\mu'' = \text{Res}_{H'' \cap T}^{H \cap T}(\mu)$, such that

$$\text{Res}_{H''}^H \text{Ind}_{H \cap B}^H(\mu) \cong \text{Ind}_{H'' \cap B}^{H''}(\mu'').$$

This implies that an H -module M has a good filtration if and only if the H'' -module $\text{Res}_{H''}^H M$ has a good filtration. Therefore, (G, H) is also a Donkin pair. \square

2.2 Examples of Donkin Pairs

The following proposition collects a number of known examples of Donkin pairs. The last five parts of the proposition deal with various examples where G is quasi-simple and simply connected. For pairs of the form (Spin_n, H) , it is usually more convenient to describe the image H' of H under the map $\pi : \text{Spin}_n \rightarrow \text{SO}_n$. Of course, H can be recovered from H' , as the identity component of $\pi^{-1}(H)$. We use the notation that

$$(\text{SO}_n, H')^\sim = (\text{Spin}_n, H).$$

It should be noted that the following proposition does not exhaust the known examples in the literature: for instance, according to [5], there is a Donkin pair of type (B_3, G_2) , but this example is not needed in the present paper.

Proposition 2.4 *Let G be a connected, reductive group, and let $H \subset G$ be a closed, connected, reductive subgroup. If the pair (G, H) satisfies one of the following conditions, then it is a Donkin pair.*

- (1) $G = H \times \cdots \times H$, and $H \hookrightarrow G$ is the diagonal embedding.
- (2) H is a Levi subgroup of G .

For the remaining parts, assume that G is quasi-simple and simply connected.

- (3) G is of simply laced type, and H is the fixed-point set of a diagram automorphism of G :

$$\begin{aligned} (A_{2n-1}, C_n) &= (\text{SL}_{2n}, \text{Sp}_{2n}) & (D_4, G_2) &= (\text{Spin}_8, G_2) \\ (D_n, B_{n-1}) &= (\text{SO}_{2n}, \text{SO}_{2n-1})^\sim & (E_6, F_4) \end{aligned}$$

- (4) Certain embeddings of classical groups:

$$\begin{aligned} \left. \begin{aligned} (A_{2n}, B_n) \\ (A_{2n-1}, D_n) \end{aligned} \right\} &= (\text{SL}_r, \text{SO}_r) \quad (p > 2) \\ (A_{2n-1}, C_n) &= (\text{SL}_{2n}, \text{Sp}_{2n}) \\ \left. \begin{aligned} (B_{n+m}, B_n D_m) \\ (D_{n+m}, D_n D_m) \\ (D_{n+m+1}, B_n B_m) \end{aligned} \right\} &= (\text{SO}_{r+s}, \text{SO}_r \times \text{SO}_s)^\sim \quad (p > 2) \\ (C_{n+m}, C_n C_m) &= (\text{Sp}_{2n+2m}, \text{Sp}_{2n} \times \text{Sp}_{2m}) \end{aligned}$$

(5) *Certain maximal-rank subgroups of exceptional groups:*

$$\begin{array}{ll}
 (E_8, D_8) \quad (p > 2) & (E_8, A_2 E_6) \quad (p > 5) \\
 (E_8, A_1 E_7) \quad (p > 2) & (E_8, A_1 A_2 A_5) \quad (p > 5) \\
 (E_7, A_1 D_6) \quad (p > 2) & (E_8, A_3 D_5) \quad (p > 5) \\
 (F_4, B_4) \quad (p > 2) & (E_8, A_4 A_4) \quad (p > 5) \\
 & (F_4, A_3 A_1) \quad (p > 3) \\
 & (G_2, A_1 A_1)
 \end{array}$$

(6) *Certain restricted irreducible representations:*

$$\begin{array}{ll}
 (A_n, A_1) \quad (p > n) \\
 (A_7, A_2) \quad (p > 3) \\
 (A_6, G_2) \quad (p > 3)
 \end{array}$$

(7) *Tensor product embeddings of classical groups ($p > 2$):*

$$\begin{array}{ll}
 \left. \begin{array}{l} (C_{(2n+1)m}, B_n) \\ (C_{2nm}, D_n) \end{array} \right\} = (Sp_{2rm}, SO_r) & \left. \begin{array}{l} (B_{n+m+2nm}, B_n) \\ (D_{(2n+1)m}, B_n) \\ (D_{nm}, D_n) \end{array} \right\} = (SO_{rs}, SO_r)^\sim \\
 (D_{2nm}, C_n) = (SO_{4nm}, Sp_{2n})^\sim & (C_{nm}, C_n) = (Sp_{2nm}, Sp_{2n})
 \end{array}$$

The details of the embeddings in parts (6) and (7) will be described below.

Proofs for parts (2)–(5) Parts (1) and (2) are due to Mathieu [13] (following earlier work of Donkin [6] that covered most cases). Parts (3) and (4), with the exception of the pair (E_6, F_4) , are due to Brundan [5]. The pair $(G_2, A_1 A_1)$ in part (5) is also due to Brundan [5]. The pair (E_6, F_4) and the pairs in the first column of part (5) are due to van der Kallen [16]. The pairs in the second column of part (5) are due to Hague–McNinch [7]. \square

Proof of part (6) Each pair $(A_n, H) = (SL_{n+1}, H)$ in this statement arises from some $(n+1)$ -dimensional representation of H . Call that representation V . The representations V are as follows:

- (A_n, A_1) : the dual Weyl module for SL_2 of highest weight n
- (A_7, A_2) : the adjoint representation of PGL_3
- (A_6, G_2) : the 7-dimensional dual Weyl module whose highest weight is the short dominant root

According to [5, Lemma 3.2(iv)] or [7, §3.2.6], to prove the claim, we must show that each exterior algebra $\bigwedge^\bullet V$ has a good filtration as an H -module. For (A_n, A_1) , this is shown in [7, §3.4.3]. For (A_7, A_2) and (A_6, G_2) , explicit calculations using the LiE software package [17] show that the character of $\bigwedge^\bullet V$ is the sum of characters of dual Weyl modules whose highest weights are restricted weights when $p > 3$. \square

Proof of part (7) To define the group embeddings in this statement, we will assume that G is either Sp_{2n} or SO_n . However, in the latter case, the proof that (G, H) is a Donkin pair will also imply the corresponding statement for $G = \text{Spin}_n$.

