https://www.emerald.com/insight/2398-5348.htm

The current issue and full text archive of this journal is available on Emerald Insight at:

The technical matters: young
children debugging (with) tangible
coding toys
Deborah Silvis

Department of Instructional Technology and Learning Sciences,
Utah State University, Logan, Utah, USA

Victor R. Lee
Graduate School of Education, Stanford University, Palo Alto, California, USA

Jody Clarke-Midura
Department of Instructional Technology and Learning Sciences,
Utah State University, Logan, Utah, USA, and

Jessica F. Shumway

Department of Teacher Education and Leadership, Utah State University,
Logan, Utah, USA

Abstract

Purpose — Much remains unknown about how young children orient to computational objects and how we
aslearning scientists can orient to young children as computational thinkers. While some research exists on
howchildrenlearnprogramming, verylittle hasbeenwritten about howtheylearnthetechnical skillsneeded
to operate technologies or to fix breakdowns that occur in the code or the machine. The purpose of this study
istoexplore how children perform technical knowledge in tangible programming environments.

Design/methodology/approach — The current study examines the organization of young children’s
technical knowledge in the context of a design-based study of Kindergarteners learning to code using robot
coding toys, where groups of children collaboratively debugged programs. The authors conducted iterative
rounds of qualitative coding of video recordings in kindergarten classrooms and interaction analysis of
children using coding robots.

Findings—The authors found thatas childrenrepaired bugs at thelevel of the program and at the level of
the physical apparatus, they were performing essential technical knowledge; the authors focus on how
demonstratingtechnicalknowledge wasorganized pedagogically andcollectivelyachieved.

Originality/value — Drawing broadly from studies of the social organization of technical work in
professional settings, we argue that technical knowledge is easy to overlook but essential for learning to
repair programs. The authors suggest how tangible programming environments represent pedagogically
importantcontexts fordis-embedding youngchildren’s essential technical knowledge from the more abstract
knowledge ofprogramming.

Keywords Early childhood, Interaction analysis, Computer literacy, Technical knowledge,
Debugging, Sociotechnical organization of learning, Tangible programming

Paper type Research paper

The authors thanks to the principals, Kindergarten teachers, and students who welcomed authors
into their classrooms.

Funding: This project has been funded by National Science Foundation grant#1842116; and a
Utah State University Research Catalyst grant.

Young
children
debugging

Received 10 December 2021
Revised 7April 2022

24 June 2022

Accepted 27 June 2022

Information and Learning
Sciences
©EmeraldPublishingLimited
2398-5348

DOI  10.1108/1LS-12-2021-0109


http://dx.doi.org/10.1108/ILS-12-2021-0109
http://www.emerald.com/insight/2398-5348.htm

1LS Introduction

When we conjure up animage of a computer scientist, the young childis not the defaultimage
that comes to mind. Yet early childhood education is fast becoming a site for teaching and
learning valued skills like computational thinking (CT), programming and computational
literacy. Children as young as preschool-age are engaging in coding with apps like Scratch Junior
or with robot coding toys like Kibo (Bers, 2018). Researchers are now actively working to
understand how children orient to computational objects and how we ourselves orient to young
children as computational thinkers. Thus far, the existing research has tended to focus on how
young children learn early computer science (CS) skills (Clarke-Midura et al., 2021; Bers, 2018;
Wang et al., 2020). Less attention has been paid to how they learn basic technical skills, for
example, how to operate a robot’s controls or how to manipulate the buttons in an app. The
tendency to privilege the work of programming over operating technologies is incomplete for
learning to use tangible coding toys. In this paper, we develop a perspective on learning to debug
code with tangible tools that accounts for how programming is also a technical matter and
explore how children were performing essential technical knowledge as they learned to program.

While we focus on young children, we note that a programmer-technician hierarchy is
common in computing fields. Work in software engineering and computer programming
(e.g. writing code) is treated as having higher status than information technology support
(e.g. assembling, connecting or operating components; installing software). However, the
increased prevalence of tangible and physical computing devices has the potential to disrupt this
order Horn (2018). Nonetheless, in research on learning, longstanding distinctions between
computerliteracy (e.g. inserting a CD, plugging in and turning on a machine) and computational
literacy (e.g. building code and debugging programs) perpetuate the belief that technical
knowledgeis not on par with its programming counterpart (diSessa, 2000). From this perspective,
technical know-how and hands-on interactions with the computer interface have not been valued
in the same way as learning to program. This may be particularly true for novice coders like
young children, for who operating computers’ components is no simple matter or when tangible
interfaces entangle hardware with software.

The computational object hastraditionally beenrepresented by the code, the screenand
the algorithm; with tangible codingtoys, these are now physicallyinstantiated inblocks and
3D “sprites” you can hold in the palm of your hand Horn (2018). Once prohibitively
expensive and almost exclusively used in lab settings (McNerney, 2004), commercially
available programming toys now multiply the number and types of objects to manipulate
and “think with” (Papert, 1980) as children learn to code. A wide variety of tangible coding
toys are being used in early learning environments, and most kits include a robot (i.e. the
agent), a set of directional arrows (i.e. the codes) and a controller or programming interface
(i.e. remote-control mechanism) (Clarke-Miduraetal., 2019; Yu and Roque, 2019). Whereas
learning to think computationally once involved arranging commands on a screen, where
the agent then moved in 2D, tangible programming environments incorporate multiple
materials and the mobile agent moves through the classroom. These emerging
environments complicate codingin anumber of ways that bear on this study.

First, preliterate children are still learning conventions for mapping correspondence
between actions and symbols (Silvis et al., 2020), resulting in frequent bugs. Second, with
robot coding toys, bugs are not “contained”in a screen or software; they are distributed
across tangible materials and hardware. Whereas in screen-based programming, broken
code crashes the program, with tangible materials, breakdowns are also mechanical or
physical and machines can literally crash into things in the physical environment. Children
learning to manipulate code are also learning to wrangle coding materials, with
consequences for debugging their programs. For young children who arenovice




programmers, the relationship between breakdowns in code and in tangible coding
machinery may not be transparent.

We examined this related set of issues in Kindergarten classrooms where groups of
children engaged with tangible coding toys as they learned to build and debug programs.
We began by asking broadly what was involved in children’s debugging with robot coding
toys and found that treating bugs as located in the program was inadequate (Silvisetal.,
2021). For example, having to enter the code into the toy via remote-control leaves room for
human error, such as hitting the wrong button or forgetting to delete the previous program.
In this analysis, we explore a perspective that debugging is more than a matter of
identifying, locating and resolving errors in programs; it also involves reconciling coding
errors with concurrent material mishaps, which we call “physical bugs.” This
understanding of debugging as also physical and mechanical prompted the questions that
we address in the current analysis:

Q1. How is technical work involved in resolving programming breakdowns at the level
of code and mechanical breakdowns in tangible toys?

Q2. How do children learn about technical aspects of operating coding robots
while debugging (with) them (i.e. how is technical knowledge organized
pedagogically)?

Our analysis positions children’s technical work as central to debugging and accounts
for how distributed technical knowledge mattered for repairing both types of
breakdowns. We found that the technical skills children developed were more than a
matter of fixing simple mistakes children made using robot coding toys; we also
observed that their physical errors were independent of the design and engineering of
the toys themselves. In other words, the technical skills required to resolve physical
bugs are neither simply reducible to user error nor the result of products’ design
flaws. Since the program is embedded in and distributed across these tangible
programming materials, in addition to bugs in the actual code, physical bugs
interacted with programming bugs via distributed materials. The forms of physical
debugging we analyzed were intertwined with debugging code and reflected a
distinct form of knowledge characteristic of technical work more broadly. To get
there, we present a series of cases of children learning to reconcile the physical and
programming domains of this particular computational environment and the
pedagogical moves that supported their technical knowledge.

In what follows, we first situate the present analysis of the technical work of
debugging within related literature on early childhood tangible programming and
educational robotics. Then we describe the larger study, a design-based research
project designed to develop curriculum and assessment materials for early childhood
CT. Next, we detail our analytic process that led to an understanding of the essential
technical knowledge of debugging. We then present our findings narratively through
microanalysis of three cases where children simultaneously grappled with bugs in the
program and bugs in the physical apparatus. These cases position children’s
technical knowledge asinstrumental for successful programming. We discuss how
essential technical knowledge often occurs alongside programming but tends to be
overlooked or subsumed within it. We argue that making the technical work of
programming a distinct pedagogical focusisimportantinasociety where there are
ever more technical jobs for today’s learners.

Young
children
debugging




ILS

Framing perspectives

Tangible computing in early childhood

While the proliferation of coding robots in early childhood settings may suggest they are a
recent invention, a consequence of the rise of early childhood computing standards (Bers
and Sullivan, 2019; K-12 Computer Science Standards), tangible computing and robotics
actually have a long history in early childhood. Research on tangible programming
languages traces back to Papert’s (1980) original Logo floor turtles, “objects to think with”
that merged programming on-screen with a moving 3D robotic agent who drew shapes
using a stylus (McNerney, 2004). A veritable menagerie of tangible designs and working
prototypes emerged from this longline of research, including Lego bricks (Souzaetal., 2018),
tangible crickets (Resnick et al., 2000) and a robot named Kibo (Bers, 2018). For at least 20
years, studies of tangible programming in early childhood settings have examined how
coding toys and robots support preliterate children to think computationally as they build
and tinker, create and play and write and re-write programs (Bers, 2018; Bers et al., 2014;
Bers and Horn, 2010; Wyeth, 2008; Wang and Choi, 2021).

