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Abstract—After a model is deployed on edge devices, it is desirable
for these devices to learn from unlabeled data to continuously improve
accuracy. Contrastive learning has demonstrated its great potential in
learning from unlabeled data. However, the online input data are usually
none independent and identically distributed (non-iid) and edge devices’
storages are usually too limited to store enough representative data from
different data classes. We propose a framework to automatically select
the most representative data from the unlabeled input stream, which only
requires a small data buffer for dynamic learning. Experiments show that
accuracy and learning speed are greatly improved.

Index Terms—On-Device Learning, Contrastive Learning, Self-
Supervised Learning

I. INTRODUCTION

Deep learning models have been widely deployed on the edge and
mobile devices to accomplish different tasks, such as robots for search
and rescue [1] and UAVs for wildfire surveillance [2]. Traditionally, a
model is pre-trained in high-performance servers and then deployed in
these devices without further training. However, it is often desirable
for these devices to learn from real-world input data (e.g. images
captured by a camera) either based on a pre-trained model or totally
from scratch when deployed to an unknown [3]. In this way, the
model on robots or UAVs can adapt to new environments [4].

While it is feasible to send a few data to servers for labeling, it is
prohibitive to send all these new data due to the requirement of expert
knowledge, data privacy, communication cost, and latency concerns
[5]. Thus, different from conventional training on servers by using
fully labeled datasets, it is also desirable to learn from new streaming
data in-situ with as few labels as possible.

Contrastive learning, as an effective self-supervised learning ap-
proach [6], can learn visual representations from unlabeled data to
improve the feature extractor (convolutional layers) in the model.
After contrastive learning, the classifier (fully connected layers) can
be trained on top of the improved feature extractor by using few labeled
data to achieve improved classification performance. Contrastive
learning is conventionally conducted by using a large dataset, which is
completely collected before the training starts. In the learning process,
each mini-batch is randomly sampled from the whole dataset to update
the model [7]. On edge platforms such as robots and UAVs, the data
are collected by sensors such as cameras and continuously fed into
the device. While it is theoretically possible to store the constantly
generated massive unlabeled data on the device and employ contrastive
learning, both the storage and energy overhead associated with writing
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and reading these data from storage devices (e.g. Flash memory) can
be prohibitive in practice.

To learn from the unlabeled data stream without accumulating a
large dataset, a small data buffer can be used to form each mini-batch
for training. Existing contrastive learning frameworks [6], [7] assume
that each mini-batch is independent and identically distributed (iid) by
sampling uniformly at random from all the classes (i.e. each class has
representative data in this mini-batch). However, it is challenging to
maintain the most representative data in the buffer such that learning
from this buffer will efficiently reach an accurate model due to the
following two reasons. First, the streaming data collected on edge
devices are usually temporally correlated [8] and result in a correlation
within each mini-batch. This is because a long sequence of data in
the temporally correlated stream can be in the same class [9]. For
example, in wildlife monitoring, goats from a group can appear in
adjacent images captured by a continuous monitoring camera [10]
at some time, while zebras can appear in adjacent images at another
time. Second, there is no easy way to select representative data for
each class from the non-iid streaming data due to the fact that the
streaming data are unlabeled. If labels were available for all the data,
we could easily select representative data for each class [9] based on
all the labels even if the streaming data is non-iid. Without addressing
this challenge, directly learning from these temporally correlated non-
iid mini-batches will result in slow learning speed and poor learned
representations.

To improve the accuracy and expedite the learning process, it is
essential to maintain a data buffer filled with representative data from
the streaming data. To achieve this goal, this paper defines a contrast
score, which is computed by the similarity between the features of a
data and its flipped view. The contrast score of each data measures
the quality of feature representation encoded by the model. Based on
the contrast score, we propose a data replacement policy to maintain
a representative data buffer. Data with a low quality of encoded
representation by the model is more valuable for learning since they
have not been effectively learned. These data will be maintained in
the buffer for further learning. On the other hand, data with a high
quality of representations have been effectively learned, and they will
be dropped to save places for more valuable data. After contrastive
learning effectively learns from the unlabeled data and improve the
feature extractor, the classifier needs to be updated as well. Since
training the classifier without any labels does not generate meaningful
accuracy, we will send as few as 1% of the data to the server for
labeling to improve the classifier and overall accuracy.
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In summary, the main contributions of the paper include:
• Self-supervised on-device learning framework. We propose

a framework to form mini-batches of training data for self-
supervised contrastive learning on-the-fly from the unlabeled
input stream. It only uses a small data buffer and eliminates the
necessity of storing all the streaming data into the device.