Let V_1 be a vector space equipped with a nondegenerate bilinear form B_1 satisfying $B_1(v, w) = \varepsilon_1 B_1(w, v)$, where $\varepsilon_1 = \pm 1$, and let $\text{Aut}(V_1, B_1)^\circ$ be the connected group of linear automorphisms of V_1 that preserve B_1 . This group is either $\text{SO}_{\dim V}$ or $\text{Sp}_{\dim V}$, depending on ε_1 . Let V_2 , B_2 , and ε_2 be another collection of similar data. Then, $B_1 \otimes B_2$ is a nondegenerate pairing on $V_1 \otimes V_2$, with sign $\varepsilon_1 \varepsilon_2$. We obtain an embedding

$$\text{Aut}(V_1, B_1)^\circ \times \text{Aut}(V_2, B_2)^\circ \hookrightarrow \text{Aut}(V_1 \otimes V_2, B_1 \otimes B_2)^\circ.$$

Now restrict to just one factor:

$$\text{Aut}(V_1, B_1)^\circ \hookrightarrow \text{Aut}(V_1 \otimes V_2, B_1 \otimes B_2)^\circ. \quad (2.2)$$

The four kinds of pairs listed in the statement are all instances of this embedding, depending on the signs ε_1 and ε_2 . We will now prove that

$$(G, H) = (\text{Aut}(V_1 \otimes V_2, B_1 \otimes B_2)^\circ, \text{Aut}(V_1, B_1)^\circ)$$

is a Donkin pair. Let $r = \dim V_1$ and $s = \dim V_2$.

Suppose first that $\varepsilon_2 = 1$. Then, the embedding (2.2) corresponds to either $(\text{SO}_{rs}, \text{SO}_r)$ or $(\text{Sp}_{rs}, \text{Sp}_r)$. In this case, V_2 admits an orthonormal basis x_1, \dots, x_s , where

$$B_2(x_i, x_j) = \delta_{ij}.$$

Then, the group $\text{Aut}(V_1, B_1)^\circ$ preserves each $V_1 \otimes x_i \subset V_1 \otimes V_2$. In this case, the embedding (2.2) can be factored as

$$\text{Aut}(V_1, B_1)^\circ \xrightarrow{1} \underbrace{\text{Aut}(V_1, B_1)^\circ \times \dots \times \text{Aut}(V_1, B_1)^\circ}_{s \text{ copies}} \xrightarrow{4} \text{Aut}(V_1 \otimes V_2, B_1 \otimes B_2)^\circ.$$

The first map is a diagonal embedding; it results in a Donkin pair by part (1) of the proposition. The second embedding gives a Donkin pair by part (4).

Next, suppose that $\varepsilon_2 = -1$, and assume for now that $\dim V_2 = 2$. Choose a basis $\{x, y\}$ for V_2 such that $B_2(x, y) = 1$. Then, $V_1 \otimes x$ and $V_1 \otimes y$ are both maximal isotropic subspaces of $V_1 \otimes V_2$. Define an action of $\text{GL}(V_1)$ on $V_1 \otimes V_2$ as follows:

$$\begin{aligned} g \cdot (v \otimes x) &= (gv) \otimes x, \\ g \cdot (v \otimes y) &= ((g^t)^{-1}v) \otimes y \end{aligned} \quad \text{for } g \in \text{GL}(V_1),$$

where g^t denotes the adjoint operator to g with respect to the nondegenerate form on V_1 . This action defines an embedding of $\text{GL}(V_1)$ in $\text{Aut}(V_1 \otimes V_2, B_1 \otimes B_2)^\circ$. In fact, it identifies $\text{GL}(V_1)$ with a Levi subgroup of $\text{Aut}(V_1 \otimes V_2, B_1 \otimes B_2)^\circ$. (This is the usual embedding of GL_r as a Levi subgroup in either SO_{2r} or Sp_{2r} .) The embedding (2.2) then factors as

$$\text{Aut}(V_1, B_1)^\circ \xrightarrow{4} \text{GL}(V_1) \xrightarrow{2} \text{Aut}(V_1 \otimes V_2, B_1 \otimes B_2)^\circ.$$

The first embedding gives a Donkin pair by part (4) of the proposition, and the second by part (2).

Finally, suppose $\varepsilon_2 = -1$ and $s = \dim V_2 > 2$. This dimension must still be even, say $s = 2m$. Choose a basis $x_1, \dots, x_m, y_1, \dots, y_m$ for V_2 such that

$$B_2(x_i, x_j) = B_2(y_i, y_j) = 0, \quad B_2(x_i, y_j) = \delta_{ij}.$$

Let $V_2^{(i)}$ be the 2-dimensional subspace spanned by x_i and y_i . Then, B_2 restricts to a nondegenerate symplectic form $B_2^{(i)}$ on $V_2^{(i)}$. We factor the map (2.2) as follows:

$$\begin{aligned} \text{Aut}(V_1, B_1)^\circ &\hookrightarrow \underbrace{\text{Aut}(V_1, B_1)^\circ \times \cdots \times \text{Aut}(V_1, B_1)^\circ}_{m \text{ copies}} \\ &\hookrightarrow \text{Aut}(V_1 \otimes V_2^{(1)}, B_1 \otimes B_2^{(1)})^\circ \times \cdots \times \text{Aut}(V_1 \otimes V_2^{(m)}, B_1 \otimes B_2^{(m)})^\circ \\ &\xrightarrow{4} \text{Aut}(V_1 \otimes V_2, B_1 \otimes B_2)^\circ. \end{aligned}$$

Here, the first arrow is a diagonal embedding (part (1) of the proposition); the second arrow is several instances of the embedding from the previous paragraph (since $\dim V_2^{(i)} = 2$); and the last arrow comes from part (4) of the proposition. We thus again obtain a Donkin pair. \square

3 Proof of Theorem 1.1

3.1 Reduction to the Quasi-Simple Case

Let G be an arbitrary connected reductive group in good characteristic. For any nilpotent element $x \in \text{Lie}(G)$, there exists a cocharacter $\tau : \mathbb{G}_m \rightarrow G$ and a Levi subgroup $L_\tau \subset G$ such that L_τ is the centralizer of the subgroup $\tau(\mathbb{G}_m)$, where $G_{\text{red}}^x = L_\tau \cap G^x$ (cf. [11, 5.10]).

