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Abstract 
Purpose – Much remains unknown about how young children orient to computational objects and how we 
as learning scientists can orient to young children as computational thinkers. While some research exists on 
how children learn programming, very little has been written about how they learn the technical skills needed 
to operate technologies or to fix breakdowns that occur in the code or the machine. The purpose of this study 
is to explore how children perform technical knowledge in tangible programming environments. 
Design/methodology/approach – The current study examines the organization of young children’s 
technical knowledge in the context of a design-based study of Kindergarteners learning to code using robot 
coding toys, where groups of children collaboratively debugged programs. The authors conducted iterative 
rounds of qualitative coding of video recordings in kindergarten classrooms and interaction analysis of 
children using coding robots. 
Findings – The authors found that as children repaired bugs at the level of the program and at the level of 
the physical apparatus, they were performing essential technical knowledge; the authors focus on how 
demonstrating technical knowledge was organized pedagogically and collectively achieved. 
Originality/value – Drawing broadly from studies of the social organization of technical work in 
professional settings, we argue that technical knowledge is easy to overlook but essential for learning to 
repair programs. The authors suggest how tangible programming environments represent pedagogically 
important contexts for dis-embedding young children’s essential technical knowledge from the more abstract 
knowledge of programming. 
Keywords Early childhood, Interaction analysis, Computer literacy, Technical knowledge, 
Debugging, Sociotechnical organization of learning, Tangible programming 
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ILS Introduction 
When we conjure up an image of a computer scientist, the young child is not the default image 
that comes to mind. Yet early childhood education is fast becoming a site for teaching and 
learning valued skills like computational thinking (CT), programming and computational 
literacy. Children as young as preschool-age are engaging in coding with apps like Scratch Junior 
or with robot coding toys like Kibo (Bers, 2018). Researchers are now actively working to 
understand how children orient to computational objects and how we ourselves orient to young 

     children as computational thinkers. Thus far, the existing research has tended to focus on how 
young children learn early computer science (CS) skills (Clarke-Midura et al., 2021; Bers, 2018; 
Wang et al., 2020). Less attention has been paid to how they learn basic technical skills, for 
example, how to operate a robot’s controls or how to manipulate the buttons in an app. The 
tendency to privilege the work of programming over operating technologies is incomplete for 
learning to use tangible coding toys. In this paper, we develop a perspective on learning to debug 
code with tangible tools that accounts for how programming is also a technical matter and 
explore how children were performing essential technical knowledge as they learned to program. 

While we focus on young children, we note that a programmer-technician hierarchy is 
common in computing fields. Work in software engineering and computer programming 
(e.g. writing code) is treated as having higher status than information technology support 
(e.g. assembling, connecting or operating components; installing software). However, the 
increased prevalence of tangible and physical computing devices has the potential to disrupt this 
order Horn (2018). Nonetheless, in research on learning, longstanding distinctions between 
computer literacy (e.g. inserting a CD, plugging in and turning on a machine) and computational 
literacy (e.g. building code and debugging programs) perpetuate the belief that technical 
knowledge is not on par with its programming counterpart (diSessa, 2000). From this perspective, 
technical know-how and hands-on interactions with the computer interface have not been valued 
in the same way as learning to program. This may be particularly true for novice coders like 
young children, for who operating computers’ components is no simple matter or when tangible 
interfaces entangle hardware with software. 

The computational object has traditionally been represented by the code, the screen and 
the algorithm; with tangible coding toys, these are now physically instantiated in blocks and 
3D “sprites” you can hold in the palm of your hand Horn (2018). Once prohibitively 
expensive and almost exclusively used in lab settings (McNerney, 2004), commercially 
available programming toys now multiply the number and types of objects to manipulate 
and “think with” (Papert, 1980) as children learn to code. A wide variety of tangible coding 
toys are being used in early learning environments, and most kits include a robot (i.e. the 
agent), a set of directional arrows (i.e. the codes) and a controller or programming interface 
(i.e. remote-control mechanism) (Clarke-Midura et al., 2019; Yu and Roque, 2019). Whereas 
learning to think computationally once involved arranging commands on a screen, where 
the agent then moved in 2D, tangible programming environments incorporate multiple 
materials and the mobile agent moves through the classroom. These emerging 
environments complicate coding in a number of ways that bear on this study. 

First, preliterate children are still learning conventions for mapping correspondence 
between actions and symbols (Silvis et al., 2020), resulting in frequent bugs. Second, with 
robot coding toys, bugs are not “contained” in a screen or software; they are distributed 
across tangible materials and hardware. Whereas in screen-based programming, broken 
code crashes the program, with tangible materials, breakdowns are also mechanical or 
physical and machines can literally crash into things in the physical environment. Children 
learning to manipulate code are also learning to wrangle coding materials, with 
consequences for debugging their programs. For young children who are novice 



 

 
 

 

programmers, the relationship between breakdowns in code and in tangible coding 
machinery may not be transparent. 

We examined this related set of issues in Kindergarten classrooms where groups of 
children engaged with tangible coding toys as they learned to build and debug programs. 
We began by asking broadly what was involved in children’s debugging with robot coding 
toys and found that treating bugs as located in the program was inadequate (Silvis et al., 
2021). For example, having to enter the code into the toy via remote-control leaves room for 
human error, such as hitting the wrong button or forgetting to delete the previous program. 
In this analysis, we explore a perspective that debugging is more than a matter of 
identifying, locating and resolving errors in programs; it also involves reconciling coding 
errors with concurrent material mishaps, which we call “physical bugs.” This 
understanding of debugging as also physical and mechanical prompted the questions that 
we address in the current analysis: 

Q1. How is technical work involved in resolving programming breakdowns at the level 
of code and mechanical breakdowns in tangible toys? 

Q2. How do children learn about technical aspects of operating coding robots 
while debugging (with) them (i.e. how is technical knowledge organized 
pedagogically)? 

Our analysis positions children’s technical work as central to debugging and accounts 
for how distributed technical knowledge mattered for repairing both types of 
breakdowns. We found that the technical skills children developed were more than a 
matter of fixing simple mistakes children made using robot coding toys; we also 
observed that their physical errors were independent of the design and engineering of 
the toys themselves. In other words, the technical skills required to resolve physical 
bugs are neither simply reducible to user error nor the result of products’ design 
flaws. Since the program is embedded in and distributed across these tangible 
programming materials, in addition to bugs in the actual code, physical bugs 
interacted with programming bugs via distributed materials. The forms of physical 
debugging we analyzed were intertwined with debugging code and reflected a 
distinct form of knowledge characteristic of technical work more broadly. To get 
there, we present a series of cases of children learning to reconcile the physical and 
programming domains of this particular computational environment and the 
pedagogical moves that supported their technical knowledge. 