• Contrast scoring for data selection. We propose a data
replacement policy by contrast scoring to maintain the most
representative data in the buffer for on-device contrastive learning.
Labels are not needed in the data replacement process, and the
selected data will generate large gradients that benefit the learning
most.

• Lazy scoring for reduced computation overhead. We propose
a lazy scoring strategy to reduce the runtime overhead of data
scoring. The data scores are updated every several iterations
instead of every iteration to save computation.

Experimental results on multiple datasets including CIFAR-10,
CIFAR-100, SVHN, ImageNet-20, ImageNet-50, and ImageNet-100
show that the proposed framework achieves significantly higher
accuracy than the state-of-the-art (SOTA) techniques and greatly
improves the learning speed. With 1% labeled data on the CIFAR-10
dataset, the proposed framework achieves 28.36% higher accuracy
than using the 1% labeled data for direct supervised learning. The
proposed contrast scoring based data selection achieves 13.9% higher
accuracy than the SOTA data selection approach [11]. Meanwhile, the
proposed approach achieves 2.67x faster learning than the baseline
when the same accuracy is achieved.

II. BACKGROUND AND RELATED WORK

A. Background of Contrastive Learning

Contrastive learning is a self-supervised approach to learn an
encoder (feature extractor) for extracting visual representations from
the input image. In this work, we employ the contrastive learning
approach from [7] since it performs on par with its supervised
counterpart. For an input image x, its representation vector h is
obtained by h = f(x), where f(·) is the backbone of a deep
learning model (i.e. convolutional layers). To boost the performance
of learned representation, a project head g(·) is used to map the data
representation to the latent space as a vector z = g(h) = g(f(x))
where contrastive loss is applied. To create a positive pair (zi, zi+),
one input x is augmented twice as (xi, xi+) and then fed into the
encoder to get representation vectors (hi, hi+) = (f(xi), f(xi+)),
which are further projected by g(·) and normalized as (zi, zi+). Then
for each positive pair (zi, zi+) in one mini-batch, the contrastive loss
is applied to compute the loss `i,i+ as follows:

`i,i+ = � log
exp(zi · zi+/⌧)

exp(zi · zi+/⌧) +
P

i� exp(zi · zi�/⌧)
(1)

where zi� is the representation vector of other data (serving as
negatives to contrast with) in the same mini-batch, and ⌧ is the
temperature. Minimizing

P
`i,i+ in one mini-batch by iteratively

updating the model will learn an encoder to generate representations.

B. Related Work

Contrastive Visual Representation Learning. [6], [7] employ
contrastive loss for representation learning and achieve high accuracy
on classification and segmentation tasks. [8], [12] use the temporal
correlations in the streaming data to improve representation learning.
However, all these works assume that the whole training dataset is
available in the learning process, and each mini-batch can be formed by
sampling from the dataset. Each mini-batch consists of independent
and identically distributed (iid) data. But when learning from the

streaming data, which cannot be assumed to be iid on edge devices,
the data is collected sequentially as it is. Besides, random sampling
from the entire input stream to create iid mini-batches is infeasible
since it requires storing all the data. Therefore, an approach to form
mini-batches on-the-fly while including the most representative data in
each mini-batch is needed to enable efficient and accurate on-device
contrastive learning.

Data Selection in Streaming and Continual Learning. There
are several supervised streaming and continual learning models that
can learn from a stream of data [13]. To overcome the problem
of catastrophic forgetting of previously seen data, a data buffer is
usually needed to store previous data for rehearsal [9], [13], [14]. The
main drawback of these approaches is that data labels are needed to
maintain the buffer. However, labeling all the data in the streaming
is prohibitive or even infeasible on edge devices. Therefore, existing
methods cannot be applied directly to contrastive learning and an
effective data selection approach that works on unlabeled data is
needed.