One version of the history of tangible computing reflects the field’s developing interest in
teaching CT skills like abstraction, sequencing, decomposition or debugging (Bers et al.,
2014; Brennan and Resnick, 2012; Sullivan and Bers, 2016; Wang et al., 2020). Like block
programming, tangible programming languages simplify and structure code so that young
children can access essential principles of computational systems. But unlike in
programming environments like Scratch or 3D virtual robotic simulations (Witherspoon
and Schunn, 2019), learning to build and debug programs using tangible robot coding toys
is a hands-on affair. We tend to colloquially construe code as “immaterial,” a series of
symbols operating “inside” the machine (Kitchin and Dodge, 2011); however, tangible
programs actually take material formin a set of moveable, manipulable cards or blocks that
represent a series of movements a robot makes. In other words, the robot is tangible, and so
are the codes (Schweikardt and Gross, 2008). With a few exceptions (Sullivan and Bers,
2016), studies of coding robots and early childhood CT have tended to favor teaching
programming overthe mechanicsofphysicalcomponentsofthecomputational system.

The second versionof coding robot history emphasizes how they serve asthe basisfor
early engineering education. Some of the same toys that are used to teach programming are
usedineducational robotics (Sullivan and Bers, 2016; Sullivanetal., 2015), as youngchildren
learn how to engineer robots from a collection of functional components (Hamneretal., 2010;
Kimetal., 2018; Socratous and Ioannou, 2020). While the coding robots we use in this study
arepre-fab, commercially available and equipped with ready-made kits, the physical nature
of the robots’ components — and the consequences on the program of mechanical
breakdowns —reflects the technical emphasis of educational robotics. Still, extant studies of
young children’s debugging in early engineering environments like LEGO robotics often
treat problems of a physical nature (e.g. connecting a sensor to the wrong port) and
programming breakdowns (e.g. omitting a command) as if they rely on the same sort of
knowledge (Socratous and Ioannou, 2020). Ratherthan subsumingknowledge of the former
within the latter, the current study attempts to understand the technical work of resolving
physical errors on its own terms.

Debugging as technical knowledge

Webuild on a vibrant strand of learning research focused on debugging as a key dimension
of programming and important for CT and CS education (DeLiema et al., 2019; Fields et al.,
2021; Kafai et al., 2019; McCauley et al., 2008; Pea et al., 1987). Research in this area is just
beginning to identify the knowledge, skills and abilities that young children use when



debugging programs (Bers, 2018; Heikkild and Mannila, 2018; Rich etal., 2019; Wanget al.,
2020). For example, Bers and colleagues’ (2014) model for young children’s debugging
included skills or steps for:

°  recognizing errors;

*  modifying goals;

* hypothesizing sources of error; and

* solvingthe problem in the context of using robot coding toys.

We adopt a perspective that debugging — which we take as the iterative process of creating,
recognizing, locating and fixing errors — pertains to errors in programs or machinery. By
examining breakdowns in the machinery as part and parcel of breakdowns in the program,
wefocusonhow debugging tangible programsislargely atechnical matter.

Our focus on not only code but also machinery or materials as a source of bugs is not
entirely new to research on learning. Fields et al. (2016, 2021) designed for debugging
through an e-textiles project in which fixing errors in the code (i.e. missing semi-colons) and
fixing faulty circuitry (i.e. crossed wires) were both necessary to build a working product.
Thisintricaterelationshipbetween errorsina program and problems with a physical part of
a designed object is a widely recognized tension in engineering domains. For example, for
machine operators responsible for successful IT demonstrations, the disastrous, ever-to-be-
avoided “crash” refers both to broken code crashing the software and misguided machines
literally crashing into something or physical parts breaking (Smith, 2009). What we
analyzed as technical knowledge taps the latter set of problems of a material nature but
explores them in a novel context where young children learned to code and operate tangible
coding toys.

Inprevious work exploringhowlearningto debuginvolves understandingarelationship
between physical mistakes and programming errors, the technical work is typically
performed by individual children or children working in pairs. These learning designs have
examined how older children resolve these two types of bugs (Searle et al., 2018). In the
debugging by design (DbD) projects (Fields, 2016, 2021), students embedded bugs in their
e-textiles design projects for each other to solve. Of relevance to our study, students were
required to create bugs in the programandbugs in physical materials, for example, creating
buggy projects that included both a misspelled variable name and a light with reversed
polarity. This work challenges learning designers to consider what DbD involves in other
tangible computing contexts, for example, in a computational environment where
debugging (with) coding robots involved learning both the programming language and the
technical skills to operate the equipment.

InKindergartencoding as well as professional practice, technical knowledgeisregularly
interleaved with programming knowledge across an arc of work. Technicians, people who do
practical work to make things or make things work (Whalley and Barley, 1997), are involved
in practically every occupation. In recent decades, as technologies are digitized and
automated, society has organized more and more technical work, whereas the nature of
technical work has shifted (Barley and Orr, 1997). Many machine operators no longer work
on the factory floor, and their work is increasingly analytical. At the same time, technical
functions like repair, maintenance, machine operating, troubleshooting, software support
and routine data entry have been “bundled” into jobs that ostensibly require less training
and skill. Despite this hiving-off process that has accompanied the specialization of all sorts
of scientific and technical roles, practical work takes intellectual skills.

Young
children
debugging




ILS

While technologies have changed, the tendency to subsume technical knowledge within
more abstract programming knowledge is familiar. The history of scientific and
technological breakthroughs is often heralded as one of the white men in white coats,
singular discovery and sudden sparks of genius. This has been especially true in CS and
engineering. Technicians, though highly skilled and critical for the operation of complex
sociotechnical systems, have gone largely unrecognized, overshadowed by the towering
figure of the research scientist or inventor in historical accounts. Positioned behind the
curtain or in the “backrooms of science” (Barley and Bechky, 1994), people with technical
knowledge were “hidden figures” (Shetterly, 2016) who were the mechanical backbone
performingessential technical work (Shapin, 1989). In what follows, werecognize children’s
essentialtechnicalknowledge asconsequential for debugging when programsare tangible.

Study design and analytic methods

Studying debugging as part of early childhood computational thinking

This study was part of a larger design-based research project focused on operationalizing and
then developing classroom assessments and curriculum for early childhood CT (Clarke-Midura
etal.,2019,2021b; Shumwayetal., 2021; Silvisetal., 2020) and contributes to a growingbodyof
work on the topic (Bers et al., 2014; Bers, 2018; Bers and Sullivan, 2019; Tang et al., 2020). While
thereis a generallack of agreement about the CT construct, how to teach or assessit andits
value(s), debugging is one of a number of consensus skills widely thought to be relevant to
solving problems computationally (Rich et al., 2019; Wang and Choi, 2020). In the broader study,
we focus on debugging as one of a suite of subcomponents involved in CT, iteratively:

= operationalizing it;
- teaching it; and
* assessingit.

The design of the curriculum tasks we describe in this analysis was part of the second
objective of the project, informed by the other two across curriculum implementations.

Participants and groups

The data analyzed were collected over the course of a school year in two Kindergarten
classrooms in two rural schools in the intermountain west of the USA. Thirty-two students
participated in the project (female = 11). The two classrooms were part of a grant-funded
program that provided full-day kindergarten to support English Language Learners,
studentswhohadanindividualized education planandstudentsidentifiedbytheirentrance
assessment. All otherstudentsinthe district attended half-day kindergarten.

Based on what we had learned about collaborative coding from the implementation of
robot coding tasksin a previous pilot phase, we organized students into small groups of
threetofivechildren. Participatingkindergartenteachers developed the groupingsbasedon
our recommendations that they put students together who “work well together.” A teaching
team of four researchers with elementary or early childhood teaching experience led these
activities. Students participatedinsixcodinglessonsoverathree-tofour-week period. Each
lesson lasted 30 min, and on any given day, two separate groups were coding robots in
different areas of the classroom.

Coding robots and task roles
After studying the affordances and constraints of a number of commercially available
options, weinvested in tangible, screen-free coding toys (Clarke-Miduraetal., 2019; see also



Yu and Roque, 2019). Screen-free toys were the overriding preference of the teachers who
were ourresearch partners. Weused three different robots (Figure 1), though the majorityof
lessons were taught using Botley and Cubetto. Without going into great detail about the
design of specific curricular tasks, we provide a brief sketch of coding tasks and associated
roles to contextualize the nature of bugs and analysis of debugging that follows. Most of the
tasks with these toys were centered on the problem of getting the robot from one location to
another. To do this, children used physical tiles or physical buttons to sequence a series of
directionalcodesthatinstructstherobottomoveinaspecified wayonalargefloorgrid.