In what follows, we first situate the present analysis of the technical work of 
debugging within related literature on early childhood tangible programming and 
educational robotics. Then we describe the larger study, a design-based research 
project designed to develop curriculum and assessment materials for early childhood 
CT. Next, we detail our analytic process that led to an understanding of the essential 
technical knowledge of debugging. We then present our findings narratively through 
microanalysis of three cases where children simultaneously grappled with bugs in the 
program and bugs in the physical apparatus. These cases position children’s 
technical knowledge as instrumental for successful programming. We discuss how 
essential technical knowledge often occurs alongside programming but tends to be 
overlooked or subsumed within it. We argue that making the technical work of 
programming a distinct pedagogical focus is important in a society where there are 
ever more technical jobs for today’s learners. 
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ILS Framing perspectives 
Tangible computing in early childhood 
While the proliferation of coding robots in early childhood settings may suggest they are a 
recent invention, a consequence of the rise of early childhood computing standards (Bers 
and Sullivan, 2019; K-12 Computer Science Standards), tangible computing and robotics 
actually have a long history in early childhood. Research on tangible programming 
languages traces back to Papert’s (1980) original Logo floor turtles, “objects to think with” 

     that merged programming on-screen with a moving 3D robotic agent who drew shapes 
using a stylus (McNerney, 2004). A veritable menagerie of tangible designs and working 
prototypes emerged from this long line of research, including Lego bricks (Souza et al., 2018), 
tangible crickets (Resnick et al., 2000) and a robot named Kibo (Bers, 2018). For at least 20 
years, studies of tangible programming in early childhood settings have examined how 
coding toys and robots support preliterate children to think computationally as they build 
and tinker, create and play and write and re-write programs (Bers, 2018; Bers et al., 2014; 
Bers and Horn, 2010; Wyeth, 2008; Wang and Choi, 2021). 

One version of the history of tangible computing reflects the field’s developing interest in 
teaching CT skills like abstraction, sequencing, decomposition or debugging (Bers et al., 
2014; Brennan and Resnick, 2012; Sullivan and Bers, 2016; Wang et al., 2020). Like block 
programming, tangible programming languages simplify and structure code so that young 
children can access essential principles of computational systems. But unlike in 
programming environments like Scratch or 3D virtual robotic simulations (Witherspoon 
and Schunn, 2019), learning to build and debug programs using tangible robot coding toys 
is a hands-on affair. We tend to colloquially construe code as “immaterial,” a series of 
symbols operating “inside” the machine (Kitchin and Dodge, 2011); however, tangible 
programs actually take material form in a set of moveable, manipulable cards or blocks that 
represent a series of movements a robot makes. In other words, the robot is tangible, and so 
are the codes (Schweikardt and Gross, 2008). With a few exceptions (Sullivan and Bers, 
2016), studies of coding robots and early childhood CT have tended to favor teaching 
programming over the mechanics of physical components of the computational system. 

The second version of coding robot history emphasizes how they serve as the basis for 
early engineering education. Some of the same toys that are used to teach programming are 
used in educational robotics (Sullivan and Bers, 2016; Sullivan et al., 2015), as young children 
learn how to engineer robots from a collection of functional components (Hamner et al., 2010; 
Kim et al., 2018; Socratous and Ioannou, 2020). While the coding robots we use in this study 
are pre-fab, commercially available and equipped with ready-made kits, the physical nature 
of the robots’ components – and the consequences on the program of mechanical 
breakdowns – reflects the technical emphasis of educational robotics. Still, extant studies of 
young children’s debugging in early engineering environments like LEGO robotics often 
treat problems of a physical nature (e.g. connecting a sensor to the wrong port) and 
programming breakdowns (e.g. omitting a command) as if they rely on the same sort of 
knowledge (Socratous and Ioannou, 2020). Rather than subsuming knowledge of the former 
within the latter, the current study attempts to understand the technical work of resolving 
physical errors on its own terms. 

 
Debugging as technical knowledge 
We build on a vibrant strand of learning research focused on debugging as a key dimension 
of programming and important for CT and CS education (DeLiema et al., 2019; Fields et al., 
2021; Kafai et al., 2019; McCauley et al., 2008; Pea et al., 1987). Research in this area is just 
beginning to identify the knowledge, skills and abilities that young children use when 



 

 
 

 

debugging programs (Bers, 2018; Heikkilä and Mannila, 2018; Rich et al., 2019; Wang et al., 
2020). For example, Bers and colleagues’ (2014) model for young children’s debugging 
included skills or steps for: 

• recognizing errors; 
• modifying goals; 
• hypothesizing sources of error; and 
• solving the problem in the context of using robot coding toys. 

We adopt a perspective that debugging – which we take as the iterative process of creating, 
recognizing, locating and fixing errors – pertains to errors in programs or machinery. By 
examining breakdowns in the machinery as part and parcel of breakdowns in the program, 
we focus on how debugging tangible programs is largely a technical matter. 

Our focus on not only code but also machinery or materials as a source of bugs is not 
entirely new to research on learning. Fields et al. (2016, 2021) designed for debugging 
through an e-textiles project in which fixing errors in the code (i.e. missing semi-colons) and 
fixing faulty circuitry (i.e. crossed wires) were both necessary to build a working product. 
This intricate relationship between errors in a program and problems with a physical part of 
a designed object is a widely recognized tension in engineering domains. For example, for 
machine operators responsible for successful IT demonstrations, the disastrous, ever-to-be- 
avoided “crash” refers both to broken code crashing the software and misguided machines 
literally crashing into something or physical parts breaking (Smith, 2009). What we 
analyzed as technical knowledge taps the latter set of problems of a material nature but 
explores them in a novel context where young children learned to code and operate tangible 
coding toys. 

In previous work exploring how learning to debug involves understanding a relationship 
between physical mistakes and programming errors, the technical work is typically 
performed by individual children or children working in pairs. These learning designs have 
examined how older children resolve these two types of bugs (Searle et al., 2018). In the 
debugging by design (DbD) projects (Fields, 2016, 2021), students embedded bugs in their 
e-textiles design projects for each other to solve. Of relevance to our study, students were 
required to create bugs in the program and bugs in physical materials, for example, creating 
buggy projects that included both a misspelled variable name and a light with reversed 
polarity. This work challenges learning designers to consider what DbD involves in other 
tangible computing contexts, for example, in a computational environment where 
debugging (with) coding robots involved learning both the programming language and the 
technical skills to operate the equipment. 

