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ABSTRACT 9 

 Latent Interacting Variable Effects (LIVE) modeling is a framework to integrate different types of 10 

microbiome multi-omics data by combining latent variables from single-omic models into a structured meta-11 

model to determine discriminative, interacting multi-omics features driving disease status. We implemented 12 

and tested LIVE modeling in publicly available metagenomics and metabolomics datasets from Crohn’s 13 

Disease and Ulcerative Colitis patients. Here, LIVE modeling reduced the number of feature correlations from 14 

the original data set for CD and UC to tractable numbers and facilitated prioritization of biological associations 15 

between microbes, metabolites, enzymes and IBD status through the application of stringent thresholds on 16 

generated inferential statistics. We determined LIVE modeling confirmed previously reported IBD biomarkers 17 

and uncovered potentially novel disease mechanisms in IBD. LIVE modeling makes a distinct and 18 

complementary contribution to the current methods to integrate microbiome data to predict IBD status because 19 

of its flexibility to adapt to different types of microbiome multi-omics data, scalability for large and small cohort 20 

studies via reliance on latent variables and dimensionality reduction, and the intuitive interpretability of the 21 

linear meta-model integrating -omic data types. The results of LIVE modeling and the biological relationships 22 

can be represented in networks that connect local correlation structure of single omic data types with global 23 

community and omic structure in the latent variable VIP scores. This model arises as novel tool that allows 24 

researchers to be more selective about omic feature interaction without disrupting the structural correlation 25 

framework provided by sPLS-DA interaction effects modeling. It will lead to form testable hypothesis by 26 

identifying potential and unique interactions between metabolome and microbiome that must be considered for 27 

future studies.  28 
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 29 

AUTHOR SUMMARY 30 

Latent Interacting Variable Effects (LIVE) modeling integrates microbiome multiomics features by encoding 31 

them in a set of latent variables (LVs) from single-omic sparse Partial Lease Squares models, and then 32 

combine these LVs into structured metamodel to determine the most discriminative features driving IBD. We 33 

used publicly available metagenomic and metabolomics data from Crohn’s Disease and Ulcerative Colitis 34 

patients to develop LIVE modeling. LIVE modeling reduced data dimensionality efficiently and identified 35 

statistical interactions among microbiome multi-omics data, which can be visualized as a mineable network 36 

data structure. LIVE modeling confirmed features previously reported and revealed novel microbiome 37 

interactions in IBD. LIVE offers a flexible framework for multi-omic modeling that may aid in interpretation of 38 

complex microbiome datasets.  39 

 40 

  41 
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INTRODUCTION 42 

Alterations in the composition and function of intestinal microbiota are a hallmark of Crohn's Disease 43 

(CD) and Ulcerative Colitis (UC), two subtypes of Inflammatory Bowel Diseases (IBD) [1-4]. These alterations 44 

trigger local and systemic host inflammatory responses that progressively damage the intestines over time [5-45 

6]. A hypothesis of how alterations in gut microbiota drive chronic inflammation in Crohn's Disease and 46 

Ulcerative Colitis is through the gut metabolome which may act as an interface between the host and 47 

microbiome [7]. However, these mechanisms of metabolome-mediated host-microbiome interactions are poorly 48 

understood. A better understanding of how gut microbiome alterations drive IBDs could enable less-invasive 49 

diagnostic methods for CD and UC, facilitate identification of therapeutic biomarkers, or reveal strategies to 50 

prolong disease remission and reduce the likelihood of relapse [8]. As validated pathways of host-microbiome 51 

interactions in IBD continue to be established, interpretable computational models of microbiome multi-omics 52 

data could potentially reveal translatable insights into IBD progression and drug-resistance, data which is 53 

increasingly available from large cohorts of CD and UC patients. 54 

Much of the current state of the art to determine microbe-metabolite associations is focused on pairwise 55 

correlation approaches, supervised machine learning, unsupervised clustering methods, and multivariate linear 56 

models [9-11]. These techniques are often challenged by the dimensionality of the multi-omics data, often do 57 

not account for a correlation structure within microbiomes or metabolomes and are challenged by high multiple 58 

hypothesis testing burdens. Some examples of how computational workflows try to address high data 59 

dimensionality include applying feature selection methods to random forest (RF) classifiers or reducing the 60 

feature space with latent variable methods like principal component analysis (PCA), and partial least squares – 61 

discriminant analysis (PLS-DA). Latent variable approaches provide additional advantages because of the 62 

global covariance-based frameworks that reduce data dimensionality by encoding the data on latent variables 63 

(LV) that weight the relative importance of the original features [13]. PLS-DA uses latent variables to establish 64 

a system of linear relationships between blocks of independent and dependent variables which estimate causal 65 

relationships between observed indicators and their latent variables.  66 

A variant of PLS-DA, sparse PLS-DA (sPLS-DA), uses Lasso Penalization to select the most 67 

discriminant features to create the LVs to classify the data [16-18]. An example of these methods was 68 

presented by Priya et al., 2022 in which host transcriptomic and gut microbiome data were integrated in a 69 
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machine learning framework that uses sparse canonical correlation analysis and Lasso penalize regression to 70 

characterize the most relevant associations between gut microbiota and host genes and pathways across 71 

three intestinal diseases [19]. This regularization penalty on PLS latent variables helps reduce the curse of 72 

dimensionality in high-dimensional data. Critically however, if multiple -omics data types are modeled on the 73 

same LVs, the Lasso penalty may be overly-restrictive and exclude consequential biological features. 74 

Therefore, there is a need to balance dimensionality reduction with preserving potentially mechanistic 75 

biological information in different molecular data types.  76 

Here, we introduce a computational framework for causal modeling of microbiome multi-omics data  77 

based upon a Partial Least Square Path Modeling (PLS-PM) framework, and which will be denoted as Latent 78 

Interacting Variable-Effects (LIVE) Modeling. PLS-PM approaches incorporate the advantages of LV modeling 79 

for data dimensionality reduction while also including information about the modeled system through structural 80 

connections between model components, allowing the model to encode hypotheses of causality [14-15]. Here, 81 

we construct PLS-PM models of microbiome composition, metabolomics, and bacterial proteomics data from a 82 

cohort of 155 IBD patients and controls in which each molecular data stream is encoded as a set of latent 83 

variables. We then construct a structural model in which we quantify interactions between latent variables with 84 

linear model interaction effects. We show that LIVE Modeling accounts for global data covariance structure in 85 

the single-omic LV’s, efficiently reduces data dimensionality, and allows us to identify statistical interactions 86 

between microbiome multi-omics data associated with disease onset in UC and CD.   87 