III. SELF-SUPERVISED ON-DEVICE LEARNING BY SELECTIVE
DATA CONTRAST

This paper proposes a framework to efficiently learn data representa-
tions from the unlabeled input stream on-the-fly without accumulating
a large dataset due to storage limitations on edge devices. To maintain
the most representative data in the buffer such that learning from these
data will benefit the model most, we propose a data replacement policy
based on Contrast Score by measuring the quality of representation for
each data without using labels. Data with low quality of representations
have not been effectively learned by the model and will be maintained
in the buffer for further learning, while data with high quality of
representations will be dropped. The contrast scoring is supported
by the theoretical analysis that data with higher scores will generate
larger gradients and accelerate the learning process.

In this section, we will first present the framework overview in
Section III-A. Then we will introduce the proposed contrast scoring
for data selection in Section III-B. After that, we will theoretically
analyze the effectiveness of contrast scoring in Section III-C. Finally,
we will introduce lazy scoring to reduce the runtime overhead of
contrast scoring in Section III-D.

A. Framework Overview

Contrast Scoring 

New Data I

Data Maintained in Buffer B

Unlabeled
Input Stream

Updated Data Buffer B
Capturing New data Data Replacement by Contrast Scoring Model Update

Data with 
High Scores

Encoder

Few Labeled 
Data

Stage 2: 
Train ClassifierStage 1: Self-Supervised Data Representation Learning

Classifier

Fig. 1: Overview of on-device contrastive learning framework. The
encoder is first trained by contrastive learning with data selected from
unlabeled streaming data by contrast scoring, and then the classifier
is trained by few (e.g. 1%) labeled data.

As shown in Fig. 1, the proposed framework has two stages.
The first stage learns an encoder (i.e. convolutional layers) by self-
supervised contrastive learning to generate data representations (i.e.
low-dimensional vectors) from the high-dimensional unlabeled inputs
(e.g. images). The second stage learns a classifier by using few (e.g.
1%) labeled data on top of the learned representations.
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In stage 1, the proposed framework consumes the input streaming
data on-the-fly to update the model for improved representation. We
only use a small data buffer B (i.e. the same size as one mini-batch)
to maintain the most representative data. When a segment of new
input I arrives, both the new data in I and the data in the buffer B
will be scored to find the most representative data. While any size of
I can be used, for simplicity we assume I has the size as B by setting
size(I) = size(B). Then the data with the highest scores in B [ I
will be selected and put into B. In this way, the data replacement
process always maintains the most representative data among the
new and the old ones. After each iteration of data replacement, the
data preserved in the data buffer B will serve as one mini-batch for
updating the model once. The detailed data replacement policy will
be described in the next subsection.

B. Data Replacement By Contrast Scoring

Prepare Data for Scoring

Flip

Compute 
Representation Vectors Compute Contrast Scores in 

Projected Representation Space

0.2

0.2

0.9

0.9

New Inputs I ∪Data Buffer B

Encoder

Compare
Compare

Compare
Compare

Flipped Data

Repres.
Vectors

Fig. 2: Contrast scoring for data replacement. The original and flipped
inputs are fed into the encoder to generate representation vectors,
which are projected to vectors in the unit sphere to compute scores.

Contrast Scoring. For each input xi, the contrast scoring function
S(xi) aims to measure the quality of the representation vector
hi = f(xi) generated by the base encoder f(·). Intuitively, if the
representation of xi is not good, xi will be valuable data for updating
the base encoder since it can still learn from xi to improve its capability
of encoding xi. To achieve this, as shown in Fig. 2, for each image
xi from the input stream and the buffer, we generate another view
xi+ by horizontal flipping. Then we feed both xi and xi+ into the
encoder and generate the representation vectors hi and hi+ for these
two views. Ideally, if the encoder has learned to generate effective
representations of xi, hi and hi+ will be identical or very similar.
After that, based on hi and hi+ , the score for xi is computed by the
contrast scoring function S(·).

The contrast scoring function S(·) is defined as:
S(xi) = dissim(xi, xi+) = 1� similarity(zi, zi+)

= 1� zTi zi+ , xi 2 {B [ I}
(2)

where zi = g(hi)/kg(hi)k`2 , zi+ = g(hi+)/kg(hi+)k`2 (3)
where hi and hi+ are the representation vectors generated by the base
encoder f(·) as hi = f(xi) and hi+ = f(xi+), taking data xi and
its horizontally flipped view xi+ as inputs, respectively. zi and zi+
are `2-normalized vectors from the projection head g(·) to enforce
kzik`2 = kzi+k`2 = 1. In this way, the dot product zTi zi+ is in the
range [-1,1], and S(xi) is non-negative and in the range [0,2].