In Kindergarten coding as well as professional practice, technical knowledge is regularly 
interleaved with programming knowledge across an arc of work. Technicians, people who do 
practical work to make things or make things work (Whalley and Barley, 1997), are involved 
in practically every occupation. In recent decades, as technologies are digitized and 
automated, society has organized more and more technical work, whereas the nature of 
technical work has shifted (Barley and Orr, 1997). Many machine operators no longer work 
on the factory floor, and their work is increasingly analytical. At the same time, technical 
functions like repair, maintenance, machine operating, troubleshooting, software support 
and routine data entry have been “bundled” into jobs that ostensibly require less training 
and skill. Despite this hiving-off process that has accompanied the specialization of all sorts 
of scientific and technical roles, practical work takes intellectual skills. 
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ILS While technologies have changed, the tendency to subsume technical knowledge within 
more abstract programming knowledge is familiar. The history of scientific and 
technological breakthroughs is often heralded as one of the white men in white coats, 
singular discovery and sudden sparks of genius. This has been especially true in CS and 
engineering. Technicians, though highly skilled and critical for the operation of complex 
sociotechnical systems, have gone largely unrecognized, overshadowed by the towering 
figure of the research scientist or inventor in historical accounts. Positioned behind the 

     curtain or in the “backrooms of science” (Barley and Bechky, 1994), people with technical 
knowledge were “hidden figures” (Shetterly, 2016) who were the mechanical backbone 
performing essential technical work (Shapin, 1989). In what follows, we recognize children’s 
essential technical knowledge as consequential for debugging when programs are tangible. 

 
Study design and analytic methods 
Studying debugging as part of early childhood computational thinking 
This study was part of a larger design-based research project focused on operationalizing and 
then developing classroom assessments and curriculum for early childhood CT (Clarke-Midura 
et al., 2019, 2021b; Shumway et al., 2021; Silvis et al., 2020) and contributes to a growing body of 
work on the topic (Bers et al., 2014; Bers, 2018; Bers and Sullivan, 2019; Tang et al., 2020). While 
there is a general lack of agreement about the CT construct, how to teach or assess it and its 
value(s), debugging is one of a number of consensus skills widely thought to be relevant to 
solving problems computationally (Rich et al., 2019; Wang and Choi, 2020). In the broader study, 
we focus on debugging as one of a suite of subcomponents involved in CT, iteratively: 

• operationalizing it; 
• teaching it; and 
• assessing it. 

The design of the curriculum tasks we describe in this analysis was part of the second 
objective of the project, informed by the other two across curriculum implementations. 

 
Participants and groups 
The data analyzed were collected over the course of a school year in two Kindergarten 
classrooms in two rural schools in the intermountain west of the USA. Thirty-two students 
participated in the project (female = 11). The two classrooms were part of a grant-funded 
program that provided full-day kindergarten to support English Language Learners, 
students who had an individualized education plan and students identified by their entrance 
assessment. All other students in the district attended half-day kindergarten. 

Based on what we had learned about collaborative coding from the implementation of 
robot coding tasks in a previous pilot phase, we organized students into small groups of 
three to five children. Participating kindergarten teachers developed the groupings based on 
our recommendations that they put students together who “work well together.” A teaching 
team of four researchers with elementary or early childhood teaching experience led these 
activities. Students participated in six coding lessons over a three- to four-week period. Each 
lesson lasted 30 min, and on any given day, two separate groups were coding robots in 
different areas of the classroom. 

 
Coding robots and task roles 
After studying the affordances and constraints of a number of commercially available 
options, we invested in tangible, screen-free coding toys (Clarke-Midura et al., 2019; see also 



 

 
 

 

Yu and Roque, 2019). Screen-free toys were the overriding preference of the teachers who 
were our research partners. We used three different robots (Figure 1), though the majority of 
lessons were taught using Botley and Cubetto. Without going into great detail about the 
design of specific curricular tasks, we provide a brief sketch of coding tasks and associated 
roles to contextualize the nature of bugs and analysis of debugging that follows. Most of the 
tasks with these toys were centered on the problem of getting the robot from one location to 
another. To do this, children used physical tiles or physical buttons to sequence a series of 
directional codes that instructs the robot to move in a specified way on a large floor grid. 

To successfully program and debug with robots, children need to coordinate their self- 
referenced spatial orientation and movement, the robot’s orientation and movement and 
directional symbols that represent the robot’s movements in space (Silvis et al., 2021; Clarke- 
Midura et al., 2020). They must also coordinate the use of multiple coding materials, which 
are distributed and rotated around the group, multiplying occasions for mishaps. The 
ongoing redistribution of materials lent to a system of roles, as the nature of materials can 
determine how roles are designed and labor distributed (Stevens, 2000). 

These roles established duties as well as undefined functions that emerged during 
activities. Two teacher-researchers regularly assigned these roles to students and rotated 
the role among the students, while two teacher-researchers typically allowed these roles to 
emerge more organically. In groups where roles were more emergent, rather than naming 
and designating roles and rotating all students through them, teachers allowed students to 
navigate in and out of roles as the task progressed. In all groups, whether officially named or 
de facto, the Programmer would design the program, specifying directional arrow codes 
one-by-one to an Assistant Programmer, who placed directional arrows in a specified 
sequence. Once a program or code segment was designed, the Technician or robot controller 
would press the corresponding buttons on the robot or operate the robot’s programming 
board or remote control. If a group had more than three students, there was also an 
Evaluator who assessed the viability of the program prior to executing it by giving a 
thumbs up or down and justifying their assessment. 

For example, the group of four students in Figure 2 worked together with their teacher 
Mr K to program Botley to travel along a short path according to the requisite commands 
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Figure 1. 
Robots, controllers 

and directional codes 
for three kits used in 

the study 
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Figure            2. 
Four students 
programming Botley 
to travel forward, 
right, forword 

 

 
 

FORWARD, RIGHT, FORWARD. In this task, Caylie was the Programmer, Kenneth was 
the Assistant Programmer, Franny was the Technician and Benjamin was the Evaluator. 
Caylie instructed Kenneth to place three arrows on the program organizer (the long white 
strip of paper, divided into segments for individual codes) indicating FORWARD, LEFT, 
FORWARD. Before running the program, Benjamin assessed that the program was buggy, 
giving it a thumbs down. Franny subsequently entered these three codes using the buttons 
on Botley’s remote controller but inadvertently added a spurious FORWARD to the end of 
the program; thus, there was both a programming error and an error in operating the 
remote. Sure enough, when enacted, students could see this program was incorrect. How 
groups of students like this ultimately debugged such programs – and the consequentiality 
of Franny’s technical work – is the subject of the following analysis (Table 1). 