If we let G' be the derived subgroup of G , then any nilpotent element x for G also satisfies $x \in \text{Lie}(G')$, and by [11, 5.9], $\tau(\mathbb{G}_m) \subset G' \subseteq G$. In particular, $(G')^x = G' \cap G^x$ and $L'_\tau = G' \cap L_\tau$ is the centralizer of $\tau(\mathbb{G}_m)$ in G' . Thus,

$$(G')_{\text{red}}^x = G' \cap G_{\text{red}}^x.$$

It now follows from Lemma 2.3 that $(G, (G_{\text{red}}^x)^\circ)$ is a Donkin pair if and only if $(G', ((G')_{\text{red}}^x)^\circ)$ is a Donkin pair. So we can reduce to the case where G is semisimple.

Suppose now that $\pi : G \rightarrow \bar{G}$ is an isogeny (i.e., surjective with finite central kernel), where G is an arbitrary connected reductive group in good characteristic. Then, by [11, Proposition 2.7(a)], π induces a bijection between the nilpotent elements in $\text{Lie}(G)$ and those in $\text{Lie}(\bar{G})$, and for any nilpotent element $x \in \text{Lie}(G)$, we have $\pi(G^x) = \bar{G}^{\pi(x)}$. Moreover, by similar arguments as above, we can also deduce that $\pi(G_{\text{red}}^x) = \bar{G}_{\text{red}}^{\pi(x)}$ (cf. [11, 5.9]). In particular,

$$\pi((G_{\text{red}}^x)^\circ) = \pi(G_{\text{red}}^x)^\circ = (\bar{G}_{\text{red}}^{\pi(x)})^\circ,$$

since any surjective morphism of algebraic groups takes the identity component to the identity component.

Let $H = (G_{\text{red}}^x)^\circ$ and $\bar{H} = (\bar{G}_{\text{red}}^{\pi(x)})^\circ$, and note that for any \bar{G} -module M , there is a natural isomorphism

$$\text{Res}_H^G \text{Res}_{\bar{G}}^{\bar{G}} M \cong \text{Res}_{\bar{H}}^{\bar{G}} \text{Res}_{\bar{G}}^{\bar{G}} M.$$

From this, we can see that if (G, H) is a Donkin pair, then (\bar{G}, \bar{H}) must also be a Donkin pair, since it is straightforward to check that a \bar{G} -module M (resp. an \bar{H} -module N) has a good filtration if and only if $\text{Res}_G^{\bar{G}} M$ (resp. $\text{Res}_H^{\bar{H}} N$) has a good filtration. This allows us to reduce to the case where G is semisimple and simply connected.

Finally, suppose that that $G = G_1 \times G_2$ where G_1, G_2 are connected reductive groups in good characteristic. Let $x = (x_1, x_2) \in \text{Lie}(G_1) \oplus \text{Lie}(G_2)$ be an arbitrary nilpotent element. We can immediately see that

$$(G_{\text{red}}^x)^\circ = ((G_1)_{\text{red}}^{x_1})^\circ \times ((G_2)_{\text{red}}^{x_2})^\circ.$$

It now follows from the general properties of induction for direct products (see [10, I.3.8]) that $(G, (G_{\text{red}}^x)^\circ)$ is a Donkin pair if and only if $(G_1, ((G_1)_{\text{red}}^{x_1})^\circ)$ and $(G_2, ((G_2)_{\text{red}}^{x_2})^\circ)$ are Donkin pairs. Therefore, by the well-known fact that any simply connected semisimple group is a direct product of quasi-simple simply connected groups, we can reduce the proof of Theorem 1.1 to the case where G is quasi-simple.

3.2 Proof for Classical Groups

We now prove the theorem for the groups GL_n , Sp_n , and Spin_n . For the last case, we will actually describe the group $(G_{\text{red}}^x)^\circ$ and its embedding in G for SO_n instead, but the proof of the Donkin pair property will also apply to Spin_n .

Let x be a nilpotent element in the Lie algebra of one of GL_n , Sp_n , or SO_n . Let $\mathbf{s} = [s_1^{r_1}, s_2^{r_2}, \dots, s_k^{r_k}]$ be the partition of n that records the sizes of the Jordan blocks of x . (This means that x has r_1 Jordan blocks of size s_1 , and r_2 Jordan blocks of size s_2 , etc.) The vector space $V = \mathbb{k}^n$ can be decomposed as

$$V = V^{(1)} \oplus V^{(2)} \oplus \dots \oplus V^{(k)}$$

where each $V^{(i)}$ is preserved by x , and x acts on $V^{(i)}$ by Jordan blocks of size s_i . (Thus, $\dim V^{(i)} = r_i s_i$.) When G is Sp_n or SO_n , the nondegenerate bilinear form on V restricts to a nondegenerate form of the same type on each $V^{(i)}$.

The description of $(G_{\text{red}}^x)^\circ$ in [12, Chapter 3] shows that it factors through the appropriate embedding below:

$$\begin{aligned} \text{GL}(V^{(1)}) \times \dots \times \text{GL}(V^{(k)}) &\hookrightarrow \text{GL}(V) \\ \text{Sp}(V^{(1)}) \times \dots \times \text{Sp}(V^{(k)}) &\hookrightarrow \text{Sp}(V) \\ \text{SO}(V^{(1)}) \times \dots \times \text{SO}(V^{(k)}) &\hookrightarrow \text{SO}(V) \end{aligned}$$

All three of these embeddings give Donkin pairs: in the case of GL_n , it is an inclusion of a Levi subgroup (Proposition 2.4(2)); and in the case of Sp_n or SO_n , it falls under Proposition 2.4(4).