To successfully program and debug with robots, children need to coordinate their self-
referenced spatial orientation and movement, the robot’s orientation and movement and
directionalsymbolsthatrepresent therobot’s movementsin space (Silvisetal., 2021; Clarke-
Midura et al., 2020). They must also coordinate the use of multiple coding materials, which
are distributed and rotated around the group, multiplying occasions for mishaps. The
ongoing redistribution of materials lent to a system of roles, as the nature of materials can
determine how roles are designed and labor distributed (Stevens, 2000).

These roles established duties as well as undefined functions that emerged during
activities. Two teacher-researchers regularly assigned these roles to students and rotated
therole among the students, while two teacher-researchers typically allowed these roles to
emerge more organically. In groups where roles were more emergent, rather than naming
and designatingroles and rotating all students through them, teachers allowed students to
navigateinandoutofroles as the task progressed. In all groups, whether officially named or
de facto, the Programmer would design the program, specifying directional arrow codes
one-by-one to an Assistant Programmer, who placed directional arrows in a specified
sequence. Once a program or code segment was designed, the Technician or robot controller
would press the corresponding buttons on the robot or operate the robot’s programming
board or remote control. If a group had more than three students, there was also an
Evaluator who assessed the viability of the program prior to executing it by giving a
thumbs up or down and justifying their assessment.

For example, the group of four students in Figure 2 worked together with their teacher
Mr K to program Botley to travel along a short path according to the requisite commands

Cubetto Botley
Robot and
controller
Controlled | Pressing arrow buttons Inserting code tiles into pressing buttons on
by on top of robot program board remote controller
Sample ’
e Y@DU@ B @ |
(FORWARD, O o t ‘ \ l J r‘
LEFT,
BACKWARD,
RIGHT)
Website https://www.terrapinlog | https://www.primotoys.c | https://www.learningres
o.com/products/robots.h | om/cubetto/ ources.com/shop/collecti
tml ons/botley

Young
children
debugging

Figure 1.

Robots, controllers
and directional codes
forthreekitsusedin
the study




ILS

Figure 2.
Four students
programming Botley
to travel forward,
right, forword

Table 1.

Group member task
roles, defined duties
andotherfunctions

Notes: Left to right: Benjamin, Franny, Kenneth, Caylie, Mr. K

FORWARD, RIGHT, FORWARD. In this task, Caylie was the Programmer, Kenneth was
the Assistant Programmer, Franny was the Technician and Benjamin was the Evaluator.
Caylie instructed Kenneth to place three arrows on the program organizer (the long white
strip of paper, divided into segments for individual codes) indicating FORWARD, LEFT,
FORWARD. Before running the program, Benjamin assessed that the program was buggy,
giving it a thumbs down. Franny subsequently entered these three codes using the buttons
on Botley's remote controller but inadvertently added a spurious FORWARD to the end of
the program; thus, there was both a programming error and an error in operating the
remote. Sure enough, when enacted, students could see this program was incorrect. How
groups of students like this ultimately debugged such programs—and the consequentiality
of Franny’s technical work —is the subject of the following analysis (Table 1).

Assistant
Programmer Programmer Technician Evaluator
Defined duties  Determine path ~ Verifies selected codes Enters codes into Assesses program
Design program  Place codes/tiles in controller Presses Go  viability Gives thumbs
Point to code sequence button Clears up/down
cards/tiles program
Other functions Suggests alternative ~ Handles robot Suggests alternative

programs/codes programs/codes




Itisworthnoting that we designed for coding task rolesin a context where students were
very familiar with such an organizational structure (DeLiema et al., 2020). In kindergarten
classrooms, students often vie for particular roles and responsibilities like “door holder,”
“line leader,” “snack person” or “plant and pet caretaker” (Wolfe, 2006). Designating roles is
not only useful for organizing classroom routines and distributing responsibility. Roles also
serveafunctionforlearning, especiallywhenactivitiesarecollaborativeand materials must
be shared. Designing “procedural” roles around materials and their uses entail implicit
“intellectual” roles tied to procedures (Herrenkohl, 2006). For example, in her study of
elementary student roles, Herrenkohl (2006) found that if you are the designated “reporter”
in a group of students engaged in learning science, this procedure calls on certain ways of
thinking particular to what reporters do. The ways in which intellectual labor was
embedded in the technician’s scope of work (i.e. their technical knowledge) was partly what
was at stake in our designation of the “robot controller,” or technician role.

Data and analytic approach

All group lessons were video recorded by designated members of the research team, who
also played a role in on-site design memos and teaching memos during the curriculum
implementations. The main data source for the current analysis is approximately 25 h of
video recordings. In broad sweeps, the analysis process included:

*  writing design memos;
* contentlogging video and open coding for aspects of debugging;
= 1iterativelyrefiningthe analyticlensonthe datathrough analytic memos;and

= conducting microanalysis of key instances of analytic categories that emerged
(Figure 3).

At some moments, these were contemporaneous steps, but for the purpose of clarifying our
approach, webriefly outline each as separate steps before presenting the empirical cases.
Design memo-ing. Our research team produced 48 design memos, one for each group
lesson. This step began during the first curriculum implementations, so the analysis was
already underway before data collection had ended. This meant that we were noticing
patterns in teaching and learning debugging, which then changed how we were teaching
children to debug. For example, during implementation in the first classroom site, we noticed
that, while they recognized a program had not executed as expected, some students

Physical Bugs
Characterizing
errors at the level of

Programming Bugs
Characterizing
errors at the level of

Case 1
Doing essential work
performing
technical fixes

Theory Integration
Refining relationship
between physical
and programming
bugs

the program the materials

Task Design
Ex. Botley curriculum
unit focused on
debugging

O_ DESIGN MEMOS

Material Design
Ex. Program
organizer for code
pieces

DESCRIPTIVE

Technical
Knowledge

CODING
VIDEO

INTERACTION
ANALYSIS

I ANALYTIC MEMOS

AXIAL

Theory Building
Technical work of
debugging

Coding Paradigm
Relationship
between physical
and programming
bugs

Case 2
Dis-embedding
technical knowledge
from programming

Young
children
debugging

Figure 3.
Schematic of the
analytic process




ILS

struggled to locate the source of the error or to apply suitable debugging strategies.
Sometimes they defaulted toadding abackward arrow to the end asifto “undo” an error
somewhereinthe program. Forinstance, followinganespeciallylengthy debuggingattempt
that involved ten separate rounds of debugging of what should have been a seven-code
program, one researcher documented in her memo:

The program is run again and Botley goes too far before turning. [The student] tries to add
backwards to the end of the code, but [the teacher] helps her to identify what went wrong and
where in the program the bug is. [The student] does not quite see it [...] While the lesson was
originally focused on algorithmic thinking, it elicited a lot of discussion and practice with
debugging [.. .] Programming with physical obstacles and goals, there may be multiple
opportunities to debug. [10-22-19, RP]

Seeing that this debugging step or skill could benefit from a more explicit pedagogical focus,
we decided to make debugging the focus of an entire curriculum unit, using one robot called
Botley. However, when we implemented debugging tasks in subsequent groups, it was not
the case that learning to debug was necessarily restricted to this particular design nor
exclusively to Botley. Debugging continued to occur pervasivelyin all tasks and robots,
leading us back to the data to try to account for patterns in debugging beyond our designs.

Content logging and coding. Between the first and second classroom implementations, we
began a months-long process of content logging the video data (Jordan and Henderson, 1995).
As we logged, we developed codes to describe the data. Initially, these were highly descriptive
andfocused oneasily observable aspects of debugging suchasbugtypes, the positionofbugs
in programs, numbers of attempts or trials and debugging strategies, such as adding codes
onto the end of the program or “wiping” the entire program and starting over (Silvis et al.,
2021). Early on, at this very grounded and descriptive level, we were still regarding the
program as the primary source of errors. As implementations continued through the school
year, and our memos and design debrief discussions became more analytical, we started to lift
up from the descriptive categories and look beyond our designs to what else was happening in
interactions that might be consequential for debugging. It was at this time that we began to
foreground something that had been latent in our debriefs, discussions and designs: the use
(and misuse) of codingmaterials.

On the one hand, we knew that the ways in which children handled the robot and
accessories were critical, so much so that we designed additional hand-made aids to
supplement the commercially available kits that came included with the toys. For example,
we had designed an item we called a “program organizer,” which served to order and
sequence codes that would sometimesbecomejumbled or get strewn aboutinthe excitement
of children’s coding. It was this sort of problem that drew our analytical attention to the
ways in which physical materials were causing what looked like bugs in the program but
were actually “bugs”in the apparatus. We coded for the various forms of breakdown we
observed andidentified a numberof categories for bugs in the physical apparatus, including
material mishaps, re-initialization errors, operator errors, mechanical issues and intentional
user errors that we called “buildingin abug.” Furthermore, these types of errors occurred as
frequently as programming errors, with operator or controller errors accounting for a
substantial proportion of all bugs (Silvis et al., 2021). Material mishaps like the robot getting
hunguponthe matrequiredtechnicalinterventions, andso did operator errorslike pressing
the incorrect buttons or mechanical errors like Bluetooth pairing problems. We observed
that what we termed physical bugs often exacerbated and were laminated onto programming
bugs in ways that complicated successful debugging (ibid). Treating physical bugs as a
category of problems that co-occurredin consequential ways with programming bugs, we
shiftedouranalyticlenstotherelationshipbetweenthese twohigh-level categoriesofbugs.