 
 
 
 
 

Table 1. 
Group member task 

 
Point to code 
cards/tiles 

 
sequence 

 
button Clears 
program 

 
up/down 

roles, defined duties 
and other functions 

Other functions Suggests alternative 
programs/codes 

Handles robot Suggests alternative 
programs/codes 

 
 

  
Programmer 

Assistant 
Programmer 

 
Technician 

 
Evaluator 

Defined duties Determine path 
Design program 

Verifies selected codes 
Place codes/tiles in 

Enters codes into 
controller Presses Go 

Assesses program 
viability Gives thumbs 

 



 

 
 

 

It is worth noting that we designed for coding task roles in a context where students were 
very familiar with such an organizational structure (DeLiema et al., 2020). In kindergarten 
classrooms, students often vie for particular roles and responsibilities like “door holder,” 
“line leader,” “snack person” or “plant and pet caretaker” (Wolfe, 2006). Designating roles is 
not only useful for organizing classroom routines and distributing responsibility. Roles also 
serve a function for learning, especially when activities are collaborative and materials must 
be shared. Designing “procedural” roles around materials and their uses entail implicit 
“intellectual” roles tied to procedures (Herrenkohl, 2006). For example, in her study of 
elementary student roles, Herrenkohl (2006) found that if you are the designated “reporter” 
in a group of students engaged in learning science, this procedure calls on certain ways of 
thinking particular to what reporters do. The ways in which intellectual labor was 
embedded in the technician’s scope of work (i.e. their technical knowledge) was partly what 
was at stake in our designation of the “robot controller,” or technician role. 

 
Data and analytic approach 
All group lessons were video recorded by designated members of the research team, who 
also played a role in on-site design memos and teaching memos during the curriculum 
implementations. The main data source for the current analysis is approximately 25 h of 
video recordings. In broad sweeps, the analysis process included: 

• writing design memos; 
• content logging video and open coding for aspects of debugging; 
• iteratively refining the analytic lens on the data through analytic memos; and 
• conducting microanalysis of key instances of analytic categories that emerged 

(Figure 3). 

At some moments, these were contemporaneous steps, but for the purpose of clarifying our 
approach, we briefly outline each as separate steps before presenting the empirical cases. 

Design memo-ing. Our research team produced 48 design memos, one for each group 
lesson. This step began during the first curriculum implementations, so the analysis was 
already underway before data collection had ended. This meant that we were noticing 
patterns in teaching and learning debugging, which then changed how we were teaching 
children to debug. For example, during implementation in the first classroom site, we noticed 
that, while they recognized a program had not executed as expected, some students 
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Figure 3. 
Schematic of the 
analytic process 

 
 



 
 

ILS struggled to locate the source of the error or to apply suitable debugging strategies. 
Sometimes they defaulted to adding a backward arrow to the end as if to “undo” an error 
somewhere in the program. For instance, following an especially lengthy debugging attempt 
that involved ten separate rounds of debugging of what should have been a seven-code 
program, one researcher documented in her memo: 

The program is run again and Botley goes too far before turning. [The student] tries to add 
backwards to the end of the code, but [the teacher] helps her to identify what went wrong and 

          where in the program the bug is. [The student] does not quite see it [.. .] While the lesson was 
originally focused on algorithmic thinking, it elicited a lot of discussion and practice with 
debugging [.. .] Programming with physical obstacles and goals, there may be multiple 
opportunities to debug. [10-22-19, RP] 

Seeing that this debugging step or skill could benefit from a more explicit pedagogical focus, 
we decided to make debugging the focus of an entire curriculum unit, using one robot called 
Botley. However, when we implemented debugging tasks in subsequent groups, it was not 
the case that learning to debug was necessarily restricted to this particular design nor 
exclusively to Botley. Debugging continued to occur pervasively in all tasks and robots, 
leading us back to the data to try to account for patterns in debugging beyond our designs. 

Content logging and coding. Between the first and second classroom implementations, we 
began a months-long process of content logging the video data (Jordan and Henderson, 1995). 
As we logged, we developed codes to describe the data. Initially, these were highly descriptive 
and focused on easily observable aspects of debugging such as bug types, the position of bugs 
in programs, numbers of attempts or trials and debugging strategies, such as adding codes 
onto the end of the program or “wiping” the entire program and starting over (Silvis et al., 
2021). Early on, at this very grounded and descriptive level, we were still regarding the 
program as the primary source of errors. As implementations continued through the school 
year, and our memos and design debrief discussions became more analytical, we started to lift 
up from the descriptive categories and look beyond our designs to what else was happening in 
interactions that might be consequential for debugging. It was at this time that we began to 
foreground something that had been latent in our debriefs, discussions and designs: the use 
(and misuse) of coding materials. 

On the one hand, we knew that the ways in which children handled the robot and 
accessories were critical, so much so that we designed additional hand-made aids to 
supplement the commercially available kits that came included with the toys. For example, 
we had designed an item we called a “program organizer,” which served to order and 
sequence codes that would sometimes become jumbled or get strewn about in the excitement 
of children’s coding. It was this sort of problem that drew our analytical attention to the 
ways in which physical materials were causing what looked like bugs in the program but 
were actually “bugs” in the apparatus. We coded for the various forms of breakdown we 
observed and identified a number of categories for bugs in the physical apparatus, including 
material mishaps, re-initialization errors, operator errors, mechanical issues and intentional 
user errors that we called “building in a bug.” Furthermore, these types of errors occurred as 
frequently as programming errors, with operator or controller errors accounting for a 
substantial proportion of all bugs (Silvis et al., 2021). Material mishaps like the robot getting 
hung up on the mat required technical interventions, and so did operator errors like pressing 
the incorrect buttons or mechanical errors like Bluetooth pairing problems. We observed 
that what we termed physical bugs often exacerbated and were laminated onto programming 
bugs in ways that complicated successful debugging (ibid). Treating physical bugs as a 
category of problems that co-occurred in consequential ways with programming bugs, we 
shifted our analytic lens to the relationship between these two high-level categories of bugs. 