 88 

RESULTS 89 

Model Description 90 

 LIVE modeling integrates multi-omics data while preserving covariance structure within data modalities. 91 

sPLS-DA models are built to model the relationship between individual types of molecular features and an 92 

output variable. A variety of microbiome multi-omics data types, such us relative abundances of genes, taxa, 93 

and metabolites, can be analyzed individually with respect to the dependent variable in their own 94 

dimensionless latent variable space. By building a bottom-up multi-omic model from individual grassroots 95 

models of single data types, this framework can incorporate several types of microbiome multi-omics data as 96 

inputs, determining the most discriminative latent variables per data type. Second, the latent variables are 97 
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extracted from the single-omic sPLS-DA models and integrated together as main and interaction effects terms 98 

in a generalized linear model, formalizing a structured relationship between the response variable and multiple  99 

predictive -omic features. This allows us to evaluate data type-specific effects and determine how the 100 

predictive power of data types depend on each other. Using the LV’s as regression terms preserves internal 101 

covariance within data type LVs and simplifies the interpretability of the multi-omic effects in the model through 102 

analysis of the regression coefficients. Finally, the relationships between multi-omics data types and specific 103 

features implicated by the meta-model can be studied by modeling the relationships between microbes, 104 

metabolites, and enzymes via Spearman correlation analysis and PLS Variable Importance of Projection (VIP) 105 

scores (Figure 1). 106 

We applied our LIVE modeling framework to predict CD or UC status versus control from publicly 107 

available metabolomics, and metagenomics data obtained from the PRISM cohort (the Prospective Registry in 108 

IBD Study at MGH) and reported by Franzosa et al., in 2019. In this study, gut metabolic profile and 109 

microbiome composition in IBD were characterized by analyzing stool samples of 155 patients diagnosed with 110 

Crohn's Disease (68 patients), Ulcerative Colitis (53 patients), and non-IBD control (34 patients). The collected 111 

stool samples were subjected to shotgun metagenomic sequencing to determine taxonomic compositional and 112 

functional potential, as well as four liquid chromatography tandem mass spectrometry (LC-MS) methods to 113 

quantify composition of polar metabolites, lipids, free fatty acids, and bile acids. The datasets contained the 114 

relative abundances of 201 microbiota features, 3829 metabolic features, and 2113 microbial enzyme features 115 

[9]. To validate our model trained on PRISM data and determine performance metrics, we used a public 116 

independent validation cohort also reported by Franzosa et al., consisting of 22 control subjects from LifeLines-117 

DEEP (LLD) general population study, and 43 IBD subjects from a study of the Department of 118 

Gastroenterology and Hepatology at University Medical Center Groningen (UMCG).   119 

 120 

Single-omic sPLS-DA are as predictive of Crohn’s Disease status as naive multi-omics models 121 

Before combining single-omic latent variables (LV) from sparse Partial Least Square Discriminant Analysis 122 

(sPLS-DA) via the LIVE multi-omic meta-model, we assessed the disease-status predictive power of these 123 

data streams individually training on the PRISM cohort and testing on the LLD cohort for Crohn’s Disease and 124 

Ulcerative Colitis. The individual microbiome, metabolome and microbial enzyme sPLS-DA models were 125 
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significantly predictive of CD status. (Metabolome AUC = 0.959: Figure 2a and 2b, Microbiome AUC = 0.972: 126 

Figure 2e and 2f, Enzymatic composition AUC = 0.939: Figure 2i and 2j). The most discriminative features per 127 

each single sPLS-DA models were sorted by the PLS Variable Importance of Projection (Figure 2c, 2g, 2k) and 128 

the top features are listed here: the most discriminative metabolites for CD are the flavonoids, steroidal 129 

glucuronide conjugates, fatty acids and conjugates, dipeptides, terpene glycosides, tetrapyrroles and derivates, 130 

benzenesulfonic acids and derivatives, triterpenoids, benzopyrans and alpha-acyloxy carbonyl compounds 131 

(Figure 2d). The most discriminant microbial species are Coprococcus catus, Subdoligranulum unclassified, 132 

Alistipes shahii, Roseburia hominis, Bacteriodales bacterium ph8, Eubacterium ventriosum, Ruminococcus 133 

obeum, Gordonibacter pamelaeae (Figure 2h). Finally, the most discrimative enzymatic features are 134 

1.14.13.81: Magnesium-protoporphyrin IX monomethyl ester (oxidative) cyclase, 1.1.1.35: 3-hydroxyacyl-CoA 135 

dehydrogenase, 3.5.3.9: Allantoate deiminase, 3.1.4.1: Phosphodiesterase I, Saccharopine dehydrogenase 136 

(NAD(+), L-lysine-forming) (Figure 2l).  137 

As a computational control, we trained sPLS-DA models on a concatenated matrix that integrated all 138 

data types (microbiome, metabolome, enzymes) in one dataset. Doing this for the CD patient subsets allowed 139 

us to assess whether predicting disease status using multi-omics outperformed single-omic sPLS-DA models. 140 

The control sPLS-DA model also was similarly predictive of CD status as the individual -omic sPLS-DA models 141 

(AUC = 0.959) (Figures 2m and 2n). However, even though the control model has comparable AUC with 142 

single-omic models, the concatenated control has higher balanced error rate (CD = 0.45) than single omic 143 

models (Table 1). This indicated that unstructured combining of multi-omics alone does not enhance predictive 144 

power. 145 

sPLS-DA employs a regularization penalty when constructing LV’s, incorporating different features into 146 

different LV’s based on the ability to discriminate between Crohn's Disease, and control status. The severity of 147 

this penalty is proportional to the number of features in the original dataset, making it much higher for the multi-148 

omics sPLS-DA model compared to the single-omic sPLS-DA models. In our models for CD, 2 microbiome 149 

LV’s, explaining 5% and 2% variance encoded 100 and 2 features respectively, 3 metabolome LV’s explaining 150 

17%, 3%, and 6% variance encoded 70, 40, and 90 features respectively, and 2 microbial enzyme LV’s, 151 

explaining 12% and 2% variance, encoded 100, and 2 features respectively. 152 

By comparison, the concatenated data control sPLS-DA model resulted in lower feature coverage in the  153 
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IBD microbiome multi-omics data compared to the single-omic sPLS-DA models. The control model that 154 

combines all omics for CD was comprised of 2 LV’s that explained 13% and 1% variance and encoded 70 155 

features (0 microbes, 70 metabolites, 0 enzymes) and 1 feature (0 microbe, 1 metabolite, 0 enzymes) 156 

respectively. Given the number of features that encoded the covariance, individual microbiome, metabolome, 157 

and microbial enzyme sPLS-DA models show a higher combined data coverage than the control model (Table 158 

2). It could be attributed to not restrictive Lasso penalties on individual models than the control model because 159 

of the small number of features in individual omics data sets than omics concatenation matrix data set.   160 

 161 

Structured integration of multi-omics latent variables Predicting Crohn’s Disease Status 162 