Refining analytic questions and memos. From the very start of our coding, we produced
approximately 200 analytic memos, and theoretical notes that helped us differentiate
between categories and concepts (Glaser and Strauss, 1967). These memos range in length
from a few words (i.e. analytic notes) to several pages. The majority of the memos are linked
to coded segments of tape; however, longer memos integrated emerging concepts and cut
across segments, lessons, groups and school implementations. For us, analytic memos were
most useful for extending the theoretical integration of the data and developing the
relationship between physical and programming errors (Glaser and Strauss, 1967). For
example, Memo 114, corresponding to a segment of video sub-coded for a type of physical
bugwrong-buttonpress and cross-coded with a pedagogical approach modeling a debugging
strateQy, reads:

Whereas before, Eli had needed scaffolding for building the program through one-by-one coding,
now Cory receives the same supports but for the physical toy itself. Both the program and the
physical material at times require decomposing into single units in order to reduce errors and
focus on the symbol-movement-button correspondence emphasis added [6/8/20, ET].

The interrelation between programming and physical bugs ultimately formed the “axis”
around which furthercoding was conducted, eventually establishing the core category of the
emergingtheory (Kelle, 2007). Integrating this emerging theoretical construct with related
literature on debugging and technical knowledge, we were now operating under what
Strauss referred to as a “coding paradigm,” where the meaningfulness of a piece of data was
viewed in terms of physical materials and their mis/use on debugging. In other words, we
were developing a theory that positioned the technical knowledge of the personin the role of
the robot controller who was responsible for how the materials were used, as consequential
for successful debugging and programming.

Selection and microanalysis of cases. Whenit came time toidentify comparative cases for
closer microanalysis, we drewonanumber of selection criteria. First, we knewthat physical
bugs occurred across a wide variety of materials and objects associated with the coding
robots. We, therefore, selected cases that illustrate different robots or parts of the physical
apparatus that can cause mechanical trouble. Second, we identified cases where teachers
played a key role in children developing technical knowledge because, in our task designs,
theteacherwasinstrumentalforsupportingorthwartingtechnical work. Third, we selected
cases where technical knowledge emerged from the group’s collaborative work rather than
being siloed. While essential technical knowledge sometimes gets hidden away in labs or
embedded inthe work of the programmer, (Barley and Bechkey, 1994; Shapin, 1989; Smith,
2009), we chose cases where technical knowledge was foregrounded as an essential function
of the group. Fourth, we chose cases where programming and physical bugs co-occurred
because we had seen how resolving both orders of bugs highlighted the essential role of the
person performing the technical work (Silviset al., 2021).

We conducted interaction analysis (IA) of focal cases that represented these key criteria
(Jordan and Henderson, 1995). While the outputs of IA vary, most analysts hold to a set of
shared principles (Hall and Stevens, 2016), a number of which guided our analysis. First is
the importance of learning as a “member’s phenomenon,” which focuses analysis not on a
priori theories of or adults’ goals for a particular learning phenomenon (in our case,
debugging) but on what learners collectively believe they must accomplish (Keifert and
Stevens, 2019; Stevens, 2010); while conducting analysis, we operated under the assumption
that learners’ collective accomplishments always take place in a negotiated and powered
space. Second, and relatedly, knowledge is achieved through purposeful interaction, not as
anindividual accomplishment, incidentally acquired; knowledgeisnot somethingalearner

Young
children
debugging




1LS has (or lacks), but rather knowledge is observed in-use (Hall and Stevens, 2016). Building
from this, a third principle we drew on was that these “uses” are always “re-uses,” built upon
the substrates of prior interactions, which become sedimented in materials and ideas, and
are carried into their subsequent uses (Goodwin, 2018). Guided by these and other guiding
principles of TA, we examined multimodal ways technicians and their collaborators
accomplished tasks, paying particular attention to children’s multimodal use, sharing and
discussion of materials. In what follows, we present three instances in which children
demonstrated and developedtheirtechnical knowledge inthe contextof debuggingtangible
programs.

Analytic findings

Case 1: doing essential —work of performing  technical  fixes
Workingin groups and taking on different roles multiplied the number of possible problems
to solve. When physical bugs like user errors (i.e. pushing the wrong buttons) and
programming bugs like miscoding the turn unit (i.e. ROTATE, ROTATE, rather than
ROTATE, FORWARD) co-occurred, it was often difficult for novice coders to identify the
source of the error to debugit (Silvis efal., 2021). Children had to reason whether their
program yielded an unexpected error because the machinery was misused or because the
program was faulty. Ideally, user error could be mitigated so that children only needed to
focus on the program to debug. One way this mitigation of user error came about was when
children demonstrated theirtechnical knowledge “just-in-time,” sometimes as the program
was running but before the physical error occurred. Despite our designs for loosely
structured designation ofroles, students (and teachers) moved fluidlyin and out of different
roles in-task. Spontaneously stepping into the role of the technician was sometimes
necessary to neutralize the effect of a physical bug on the successful execution of a program
(Barley and Bechky, 1994).

Coretta and her group were learning how to program Cubetto to travel on a path that
required the program FORWARD, FORWARD, FORWARD, ROTATE RIGHT,
FORWARD. Coretta and Quinten had different understandings of the semantics of the turn
unit at the end of the program and disagreed about whether ROTATE RIGHT, FORWARD
(Quentin’s) or ROTATE RIGHT, ROTATE RIGHT (Coretta’s) was the correct end-sequence
[Figure 4(A)]. Theirteacher Ms D suggested that theyfirst try Coretta’sidea. However, after
Coretta placed her (incorrect) code, Ms D inadvertently oriented the robot facing the wrong
wayon the path [Figure 4(B)]. As Donna, who was nominally assigned to the technician role,
pressedthe Gobutton, Corettanoticed therobot’simproperorientation and quickly turnedit
inthe properdirection [Figure 4(B)]. Ms D thanked Coretta for “noticinganimportant thing”,
and the robot proceeded to run Coretta’s planned (buggy) program. The children
subsequently successfully debugged the program, adopting Quinten’s original idea
[Figure 4(C)].

The children were able to focus on what was wrong within the code because Coretta,
demonstrating her technical knowledge of the machinery, ensured that the robot operated
correctly. Coretta repositioned Cubetto just as the program started, ensuring that the
program ran as expected, although it was buggy. Their debugging was subsequently
successful, and children were able to locate the source of the programming error because
Coretta prevented technical trouble before it occurred. During scientific experiments or
technical demonstrations, machine operators and technicians are often called upon to
recognize trouble before it arises or prevent breakdowns before they occur. Barley and
Bechky (1994) explain how “unless a lab worker called attention to the matter, a casual
observer might not notice that an error had been neutralized” (p. 110). The essential work



= oo |

A(11:29)

E: So Corettaisgiving
me one more red turn
arrows[route A],and
Quentin is giving me one
more green forward

- % S S P arrow [route B]. Which
A \ one do you think is going
; to work?

B(11:48)
E:I'm gonna start him
over. Donna, can you run
the program?

C: Wait, he’s facing the

" wrong way (rotates
robot).

E: Thank you. Coretta
noticed an important
thing: he has to be facing
the right direction.

C(12:06)
‘ . ’ 3 E: One turn, and two
— == 4 e 7S turns. So the second red
& ) turn wasn’t the arrow we
wanted. Maybe we want
to tryQuentin’s idea, the
greenforwardarrow.

Notes: Clockwise from Emma: Donna, Isaiah,Coretta, Quentin

Coretta performed mayhave gone unnoticed because herfix occurredjust-in-time; however,
Ms D’srecognition of the “important thing” Coretta did gestures to the vital role of technical
knowledge involved in programming.

Case 2: disembedding technical knowledge from programming

The technical knowledge Coretta demonstrated was an essential part of collective
debugging. But howis such knowledge organized pedagogically in the normal course of
debugging? One day, while teaching the correspondence between codes and the robot’s
movements, Mr K shifted the focus from codes’ abstract symbolic correspondence to call
explicit attention to the significance of technical details for the success of the program. Cory
(the Programmer), Eli (Assistant Programmer) and Stanley (Technician) were working
together on a task with Botley called “Crack-the-code,” a task designed to decode a program
by watching the robot execute a hidden sequence (Shumway et al., 2021). On their fourth
debugging attempt decoding the hidden program FORWARD, ROTATE RIGHT,
FORWARD, Cory had designed the faulty program FORWARD, ROTATE RIGHT,
ROTATE RIGHT. Before running this program, Stanley cleared the codes already entered
inthe remote by pressing the trash can button. Failures to “trash” or reset the program
resulted in a type of what we termed initialization errors (running the old program and then
the new program as a single procedure), a pervasive type of user error across all tasks and
groups and a necessary step in many programming environments (Silvis et al., 2021) [1].
Compoundedbythefactthatchildrenhadnotyetestablishedastableunderstandingforthe

Young
children
debugging

Figure 4.