 
 

Refining analytic questions and memos. From the very start of our coding, we produced 
approximately 200 analytic memos, and theoretical notes that helped us differentiate 
between categories and concepts (Glaser and Strauss, 1967). These memos range in length 
from a few words (i.e. analytic notes) to several pages. The majority of the memos are linked 
to coded segments of tape; however, longer memos integrated emerging concepts and cut 
across segments, lessons, groups and school implementations. For us, analytic memos were 
most useful for extending the theoretical integration of the data and developing the 
relationship between physical and programming errors (Glaser and Strauss, 1967). For 
example, Memo 114, corresponding to a segment of video sub-coded for a type of physical 
bug wrong-button press and cross-coded with a pedagogical approach modeling a debugging 
strategy, reads: 

Whereas before, Eli had needed scaffolding for building the program through one-by-one coding, 
now Cory receives the same supports but for the physical toy itself. Both the program and the 
physical material at times require decomposing into single units in order to reduce errors and 
focus on the symbol-movement-button correspondence emphasis added [6/8/20, ET]. 

The interrelation between programming and physical bugs ultimately formed the “axis” 
around which further coding was conducted, eventually establishing the core category of the 
emerging theory (Kelle, 2007). Integrating this emerging theoretical construct with related 
literature on debugging and technical knowledge, we were now operating under what 
Strauss referred to as a “coding paradigm,” where the meaningfulness of a piece of data was 
viewed in terms of physical materials and their mis/use on debugging. In other words, we 
were developing a theory that positioned the technical knowledge of the person in the role of 
the robot controller who was responsible for how the materials were used, as consequential 
for successful debugging and programming. 

Selection and microanalysis of cases. When it came time to identify comparative cases for 
closer microanalysis, we drew on a number of selection criteria. First, we knew that physical 
bugs occurred across a wide variety of materials and objects associated with the coding 
robots. We, therefore, selected cases that illustrate different robots or parts of the physical 
apparatus that can cause mechanical trouble. Second, we identified cases where teachers 
played a key role in children developing technical knowledge because, in our task designs, 
the teacher was instrumental for supporting or thwarting technical work. Third, we selected 
cases where technical knowledge emerged from the group’s collaborative work rather than 
being siloed. While essential technical knowledge sometimes gets hidden away in labs or 
embedded in the work of the programmer, (Barley and Bechkey, 1994; Shapin, 1989; Smith, 
2009), we chose cases where technical knowledge was foregrounded as an essential function 
of the group. Fourth, we chose cases where programming and physical bugs co-occurred 
because we had seen how resolving both orders of bugs highlighted the essential role of the 
person performing the technical work (Silvis et al., 2021). 

We conducted interaction analysis (IA) of focal cases that represented these key criteria 
(Jordan and Henderson, 1995). While the outputs of IA vary, most analysts hold to a set of 
shared principles (Hall and Stevens, 2016), a number of which guided our analysis. First is 
the importance of learning as a “member’s phenomenon,” which focuses analysis not on a 
priori theories of or adults’ goals for a particular learning phenomenon (in our case, 
debugging) but on what learners collectively believe they must accomplish (Keifert and 
Stevens, 2019; Stevens, 2010); while conducting analysis, we operated under the assumption 
that learners’ collective accomplishments always take place in a negotiated and powered 
space. Second, and relatedly, knowledge is achieved through purposeful interaction, not as 
an individual accomplishment, incidentally acquired; knowledge is not something a learner 
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ILS has (or lacks), but rather knowledge is observed in-use (Hall and Stevens, 2016). Building 
from this, a third principle we drew on was that these “uses” are always “re-uses,” built upon 
the substrates of prior interactions, which become sedimented in materials and ideas, and 
are carried into their subsequent uses (Goodwin, 2018). Guided by these and other guiding 
principles of IA, we examined multimodal ways technicians and their collaborators 
accomplished tasks, paying particular attention to children’s multimodal use, sharing and 
discussion of materials. In what follows, we present three instances in which children 

     demonstrated and developed their technical knowledge in the context of debugging tangible 
programs. 

 
Analytic findings 
Case     1:      doing      essential      work      of      performing      technical      fixes 
Working in groups and taking on different roles multiplied the number of possible problems 
to solve. When physical bugs like user errors (i.e. pushing the wrong buttons) and 
programming bugs like miscoding the turn unit (i.e. ROTATE, ROTATE, rather than 
ROTATE, FORWARD) co-occurred, it was often difficult for novice coders to identify the 
source of the error to debug it (Silvis et al., 2021). Children had to reason whether their 
program yielded an unexpected error because the machinery was misused or because the 
program was faulty. Ideally, user error could be mitigated so that children only needed to 
focus on the program to debug. One way this mitigation of user error came about was when 
children demonstrated their technical knowledge “just-in-time,” sometimes as the program 
was running but before the physical error occurred. Despite our designs for loosely 
structured designation of roles, students (and teachers) moved fluidly in and out of different 
roles in-task. Spontaneously stepping into the role of the technician was sometimes 
necessary to neutralize the effect of a physical bug on the successful execution of a program 
(Barley and Bechky, 1994). 

Coretta and her group were learning how to program Cubetto to travel on a path that 
required the program FORWARD, FORWARD, FORWARD, ROTATE RIGHT, 
FORWARD. Coretta and Quinten had different understandings of the semantics of the turn 
unit at the end of the program and disagreed about whether ROTATE RIGHT, FORWARD 
(Quentin’s) or ROTATE RIGHT, ROTATE RIGHT (Coretta’s) was the correct end-sequence 
[Figure 4(A)]. Their teacher Ms D suggested that they first try Coretta’s idea. However, after 
Coretta placed her (incorrect) code, Ms D inadvertently oriented the robot facing the wrong 
way on the path [Figure 4(B)]. As Donna, who was nominally assigned to the technician role, 
pressed the Go button, Coretta noticed the robot’s improper orientation and quickly turned it 
in the proper direction [Figure 4(B)]. Ms D thanked Coretta for “noticing an important thing”, 
and the robot proceeded to run Coretta’s planned (buggy) program. The children 
subsequently successfully debugged the program, adopting Quinten’s original idea 
[Figure 4(C)]. 

The children were able to focus on what was wrong within the code because Coretta, 
demonstrating her technical knowledge of the machinery, ensured that the robot operated 
correctly. Coretta repositioned Cubetto just as the program started, ensuring that the 
program ran as expected, although it was buggy. Their debugging was subsequently 
successful, and children were able to locate the source of the programming error because 
Coretta prevented technical trouble before it occurred. During scientific experiments or 
technical demonstrations, machine operators and technicians are often called upon to 
recognize trouble before it arises or prevent breakdowns before they occur. Barley and 
Bechky (1994) explain how “unless a lab worker called attention to the matter, a casual 
observer might not notice that an error had been neutralized” (p. 110). The essential work 



 
 
 

 
Coretta performed may have gone unnoticed because her fix occurred just-in-time; however, 
Ms D’s recognition of the “important thing” Coretta did gestures to the vital role of technical 
knowledge involved in programming. 