We sought to test whether structured integration of multi-omics data better predicted disease status than 163 

single-omic sPLS-DA models or the concatenated control sPLS-DA models. Given AUC values and balanced 164 

error rates, we determine the single omic sPLS-DA models can classify control patients versus CD, and 165 

predictions are more accurate than concatenated control model. The most discriminative latent variables from 166 

these single sPLS-DA models were integrated in a structured multi-omics model. We first examined a main-167 

effects only structured multi-omics model for predicting CD status. The form these models took was as a linear 168 

model with a slope intercept coefficient and main-effects coefficients for patient scores on each latent variable 169 

as features predicting disease status. A main-effects only regression model of microbiome, metabolite and 170 

microbial enzyme LVs was overall predictive of Crohn's Disease status (p = 2.2 e-16). By evaluating the p-171 

values from each data-type latent variables, we determine that the 2 Metabolomics LV’s emerge as the 172 

strongest data type to predict CD status from control patients in comparison with microbiota and enzymatic 173 

composition (Table 3).  174 

We incorporated interaction effects between single-omic LV’s into the structured microbiome multi-175 

omics PLS-PM framework to extract candidate microbe-metabolite-enzyme interactions driving CD. 176 

Incorporating microbiome, metabolome and microbial enzyme LV interaction effects into the Crohn's Disease 177 

model identified four significant main effects from metabolome LV1, LV2 and LV3, as well as microbiota LV1. 178 

The model also identified significant interaction effects between microbiome LV1 - metabolome LV1, and 179 

metabolite LV2 - microbial enzyme LV1. The strongest microbe-metabolite-microbial enzyme LV interaction 180 

was present between metabolite LV1 - microbiota LV1 - enzymes LV1 which together separated CD patients 181 
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from controls (Figure 3). This indicated that omic features allocated in these microbe-metabolite-microbial 182 

enzyme interacting Latent variables depends on the value of other omic variables to precisely define Crohn 183 

Disease status. In other words, a metabolite in conjunction with specific microbial species and microbial 184 

enzymes can determine CD status.   185 

 186 

LIVE Modeling Prioritizes Multi-omic Features Associated with Crohn’s Disease 187 

Having demonstrated that a structured PLS-PM of microbiome multi-omics data outperforms single-188 

omic and concatenated multi-omics sPLS-DA models, we sought to extract biological insights from the 189 

predictive, interacting LV’s in our CD model. The most discriminant bacteria, metabolites and microbial enzyme 190 

features that determine disease status were prioritized from interacting LV’s by using as criteria Lasso 191 

Penalization and the variable importance of projection (VIP) scores of feature loadings on LVs (VIP > 1). After 192 

combining these two selection steps, correlation analysis was applied to identify microbe-metabolite-enzymes 193 

triads that were synergistically predictive of Crohn's Disease status. The correlational analysis at this stage, 194 

restricted to features prioritized in our PLS-PM model, was prioritized to 23,188 microbe-metabolites-microbial 195 

enzymes pairs in the CD data based on the Lasso and VIP criteria. This represents a substantial decrease in 196 

the multiple testing burden of the original datasets of over 1.62 x 109 microbe-metabolites-microbial enzymes 197 

pairs.  198 

For Crohn's Disease, analysis of these 23,188 microbe-metabolites-microbial enzymes pairs, identified 199 

7,562 significant correlations (FDR q < 0.01) predictive of CD status on interacting multi-omic LV’s (FDR q 200 

<0.001 = 6,471 significant correlations; and FDR q < 0.0001 = 5305 significant correlations). LIVE modeling 201 

framework reduces the total number of features to a tractable number (7,562 CD) and the number of pairwise 202 

comparisons between features to that equivalent to a standard RNA-seq experiment. The prioritization of 203 

pairwise relationships between microbes, metabolites, and enzyme can be further refined by implementing 204 

more stringent thresholds on correlational coefficients, log fold change values, VIP scores, and correlation p-205 

values or by framing interpretation in terms of a particular data type. We can visualize the impact of such 206 

thresholding by first constructing a microbe-metabolite-enzyme correlation network in Cytoscape [20] and then 207 

creating subnetworks that meet different thresholding criteria.  208 
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Here, we examine the effect of refining the significant pairwise correlations (i.e. pairwise local-structure) 209 

by increasing the threshold on the VIP score (i.e. global model importance) a given microbe, metabolite, or 210 

enzyme needs to achieve. For the CD model, we gradually increased the VIP threshold by 1, creating 211 

subnetworks of features with minimum global importance in our PLS-PM model until we reached a threshold 212 

that eliminated all bacterial nodes from the correlation network. At VIP score greater than 5 for Crohn's 213 

Disease features, the network contained 72 nodes that include 44 metabolites, 27 microbial enzymes, and 1 214 

bacterium, with a VIP threshold greater than 6 removing all bacteria. At our identified VIP threshold of 5, our 215 

model predicted Coprococcus cactus as one of the most discriminating bacterial features between CD and 216 

control samples, and Sphingolipids and Leucyl aminopeptidase as upregulated determinant metabolite and 217 

microbial enzyme features in Crohn's Disease (Figure 4).  218 

 219 

Single-omic sPLS-DA are as predictive of Ulcerative Colitis status as naive multi-omics models 220 

For UC, the individual microbiome, metabolome, and microbial enzyme sPLS-DA models were 221 

significantly predictive of UC status (metabolome AUC = 0.932 Figure 5a and 5b, microbiome AUC = 0.969: 222 

Figure 5e and 5f, enzymatic composition AUC = 0.922: Figure 5i and 5j). Following LIVE modeling workflow, 223 

the most discriminative features of UC status were sorted by the PLS Variable Importance of Projection (Figure 224 

5c, 5g, 5k) and the top features per each single sPLS-DA model were identified. The most discriminative 225 

metabolite features for UC are the diphenylmethanes, diterpenoids, pyridoxamines, tetrapyrroles and 226 

derivatives, cardiolipins, pyridinecarboxilic acids and monoalkyglycerophosphates (Figure 5d). The most 227 

relevant microbial species to classify UC patients are: Gordonibacter pamelaeae, Roseburia hominis, 228 

Eubacterium rectale, Eubacterium hallii, Eubacterium ramulus, Alistipes shahii, Subdoligranulum unclassified. 229 

(Figure 5h). The most discriminative enzymatic features of UC status are 2.7.1.66: Undecaprenol kinase, 230 

1.5.3.1: Sarcosine oxidase, 2.7.1.66: Undecaprenol kinase, 1.5.3.1: Sarcosine oxidase, 2.4.1.4: Amylosucrase, 231 