We can therefore reduce to the case where x has Jordan blocks of a single size. Suppose from now on that $\mathbf{s} = [s^r]$. Then, there exists a vector space isomorphism

$$V \cong V_1 \otimes V_2$$

where $\dim V_1 = r$ and $\dim V_2 = s$, and such that x corresponds to $\text{id}_{V_1} \otimes N$, where $N : V_2 \rightarrow V_2$ is a nilpotent operator with a single Jordan block (of size s).

Suppose now that $G = \mathrm{GL}(V)$. Then, according to [12, Proposition 3.8], we have $(G_{\mathrm{red}}^x)^\circ \cong \mathrm{GL}(V_1)$. Choose a basis $\{v_1, \dots, v_s\}$ for V_2 . The embedding of $(G_{\mathrm{red}}^x)^\circ$ in G factors as

$$\mathrm{GL}(V_1) \hookrightarrow \mathrm{GL}(V_1 \otimes v_1) \times \cdots \times \mathrm{GL}(V_1 \otimes v_s) \hookrightarrow \mathrm{GL}(V).$$

The first map above is a diagonal embedding (Proposition 2.4(1)), and the second is the inclusion of a Levi subgroup (Proposition 2.4(2)), so $(G, (G_{\mathrm{red}}^x)^\circ)$ is a Donkin pair in this case.

Next, suppose $G = \mathrm{Sp}(V)$ or $\mathrm{SO}(V)$. According to [12, Proposition 3.10], both V_1 and V_2 can be equipped with nondegenerate bilinear forms B_1 and B_2 such that $B_1 \otimes B_2$ agrees with the given bilinear form on V . Moreover, $(G_{\mathrm{red}}^x)^\circ = \mathrm{Aut}(V_1, B_1)^\circ$. We are thus in the setting of Proposition 2.4(7).

3.3 Proof for E_8

When x is distinguished, $(G_{\mathrm{red}}^x)^\circ$ is the trivial group; and when $x = 0$, $(G_{\mathrm{red}}^x)^\circ = G$. For all remaining nilpotent orbits, we rely on the very detailed case-by-case descriptions of $(G_{\mathrm{red}}^x)^\circ$ given in [12, Chapter 15]. In each case, that description shows that the embedding $(G_{\mathrm{red}}^x)^\circ \hookrightarrow G$ factors as a composition of various cases from Proposition 2.4.

These factorizations are shown in Tables 1 and 2. Here is a brief explanation of the notation used in these tables. Nearly all groups mentioned are semisimple, and they are recorded in the tables by their root systems. However, the notation “ T_1 ” indicates a 1-dimensional torus; this is used to indicate a reductive group with a 1-dimensional center. In a few cases, nonstandard names for root systems—such as B_1 or C_1 , in place of A_1 —are used when it is convenient to emphasize the role of a certain classical group. The notation D_1 (meant to evoke SO_2) is occasionally used as a synonym for T_1 .

Finally, we remark that there are two orbits—labeled by A_6 and by $A_6 A_1$ —where the information given in [12] is insufficient to finish the argument. In each of these cases, $(G_{\mathrm{red}}^x)^\circ$ contains a copy of A_1 that is the centralizer of a certain copy of G_2 inside E_7 , and [12] does not give further details on this embedding $A_1 \hookrightarrow E_7$. However, according to [15, §3.12], this A_1 is in fact (the derived subgroup of) a Levi subgroup of E_7 .

3.4 Proof for E_7 and E_6

Recall that if $H \subseteq G$ is a closed subgroup, then there is a natural embedding $\mathcal{N}_H \hookrightarrow \mathcal{N}_G$ of nilpotent cones. We also recall that a subgroup $L \subseteq G$ is a Levi subgroup if and only if it is the centralizer of a torus $S \subset G$.

Lemma 3.1 *Let G be a reductive group, $S \subseteq G$ a torus with $L = C_G(S)$ a Levi subgroup, and suppose $x \in \mathcal{N}_L \subseteq \mathcal{N}_G$ is such that $S \subseteq (G_{\mathrm{red}}^x)^\circ$. Then, $(L_{\mathrm{red}}^x)^\circ$ is a Levi subgroup of $(G_{\mathrm{red}}^x)^\circ$.*