 
Case 2: disembedding technical knowledge from programming 
The technical knowledge Coretta demonstrated was an essential part of collective 
debugging. But how is such knowledge organized pedagogically in the normal course of 
debugging? One day, while teaching the correspondence between codes and the robot’s 
movements, Mr K shifted the focus from codes’ abstract symbolic correspondence to call 
explicit attention to the significance of technical details for the success of the program. Cory 
(the Programmer), Eli (Assistant Programmer) and Stanley (Technician) were working 
together on a task with Botley called “Crack-the-code,” a task designed to decode a program 
by watching the robot execute a hidden sequence (Shumway et al., 2021). On their fourth 
debugging attempt decoding the hidden program FORWARD, ROTATE RIGHT, 
FORWARD, Cory had designed the faulty program FORWARD, ROTATE RIGHT, 
ROTATE RIGHT. Before running this program, Stanley cleared the codes already entered 
in the remote by pressing the trash can button. Failures to “trash” or reset the program 
resulted in a type of what we termed initialization errors (running the old program and then 
the new program as a single procedure), a pervasive type of user error across all tasks and 
groups and a necessary step in many programming environments (Silvis et al., 2021) [1]. 
Compounded by the fact that children had not yet established a stable understanding for the 
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Figure  5. 
Stanley debugs 
Cory’s code, but 
creates a physical 
bug 

 

 
 

arrow-movement correspondence or expectations for robot movement conventions (Silvis 
et al., 2020), forgetting to trash the previous program was a source of significant confusion 
for children trying to diagnose the error source. 

When Cory’s buggy program “just kept on turning” [Figure 6, line 1], which Mr K. 
demonstrated by rotating his hand in the air over the grid, Stanley stepped in to help 
with programming. Alternately gesturing from the program organizer to the grid 
space, Stanley provided a rationale for the unit of the turn, and Mr K moved the robot 
on the grid, simulating these commands [lines 2–4]. Mr K checked Cory’s agreement, 
asking what he thought and Cory shrugged [line 5–6]. Their designated programmer 
was at a loss for what to do next. The group collectively decided to run Stanley’s 
program, and Eli placed a FORWARD code on the program organizer at the end of the 
sequence [lines 7–13]. However, Stanley had become preoccupied by the programming 
while performing technical work; he forgot to press trash and merely entered the 
correct codes FORWARD, ROTATE RIGHT, FORWARD into the remote before 
executing the program [line 14]. Because Stanley had not cleared the previous codes 
with the remote, the robot failed to reinitialize and moved FORWARD, ROTATE 
RIGHT, ROTATE RIGHT, FORWARD, before Mr K interrupted the run-through and 
picked up the robot, halting the demonstration. 

K: It just kept on ((rotates hand in air)) turning ((extended eye contact with Cory)) 
S: Maybe you need a straight ((gestures in front of robot)), and one turn ((points at codes 

on program organizer)) of this, and a straight right there ((gestures in front of robot)) 
[Mr K simulates these movements]. 



 
 

K: ((extended eye contact with Cory)) what do you think? 
C: ((shrugs shoulders)) 
K: You don’t know? ((repositions robot at start position)) Okay, well let’s try Stanley’s 

((removes end code on program organizer)) So you said not that, Stanley, do what? 
S: Put a straight ((points at F code)) 
K:Okay,                      do                      it 
S: ((points to the code again)) put this [inaudible] 
K:Eli                                     [inaudible] 
E: ((places forward arrow on end of program)) 
S: ((enters codes on remote, runs program)) 
K: ((picks up robot)) Oh, you didn’t click trash. [feigning frustration] Darn it, Stanley. If 

you don’t push trash, it just keeps putting new, new, new ones on, buddy. 
Feigning frustration, Mr K explained that Stanley “didn’t push trash” [line 15]. He then 
seized the opportunity to explicitly connect the physical bug with the programming bug. He 
explained that if they forget to delete the faulty codes, the robot will rerun the old program 
first, adding on “new, new, new ones” [line 16]. To emphasize how this technical error would 
work, Mr K produced a series of circular hand movements, punctuating each “new” code 
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ILS with another circle of this hand progressing further down the program (Figure 7). This 
gesture closely resembled the motion he had used when explaining to Cory how his earlier 
programming bug had made the robot continue to just “keep on turning” [line 10]. More 
importantly, Mr K performed this circular gesture in the air over the program organizer to 
draw their attention to the consequence for the program of an error in the physical domain. 
His “environmentally-coupled gesture” performed multiple semiotic functions, both 
referencing the current material field of action and recalling or recycling a previously 

     meaningful gesture as a novel resource for sense-making (Goodwin, 2018). 
Through his words and gestures, Mr K explicitly drew connections between physical and 

programming breakdowns, disembedding the essential technical function from the 
programming domain and showing how they were related. In doing so, he pulled back 
the curtain that obscures how robots run programs, revealing a mechanism that relies on the 
technical knowledge of the person controlling the robot. For novice programmers, learning 
just how much information you have to give the computer is part of overcoming what 
Pea (1986) called “intentionality bugs,” where the student endows the program with the 
capability to “know” or “see” what to do without being told. In fact, Botley cannot “go 
beyond the information given” (p. 29), and must be told by the technician to delete the 
previous commands, technical knowledge that, for Stanley, was still being organized. 
Calling attention to technical details is precisely what is needed when learning to program in 
kindergarten. When the frequent co-occurrence of physical and programming bugs 
challenges novice programmers, calling attention to the consequences of technical work can 
mean the difference between knowing what codes to use and knowing why a program works 
(or fails). 

 
Case 3: the technical undoing of a programmer’s redoing 
Coretta’s demonstration of technical knowledge and Mr K’s disembedding of technical 
breakdowns from programming errors were examples of how technical knowledge-building 
supported collaborative debugging. At other times, resolving programming errors or 
teasing them out of physical errors involved a technician’s clever trouble-making rather 
than their troubleshooting. While essential technical knowledge can mitigate errors and 
save a program from catastrophic failure, technicians possess specialized skills and are in a 
unique position to undermine an experiment’s integrity. It is precisely because of their 
know-how that technicians hold the disruptive power to undo the experiment or break the 
mechanism. Commenting on the importance of the machine operators in Robert Boyle’s 
17th-century experiments, Shapin (1989) wrote that: 

Technicians’ doings then become an important source of opaqueness . .  . in fact, situations in 
which experiments miscarried provide by far the richest source in Boyle’s texts for establishing 
the nature and scope of his assistants’ laboratory work (p. 558). 