The contrast scoring function Eq.(2) measures the dissimilarity
between the projected representation vectors of an image xi and its
horizontal flip xi+ , where a higher score means a larger dissimilarity.
Essentially, the representation of one image needs to be invariant to
image transformations [15], and the representations of xi and xi+

need to be as similar as possible. Since a higher score represents a
larger dissimilarity and less invariance, input xi with a higher score
is more valuable for updating the base encoder because the base
encoder still cannot generate sufficiently good representations of it.

By updating the encoder with xi using the contrastive loss [7], which
aims to maximize the similarity of two strongly augmented views of
xi, the score of xi in Eq.(2) will decrease and xi will have a lower
probability of being selected into the next mini-batch in Eq.(4). In this
way, more valuable data to update the base encoder will have a higher
probability of being selected into the next mini-batch and others are
more likely to be dropped. A detailed analysis of the effectiveness of
contrast scoring will be provided in Section III-C.

Contrast Score Design Principle. Contrast scoring is a metric
to represent the capability of the base encoder in generating the
representation hi = f(xi) for xi. Thus, it should only relate to the
image itself and the encoder. In Fig. 2, when generating a pair of
inputs (xi, xi+) to S(·) from an image xi, we find it crucial to avoid
any randomness (e.g. random crop) and only apply the weak data

augmentation (i.e. horizontal flipping) to generate xi+ . The reason is
that this weak augmentation is deterministic and provides consistent
inputs to S(·). In this way, the score S(·) is deterministic to xi and
is consistent in different runs of S(·).

Contrast Score Based Data Selection. At iteration t, the goal is
to form the next mini-batch Bt+1 by selecting the most informative
data from It and Bt, such that learning from Bt+1 will benefit the
model most. To achieve this, we apply the contrast scoring function
S(·) to both the data already in the buffer Bt and new data It. Bt+1

is formed by selecting the data with the highest contrast scores in
Bt [ It:

Bt+1 = {xi|xi 2 Bt [ It, i 2 topN({S(xi)}2Ni=1)} (4)
where topN() returns the indices of xi with the top N scores. In
this way, the most representative data is maintained in the buffer by
using the proposed contrast scoring.

C. Effectiveness of Contrast Score

The proposed contrast scoring effectively selects data that can
generate large gradients, which benefits the learning most. To
understand this, for each data xi in one mini-batch, the gradient
of contrastive loss `i,i+ in Eq.(1) with respect to the representation
vector zi is computed as:

@`i,i+

@zi
= � 1

⌧

0

@�
1� pz

i+

�
· zi �

X

z
i�

pz
i�

· zi�

1

A , (5)

where pz =
exp

�
zi

T z/⌧
�

P
zj2{z

i+
,z

i�} exp (zi
T zj/⌧)

, pz 2 {pz
i+

, pz
i�

}

(6)
pz is the probability distribution generated by applying the softmax
function to the similarity zi

T zj between zi and each zj 2 {zi+ , zi�}
in the mini-batch. For z = zi+ , pz

i+
is the matching probability of zi

with its positive pair zi+ . Similarly, for z = zi� , pz
i�

is the matching
probability of zi with a negative pair zi� (i.e. the representation vector
of other data in the same mini-batch).

A data with a small contrast score S(xi) generates a near-zero
gradient and contributes almost nothing to the learning process. On
the other hand, a data xi with a high contrast score S(xi) in Eq.(2)
corresponds to a large gradient in Eq.(5), which contributes much to
the learning process. To understand this, we analyze the relationship
between the contrast score in Eq.(2) and the gradient in Eq.(5) in two
cases:

Case 1: A data with a small contrast score generates a near-
zero gradient. A small contrast score in Eq.(2) corresponds to a
large similarity between zi and zi+ . Therefore, the value of dot
product ziT zi+ will be large and dominate the elements in the softmax
function in Eq.(6). As a result, pz

i+
will be large and near 1. Since

pz+i
+

P
z2z

i�
pz = 1 as a property of the softmax function, the
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values of all pzi� will be small and near 0. In this way, 1� pz
i+

as

well as all pz
i�

will be near 0, and the gradient
@`

i,i+

@zi
will be near

0. Using the near-zero gradient to perform one gradient descent step
w  w � ⌘

@`
i,i+

@zi
does not contribute to the learning since there is

almost no change in the weight.
Case 2: A data with a high contrast score generates a large

gradient. When the contrast score is high, zi and zi+ are dissimilar
to each other. By applying the same reasoning as case 1, 1 � pz

i+

and all pz
i�

will be near 1, and the gradient
@`

i,i+

@zi
will be large,

which significantly contributes to the learning process.
Therefore, by using the proposed contrast score, trivial data that

only generate near-zero gradients will be dropped while important
data that can generate large gradients will be maintained in the buffer
for learning.

D. Lazy Scoring

Computing the scores for new data and data in the buffer requires
feeding these data into the base encoder to generate the representations.
This computation incurs additional time overhead. To minimize the
overhead, we propose lazy scoring, in which part of the data scores
can be reused to reduce computation.

We made the following two observations as the foundation of lazy
scoring. First, during each iteration of data replacement, most of the
data (i.e. about 90%) in the buffer are preserved while most of the
new data are directly dropped. Therefore, by reusing contrast scores
of data in the buffer, a large portion of the computation in scoring
can be reduced. Second, the score S(xi) of data xi only slightly
changes across several adjacent iterations. This is because the score of
data xi only depends on itself and the base encoder f(·). xi remains
constant and f(·) is slowly updated across iterations. Therefore, S(xi)
is only slowly updated following the pace of f(·), and the score S(xi)
computed iterations ago still provides meaningful information of xi.

To achieve lazy scoring, as long as data xi remains in buffer B, its
score is updated every T iterations instead of in every iteration. More
specifically, for each xi in B, we track its age age(xi) in the number
of iterations since it was placed in B. When performing scoring, we
separate data in B into two subsets, in which one needs scoring while
the other does not. The subset of data that needs scoring is denoted
as:

B0
t = {xi | x 2 Bt and age(xi) mod T = 0} (7)

When scoring data in B, the scores are updated as:

St(xi) =

(
dissim(xi, xi+), xi 2 B0

t

St�1(xi), otherwise
(8)

In the above equation, if xi needs scoring, its score is computed
by Eq.(2). Otherwise, its score in the last iteration is copied to save
computation. By lazying scoring, the computation overhead of contrast
scoring is effectively reduced to about 1

T of that without lazy scoring,
while the accuracy is preserved.

IV. EXPERIMENTS

In this section, we first evaluate the accuracy with different
labeling ratios. Then, we evaluate the learning speed of the proposed
framework. After that, we evaluate the reduced computation overhead

by lazy scoring. Finally, we evaluate the impact of buffer size.

A. Experimental Setup

Datasets and Evaluation Protocols. We use multiple datasets, in-
cluding CIFAR-10, CIFAR-100 [16], SVHN [17], ImageNet-20/50/100
[18] to evaluate the proposed approaches. To perform classification,
the encoder is first trained by the proposed approaches to generate

data representations. As we mentioned before, training a classifier
without any labels does not generate meaningful accuracy. Therefore,
we train a classifier with 1%, 10%, or 100% labeled data on the
learned encoder.

Strength of Temporal Correlation (STC). We use the metric
Strength of Temporal Correlation (STC) to represent the temporal
correlation of the input stream. STC represents how many consecutive
data in the input stream are from the same class until a class change
happens [9]. A larger STC represents a stronger temporal correlation.

Default Training Setting. We use ResNet-18 as the base encoder.
We train the encoder with the contrastive loss [7] by the Adam
optimizer. While the proposed approaches can be applied to both
training from scratch and fine-tuning a pre-trained model, to avoid any
bias in the pre-trained model on any approach to compare with, we
train from scratch. Unless otherwise specified, the batch size is 256
with the weight decay 0.0001. For subsets of ImageNet, the learning
rate is 0.0004, the temperature ⌧ is 0.07, and STC is 100. The model
is trained for 300 epochs for ImageNet-20/50 and 100 epochs for
ImageNet-100. For CIFAR-10, CIFAR-100, and SVHN, the learning
rate is 0.0001, the temperature ⌧ is 0.5, and the model is trained for
500 epochs with STC 500. For all datasets, the classifier is trained for
500 epochs with Adam optimizer and learning rate 0.0003. The lazy
scoring is disabled by default to have a fair comparison of different
data replacement approaches. The results are averaged over three runs
on 2 Nvidia V100 GPUs with different random seeds.