3.1.2.14: Oleoyl-[acyl-carrier-protein] hydrolase, 4.2.1.52: Transferred entry: 4.3.3.7, and 1.1.1.31: 3-232 

hydroxyisobutyrate dehydrogenase (Figure 5l). 233 

By comparing single-omics sPLS-DA models with the concatenated matrix as a computational control, 234 

we determined for UC status, similarly to the CD study case, that the control model has comparable AUC with 235 

single-omic models (AUC = 0.959) (Figures 5m and 5n),  but, has higher balanced error rate (UC = 0.5) than 236 
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single omic models (Table 4). This supports that unstructured combining of multi-omics alone does not 237 

necessarily enhance predictive power. 238 

The regularization penalty from sPLS-DA is proportional to the number of features in the original data 239 

set. Similar our CD study case, the penalty applied to the number of features for the multiomics sPLS-DA 240 

model is higher than single-omic sPLS-DA models, causing more error during predictions. For our UC sPLS-241 

DA models, 2 microbiome LV’s, explaining 5% and 2% variance, encoded 80 and 1 features respectively, 2 242 

metabolome LV’s, explaining 10%, and 3% variance, encoded 100 and 100 features respectively, and 2 243 

microbial enzyme LV’s, explaining 13% and 6% variance, encoded 100, and 90 features respectively. 244 

By comparison, the concatenated data control sPLS-DA model resulted in lower feature coverage in the 245 

UC microbiome multi-omics data compared to the single-omic sPLS-DA models. The control sPLS-DA model 246 

for predicting UC status was comprised of 2 LV’s, explaining 8% and 4% variance, and encoded 100 (0 247 

microbes, 100 metabolites, 0 enzymes) and 1 feature (0 microbe, 1 metabolite, 0 enzymes) respectively (Table 248 

5). Given the number of features that encoded the covariance, individual microbiome, metabolome, and 249 

microbial enzyme sPLS-DA models for UC show a higher coverage than the control model. Like the CD 250 

analysis, it could be attributed to not restrictive Lasso penalties on individual models than the control model 251 

because of the small number of features in individual omics data sets than omics concatenation matrix data 252 

set.  253 

 254 

Structured integration of multi-omics latent variables Predicting Ulcerative Colitis Status 255 

Given that single omic sPLS-DA models can classify control patients versus UC, and predictions are more 256 

accurate than concatenated control model, the structured integration of multi-omics data was implemented 257 

similar CD case study. The most discriminative latent variables of UC status from these single sPLS-DA 258 

models were integrated in a structured multi-omics model. Following the steps in LIVE modeling workflow, we 259 

first examined a main-effects only multi-omics model for predicting UC status, and we determined that a main-260 

effects only regression model of microbiome, metabolite and microbial enzyme LVs was overall predictive of 261 

Ulcerative Colitis status (p = 2.2 e-16). By evaluating the p-values from each data-type latent variables, we 262 

determine that the 2 Metabolomics LV’s emerge as the strongest data type to predict CD status from control 263 

patients in comparison with microbiota and enzymatic composition (Table 6).  264 
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We incorporated interaction effects between single-omic LV’s into the structured multi-omics model to 265 

extract candidate microbe-metabolite-enzyme interactions driving UC. Our LV's interaction effects model for 266 

UC identified four significant main effects from metabolome LV1 and LV2, microbiota LV1, and microbial 267 

enzyme LV1. The model also identified significant interaction effects between metabolites LV2 - microbiota 268 

LV1, microbiome LV1 -metabolome LV2, and microbiome LV1 - microbial enzyme LV1. The strongest microbe-269 

metabolite-microbial enzyme LV interaction was present between metabolite LV1 - microbiota LV1 - enzymes 270 

LV1 which together separated UC patients from controls (Figure 6). This indicated that the omic features 271 

projected in the strongest microbe-metabolite-microbial enzyme interacting Latent Variables depends on the 272 

value of other omic variables to precisely define Ulcerative Colitis status. 273 

 274 

LIVE Modeling Prioritizes Multi-omic Features Associated with Ulcerative Colitis 275 

The most discriminant bacteria, metabolites and enzyme features that determine Ulcerative Colitis 276 

disease status were prioritized from the predictive and interacting LV’s to extract biological insights, by using 277 

as criteria Lasso Penalization and the variable importance of projection (VIP) scores of feature loadings on LVs 278 

(VIP > 1). Like CD study case, by combining these two selection steps, and applying correlation analysis 279 

restricted to features prioritized in our PLS-PM model, the number of microbe-metabolites-microbial enzymes 280 

pairs for UC model was 21,514, a decrease in the feature space by 5 orders of magnitude from 1.62 x 109 281 

microbe-metabolites-microbial enzymes pairs in the original data. Analysis of these 21,514 microbe-282 

metabolites-microbial enzymes pairs identified 2,271 significant correlations (FDR q < 0.01) (S5b Table: FDR q 283 

<0.001 = 935 significant pairs; FDR q < 0.0001 = 445 significant pairs) predictive of UC status on interacting 284 

LV’s.   285 

In the microbe-metabolite-enzyme network for Ulcerative Colitis, VIP score was constrained greater 286 

than 4 and the model identified 69 nodes that include 39 metabolites, 27 microbial enzymes, and 3 bacteria, 287 

with a VIP score greater than 5 removing all bacterial features. Our UC model predicted Eubacterium rectale, 288 

Gordonibacter parmelaeae and Roseburia hominis as the most relevant bacterial features and showed several 289 

metabolites were specifically associated with each bacterium. For instance, the Tetrapyrroles and derivatives 290 

category is described as a downregulated metabolite associated with Eubacterium rectale. Fatty acid esters, 291 

Diphenylmethanes and Pyridoxamines as downregulated metabolites associated with Gordonibacter 292 
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pamelaeae, and Tetrapyrroles and derivatives, Fatty acid esters, and Pyridoxamines as downregulated 293 

metabolites associated with Roseburia hominis and Gordonibacter pamelaeae in Ulcerative colitis (Figure 7). 294 

 295 

DISCUSSION 296 

Our structural LIVE (Latent Interacting Variable Effects) modeling framework not only predicts features 297 

that are in concordance with previous studies, but also estimates novel omic associations that must be studied 298 

in vitro and in vivo models. This framework uncovers more feature interactions that increase the likelihood to 299 

establish testable hypothesis and studying biological mechanisms in IBD. LIVE modeling is a microbiome 300 

multi-omics PLS-PM framework reduces the total number of features to tractable numbers (7,562 CD and 301 