Table 1 Nilpotent centralizers in E_8

Orbit	$(G_{\text{red}}^x)^\circ$
A_1	$E_7 \xrightarrow{2} E_8$
A_1^2	$B_6 \xrightarrow{2} B_1 B_6 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
A_2	$E_6 \xrightarrow{2} A_2 E_6 \xrightarrow{5} E_8$
A_1^3	$A_1 F_4 \xrightarrow{3} A_1 E_6 \xrightarrow{2} E_8$
$A_2 A_1$	$A_5 \xrightarrow{2} A_1 A_2 A_5 \xrightarrow{5} E_8$
A_3	$B_5 \xrightarrow{2} B_2 B_5 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
A_1^4	$C_4 \xrightarrow{7} D_8 \xrightarrow{5} E_8$
$A_2 A_1^2$	$A_1 B_3 = B_1 B_3 \xrightarrow{1} B_1 B_1 B_1 B_3 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
A_2^2	$G_2 G_2 \xrightarrow{3} D_4 D_4 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$A_3 A_1$	$A_1 B_3 = C_1 B_3 \xrightarrow{7} D_2 B_3 \xrightarrow{2} B_2 D_2 B_3 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
A_4	$A_4 \xrightarrow{2} E_8$
D_4	$F_4 \xrightarrow{3} E_6 \xrightarrow{2} E_8$
$D_4(a_1)$	$D_4 \xrightarrow{2} E_8$
$A_2 A_1^3$	$A_1 G_2 \xrightarrow{6} A_1 A_6 \xrightarrow{2} A_1 E_7 \xrightarrow{5} E_8$
$A_2^2 A_1$	$A_1 G_2 \xrightarrow{2} G_2 G_2 \xrightarrow{3} D_4 D_4 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$A_3 A_1^2$	$A_1 B_2 = B_1 C_2 \xrightarrow{7} B_1 D_4 \xrightarrow{2} B_1 D_4 B_2 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$A_3 A_2$	$B_2 T_1 = B_2 D_1 \xrightarrow{7} B_2 D_3 \xrightarrow{2} B_2 D_3 B_2 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$A_4 A_1$	$A_2 T_1 \xrightarrow{2} A_4 A_4 \xrightarrow{5} E_8$
$D_4 A_1$	$C_3 \xrightarrow{2} F_4 \xrightarrow{3} E_6 \xrightarrow{2} E_8$
$D_4(a_1) A_1$	$A_1^3 \xrightarrow{2} E_8$
A_5	$A_1 G_2 \xrightarrow{3} A_1 D_4 \xrightarrow{2} E_8$
D_5	$B_3 \xrightarrow{2} B_3 B_4 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$D_5(a_1)$	$A_3 \xrightarrow{2} A_3 D_5 \xrightarrow{5} E_8$
$A_2^2 A_1^2$	$B_2 \xrightarrow{7} B_7 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$A_3 A_2 A_1$	$A_1 A_1 \xrightarrow{1} A_1 (A_1 A_1) \xrightarrow{6} A_1 (A_4 A_2) \xrightarrow{2} A_1 E_7 \xrightarrow{5} E_8$
A_3^2	$C_2 \xrightarrow{7} D_8 \xrightarrow{5} E_8$
$A_4 A_1^2$	$A_1 T_1 \xrightarrow{1} A_1 A_1 T_1 \xrightarrow{2} A_4 \xrightarrow{2} E_8$
$A_4 A_2$	$A_1 A_1 \xrightarrow{1} A_1 (A_1 A_1 A_1) \xrightarrow{6} A_1 (A_1 A_2 A_3) \xrightarrow{2} A_1 E_7 \xrightarrow{5} E_8$
$D_4 A_2$	$\tilde{A}_2 \xrightarrow{2} F_4 \xrightarrow{3} E_6 \xrightarrow{2} E_8$

Proof We clearly have $C_{G^x}(S) = G^x \cap L = L^x$. Moreover, the identity component $(L^x)^\circ$ must be contained in $(G^x)^\circ \cap L = C_{(G^x)^\circ}(S)$. But since the centralizer of a torus in a connected group is connected, we actually have

$$(L^x)^\circ = C_{(G^x)^\circ}(S).$$

Table 2 Nilpotent centralizers in E_8 , continued

Orbit	$(G_{\text{red}}^x)^\circ$
$D_4(a_1)A_2$	$A_2 \xrightarrow{6} A_7 \xrightarrow{2} E_8$
A_5A_1	$A_1A_1 \xrightarrow{2} A_1G_2 \xrightarrow{3} A_1D_4 \xrightarrow{2} A_1E_7 \xrightarrow{5} E_8$
D_5A_1	$A_1A_1 = B_1C_1 \xrightarrow{7} B_1D_2 \xrightarrow{2} B_4B_1D_2 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$D_5(a_1)A_1$	$A_1A_1 \xrightarrow{6} A_1\tilde{A}_2 \xrightarrow{2} A_1F_4 \xrightarrow{3} A_1E_6 \xrightarrow{2} A_1E_7 \xrightarrow{5} E_8$
A_6	$A_1^2 \xrightarrow{2} A_1E_7 \xrightarrow{5} E_8$
D_6	$B_2 \xrightarrow{2} B_2B_5 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$D_6(a_1)$	$A_1A_1 = D_2 \xrightarrow{2} D_2D_6 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$D_6(a_2)$	$A_1A_1 = D_2 \xrightarrow{2} D_2D_6 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
E_6	$G_2 \xrightarrow{3} D_4 \xrightarrow{2} E_8$
$E_6(a_1)$	$A_2 \xrightarrow{2} A_2E_6 \xrightarrow{5} E_8$
$E_6(a_3)$	$G_2 \xrightarrow{3} D_4 \xrightarrow{2} E_8$
$A_4A_2A_1$	$A_1 \xrightarrow{1} A_1A_1A_1 \xrightarrow{6} A_1A_2A_3 \xrightarrow{2} E_7 \xrightarrow{2} E_8$
A_4A_3	$A_1 = B_1 \xrightarrow{7} B_7 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
D_5A_2	T_1
$D_5(a_1)A_2$	$A_1 = B_1 \xrightarrow{7} B_4 \xrightarrow{2} B_4B_3 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
A_6A_1	$A_1 \xrightarrow{2} E_8$
E_6A_1	$A_1 \xrightarrow{2} G_2 \xrightarrow{3} D_4 \xrightarrow{2} E_8$
$E_6(a_1)A_1$	T_1
$E_6(a_3)A_1$	$A_1 \xrightarrow{2} G_2 \xrightarrow{3} D_4 \xrightarrow{2} E_8$
A_7	$A_1 = C_1 \xrightarrow{7} D_8 \xrightarrow{5} E_8$
D_7	$A_1 = B_1 \xrightarrow{2} B_1B_6 \xrightarrow{4} D_8 \xrightarrow{5} E_8$
$D_7(a_1)$	T_1
$D_7(a_2)$	T_1
E_7	$A_1 \xrightarrow{2} A_1E_7 \xrightarrow{5} E_8$
$E_7(a_1)$	$A_1 \xrightarrow{2} A_1E_7 \xrightarrow{5} E_8$
$E_7(a_2)$	$A_1 \xrightarrow{2} A_1E_7 \xrightarrow{5} E_8$
$E_7(a_3)$	$A_1 \xrightarrow{2} A_1E_7 \xrightarrow{5} E_8$
$E_7(a_4)$	$A_1 \xrightarrow{2} A_1E_7 \xrightarrow{5} E_8$
$E_7(a_5)$	$A_1 \xrightarrow{2} A_1E_7 \xrightarrow{5} E_8$