In the next example from a Kindergarten classroom, Carson demonstrated the nature and 
scope of his technical knowledge and took it as an opportunity for the creative undoing of 
what would have been a successful redoing of the program. 

Ms D was assisting Xavier as he performed a challenging debugging operation that 
required inserting a missing left turn code at the beginning of their program, which was 
buggy by design (Fields et al., 2021) (Figure 5, Frame A). Ms D then instructed Carson to 
enter Xavier’s program into the remote: ROTATE LEFT, FORWARD, FORWARD. Carson, 
who had been eagerly awaiting his turn to operate Botley’s remote control, had carefully 
watched over his shoulder as Xavier debugged the program (Frame A). Contrary to our 
pedagogical focus on programming, the vast majority of children desired to perform 



 

 
 

 

technical work and vied for opportunities to take control of the robot. The role of the 
machine operator can be one of prestige when students’ values for particular types of work 
are centered (Hennessey Elliott, 2020). 

Holding the remote close to his face, Carson secretively pressed the arrow buttons and 
then pressed Go, and the robot moved ROTATE LEFT, BACKWARD, FORWARD (Frame 
B). Confused, Ms D asked him to verify he had pressed the correct buttons (Frame C). Xavier, 
who had now been looking over Carson’s shoulder, also surmised that Carson had pressed 
the backward button, keying into how the robot was not operating as it should, given the 
debugged program Xavier had specified. Carson insisted he had faithfully entered 
ROTATE LEFT, FORWARD, FORWARD and ran it once more. Botley again moved 
ROTATE LEFT, BACKWARD, FORWARD. Eventually, Ms D took the remote from 
Carson and entered Xavier’s debugged program (Frame D), and Botley reached the target 
square. The technician wields power and influence in programming tasks, which becomes 
visible when their knowledge is socially distributed, and they opt to take the task in another 
direction from their collaborators. When Carson obscured his own actions by holding the 
remote where no one could see what he was really up to, he demonstrated both his desire to 
playfully subvert the experiment and the potential scope of his growing technical and 
programming knowledge. His crafty use of the remote control was not a mistake; rather, it 
signaled his creative understanding of how to complicate the task. 

Calling attention to Carson’s subversion as skill requires a pedagogical reorientation to 
technical knowledge. While we embraced the approach of Fields et al. (2021) to design for 
debugging and regularly embedded programming errors in tasks as part of the learning 
design, Carson’s technical demonstration pushes our tangible programming designs further 
in two ways. First, Carson, not us, devised the form he wanted the bug to take. Second, by 
intentionally embedding a physical bug in a program debugging task, Carson challenged 
Xavier, his other group members and his teacher to disentangle the two types of bugs. 
Without Carson’s technical subversion, Xavier had only to debug the program by adding the 
missing forward code, a presumably simple task. By layering a physical bug into the task by 
his own design, Carson created a task with even more complexity. Whereas Ms D placed a 
higher value on “getting the right codes in” to validate Xavier’s redoing of the program, 
Carson’s technical knowledge demonstrated how much can be learned about the 
relationship between physical and programming errors through technicians’ undoings. 

 
Discussion 
Technical work as a feature of learning, not a bug 
Through these three examples, we elaborated on how children were performing their 
technical knowledge and how learning to make programs work was contingent on learning 
how to work tangible coding robots. The cases demonstrate how debugging is an important 
context for developing technical knowledge, bridging a gap between what little we know 
about young children’s CT with their growing knowledge of the physical components of 
computational systems. In the case of Coretta, essential knowledge like the ability to 
perform just-in-time fixes at the level of the physical apparatus was instrumental in 
ultimately resolving a programming error. In the case of Stanley and Mr K., resolving a 
programming error presented a pedagogical opportunity to dis-embed technical and 
programming domains. In Carson’s case, intentionally embedding a physical bug and 
subverting successful program debugging represented another form technical work can 
take. Taken together, these examples of the technical knowledge involved in tangible 
programming raise a number of questions about the nature of computing and the 
organization of technical work in learning environments. 
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ILS How is technical work being organized in CS and adjacent domains? As hived off, in the 
hands of particular technicians? As distributed among teams of operators? As something 
that programmers, too, must learn and do? While engaged in tangible programming, 
technical work and program planning overlapped as children assumed fluid roles; being a 
programmer involved performing some technical work and being a technician involved 
some knowledge of programming. For example, when Coretta spontaneously reoriented 
Cubetto as she was programming it, she engaged in a familiar form of technical work, where 

     abstract reasoning was both conceptual and physically instantiated (Buccharelli and Kuhn, 
1994). Or, when Stanley volunteered to help Cory solve the programming problem, his 
unstable technical knowledge was nonetheless essential for operating the robot. This sort of 
fluid ingenuity reflects ongoing restructuring of engineering and design fields, where the 
organization of technical work shifts as emerging occupations bundle technical tasks in new 
ways. 

We encourage learning designers to examine the organization of technical work more 
closely in a range of educational settings. In computer labs, are we planning for how people 
learn to operate tools and keep them in working order, including powering up and down, 
installing apps and software, running updates, managing passwords, connecting 
compatible components and accessories and maximizing the lifespans of devices? In 
makerspaces, are we providing instruction for disentangling software and hardware 
problems by teaching troubleshooting as opposed to assuming people learn to fix computers 
through trial and error? In everyday learning situations, do we take for granted that 
technical knowledge is somehow a default setting of growing up surrounded by screens and 
devices or is there something special technicians must know and do? 

We need not limit ourselves to patently technical endeavors like programming or 
engineering to witness the pervasive organizational hierarchy between “mental” and 
“manual” labor and the back-staging of essential work (Rose, 2004). All around us are 
examples of the ways in which work is organized to downplay technical knowledge. The 
Covid-19 pandemic and resulting shut-downs placed essential workers in sharp relief, 
drawing widespread attention to the many ways that technical knowledge is involved in 
nearly every facet of social life, from lab techs who monitor and recalibrate medical 
instruments that test for disease to prep cooks who prepare a perfect dice for your meal at a 
restaurant (Wu, 2020). To the degree that the physician’s or the chef’s work appears to the 
patient or the diner to be single-handed works of brilliance, essential technical knowledge 
goes unrecognized. Recognizing how children’s programming reflects historical divisions of 
labor in broader society is part of designing approaches to CS and engineering domains in 
which technical knowledge is valued as “sociotechnical activity rooted in specific contexts 
and communities” (Nasir et al., 2021, p. 558), rather than merely a set of rote skills for 
operating machines. Learning to labor (Willis, 1981) in technology-rich learning 
environments means accounting for these historical patterns and disrupting technoscientific 
hierarchies and ideologies (Philip and Sengupta, 2020). 