2,271 UC FDR q < 0.01) and the number of pairwise comparisons between features to that equivalent to a 302 

standard RNA-seq experiment. This represents a substantial decrease in the multiple testing burdens of the 303 

original datasets. Additionally, given the greater number of significant correlations between CD microbiome 304 

multi-omic features than UC features reinforces the stratification of IBD into these two molecularly subtypes in 305 

addition to their differences in clinical presentation.  306 

The prioritization of pairwise relationships between microbes, metabolites, and enzyme can be further 307 

refined in LIVE modeling by implementing more stringent thresholds on correlational coefficients, log fold 308 

change values, VIP scores, and correlation p-values or by framing interpretation in terms of a particular data 309 

type. We can visualize the impact of such thresholding by first constructing a microbe-metabolite-enzyme 310 

correlation network in Cytoscape and then creating subnetworks that meet different thresholding criteria. LIVE 311 

modeling workflow examines the effect of refining the significant pairwise correlations (i.e. pairwise local-312 

structure) by increasing the threshold on the VIP score (i.e. global model importance) a given microbe, 313 

metabolite, or enzyme needs to achieve. It allows us to identify the most discriminative and interacting 314 

metabolites, microbial species and enzymes correlations for CD and UC.   315 

This framework identified features associated with Inflammatory Bowel Diseases that have been 316 

reported previously by different studies [9-10]. Some of these features were reported by the original publication 317 

we drew data from, Franzosa et al. Here, the authors analyzed this data using other methods such as pairwise 318 

correlational analysis and random forest classifiers. In total, forty-four metabolites that were downregulated in 319 

Crohn’s Disease were predicted by our model at one of the highest levels of restriction (VIP > 5). Among the 320 
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most important metabolite features are flavonoids, steroidal glucuronide conjugates, fatty acids and 321 

conjugates, dipeptides, terpene glycosides, tetrapyrroles and derivates, benzenesulfonic acids and derivatives, 322 

triterpenoids, benzopyrans and alpha-acyloxy carbonyl compounds [9, 21-23].  323 

The Sphingolipids category was also predicted by our model as a determinant metabolite that was up 324 

regulated in Crohn’s Disease and reported by Franzosa et al and other studies [24]. From thirty-seven 325 

determinant microbiota species predicted by our model at the level of restriction of VIP >1 for Crohn's Disease, 326 

thirteen were also reported by Franzosa et al. as representative microbial species. If the level of restriction is 327 

more stringent VIP>5, Coprococcus catus was predicted as the most determinant microbiota species and it 328 

also has been reported by Franzosa et al., but not prioritized as canonical feature, as well as in other studies 329 

[25-27]. Fold changes calculated from the relative abundance values of 37 predicted microbial species are 330 

about zero which is associated with the loss of species diversity, a characteristic phenomenon in IBD. From 331 

twenty-seven microbial enzymes predicted by our model at VIP > 5 for Crohn's Disease, propionyl-CoA 332 

carboxylase, precorrin-2 dehydrogenase, leucyl aminopeptidase, NAD (+) synthase (glutamine-hydrolyzing) 333 

enzymes were also reported by Franzosa et al. as representative microbial enzymes.  334 

Though bile acids and dicarboxylic acids were reported by Franzosa et al., these features were not 335 

predicted by our model at three distinctive levels of restrictions: VIP >5 (72 features), VIP > 1 (185 features), 336 

and q < 0.01 (7,562 significant features). We determined that these features were excluded in the single omic 337 

sPLS-DA models when individual omics classify between CD and control patients, it means that bile acids and 338 

dicarboxylic acids were not the most discriminative metabolites features of CD status. Several studies 339 

associated Bile acids with Inflammation chronic diarrhea which is connected to bile acid malabsorption in CD 340 

patients.  341 

Our workflow generates several inferential statistics that facilitate prioritization of biological associations 342 

between microbes, metabolites, enzymes, and IBD status. In the preset IBD dataset, by using VIP, metabolite, 343 

microbiota, and enzyme interactions synergistically predict disease status can be visualized at different levels 344 

of restriction. These statistics provide flexibility in the to be more stringent with feature selection. For instance, 345 

in the Crohn's Disease model, one of the highest levels of restriction was VIP > 5, and it estimated 346 

Coprococcus catus as the most determinant microbial species correlated with 44 metabolites and 27 microbial 347 

enzymes. Here, Coprococcus catus becomes the central focus of a network of metabolite and microbial 348 
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enzyme interactions in Crohn's Disease. Nevertheless, this framework can be even more selective if it is 349 

needed. If a higher resolution of feature interactions between metabolites and microbial enzymes with 350 

Coprococcus catus is required, the level of restriction can be incremented in the VIP regarding metabolites and 351 

microbial enzyme features. At VIP >11, our model estimate Coprococcus catus interact with 1.1.1.35: 3-352 

hydroxyacyl-CoA dehydrogenase, 1.14.13.81: Magnesium-protoporphyrin IX monomethyl ester (oxidative) 353 

cyclase, and 1.2.99.3: aldehyde dehydrogenase; and the following metabolites: triterpenoids, benzenesulfonic 354 

acids and derivatives, tetrapyrroles and derivatives, terpene glycosides, dipeptides, fatty acids and conjugates, 355 

steroid glucuronide conjugates, and flavonoids (Figure 4c). This structural omic interaction framework that 356 

keeps the correlation structure within metabolites, microbiota, metabolome, and enzymes provides high-357 

resolution property to evaluate omic interactions based on research needs. 358 

A potential application of the LIVE Modeling framework’s identification of disease-driving molecules and 359 

taxa is to leverage features that discriminate disease status from control to identify biomarkers for drug 360 

response, diagnosis, and therapeutics in IBD. In 2021, Lee et al. reported features associated with anti-361 

cytokine and anti-integrin therapies in this same cohort we analyzed in this study [11].. We compared the 362 

reported drug response features in Lee et al. with disease associated features selected by our structural 363 

interaction model. Gordonibacter parmelaeae was the main microbial species they identified as a determinant 364 

in drug response for Crohn's Disease and Ulcerative Colitis, and it also was predicted by our structural 365 

correlational model for CD (VIP>1) and UC (VIP>4). Particularly in Crohn's Disease, common microbial 366 

enzyme features predicted by our model and reported as drug response associated features were precorrin-4 367 

C (11)-methyltransferase, precorrin-6B C (5,15) -methyltransferase (decarboxylating), glucosamine-1-368 

phosphate N-acetyltransferase, and histidinol-phosphatase. For Ulcerative Colitis, the metabolite acyl 369 

carnitines, and the microbial enzymes arabinogalactan endo-beta-1,4-galactanase, and phosphoglucomutase 370 

(alpha-D-glucose-1,6-bisphosphate-dependent) were features associated with therapy response and disease 371 

status classification (Table 7). In sum, there are several commonalities between omics features associated 372 

with disease status in LIVE modeling and secondary association with drug response in IBD [9,11]. 373 

LIVE modeling used the sample projections of the sPLS-DA model to build an interaction effects linear 374 

regression and predict omic features that are associated with disease and drug response in Inflammatory 375 

Bowel Diseases. These predictions were in good agreement with previous studies that reported disease and 376 
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drug response features, which applying other statistical integrative methods. For instance, a combination of 377 

multivariable linear models and Random Forest classifiers with feature selection were applied to find 378 

associations between metabolome and microbiome features with clinical outcomes before and after exposure 379 

and integrate multi-omics and predict disease status and treatment response, respectively. Likewise, Metwaly 380 

et al. described linkages between IBD and sulfur metabolism using a Generalized Canonical Correlation 381 