Next, consider the semidirect product decomposition $(G^x)^\circ = (G_{\text{red}}^x)^\circ \ltimes G_{\text{unip}}^x$. Let $g \in G^x$, and write it as $g = (g_r, g_u)$, with $g_r \in (G_{\text{red}}^x)^\circ$, $g_u \in G_{\text{unip}}^x$. If g centralizes S , then g_r and g_u must individually centralize S as well. In other words,

$$C_{(G^x)^\circ}(S) = C_{(G_{\text{red}}^x)^\circ}(S) \ltimes C_{G_{\text{unip}}^x}(S). \quad (3.1)$$

Here, $C_{(G_{\text{red}}^x)^\circ}(S)$ is a connected reductive group, and $C_{G_{\text{unip}}^x}(S)$ is a normal unipotent group (which must be connected, because $C_{(G^x)^\circ}(S)$ is connected). We conclude

that Eq. 3.1 is a Levi decomposition of $(L^x)^\circ$. In particular, we see that $(L_{\text{red}}^x)^\circ = C_{(G_{\text{red}}^x)^\circ}(S)$. \square

We now let G denote the simple, simply connected group of type E_8 . If G_0 is the simple, simply connected group of type E_7 or E_6 , then as explained in [12, Lemma 11.14], there is a simple subgroup H of type A_1 or A_2 , respectively, such that $G_0 = C_G(H)$. Moreover, by [12, 16.1.2], there exists a torus $S \subset H \subset G$ such that G_0 is the derived subgroup of the Levi subgroup $L = C_G(S)$. Explicitly, let $\alpha_1, \dots, \alpha_8$ be the simple roots for G , labelled as in [4], and let α_0 be the highest root. The groups H and G_0 can be described as follows.

	simple roots for H	simple roots for L or G_0
$G_0 = E_7$	$-\alpha_0$	$\alpha_1, \dots, \alpha_7$
$G_0 = E_6$	$\alpha_8, -\alpha_0$	$\alpha_1, \dots, \alpha_6$

(3.2)

Now it is explained in [12, 16.1.1], that if $x \in \mathcal{N}_{G_0} = \mathcal{N}_L \subset \mathcal{N}_G$, then the subgroup $(G_{\text{red}}^x)^\circ$ must contain a conjugate of H . Without loss of generality we can assume that x is chosen so that $H \subseteq (G_{\text{red}}^x)^\circ$. Hence, we can also assume that $S \subseteq (G_{\text{red}}^x)^\circ$. Thus, by Lemma 3.1, $(L_{\text{red}}^x)^\circ$ is a Levi subgroup of $(G_{\text{red}}^x)^\circ$ and we also have

$$(L_{\text{red}}^x)^\circ \subseteq ((G_0^x)_{\text{red}})^\circ \subseteq (L_{\text{red}}^x)^\circ.$$

By Lemma 2.3, Proposition 2.4(2) and Section 3.3 we deduce that $(G, (G_0^x)_{\text{red}})^\circ$ is a Donkin pair.

Finally, to show that $(G_0, ((G_0^x)_{\text{red}})^\circ)$ is a Donkin pair, it will be sufficient to show that every fundamental tilting module for G_0 is a summand of the restriction of a tilting module for G . In more detail, let $\pi : \mathbf{X}_G \rightarrow \mathbf{X}_{G_0}$ be the map on weight lattices. It is well known that if λ is a dominant weight for G , then the G_0 -tilting module $T_{G_0}(\pi(\lambda))$ occurs as a direct summand of $\text{Res}_{G_0}^G(T_G(\lambda))$. So it is enough to show that every fundamental weight for G_0 occurs as $\pi(\lambda)$ for some dominant G -weight λ . Let $\varpi_1, \dots, \varpi_8$ be the fundamental weights for G . A short calculation with the table (3.2) shows that $\pi(\varpi_1), \dots, \pi(\varpi_7)$ are precisely the fundamental weights for E_7 , and that $\pi(\varpi_1), \dots, \pi(\varpi_6)$ are the fundamental weights for E_6 .

Remark 3.2 One can also prove the theorem for E_7 and E_6 directly by writing down the embedding of each centralizer, as we did for E_8 . Here is a brief summary of how to carry out this approach. Let G be of type E_8 , and let G_0 and H be as in the discussion above. As explained in [12, §16.1], we have

$$((G_0^x)_{\text{red}})^\circ = C_{(G_{\text{red}}^x)^\circ}(H).$$

The computation of $C_{(G_{\text{red}}^x)^\circ}(H)$ is explained in [12, §16.1.4], and the results are recorded in Tables 3, 4, and 5, following the same notational conventions as in the E_8 case.