Correta corrects the
robot’s starting
orientationjust-in-
time




ILS

[14] S: Entering codes,
running program [forgets to
delete old program]

'Coly‘s program g Stanley's pmu""
NRER0NRE0

[2-3] S: You need... one turn of '4.

Flgure 5. this, and a straight right there.

Stanley debugs
Cory’s code, but
createsaphysical J

bug Notes: Left to right: Stanley, Eli, Cory, Mr. K

arrow-movement correspondence or expectations for robot movement conventions (Silvis
etal., 2020), forgetting to trash the previous program was a source of significant confusion
for children trying to diagnose the error source.

When Cory’s buggy program “just kept on turning” [Figure 6, line 1], which Mr K.
demonstratedbyrotatinghishandintheairoverthe grid, Stanley steppedintohelp
with programming. Alternately gesturing from the program organizer to the grid
space, Stanley provided arationale for the unitofthe turn, and Mr Kmoved therobot
on the grid, simulating these commands [lines 2—-4]. Mr K checked Cory’s agreement,
asking what he thought and Cory shrugged [line 5-6]. Their designated programmer
was at a loss for what to do next. The group collectively decided to run Stanley’s
program, and EliplacedaFORWARD codeontheprogramorganizerattheendofthe
sequence [lines 7-13]. However, Stanley had become preoccupied by the programming
while performing technical work; he forgot to press trash and merely entered the
correct codes FORWARD, ROTATE RIGHT, FORWARD into the remote before
executing the program [line 14]. Because Stanley had not cleared the previous codes
with the remote, the robot failed to reinitialize and moved FORWARD, ROTATE
RIGHT,ROTATERIGHT, FORWARD, before Mr Kinterrupted the run-throughand
picked up the robot, halting the demonstration.

K: It just kept on ((rotates hand in air)) turning ((extended eye contact with Cory))

S:Maybe you need a straight ((gesturesin frontofrobot)), and one turn ((pointsat codes
onprogramorganizer)) of this, and a straight right there ((gesturesin frontofrobot))
[Mr K simulates these movements].



K: ((extended eye contactwith Cory)) what doyou think?

C: ((shrugsshoulders))

K:Youdon'tknow? ((repositionsrobotatstartposition)) Okay, welllet'stry Stanley’s
((removes end code on programorganizer)) Soyou said not that, Stanley, do what?

S: Put a straight ((points at F code))

K:Okay,
S: ((pomts to thecodeagam)) putthis [1naud1ble]
K:Eli [inaudible]

E: ((places forward arrow on end of program))

S: ((enters codes on remote, runs program))

K: ((picks up robot)) Oh, you didn't click trash. [feigning frustration] Darn it, Stanley. If
youdon’t push trash, itjust keeps putting new, new, new ones on, buddy.

Feigning frustration, Mr K explained that Stanley “didn’t push trash” [line 15]. He then
seized the opportunity to explicitly connect the physical bug with the programming bug. He
explained that if they forget to delete the faulty codes, the robot will rerun the old program
first, adding on “new, new, new ones” [line 16]. To emphasize how this technical error would
work, Mr K produced a series of circular hand movements, punctuating each “new” code

B29:01 D29:34
) C: (presses buttons on remote, D: I'm going to do it so that we
Designed buggy program holding it close to his face) make sure that we get the right
A 28:0_5 o i codes in.
D: Xavier thinks if we want the turn o o
to go first, then we need to slide J ‘1 t]
s

down these codes and put it here. Is
that what you were thinking?
X:Yeah, it’s right.

Carson’s secret program

C29:20 » 3
‘} T T‘ D: (resetting Botley) | think you __@ 1
(L {7J LJ might be putting in a backwards. \
Xavier’sdebugged program X:1 guess he put in a backwards.

Botley’s target
square

Young
children
debugging

Figure6.
Mr.K'sgestureover
the programe
organizer
incorporates physical
and programming
bugs

Figure 7.

Carson secretely add
abackwardswhen
entering Xavier's
debugged program
into the remote




ILS

with another circle of this hand progressing further down the program (Figure 7). This
gesture closely resembled the motion he had used when explaining to Cory how his earlier
programming bug had made the robot continue to just “keep on turning” [line 10]. More
importantly, Mr K performed this circular gesture in the air over the program organizer to
draw their attention to the consequence for the program of an error in the physical domain.
His “environmentally-coupled gesture” performed multiple semiotic functions, both
referencing the current material field of action and recalling or recycling a previously
meaningful gesture as a novel resource for sense-making (Goodwin, 2018).

Through his words and gestures, Mr K explicitly drew connections between physical and
programming breakdowns, disembedding the essential technical function from the
programming domain and showing how they were related. In doing so, he pulled back
thecurtainthatobscureshowrobotsrun programs, revealinga mechanismthatreliesonthe
technical knowledge of the person controlling the robot. For novice programmers, learning
just how much information you have to give the computer is part of overcoming what
Pea (1986) called “intentionality bugs,” where the student endows the program with the
capability to “know” or “see” what to do without being told. In fact, Botley cannot “go
beyond the information given” (p. 29), and must be told by the technician to delete the
previous commands, technical knowledge that, for Stanley, was still being organized.
Callingattentiontotechnical detailsisprecisely whatisneeded whenlearningtoprogramin
kindergarten. When the frequent co-occurrence of physical and programming bugs
challenges novice programmers, calling attention to the consequences of technical work can
mean the difference between knowing what codes to use and knowing why a program works
(or fails).

Case 3: the technical undoing of a programmer’s redoing

Coretta’s demonstration of technical knowledge and Mr K's disembedding of technical
breakdowns from programming errors were examples of how technical knowledge-building
supported collaborative debugging. At other times, resolving programming errors or
teasing them out of physical errors involved a technician’s clever trouble-making rather
than their troubleshooting. While essential technical knowledge can mitigate errors and
save a program from catastrophic failure, technicians possess specialized skills and are in a
unique position to undermine an experiment’s integrity. It is precisely because of their
know-how that technicians hold the disruptive power to undo the experiment or break the
mechanism. Commenting on the importance of the machine operators in Robert Boyle’s
17th-century experiments, Shapin (1989) wrote that:

Technicians’ doings then become an important source of opaqueness .. . in fact, situations in
which experiments miscarried provide by far the richest source in Boyle's texts for establishing
the nature and scope of his assistants’ laboratory work (p. 558).

In the next example from a Kindergarten classroom, Carson demonstrated the nature and
scope of histechnical knowledge and took it as an opportunity for the creative undoing of
what would have been a successful redoing of the program.

Ms D was assisting Xavier as he performed a challenging debugging operation that
required inserting a missing left turn code at the beginning of their program, which was
buggy by design (Fieldsetal., 2021) (Figure 5, Frame A). Ms D theninstructed Carsonto
enter Xavier's program into the remote: ROTATE LEFT, FORWARD, FORWARD. Carson,
who had been eagerly awaiting his turn to operate Botley’s remote control, had carefully
watched over his shoulder as Xavier debugged the program (Frame A). Contrary to our
pedagogical focus on programming, the vast majority of children desired to perform



technical work and vied for opportunities to take control of the robot. The role of the
machine operator can be one of prestige when students’ values for particular types of work
are centered (Hennessey Elliott, 2020).

Holding the remote close to his face, Carson secretively pressed the arrow buttons and
then pressed Go, and the robot moved ROTATE LEFT, BACKWARD, FORWARD (Frame
B). Confused, Ms D asked him toverify he had pressedthe correct buttons (Frame C). Xavier,
who had now been looking over Carson’s shoulder, also surmised that Carson had pressed
the backward button, keying into how the robot was not operating as it should, given the
debugged program Xavier had specified. Carson insisted he had faithfully entered
ROTATE LEFT, FORWARD, FORWARD and ran it once more. Botley again moved
ROTATE LEFT, BACKWARD, FORWARD. Eventually, Ms D took the remote from
Carson and entered Xavier's debugged program (Frame D), and Botley reached the target
square. The technician wields power and influence in programming tasks, which becomes
visible when their knowledge is socially distributed, and they opt to take the task in another
direction from their collaborators. When Carson obscured his own actions by holding the
remote where no one could see what he was really up to, he demonstrated both his desire to
playfully subvert the experiment and the potential scope of his growing technical and
programming knowledge. His crafty use of the remote control was not a mistake; rather, it
signaled his creative understanding of how to complicate the task.