Analysis (DIABLO-MixOmics) to integrated microbiota and metabolite profiles [24]. This last approach uses 382 

another correlation structure established by the weighted linear composites which vary to maximize the 383 

correlation between variables by overlapping their distributions [28]. Unlike LIVE Modeling however, it does not 384 

consider a regression modeling between sample projections of independent variables, and dependent 385 

variables.  386 

Our LIVE Modeling framework makes a distinct and complementary contribution to these integrative 387 

methods that aim to predict metabolite and microbial species features that can predict IBD status. What 388 

distinguishes our approach is the flexibility to adapt to different types of microbiome multi-omics data, 389 

scalability for large and small cohort studies via reliance on latent variables and dimensionality reduction, and 390 

the intuitive interpretability of the linear meta-model integrating -omic data types. The results of LIVE modeling 391 

and the biological relationships can be represented in networks that connect local correlation structure of single 392 

omic data types with global community and omic structure in the latent variable VIP scores. This model arises 393 

as novel tool that allows researchers to be more selective about omic feature interaction without disrupting the 394 

structural correlation framework provided by sPLS-DA interaction effects modeling. It will lead to form testable 395 

hypothesis by identifying potential and unique interactions between metabolome and microbiome that must be 396 

considered for future studies. 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 
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 406 

 407 

 408 

 409 

 410 

 411 

 412 

MATERIALS AND METHODS 413 

Preprocessing the Data 414 

Publicly available metabolomics, and taxonomic and functional metagenomic data was obtained from 155 415 

patients diagnosed with Crohn Disease, Ulcerative Colitis and non IBD patients (control) [9].. Relative 416 

Abundance profiles were log-transformed to variance stabilize the data with pseudo count 1 for zero values.  417 

This data set includes 201 microbiota features, 3829 metabolic features, and 2113 microbial enzyme features.  418 

 419 

Data Integration and Feature selection by sPLS-DA 420 

We trained a sparse Partial Least Square – Discriminant Analysis (sPLS-DA) model on each single–omic data 421 

to predict the disease status using MixOmics R Package(17)(18). We used the function tune. splsda to select 422 

the optimal number of variables and components, and AUC plots were obtained with auroc function. Then, 423 

loadings, variance importance of projection (VIPs) and coefficients were exported from MixOmics.  424 

 425 

Multi-omics modeling with sample projection extracted from latent variables 426 

Sample projections on the single-omic latent variables inferred from sPLS-DA models were used to train a 427 

generalized linear model with interaction effects terms. The alr4 R Package with the function lm were 428 

implemented to training the linear model. The main effects were patient projections on microbiome or 429 

metabolome, or microbial enzyme composition LV’s. Interactions effects were coded for each pair of 430 

microbiome, metabolome, and enzymatic LV’s. Significant interaction effects indicated that the predictive 431 
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power of the bacterial loadings on a particular microbiome LV was conditioned upon the loadings of 432 

metabolites and enzymes on a particular metabolome and enzymatic LV.  433 

 434 

Feature Selection from Lasso Penalizations and Variance Importance Projection.  435 

From sPLS-DA models which identify the most predictive feature that classify disease status, we identified 436 

microbe, metabolite and enzymes features on significant interacting Latent variables with significant variable 437 

importance of projection (VIP) scores. The Lasso Penalization Formula is calculated by the following equation: 438 

�������� ���	 
  � � 
���

���

� 

 439 

Variance Importance in Projection (VIP) scores for features are calculated using the regression coefficient �, 440 

weight vector ��, and score vector �� as given in the following equation: 441 

��� �  �� ∑ ��� ������
��� � ���||��||��∑ ���������

���

 

 442 

By considering Lasso Penalization and VIP greater than 1, we selected the most predictive and significant 443 

metabolic, microbiota and enzymes features that synergistically determine IBD status, for prioritized microbe-444 

metabolite-enzyme correlation analysis. Correlational values were determined by Spearman correlational 445 

analysis. Duplicate correlational values were removed and same type omic data type interactions were 446 

removed. Then, p-value and false discovery rate were calculated from these omic matrices, and most relevant 447 

features were determined by using thresholds such as q-value < 0.01, and q-value < 0.001.  448 

 449 

Building Network Plots 450 

Cytoscape software was used to visualize metabolites, microbiota, and enzyme interaction networks. 451 

To build these network plots, a node and edge files were used which containing the name and type of the 452 

features, log fold change and the VIP score, and correlation values, p value and false discovery rate, 453 
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respectively. Different levels of restriction can be applied to visualize interaction network by filtering the data by 454 

VIP score, fold change, correlation, or other metadata.  455 
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FIGURE CAPTIONS 538 

Figure 1.- Latent Interacting Variable Effects (LIVE) Modeling Workflow Multi-Omics Microbiome Data is 539 
encoded in a set of Sparse Partial Least Square Models. Then, structured model combines discriminative 540 
latent variable per each single-omics sPLS-DA models. Next, significant discriminative and predictive omic 541 
features are thresholding by VIP, correlational analysis, and q-values to build meta model networks. 542 
 543 

Figure 2.- sPLS-DA model performance and variance importance of projections (VIP) for CD (a) sPLS-544 
DA sample scores plot for metabolomics data. (b) ROC curve for metabolomics sPLS-DA model. (c) VIP score 545 
histogram for metabolites. (d) Top 14 metabolites by VIP score. (e) sPLS-DA sample scores plot for microbiota 546 
composition data. (f) ROC curve for microbiota sPLS-DA model. (g) VIP scores histogram for microbiota. (h) 547 
Top 10 microbial taxa VIP scores. (i) sPLS-DA sample scores plot for enzymes data. (j) ROC curve for 548 
enzymes sPLS-DA model. (k) VIP score histogram for enzymes. (l) Top 8 enzymes by VIP score. (m) sPLS-DA 549 
sample scores plot for concatenation control multi-omic model. (n) ROC curve for concatenation control model. 550 
(o) VIP score histogram for concatenation control model. (p) Top 12 feature VIP scores for the control model. 551 
 552 

Figure 3.- Main and Interaction Effects in a structured model regression for CD (a) LV main effects model 553 
p-values. (b) LV Interaction effects  p-values. (c) Scores plot of samples on enzymes LV1 and metabolites LV1. 554 
(d) Scores plot of samples on enzymes LV1 and microbiota LV1. (e) Scores plot of samples on microbiota LV1 555 
and metabolites LV1.  556 
 557 

Figure 4.- Meta Model Networks and Subnetworks for CD in Cytoscape (a) Meta-Model networks VIP > 1. 558 
(b) Top 20% highest VIP per each omic data type. (c) VIP > 11 and Coprococcus catus. (d) Top 2 highest VIP. 559 
Edges reflect Spearman correlation coefficient.  560 
 561 