Table 3 Nilpotent centralizers in E_7

Orbit	$(G_{\text{red}}^x)^\circ$
A_1	$D_6 \xrightarrow{2} E_7$
A_1^2	$A_1 B_4 = B_1 B_4 \xrightarrow{4} D_6 \xrightarrow{2} E_7$
A_2	$A_5 \xrightarrow{2} E_7$
$A_2 A_1$	$A_3 T_1 \xrightarrow{2} E_7$
$(A_1^3)'$	$F_4 \xrightarrow{3} E_6 \xrightarrow{2} E_7$
$(A_1^3)''$	$A_1 C_3 \xrightarrow{3} A_1 A_5 \xrightarrow{2} E_7$
A_3	$A_1 B_3 = B_1 B_3 \xrightarrow{4} D_5 \xrightarrow{2} E_7$
A_1^4	$C_3 \xrightarrow{7} D_6 \xrightarrow{2} E_7$
$A_2 A_1^2$	$A_1 A_1 A_1 = B_1 A_1 B_1 \xrightarrow{7} B_4 A_1 B_1 \xrightarrow{4} A_1 D_6 \xrightarrow{5} E_7$
A_2^2	$A_1 G_2 \xrightarrow{3} A_1 D_4 \xrightarrow{1} A_1 A_1 A_1 D_4 = A_1 D_2 D_4 \xrightarrow{4} A_1 D_6 \xrightarrow{5} E_7$
A_4	$A_2 T_1 \xrightarrow{2} E_7$
D_4	$C_3 \xrightarrow{3} A_5 \xrightarrow{2} E_7$
$D_4(a_1)$	$A_1 A_1 A_1 \xrightarrow{2} E_7$
$A_2 A_1^3$	$G_2 \xrightarrow{6} A_6 \xrightarrow{2} E_7$
$A_2^2 A_1$	$A_1 A_1 \xrightarrow{1} (A_1 A_1 A_1) G_2 \xrightarrow{3} A_1 D_2 D_4 \xrightarrow{4} A_1 D_6 \xrightarrow{5} E_7$
$(A_3 A_1)'$	$B_3 \xrightarrow{4} D_4 \xrightarrow{2} E_7$
$(A_3 A_1)''$	$A_1 A_1 A_1 = C_1 A_1 B_1 \xrightarrow{7} D_2 A_1 B_1 \xrightarrow{4} D_2 A_1 D_2 \xrightarrow{4} A_1 D_4 \xrightarrow{2} E_7$
$A_3 A_1^2$	$A_1 A_1 \xrightarrow{1} A_1 (A_1 A_1) \xrightarrow{2} A_1 A_3 \xrightarrow{2} E_7$
$A_3 A_2$	$A_1 T_1 = B_1 D_1 \xrightarrow{7} B_1 D_3 \xrightarrow{2} B_1 D_3 B_1 \xrightarrow{4} D_6 \xrightarrow{2} E_7$
$A_4 A_1$	T_2
$D_4 A_1$	$C_2 \xrightarrow{3} A_3 \xrightarrow{2} E_7$
$D_4(a_1) A_1$	$A_1 A_1 \xrightarrow{2} E_7$
$(A_5)'$	$G_2 \xrightarrow{3} D_4 \xrightarrow{2} E_7$
$(A_5)''$	$A_1 A_1 \xrightarrow{1} A_1 (A_1 A_1 A_1) \xrightarrow{2} E_7$
D_5	$A_1 A_1 \xrightarrow{1} A_1 (A_1 A_1) \xrightarrow{2} E_7$
$D_5(a_1)$	$A_1 T_1 \xrightarrow{2} E_7$
$A_3 A_2 A_1$	$A_1 \xrightarrow{1} A_1 A_1 \xrightarrow{6} A_4 A_2 \xrightarrow{2} E_7$
$A_4 A_2$	$A_1 \xrightarrow{1} A_1 A_1 A_2 \xrightarrow{6} A_1 A_2 A_3 \xrightarrow{2} E_7$
$A_5 A_1$	$A_1 \xrightarrow{2} G_2 \xrightarrow{3} D_4 \xrightarrow{2} E_7$

3.5 Proof for F_4

Let G be the simple, simply connected group of type E_8 . Then, [12, Lemma 11.7] implies that G contains a simple subgroup H of type G_2 , and that its centralizer $G_0 = C_G(H)$ is a simple group of type F_4 . The embeddings of centralizers of

Table 4 Nilpotent centralizers in E_7 , continued

Orbit	$(G_{\text{red}}^x)^\circ$
$D_5 A_1$	$A_1 \xrightarrow{1} A_1 A_1 \xrightarrow{2} E_7$
$D_5(a_1) A_1$	$A_1 \xrightarrow{6} \tilde{A}_2 \xrightarrow{2} F_4 \xrightarrow{3} E_6 \xrightarrow{2} E_7$
A_6	$A_1 \xrightarrow{2} E_7$
D_6	$A_1 \xrightarrow{1} A_1 A_1 \xrightarrow{2} E_7$
$D_6(a_1)$	$A_1 \xrightarrow{2} E_7$
$D_6(a_2)$	$A_1 \xrightarrow{2} E_7$
E_6	$A_1 \xrightarrow{1} A_1 A_1 A_1 \xrightarrow{2} E_7$
$E_6(a_1)$	T_1
$E_6(a_3)$	$A_1 \xrightarrow{1} A_1 A_1 A_1 \xrightarrow{2} E_7$

nilpotent elements for $G_0 = F_4$ can then be computed using the method explained in Remark 3.2. One caveat is that the name (i.e., the Bala–Carter label) of a nilpotent orbit usually changes when passing from F_4 to E_8 . The correspondence between these names is given in [12, Proposition 16.10].

Table 5 Nilpotent centralizers in E_6

Orbit	$(G_{\text{red}}^x)^\circ$
A_1	$A_5 \xrightarrow{2} E_6$
A_1^2	$B_3 T_1 \xrightarrow{4} D_4 T_1 \xrightarrow{2} E_6$
A_2	$A_2 A_2 \xrightarrow{2} E_6$
A_1^3	$A_2 A_1 \xrightarrow{1} (A_2 A_2) A_1 \xrightarrow{2} E_6$
$A_2 A_1$	$A_2 T_1 \xrightarrow{2} E_6$
A_3	$B_2 T_1 \xrightarrow{4} D_3 T_1 \xrightarrow{2} E_6$
$A_2 A_1^2$	$A_1 T_1 = B_1 T_1 \xrightarrow{7} B_4 T_1 \xrightarrow{4} D_5 T_1 \xrightarrow{2} E_6$
A_2^2	$G_2 \xrightarrow{3} D_4 \xrightarrow{2} E_6$
$A_3 A_1$	$A_1 T_1 = C_1 T_1 \xrightarrow{7} D_2 T_1 \xrightarrow{2} E_6$
A_4	$A_1 T_1 \xrightarrow{2} E_6$
D_4	$A_2 \xrightarrow{1} A_2 A_2 \xrightarrow{2} E_6$
$D_4(a_1)$	T_2
$A_2^2 A_1$	$A_1 \xrightarrow{1} A_1 A_1 A_1 \xrightarrow{2} E_6$
$A_4 A_1$	T_1
A_5	$A_1 \xrightarrow{2} E_6$
D_5	T_1
$D_5(a_1)$	T_1