Foregrounding technical work in classrooms, computer labs and other “backrooms of 
learning” is part of establishing more equitable learning arrangements. To bring technicians 
out of backrooms, one must first know where the backroom is, visit it, spend time there and 
attempt to understand its sociotechnical organization. The learning environments of young 
children are some of education’s best-hidden backrooms (to say nothing of the relative 
invisibility and undervaluing of early childhood educators, essential workers in their own 
right). But bringing technicians out of their backrooms involves less physical repositioning 
and more an intellectual one (Star and Strauss, 1999; Suchman, 1995). Rather than simply 
accommodating technical work(ers) within the scope of engineering and CS – and then 



 

 
 

 

mapping this knowledge onto young children in STEM – we might ask: what are the ways 
of thinking and technical knowledge that they embody that help us reimagine the means 
and ends of CS or CT? Conversely, what technical knowledge is always already required of 
those wearing proverbial white lab coats, and how can we dis-embed this knowledge as a 
focus of instruction? This focus on technical work is becoming even more important as the 
field embraces physical computing, even as these learning designs risk perpetuating 
oppression and extraction of human labor within “ideologies of workforce readiness and a 
‘skilled technical workforce’” (Philip and Sengupta, 2020, p. 11). We see multiple ways to 
incorporate technical work as a feature and not a bug in the organization of activity to 
expand what counts as authentic computing. 

 
Conclusions and implications 
Revaluing           (how)           the            technical            matters            in            debugging To 
make multiple forms of technical knowledge more visible across computational contexts, 
we conclude with a series of ways to surface and revalue the work of making things work, 
specifically when making things work means debugging them. The first pertains directly to 
early childhood debugging and CT. Rather than simplifying coding using toys that are 
deceptively user-friendly, we believe it is productive to expose children to the inner 
workings of the computational system that is black-boxed under normal working 
conditions. Previous studies of tangible programming attempted to “un-black-box” 
components to teach computing (Resnick et al., 2000), and more recent designs engage 
children in thinking about the entangled relationship between hardware and software (e.g. 
Bers et al., 2014) or DbD (Fields et al., 2016, 2021). Approaches like these draw out the 
relationship between physical and programming domains and prepare children to engage 
with both orders of bugs that co-occur even when we have not designed for them. 

For us (and for students) to design for debugging that facilitates learning, we need more 
accounts of the interactional texture and nuance of children’s programming experiences, 
including how they reason with one another about relationships between programming and 
physical domains. Technical knowledge of young children like Carson and their creative 
perspective on physical bugs is instructive for pushing the limits of our pedagogical 
approaches with young children in CS and expanding who is in control of DbD. The DbD 
paradigm challenges learning designers to embed bugs as pedagogical tools, involve 
learners in the bugs’ selection and incorporate both orders of bugs: physical/material and 
programming/symbolic (Fields et al., 2021). Our approach adds to this work by illustrating 
what DbD looks like in a novel computational environment with tangible programming toys 
and with young children learning to code. Our designs also contribute to understanding how 
larger groups of children – assigned different roles and working within a division of labor – 
collaboratively reconciled planned and unplanned bugs in the program and the physical 
materials. This is important for preparing learners to work on teams where people have 
heterogeneous roles and specialized knowledge, in and out of engineering and CS fields. 

A second way in which we can reposition technical knowledge is by organizing learning 
environments that center on the types of roles that children value. As we orient children to 
computational objects in changing learning environments, we are also learning to orient 
children as computational thinkers. When we bring young children into computer labs, 
tinkering programs and maker spaces, we can take valuable lessons from established 
organizational principles of early childhood environments: collaborative work, role-taking 
and special attention to physical manipulatives and tangible tools (Vossoughi et al., 2021). 
To account for young children’s particular forms of CT we need to take seriously the 
“revaluing of the concrete” by recognizing how children’s knowledge and interests are 
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ILS bound up in concrete action (Montessori, 1949; Turkle and Papert, 1992). This could take the 
form of statements from a teacher praising students for catching technical errors and stating 
explicitly that fixing those is just as important as using the right codes to accomplish the 
immediate goal. 

Focusing on the technical, concrete aspects of programming errors is an extension of the 
guiding principles of epistemological pluralism, which inspired the design of many of the 
coding toys that appear in early learning environments today (Turkle and Papert, 1992). As 

     early childhood computing becomes more commonplace, it is, therefore, ironic that learning 
to build working programs should drive learning designs, as opposed to learning how to work 
the machine. The tendency to background technical knowledge and foreground 
programming knowledge is even more curious when we consider how children are drawn to 
the materials themselves and place a high value on doing technical work. Despite the 
learning goals and roles that adults value, children collaboratively determine which roles are 
high-status and collectively position each other within them (Fields and Enyedy, 2013; 
Hennessey Elliott, 2020). Identifying aspects of computing that bear significance to children 
is important because computational roles and identities are not always geared toward 
programming languages per se; students are sometimes more invested in material artifacts 
(Haduong, 2019). 

If we want to approach children’s learning as a member’s phenomenon (Keifert and 
Stevens, 2019) and value them as members of societies they are helping to form, then this 
means learning to see children’s technical knowledge as meaningful to them and as vital for 
programming. As we pay attention to children’s own perspectives on bugs, programming, 
robots or technical work, we are keying into the values children like Coretta, Stanley or 
Carson were developing for types of labor and roles in society, be it essential (yet easy to 
overlook) or visible and highly esteemed. As society is organizing more and more technical 
roles for learners, bringing young children’s values for technical knowledge into view is part 
of establishing more equitable and endogenous forms of learning with technology. With 
children as young as preschool-age now learning to code, we hope this presents an 
opportunity to appreciate the critical learning that takes place during early childhood, to 
consider the powered relations within technological practices and reaffirm the role learning 
sciences can play in designing for young children’s thriving. Whether and in which ways 
computer technologies play into young children thriving is more than a mere technical 
detail. It is an open question we hope to see addressed in designs to come. 

 
Note 

1. Indeed, this is a common error in traditional computer programs where previous values of 
variables need to be erased or initialized, sometimes through their own special function that is 
typically at the start of the program. Failure to re-initialize can cause a number of bugs. 
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