Figure 5.- sPLS-DA model performance and variance importance of projections (VIP) for UC (a) sPLS-562 
DA sample scores plot for metabolomics data. (b) ROC curve for metabolomics sPLS-DA model. (c) VIP score 563 
histogram for metabolites. (d) Top 14 metabolites by VIP score. (e) sPLS-DA sample scores plot for microbiota 564 
composition data. (f) ROC curve for microbiota sPLS-DA model. (g) VIP scores histogram for microbiota. (h) 565 
Top 10 microbial taxa VIP scores. (i) sPLS-DA sample scores plot for enzymes data. (j) ROC curve for 566 
enzymes sPLS-DA model. (k) VIP score histogram for enzymes. (l) Top 8 enzymes by VIP score. (m) sPLS-DA 567 
sample scores plot for concatenation control multi-omic model. (n) ROC curve for concatenation control model. 568 
(o) VIP score histogram for concatenation control model. (p) Top 11 feature VIP scores for the control model. 569 
 570 

Figure 6.- Main and Interaction Effects in a structured model regression for UC. (a) LV main effects 571 
model p-values. (b) LV Interaction effects  p-values. (c) Scores plot of samples on microbiota LV1 and 572 
metabolites LV1. (d) Scores plot of samples on enzymes LV1 and microbiota LV1. (e) Scores plot of samples 573 
on enzyme LV1 and metabolites LV1.  574 
 575 

Figure 7.- Meta Model Networks and Subnetworks for UC in Cytoscape (a) Networks VIP > 1. (b) Top 20% 576 
highest VIP per each omic data type. (c) VIP > 7.5 and Top 3 microbial species. (d) Top 2 highest VIP. Edges 577 
reflect Spearman correlation coefficient.  578 
 579 

 580 

 581 

 582 
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FIGURES 583 

 584 

 585 

 586 

 587 

Figure 1.- Latent Interacting Variable Effects (LIVE) Modeling Workflow Multi-Omics Microbiome Data is 588 
encoded in a set of Sparse Partial Least Square Models. Then, structured model combines discriminative 589 
latent variable per each single-omics sPLS-DA models. Next, significant discriminative and predictive omic 590 
features are thresholding by VIP, correlational analysis, and q-values to build meta model networks. 591 
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 592 

Figure 2.- sPLS-DA model performance and variance importance of projections (VIP) for CD (a) sPLS-593 
DA sample scores plot for metabolomics data. (b) ROC curve for metabolomics sPLS-DA model. (c) VIP score 594 
histogram for metabolites. (d) Top 14 metabolites by VIP score. (e) sPLS-DA sample scores plot for microbiota 595 
composition data. (f) ROC curve for microbiota sPLS-DA model. (g) VIP scores histogram for microbiota. (h) 596 
Top 10 microbial taxa VIP scores. (i) sPLS-DA sample scores plot for enzymes data. (j) ROC curve for 597 
enzymes sPLS-DA model. (k) VIP score histogram for enzymes. (l) Top 8 enzymes by VIP score. (m) sPLS-DA 598 
sample scores plot for concatenation control multi-omic model. (n) ROC curve for concatenation control model. 599 
(o) VIP score histogram for concatenation control model. (p) Top 12 feature VIP scores for the control model. 600 
 601 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2022. ; https://doi.org/10.1101/2022.07.08.499280doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.08.499280
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

 602 

Figure 3.- Main and Interaction Effects in a structured model regression for CD (a) LV main effects model 603 
p-values. (b) LV Interaction effects  p-values. (c) Scores plot of samples on enzymes LV1 and metabolites LV1. 604 
(d) Scores plot of samples on enzymes LV1 and microbiota LV1. (e) Scores plot of samples on microbiota LV1 605 
and metabolites LV1.  606 
 607 
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 608 

Figure 4.- Meta Model Networks and Subnetworks for CD in Cytoscape (a) Meta-Model networks VIP > 1. 609 
(b) Top 20% highest VIP per each omic data type. (c) VIP > 11 and Coprococcus catus. (d) Top 2 highest VIP. 610 
Edges reflect Spearman correlation coefficient.  611 
 612 
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 613 

Figure 5.- sPLS-DA model performance and variance importance of projections (VIP) for UC (a) sPLS-614 
DA sample scores plot for metabolomics data. (b) ROC curve for metabolomics sPLS-DA model. (c) VIP score 615 
histogram for metabolites. (d) Top 14 metabolites by VIP score. (e) sPLS-DA sample scores plot for microbiota 616 
composition data. (f) ROC curve for microbiota sPLS-DA model. (g) VIP scores histogram for microbiota. (h) 617 
Top 10 microbial taxa VIP scores. (i) sPLS-DA sample scores plot for enzymes data. (j) ROC curve for 618 
enzymes sPLS-DA model. (k) VIP score histogram for enzymes. (l) Top 8 enzymes by VIP score. (m) sPLS-DA 619 
sample scores plot for concatenation control multi-omic model. (n) ROC curve for concatenation control model. 620 
(o) VIP score histogram for concatenation control model. (p) Top 11 feature VIP scores for the control model. 621 
 622 
 623 
 624 
 625 
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 626 

Figure 6.- Main and Interaction Effects in a structured model regression for UC. (a) LV main effects 627 
model p-values. (b) LV Interaction effects  p-values. (c) Scores plot of samples on microbiota LV1 and 628 
metabolites LV1. (d) Scores plot of samples on enzymes LV1 and microbiota LV1. (e) Scores plot of samples 629 
on enzyme LV1 and metabolites LV1.  630 
 631 

 632 

 633 
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 634 

Figure 7.- Meta Model Networks and Subnetworks for UC in Cytoscape (a) Networks VIP > 1. (b) Top 20% 635 
highest VIP per each omic data type. (c) VIP > 7.5 and Top 3 microbial species. (d) Top 2 highest VIP. Edges 636 
reflect Spearman correlation coefficient.  637 
 638 

  639 
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TABLES 640 

Table 1.- AUC and Balanced Error Rate comparison from single-omics sPLS-DA models for CD  641 
Performance Metric Concatenation Control Metabolome Microbiome Enzymatic Composition 

AUC 0.959 0.959 0.9736 0.939 
Balanced Error Rate 0.45 0.43 0.24 0.20 

 642 
 643 
Table 2.- Single-omic sPLS-DA models show higher coverage than concatenation control model in CD.  644 

Latent 
Variable 

Concatenation Control Metabolome Microbiome Enzymatic Composition 
Encoded 
Features 

Explained 
Variance 

Encoded 
Features 

Explained 
Variance 

Encoded 
Features 

Explained 
Variance 

Encoded 
Features 

Explained 
Variance 

LV1 70 13% 70 17% 100 5% 100 12% 
LV2 1 3% 40 3% 2 2% 2 2% 

LV3 0 0% 90 6% 0 0% 0 0% 

Total 71 16% 200 20% 102 7% 102 14% 

 645 
 646 
Table 3.- LIVE Modeling Outcome Table with Coefficients and p-values for CD. 647 