Calling attention to Carson’s subversion as skill requires a pedagogical reorientation to
technical knowledge. While we embraced the approach of Fields et al. (2021) to design for
debugging and regularly embedded programming errors in tasks as part of thelearning
design, Carson’s technical demonstration pushes our tangible programming designs further
in two ways. First, Carson, not us, devised the form he wanted the bug to take. Second, by
intentionally embedding a physical bug in a program debugging task, Carson challenged
Xavier, his other group members and his teacher to disentangle the two types of bugs.
Without Carson’s technical subversion, Xavier had only to debug the program by adding the
missing forward code, a presumably simple task. Bylayering a physical buginto the task by
hisown design, Carson created atask with even more complexity. Whereas Ms D placeda
higher value on “getting the right codes in” to validate Xavier’s redoing of the program,
Carson’s technical knowledge demonstrated how much can be learned about the
relationship between physical and programming errors through technicians’ undoings.

Discussion

Technical work as a feature of learning, not a bug

Through these three examples, we elaborated on how children were performing their
technical knowledge and how learning to make programs work was contingent on learning
how to work tangible coding robots. The cases demonstrate how debugging is an important
context for developing technical knowledge, bridging a gap between what little we know
about young children’s CT with their growing knowledge of the physical components of
computational systems. In the case of Coretta, essential knowledge like the ability to
perform just-in-time fixes at the level of the physical apparatus was instrumental in
ultimately resolving a programming error. In the case of Stanley and Mr K., resolving a
programming error presented a pedagogical opportunity to dis-embed technical and
programming domains. In Carson’s case, intentionally embedding a physical bug and
subverting successful program debugging represented another form technical work can
take. Taken together, these examples of the technical knowledge involved in tangible
programming raise a number of questions about the nature of computing and the
organization of technical work in learning environments.

Young
children
debugging




ILS

How is technical work being organized in CS and adjacent domains? As hived off, in the
hands of particular technicians? As distributed among teams of operators? As something
that programmers, too, must learn and do? While engaged in tangible programming,
technical work and program planning overlapped as children assumed fluid roles; being a
programmer involved performing some technical work and being a technician involved
some knowledge of programming. For example, when Coretta spontaneously reoriented
Cubetto as she was programmingit, she engagedin a familiar form of technical work, where
abstractreasoning was both conceptual and physicallyinstantiated (Buccharelliand Kuhn,
1994). Or, when Stanley volunteered to help Cory solve the programming problem, his
unstable technical knowledge was nonetheless essential for operating the robot. This sort of
fluid ingenuity reflects ongoing restructuring of engineering and design fields, where the
organization oftechnical work shifts as emergingoccupations bundle technical tasksinnew
ways.

We encourage learning designers to examine the organization of technical work more
closely in a range of educational settings. In computer labs, are we planning for how people
learn to operate tools and keep them in working order, including powering up and down,
installing apps and software, running updates, managing passwords, connecting
compatible components and accessories and maximizing the lifespans of devices? In
makerspaces, are we providing instruction for disentangling software and hardware
problems by teaching troubleshooting as opposed to assuming people learn to fix computers
through trial and error? In everyday learning situations, do we take for granted that
technical knowledge is somehow a default setting of growing up surrounded by screens and
devices or is there something special technicians must know and do?

We need not limit ourselves to patently technical endeavors like programming or
engineering to witness the pervasive organizational hierarchy between “mental” and
“manual” labor and the back-staging of essential work (Rose, 2004). All around us are
examples of the waysin which workis organized to downplay technical knowledge. The
Covid-19 pandemic and resulting shut-downs placed essential workers in sharp relief,
drawing widespread attention to the many ways that technical knowledge is involved in
nearly every facet of social life, from lab techs who monitor and recalibrate medical
instruments that test for disease to prep cooks who prepare a perfect dice for your meal at a
restaurant (Wu, 2020). To the degree that the physician’s or the chef's work appears to the
patient or the diner to be single-handed works of brilliance, essential technical knowledge
goes unrecognized. Recognizing how children’s programming reflects historical divisions of
labor in broader society is part of designing approaches to CS and engineering domains in
which technical knowledge is valued as “sociotechnical activity rooted in specific contexts
and communities” (Nasir et al., 2021, p. 558), rather than merely a set of rote skills for
operating machines. Learning to labor (Willis, 1981) in technology-rich learning
environments means accounting for these historical patterns and disrupting technoscientific
hierarchies and ideologies (Philip and Sengupta, 2020).

Foregrounding technical work in classrooms, computer labs and other “backrooms of
learning” is part of establishing more equitable learning arrangements. To bring technicians
out of backrooms, one must first know where the backroom is, visit it, spend time there and
attempt to understandits sociotechnical organization. The learning environments of young
children are some of education’s best-hidden backrooms (to say nothing of the relative
invisibility and undervaluing of early childhood educators, essential workers in their own
right). But bringing technicians out of their backrooms involves less physical repositioning
and more an intellectual one (Star and Strauss, 1999; Suchman, 1995). Rather than simply
accommodating technical work(ers) within the scope of engineering and CS—and then



mapping this knowledge onto young children in STEM — we might ask: what are the ways
of thinking and technical knowledge that they embody that help us reimagine the means
and ends of CS or CT? Conversely, what technical knowledge is always already required of
those wearing proverbial white lab coats, and how can we dis-embed this knowledge as a
focus of instruction? This focus on technical work is becoming even more important as the
field embraces physical computing, even as these learning designs risk perpetuating
oppression and extraction of human labor within “ideologies of workforce readiness and a
‘skilled technical workforce” (Philip and Sengupta, 2020, p. 11). We see multiple ways to
incorporate technical work as a feature and not a bug in the organization of activity to
expand what counts as authentic computing.

Conclusions and implications

Revaluing (how) the technical matters in debugging To
make multiple formsof technical knowledge more visible across computational contexts,
we conclude with a series of ways to surface and revalue the work of making things work,
specifically when making things work means debugging them. The first pertains directly to
early childhood debugging and CT. Rather than simplifying coding using toys that are
deceptively user-friendly, we believe it is productive to expose children to the inner
workings of the computational system that is black-boxed under normal working
conditions. Previous studies of tangible programming attempted to “un-black-box”
components to teach computing (Resnick et al., 2000), and more recent designs engage
childrenin thinking about the entangled relationship between hardware and software (e.g.
Bersetal., 2014) or DbD (Fields et al., 2016, 2021). Approaches like these draw out the
relationship between physical and programming domains and prepare children to engage
with both orders of bugs that co-occur even when we have not designed for them.

Forus (and for students) to design for debugging that facilitates learning, we need more
accounts of the interactional texture and nuance of children’s programming experiences,
including howtheyreason with one another about relationshipsbetween programmingand
physical domains. Technical knowledge of young children like Carson and their creative
perspective on physical bugs is instructive for pushing the limits of our pedagogical
approaches with young childrenin CS and expanding whoisincontrol of DbD. The DbD
paradigm challenges learning designers to embed bugs as pedagogical tools, involve
learners in the bugs’ selection and incorporate both orders of bugs: physical/material and
programming/symbolic (Fields et al., 2021). Our approach adds to this work by illustrating
what DbDlookslikein anovel computational environment with tangible programmingtoys
and with youngchildrenlearningtocode. Our designs alsocontribute tounderstandinghow
larger groups of children — assigned different roles and working within a division of labor —
collaboratively reconciled planned and unplanned bugs in the program and the physical
materials. This is important for preparing learners to work on teams where people have
heterogeneous roles and specialized knowledge, in and out of engineering and CS fields.

A second way in which we can reposition technical knowledge is by organizing learning
environments that center on the types of roles that children value. As we orient children to
computational objects in changing learning environments, we are also learning to orient
children as computational thinkers. When we bring young children into computer labs,
tinkering programs and maker spaces, we can take valuable lessons from established
organizational principles of early childhood environments: collaborative work, role-taking
and special attention to physical manipulatives and tangible tools (Vossoughi ef al., 2021).
To account for young children’s particular forms of CT we need to take seriously the
“revaluing of the concrete” by recognizing how children’s knowledge and interests are

Young
children
debugging




1LS boundupinconcrete action (Montessori, 1949; Turkle and Papert, 1992). This could take the
formofstatementsfromateacherpraisingstudentsforcatchingtechnical errorsandstating
explicitly that fixing those is just as important as using the right codes to accomplish the
immediate goal.

Focusing on the technical, concrete aspects of programming errors is an extension of the
guiding principles of epistemological pluralism, which inspired the design of many of the
codingtoysthat appearin earlylearning environments today (Turkle and Papert, 1992). As
early childhood computing becomes more commonplace, it is, therefore, ironic that learning
tobuildworking programs should drive learning designs, as opposed to learning how towork
the machine. The tendency to background technical knowledge and foreground
programming knowledge is even more curious when we consider how children are drawn to
the materials themselves and place a high value on doing technical work. Despite the
learning goals and roles that adults value, children collaboratively determine which roles are
high-status and collectively position each other within them (Fields and Enyedy, 2013;
Hennessey Elliott, 2020). Identifying aspects of computingthat bearsignificance tochildren
1s important because computational roles and identities are not always geared toward
programminglanguages per se; students are sometimes more invested in material artifacts
(Haduong, 2019).