Table 6 Nilpotent centralizers in F_4

Orbit	$(G_{\text{red}}^x)^\circ$
A_1	$C_3 \xrightarrow{2} F_4$
\tilde{A}_1	$A_3 \xrightarrow{2} A_3\tilde{A}_1 \xrightarrow{5} F_4$
$A_1\tilde{A}_1$	$A_1\tilde{A}_1 \xrightarrow{6} A_1\tilde{A}_2 \xrightarrow{2} F_4$
A_2	$\tilde{A}_2 \xrightarrow{2} F_4$
\tilde{A}_2	$G_2 \xrightarrow{3} D_4 \xrightarrow{4} B_4 \xrightarrow{5} F_4$
B_2	$A_1A_1 \xrightarrow{2} B_4 \xrightarrow{5} F_4$
$A_2\tilde{A}_1$	$\tilde{A}_1 \xrightarrow{2} F_4$
\tilde{A}_2A_1	$A_1 \xrightarrow{2} G_2 \xrightarrow{3} D_4 \xrightarrow{4} B_4 \xrightarrow{5} F_4$
B_3	$A_1 \xrightarrow{6} \tilde{A}_2 \xrightarrow{2} F_4$
C_3	$A_1 \xrightarrow{2} F_4$
$C_3(a_1)$	$A_1 \xrightarrow{2} F_4$

We remark that in some cases, the book [12] does not quite give enough details about embeddings of subgroups to establish our result, but in these cases, the relevant details can be found in [15, §3.16]. Here is an example illustrating this. The F_4 -orbit labelled \tilde{A}_1 corresponds (by [12, Proposition 16.10]) to the E_8 -orbit labelled A_1^2 . Let x be an element of this orbit. We have seen that in E_8 , $(G_{\text{red}}^x)^\circ = B_6$, which embeds in the Levi subgroup $D_7 \subset E_8$. The group $(G_{\text{red}}^x)^\circ$ has a subgroup of type D_3B_3 , which embeds in $D_3D_4 \subset D_7 \subset D_8$. The explicit construction of $H = G_2$ in [15, §3.16] shows that it is contained in the second factor in each of $D_3B_3 \subset D_3D_4$. It follows that $D_3 = A_3$ is contained in $((G_0^x)_{\text{red}})^\circ = C_{(G_{\text{red}}^x)^\circ}(H)$, and then a dimension calculation shows that in fact $((G_0^x)_{\text{red}})^\circ = A_3$.

The results of these calculations are recorded in Table 6.

3.6 Proof for G_2

In this case, there are only two nilpotent orbits that are neither distinguished nor trivial. From the classification, both of these orbits meet the maximal reductive subgroup $A_1\tilde{A}_1 \subset G_2$, and an argument explained in [12, §16.1.4] shows that if x belongs to either of these orbits, then the reductive part of its centralizer in $A_1\tilde{A}_1$ is equal to the reductive part of its centralizer in G_2 . See Table 7.

Table 7 Nilpotent centralizers in G_2

Orbit	$(G_{\text{red}}^x)^\circ$
A_1	$\tilde{A}_1 \xrightarrow{2} A_1\tilde{A}_1 \xrightarrow{5} G_2$
\tilde{A}_1	$A_1 \xrightarrow{2} A_1\tilde{A}_1 \xrightarrow{5} G_2$

Funding P.A. was supported by NSF Grant No. DMS-1802241. W.H. was supported by the ARC Discovery Grant No. DP170104318.

Declarations

Conflict of Interest The authors declare no competing interests.

References

1. Achar, P., Hardesty, W.: Silting complexes of coherent sheaves and the Humphreys conjecture. *arXiv:2106.04268* (2021)
2. Achar, P., Hardesty, W., Riche, S.: Representation theory of disconnected reductive groups. *Doc. Math.* **25**, 2149–2177 (2020)
3. Achar, P., Henderson, A., Juteau, D., Riche, S.: Constructible sheaves on nilpotent cones in rather good characteristic. *Selecta Math. (N.S.)* **23**, 203–243 (2017)
4. Bourbaki, N.: *Éléments de mathématique. Groupes et algèbres de Lie. Chapitres 4, 5 et 6.*, Masson, Paris (1981)
5. Brundan, J.: Dense Orbits and Double Cosets, Algebraic Groups and their Representations (Cambridge, 1997), *NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.*, no. 517, pp. 259–274. Kluwer Acad. Publ., Dordrecht (1998)
6. Donkin, S.: Rational Representations of Algebraic Groups, *Lecture Notes in Mathematics*, vol. 1140. Springer, Berlin (1985). Tensor products and filtration
7. Hague, C., McNinch, G.: Some good-filtration subgroups of simple algebraic groups. *J. Pure Appl. Algebra* **217**, 2400–2413 (2013)
8. Hardesty, W.: On the centralizer of a balanced nilpotent section. *arXiv:1810.06157* (2018)
9. Herpel, S.: On the smoothness of centralizers in reductive groups. *Trans. Amer. Math. Soc.* **365**, 3753–3774 (2013)
10. Jantzen, J.C.: *Representations of Algebraic Groups*, 2nd edn. Mathematical Surveys and Monographs, no. 107. Amer. Math. Soc., Providence (2003)
11. Jantzen, J.C.: *Nilpotent Orbits in Representation Theory, Lie theory*, *Progr. Math.*, vol. 228, pp. 1–211. Birkhäuser Boston, Boston (2004)
12. Liebeck, M.W., Seitz, G.M.: Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, *Mathematical Surveys and Monographs*, no. 180. American Mathematical Society, Providence (2012)
13. Mathieu, O.: Filtrations of G -modules. *Ann. Sci. École Norm. Sup. (4)* **23**, 625–644 (1990)
14. McNinch, G.J., Testerman, D.M.: Central subalgebras of the centralizer of a nilpotent element. *Proc. Amer. Math. Soc.* **144**, 2383–2397 (2016)
15. Seitz, G.M.: Maximal subgroups of exceptional algebraic groups. *Mem. Amer. Math. Soc.* **90**(441), iv+197 pp (1991)
16. van der Kallen, W.: Steinberg modules and Donkin pairs. *Transform. Groups* **6**, 87–98 (2001)
17. van Leeuwen, M.A.A.: LiE, a software package for Lie group computations. *Euromath Bull.* **1**, 83–94 (1994)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.