Crohn Disease Coefficient and p-values Main Effects Interactions 
Feature coefficients p-value coefficients p-value 

Metabolite LV1 -0.0579 < 2 e-16 -0.0541 1.36 e-13 
Metabolite LV2 0.0624 3.98e-16 0.0572 8.10 e -08 
Metabolite LV3 0.0394 1.07e-10 0.0359 8.86 e-07 
Microbiota LV1 0.0256 0.141 0.0495 0.006 
Enzymes LV1 0.0115 0.083 -0.0002 0.976 
Metabolite LV1 x Microbiota LV1 - - 0.0079 0.007 
Metabolite LV2 x Microbiota LV1 - - 0.0069 0.300 
Metabolite LV3 x Microbiota LV1 - - -0.0049 0.264 
Metabolite LV1 x Enzymes LV1 - - -0.0006 0.569 
Metabolite LV2 x Enzymes LV1 - - 0.0078 0.006 
Metabolites LV3 x Enzymes LV1 - - 0.0013 0.446 
Microbiota LV1 x Enzymes LV1 - - -0.0048 0.118 
Metabolite LV1 x Microbiota LV1 x Enzymes LV1 - - -0.0010 0.002 
Metabolite LV2 x Microbiota LV1 x Enzymes LV1 - - 0.0007 0.176 
Metabolite LV3 x Microbiota LV1 x Enzymes LV1 - - 0.00005 0.245 
Intercept 0.6666 < 2 e-16 0.7274 < 2 e-16 

 F-stat 
p-value 

140.9 
2.2 e-16 

F-stat 
p-value 

77.84 
2.2 e-16 

 648 

Table 4.- AUC and Balanced Error Rate comparison from single-omics sPLS-DA models for UC  649 
Performance Metric Concatenation Control Metabolome Microbiome Enzymatic Composition 

AUC 0.952 0.922 0.932 0.969 
Balanced Error Rate 0.5 0.343 0.5 0.125 

 650 
 651 
 652 
 653 
 654 
 655 
 656 
 657 
 658 
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Table 5.- Single-omic sPLS-DA models show higher coverage than concatenation control model in UC.  659 
Latent 

Variable 

Concatenation Control Metabolome Microbiome Enzymatic Composition 
Encoded 
Features 

Explained 
Variance 

Encoded 
Features 

Explained 
Variance 

Encoded 
Features 

Explained 
Variance 

Encoded 
Features 

Explained 
Variance 

LV1 100 8% 100 10% 80 5% 100 13% 
LV2 1 4% 100 3% 1 2% 90 6% 

Total 101 16% 200 13% 81 7% 190 19% 

 660 
 661 
 662 
Table 6.- LIVE Modeling Outcome Table with Coefficients and p-values for UC. 663 

Ulcerative Colitis Coefficient and p-values  Main Effects Interaction Effects 
Feature coefficients p-value coefficients p-value 

Metabolite LV1 -0.0590 1.05e-12 -0.059 6.01e-12 
Metabolite LV2 0.0595 1.38e-13 0.061 5.23e-10 
Microbiota LV1 -0.0486 0.002 -0.066 0.0003 
Enzymes LV1 -0.0003 0.45 0.023 0.019 
Metabolite LV1 x Microbiota LV1 - - -0.001 0.675 
Metabolite LV2 x Microbiota LV1 - - 0.012 0.050 
Metabolite LV1 x Enzymes LV1 - - 0.001 0.477 
Metabolite LV2 x Enzymes LV1 - - 0.001 0.487 
Microbiota LV1 x Enzymes LV1 - - -0.0005 0.900 
Metabolite LV1 x Microbiota LV1 x Enzymes LV1 - - -0.002 0.003 
Metabolite LV2 x Microbiota LV1 x Enzymes LV1 - - 0.002 0.018 
Intercept 0.609 2e-16 0.642 2e-16 

 F-stat 
p-value 

87.07 
2.2 e-16 

F-stat 
p-value 

47.94 
2.2 e-16 

 664 

Table 7.- CD and UC features associated with drug response that were predicted by LIVE modeling.  665 

 666 

  667 

Features Crohn Disease Ulcerative Colitis 

Metabolites - C18-neg_Cluster_1016_Acyl carnitines 

Microbiota Species Gordonibacter_pamelaeae Gordonibacter_pamelaeae 

Enzymes 

2.1.1.133 Precorrin-4 C (11)-
methyltransferase 

2.3.1.157 Glucosamine-1-phosphate N-
acetyltransferase 

2.1.1.132 Precorrin-6B C (5,15) -
methyltransferase (decarboxylating) 2.7.7.72 CCA tRNA nucleotidyltransferase 

2.3.1.157 Glucosamine-1-phosphate N-
acetyltransferase 

3.2.1.89 Arabinogalactan endo-beta-1,4-
galactanase 

2.7.7.72 CCA tRNA nucleotidyltransferase 5.4.2.2 Phosphoglucomutase (alpha-D-
glucose-1,6-bisphosphate-dependent) 

3.1.3.15 Histidinol-phosphatase - 
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SUPPORTING INFORMATION AND CAPTIONS 668 

List of Supplemental Materials 669 

1. Supplemental Table 1.- Linn VIP from Metabolomic single-omic sPLS-DA model for CD 670 

2. Supplemental Table 2.- Linn VIP from Microbiota composition single-omic sPLS-DA model for CD 671 

3. Supplemental Table 3.- Linn VIP from Enzymatic composition single-omic sPLS-DA model for CD 672 

4. Supplemental Table 4.- Model Performance single-omic sPLS-DA models and concatenation control.  673 

5. Supplemental Table 5.- Significant metabolic, microbiota and enzyme pairs that determine CD status 674 

6. Supplemental Table 6.- Node File for CD in Cytoscape 675 

7. Supplemental Table 7.- Edge File for CD in Cytoscape 676 

8. Supplemental Table 8.- Node File for CD VIP > 5 to build Meta-Model Networks 677 

9. Supplemental Table 9.- Linn VIP from Metabolomic single-omic sPLS-DA model for UC 678 

10. Supplemental Table 10.- Linn VIP from Microbiota composition single-omic sPLS-DA model for UC 679 

11. Supplemental Table 11- Linn VIP from Enzymatic composition single-omic sPLS-DA model for UC 680 

12. Supplemental Table 12.- Model Performance single-omic sPLS-DA models and concatenation control.  681 

13. Supplemental Table 13.- Significant metabolic, microbiota and enzyme pairs that determine UC status 682 

14. Supplemental Table 14.- Node File for UC in Cytoscape 683 

15. Supplemental Table 15.- Edge File for CD in Cytoscape 684 

16. Supplemental Table 16.- Node File for UC VIP > 4 to build Meta-Model Networks 685 
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