If we want to approach children’s learning as a member’s phenomenon (Keifert and
Stevens, 2019) and value them as members of societies they are helping to form, then this
means learning to see children’s technical knowledge as meaningful to them and as vital for
programming. As we pay attention to children’s own perspectives on bugs, programming,
robots or technical work, we are keying into the values children like Coretta, Stanley or
Carson were developing for types of labor and roles in society, beit essential (yet easy to
overlook) or visible and highly esteemed. As society is organizing more and more technical
rolesforlearners, bringing young children’s values for technical knowledge into viewis part
of establishing more equitable and endogenous forms of learning with technology. With
children as young as preschool-age now learning to code, we hope this presents an
opportunity to appreciate the critical learning that takes place during early childhood, to
consider the powered relations within technological practices and reaffirm the role learning
sciences can play in designing for young children’s thriving. Whether and in which ways
computer technologies play into young children thriving is more than a mere technical
detail. Itisanopen question we hope to see addressedin designs to come.

Note

1. Indeed, this is a common error in traditional computer programs where previous values of
variables need to be erased or initialized, sometimes through their own special function that is
typically at the start of the program. Failure to re-initialize can cause anumber of bugs.

References

Barley, S.R. and Bechky, B.A. (1994), “In the backrooms of science: the work of technicians in science
labs”, Work and Occupations, Vol. 21 No. 1, pp. 85-126.

Barley, S.R. and Orr, J.E. (1997), “The neglected workforce”, in Barley, S.R. and Orr, J.E. (Eds),
Between Craft and Science: Technical Work in US Settings, Cornell University Press, Ithaca,
New York,NY.

Bers,M.and Sullivan, A.(2019), “Computerscience educationinearlychildhood: the caseof scratchJr”,
Journal of Information Technology Education: Innovations in Practice, Vol. 18, pp. 113-138.



Bers, M.U. (2018), Coding as Playground: Programming and Computational Thinking in the Early
Childhood Classroom, Routledge, New York, NY.

Bers, M. and Horn, M.S. (2010), “Tangible programming in early childhood: revisiting developmental
assumptions through new technologies”, in Berson, I.R. and Berson, M.J. (Eds), Childhood ina
Digital World, Information Age Publishing, Greenwich, CT.

Bers, M.U., Flannery, L., Kazakoff, E.R. and Sullivan, A. (2014), “Computational thinking and tinkering:
exploration of an early childhood robotics curriculum”, Computers and Education, Vol. 72,
pp. 145-157.

Brennan, K. and Resnick, M. (2012), “New frameworks for studying and assessing the development of
computational thinking”, Proceedings of the 2012 annual meeting of the American educational
research association, Vancouver, April, Vol. 1, p. 25.

Clarke-Midura, J., Lee, V.R., Shumway, J.F. and Hamilton, M.M. (2019), “The building blocks of coding:
a comparison of early childhood coding toys”, Information and Learning Sciences, Vol. 120
Nos 7/8, pp. 505-518.

Clarke-Midura, J., Kozlowski, J.S., Shumway, J.F. and Lee, V.R. (2021a), “How young children engage in
and shift between reference frames when playing with coding toys”, International Journal of
Child-Computer Interaction, Vol. 28, p. 100250.

Clarke-Midura, J., Silvis, D., Shumway, J.F., Lee, V.R. and Kozlowski, J.S. (2021b), “Developing a
kindergarten computational thinking assessment using evidence-centered design: the case of
algorithmic thinking”, Computer Science Education, Vol. 31 No. 2, pp. 117-140.

DeLiema, C., Enyedy, N. and Danish, J.A. (2019), “Roles, rules, and keys: how different play
configurations shape collaborative science inquiry”, Journal of the Learning Sciences, Vol. 28
Nos 4/5, pp. 513-555.

DeLiema, D.,Dahn, M., Flood, V.J., Abrahamson, D., Enyedy, N. and Steen, F. (2020), “Debugging asa
context for collaborative reflection on problem-solving processes”, in Manolo, E. (Ed.), Deeper
Learning, Dialogic Learning, and Critical Thinking: Research-Based Strategies for the Classroom,
Routledge, New York, NY, pp. 209-228.

diSessa, A. (2000), Changing Minds: Computers, Learning, and Literacy, MIT Press, Cambridge, MA.

Fields,D.and Enyedy, N. (2013), “Pickingupthe mantle of ‘expert : assignedroles, assertionofidentity,
and peerrecognition within a programming class”, Mind, Culture, and Activity, Vol. 20 No. 2,
pp. 113-131.

Fields, D., Searle, K.A. and Kafai, Y.B. (2016), “Deconstruction kits for learning: students’ collaborative
debugging of electronic textile designs’, in Blikstein, P., Berland, M. and Fields, D.A. (Eds),
Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education, New York,
NY, ACM, pp. 82-85.

Fields, D.A., Kafai, Y.B., Morales-Navarro, L. and Walker, J.T. (2021), “Debugging by design: a
constructionist approach to high school students’ crafting and coding of electronic textiles as
failure artefacts”, British Journal of Educational Technology, Vol. 52 No. 3, pp. 1078-1092.

Glaser, B.G. and Strauss, A.L. (1967), The Discovery of Grounded Theory: Strategies for Qualitative
Research.

Goodwin, C. (2018), Co-Operative Action, Cambridge University Press.

Haduong, P. (2019), “I like computers: L hate coding’: a portrait of two teens’ experiences”, Information
and Learning Sciences, Vol. 120 Nos 5/6, pp. 349-365.

Hall, R. and Stevens, R.(2016), “Interactionanalysisapproachestoknowledgeinuse’, in DiSessa, A.A.,
Levin, M. and Brown, N.J.S. (Eds), Knowledge and Interaction: A Synthetic Agenda for the
Learning Sciences, Routledge, New York, NY.

Hamner, E., Lauwers, T. and Bernstein, D. (2010), “The debugging task: evaluating a robotics design
workshop”, Association for the Advancement of Al Spring Conference: Educational Robotics and
Beyond.

Young
children
debugging




1LS Heikkild, M. and Mannila, L. (2018), “Debugging in programming as multimodal practice in early childhood
educationsettings’, Multimodal Technologiesand Interaction, Vol.2 No. 3, doi: 10.3390/mti2030042.

Hennessey Elliott, C. (2020), “Run it through me?’ positioning, power, and learning on a high school
robotics team”, Journal of the Learning Sciences, Vol. 29 Nos 4/5, pp. 598-641, doi: 10.1080/
10508406.2020.1770763.

Herrenkohl, L.R. (2006), “Intellectual role-taking: supporting discussion in heterogeneous elementary
science classes”, Theory into Practice, Vol. 45 No. 1, pp. 47-54.

Horn, M. (2018), “Tangible interaction and cultural forms: supporting learning in informal
environments”, Journal of the Learning Sciences, Vol. 27 No. 4, pp. 632-665.

Jordan, B. and Henderson, A. (1995), “Interaction analysis: foundations and practice”, Journal of the
Learning Sciences, Vol. 4 No. 1, pp. 39-103.

Kafai, Y.B., DeLiema, D., Fields, D.A., Lewandowski, G. and Lewis, C. (2019), “Rethinking debugging as
productive failure for CS education”, Proceedings of the 50th ACM Technical Symposiumon
Computer Science Education, February, pp. 169-170.

Keifert, D. and Stevens, R. (2019), “Inquiry as a members’ phenomenon: young children as competent
inquirers”, Journal of the Learning Sciences, Vol. 28 No. 2, pp. 240-278.

Kelle, U.(2007), “The development of categories: different approached in grounded theory”, in Bryant,
A. and Charmaz, K. (Eds), The SAGE Handbook of Grounded Theory, SAGE.

Kim, C., Yuan, J., Vasconcelos, L., Shin, M. and Hill, R.B. (2018), “Debugging during block-based
programming”, Instructional Science, Vol. 46 No. 5, pp. 1-21.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L. and Zander, C. (2008),
“Debugging: a review of the literature from an educational perspective”, Computer Science
Education, Vol. 18 No. 2, pp. 67-92.

McNerney, T.S. (2004), “From turtles to tangible programming bricks: explorations in physical
language design”, Personal Ubiquitous Computing, Vol. 8, pp. 326-337.

Montessori, M. (1949), The Absorbent Mind, The Theosophical Publishing House.

Nasir, N.S., Lee, C.D., Pea, R. and McKinney de Royston, M. (2021), “Rethinking learning: what the
interdisciplinary science tells Us”, Educational Researcher, Vol. 50 No. 8, pp. 557-565,
doi: 10.3102/0013189X211047251

Papert, S. (1980), Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, New York, NY.

Pea, R.D. (1986), “Language-independent conceptual ‘bugs’ in novice programming”, Journal of
Educational Computing Research, Vol. 2 No. 1, pp. 25-36.

Pea, R.D., Soloway, E. and Spohrer, J.C. (1987), “The buggy path to the development of programming
expertise”, Focus on Learning Problems in Mathematics, Vol. 9 No. 1, pp. 5-30.

Philip, T.M. and Sengupta, P. (2020), “Theories of learning as theories of society: a contrapuntal
approach to expanding disciplinary authenticity in computing”, Journal of the Learning
Sciences, pp.1-20.

Resnick, M., Berg, R. and Eisenberg, M. (2000), “Beyond black boxes: bringing transparency and aesthetics
back to scientificinvestigation”, Journal of the Learning Sciences, Vol.9 No. 1, pp. 7-30.

Rich, K., Strickland, C., Binkowski, T.A. and Franklin, D. (2019), “A K-8 debugging learning trajectory
derived from research literature”, Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE’19), Feb.27-Mar.2,2019, Minneapolis, MIN.

Rose, M. (2004), The Mind atWork: Valuing the Intelligence ofthe American Worker, Viking Press.

Schweikardt, E.and Gross, M.D. (2008), “The robot is the program: interacting with roBlocks”, Tangible
Embedded Interaction, Bonn.

Searle, K.A., Litts, B.K. and Kafai, Y.B. (2018), “Debugging open-ended designs: high school students’
perceptions of failure and success in an electronic textiles design activity”, Thinking Skills and
Creativity, Vol. 30, pp. 125-134.



http://dx.doi.org/10.3390/mti2030042
http://dx.doi.org/10.1080/10508406.2020.1770763
http://dx.doi.org/10.1080/10508406.2020.1770763
http://dx.doi.org/10.3102/0013189X211047251

Shapin, S.(1989), “Theinvisibletechnician”, American Scientist, Vol.77No.6, pp. 554-563.

Shetterly, M.L. (2016), Hidden Figures: The American Dream and the Untold Story of the Black Women
Mathematicians Who Helped Win the Space Race, HarperCollins, New York, NY.

Silvis, D., Lee, V., Clarke-Midura, J. and Shumway, J. (2021), “Objects to debug with: how young
children resolve errors with tangible coding toys”, in de Vries, E., Yod, Y. and Ahn, J. (Eds),
Proceedings of the Annual Meeting of the International Society of Learning Sciences 2021,
Bochum.

Silvis, D., Lee, V.R., Clarke-Midura, J., Shumway, J. and Kozlowski, J. (2020), “Blending everyday
movement and representational infrastructure: an interaction analysis of kindergarteners coding
robot routes”, in Gresalfi, M. and Horn, L. (Eds), Proceedings of the Annual Meeting of the
International Conference of the Learning Sciences, Nashville, TN.

Smith, W. (2009), “Theatre of use: a frame analysis of information technology demonstrations”, Social
Studies of Science, Vol. 39 No. 3, pp. 449-480.

Socratous, C. and Ioannou, A. (2020), “Common errors, successful debugging, and engagement during
block-based programming using educational robotics in elementary school”, in Gresalfi, M. and
Horn, L. (Eds), Proceedings of International Conference of the Learning Sciences (ICLS) 2020,
Nashwville, TN, International Society of the Learning Sciences.

Souza, I., Andrade, W., Sampaio, L. and Araujo, A. (2018), “A systematic review on the use of LEGO
robotics in education”, 2018 IEEE Frontiers in Education Conference (FIE), San Jose, CA, 2018,
pp. 1-9.doi: 10.1109/FIE.2018.8658751.

Star, S.L. and Strauss, A. (1999), “Layers of silence, arenas of voice: the ecology of visible and invisible
work”, Computer Supported Cooperative Work (CSCW), Vol. 8 Nos 1/2, pp. 9-30.

Stevens, R. (2000), “Divisions of labor in school and in the workplace: comparing computer and paper-
supported activities across settings”, The Journal of the Learning Sciences, Vol. 9 No. 4,
pp. 373-401.

Stevens, R. (2010), “Learning as a member’s phenomenon: toward an ethnographically adequate science
of learning”, Yearbook of the National Society for the Study of Education, Vol. 109 No. 1,
pp. 82-97.

Shumway, J.F., Welch, L.E., Kozlowski, J.S., Clarke-Midura, J. and Lee, V.R. (2021), “Kindergarten
students: mathematics knowledge at work: the mathematics for programming robot toys”,
Mathematical Thinking and Learning, pp. 1-29, doi* 10.1080/10986065.2021, 1982666.

Suchman, L. (1995), “Making work visible”, Communicationsofthe ACM, Vol. 38 No. 9, pp. 56-64.

Sullivan, A. and Bers, M.U. (2016), “Robotics in the early childhood classroom: learning outcomes from
an 8-week robotics curriculum in pre-kindergarten through second grade”, International Journal
of Technology and Design Education, Vol. 26 No. 1, pp. 3-20.

Sullivan, A., Elkin, M. and Bers, M.U. (2015), “KIBO robot demo: engaging young children in
programming and engineering”, Proceedings of the 14th International Conference on Interaction
Design and Children (IDC ‘15), Boston, MA, ACM, pp. 418-421, doi* 10.1145/2771839.2771868.

Tang, X., Yin, Y., Lin, Q., Hadad, R. and Zhai, X. (2020), “Assessing computational thinking: a
systematic review of empirical studies”, Computers and Education, Vol. 148, p. 103798.

Turkle, S. and Papert, S. (1992), “Epistemological pluralism and the revaluation of the concrete”,
Journal of Mathematical Behavior, Vol. 11 No. 1, pp. 3-33.

Vossoughi, S., Escude, M., Kitundu, W. and Espinoza, M.L. (2021), “Pedagogical ‘hands and eyes”
embodied learning and the genesis of ethical perception”, Anthropology and Education
Quarterly, doi:10.1111/aeq.12382.

Wang, X.C., Choi, Y., Benson, K., Eggleston, C. and Weber, D. (2020), “Teacher’srole in fostering
preschoolers’ computational thinking: an exploratory case study”, Early Education and
Development, Vol. 32, pp. 1, 26-48.

Young
children
debugging



http://dx.doi.org/10.1109/FIE.2018.8658751
http://dx.doi.org/10.1080/10986065.2021
http://dx.doi.org/10.1145/2771839.2771868
http://dx.doi.org/10.1111/aeq.12382

ILS

Whalley, P. and Barley, S.R. (1997), “Technical work in the division of labor: stalking the wily
anomaly”, in Barley, S.R. and Orr, J.E. (Eds), Between Craft and Science: Technical Work in the
United States, Cornell University Press, pp. 23-52.

Willis, P. (1981), Learning to Labour: How Working Class Kids Get Working Class Jobs, Routledge.

Witherspoon, C.D. and Schunn, D. (2019), “Teachers’ goals predict computational thinking gains in
robotics”, Information and Learning Sciences, Vol. 120 Nos 5/6, pp. 308-326.

Wolfe, S. (2006), Your Best Year yet! a Guide to Purposeful Planning and Effective Classroom
Organization, Scholastic, New York, NY.

Wu, K.J. (2020), “Nobody sees us” testing-lab workers strain under demand”, The New York Times,
available at! www.nytimes.com/2020/12/03/health/coronavirus-testing-labs-workers.html?
referringSource=articleShare

Wyeth, P. (2008), “How young children learn to program with sensors, action, and logic blocks”, The
Journal of the Learning Sciences, Vol. 17 No. 4, pp. 517-550.

Yu, J. and Roque, R. (2019), “A review of computational toys and kits for young children”, International
Journal of Child-Computer Interaction, Vol. 21, pp. 17-26.

Further reading

Bucciarelli, L.L. and Kuhn, S. (1997), “Engineering education and engineering practice: improving the
fit", in Barley, S.R. and Orr, J.E. (Eds), Between Craftand Science: Technical Workin US Settings,
Cornell University Press, Ithaca, New York, NY.

Jurow, A.S., Teeters, L., Shea, M.V. and Van Steenis, M. (2016), “Extending the consequentiality of
‘invisible work’ in the food justice movement”, Cognition and Instruction, Vol. 34 No. 3,
pp. 210-221.

K-12 Computer Science Framework Steering Committee (2016), “K-12 computer science framework”,
available at:https://k12cs.org/

Smith, C.P., Berland, M. and Martin, T. (2015), “Playing robot: exploring how students alternate
perspectives in IPRO”, in Lee, V.R. (Ed.), Learning Technologies and the Body: Integration and
Implementationin Formal and Informal Learning Environments, Routledge, New York, NY.

Corresponding author
Deborah Silvis can be contacted at: deborah.silvis@usu.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com


http://www.nytimes.com/2020/12/03/health/coronavirus-testing-labs-workers.html?referringSource=articleShare
http://www.nytimes.com/2020/12/03/health/coronavirus-testing-labs-workers.html?referringSource=articleShare
https://k12cs.org/
mailto:deborah.silvis@usu.edu
http://www.emeraldgrouppublishing.com/licensing/reprints.htm
mailto:permissions@emeraldinsight.com

	Young children debugging
	ILS
	Young children debugging
	Young children debugging
	Young children debugging
	ILS
	Young children debugging
	ILS
	Young children debugging
	Young children debugging
	ILS
	Young children debugging
	ILS
	Young children debugging
	Young children debugging
	Young children debugging
	Young children debugging