Baselines. We first compare the proposed framework with super-
vised learning using 1% or 10% labeled data. Then, we compare the
proposed contrast scoring with four data selection baselines which
select data from unlabeled streaming. The first two baselines are
popular and effective strategies for maintaining exemplars in continual
learning while not requiring labels. Random replacement is a variant
of reservoir sampling [19] and is recently used for continual learning
[9]. It selects data uniformly at random from new data and data in the
buffer to form the new data buffer. FIFO replacement is also recently
employed for continual learning [9]. It replaces the oldest data in the
buffer with new data. While not requiring labeling information and
seemingly simple, these two approaches have demonstrated superior
performance in maintaining data for continual learning compared with
approaches that rely on exact labels [20]. The next two baselines are
SOTA approaches to select data for efficient training and improving
accuracy. Selective-Backprop [11] selects data with the largest losses
for training. K-Center is a SOTA active learning approach [21],
which selects the most representative data by performing k-center
clustering in the features space. For conciseness, in the following
figures and tables, we use Contrast Scoring to represent the proposed
approaches, and use Random Replace, FIFO Replace, Selective-BP,
and K-Center to represent the baselines.

B. Improved Accuracy with Different Labeling Ratios
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Fig. 3: Accuracy on CIFAR-10 with 1% and 10% labeled data.
We first compare the proposed framework with supervised learning

using 1% or 10% labeled data. The supervised learning achieves the
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accuracy of 32.11% and 40.53%, which are 28.36% and 31.22% lower
than the proposed approaches. Therefore, supervised learning is not a
practical option, and we will focus on evaluating the accuracy of the
proposed framework with different data selection approaches.

We compare the proposed contrast scoring with other data selection
approaches in terms of accuracy by first performing contrastive
learning on unlabeled data with different approaches, and then learning
the classifier with different ratios of labeled data (i.e. 1%, 10%).

The proposed data selection approach by contrast scoring substan-
tially outperforms the SOTA baselines. The accuracy with different
labeling ratios (i.e. 1%, 10%) on CIFAR-10 is shown in Fig. 3, in
which the contrastive learning is performed for 100 epochs without
labels before training the classifier. First, with 1% and 10% labeled
data for learning the classifier, the proposed Contrast Scoring achieves
the accuracy of 60.47% and 71.75%, and outperforms other four
approaches by {8.33%, 12.02%, 13.9%, 13.21%} and {4.58%, 7.49%,
10.09%, 9.24%}, respectively. Second, with fewer labels (i.e. 1% vs.
10%), the proposed contrast scoring outperforms each baseline by a
larger margin. This is because with fewer labels, the quality of learned
representation becomes more important, and the proposed framework
learns better representations than the baselines. Different from this,
the proposed Contrast Scoring selects data that benefit contrastive
learning the most.

The results show that the most competitive baselines are the two
seemingly simple, yet surprisingly effective approaches Random

Replace and FIFO Replace. These results match the results in [14],
where a random replacement policy outperforms elaborately designed
approaches.

C. Learning Curve: Improved Learning Speed and Accuracy

We evaluate the learning curve of the proposed approaches and
baselines on CIFAR-10, ImageNet-20, ImageNet-50, ImageNet-100,
SVHN, and CIFAR-100 datasets. The learning curve represents how
fast the model learns representations from the new inputs. Since we
aim to evaluate the contrastive learning process by different data
selection approaches, to avoid the influence of different label ratios in
training the classifier, in the following evaluations, we will use 100%
labeled data to train the classifier after contrastive learning and only
compare with the two most competitive baselines.
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Fig. 4: Learning curve on CIFAR-10 and ImageNet-100 datasets. The
learned representations by the proposed data replacement with scoring
substantially outperform the baselines under two evaluation protocols.

Learning Curve on CIFAR-10. The proposed data replacement
policy quickly learns data representations and achieves a significantly
faster learning speed and a higher accuracy than the baselines. The
learning curve on CIFAR-10 is shown in Fig. 4 (a). The x-axis is the
number of seen inputs and the y-axis is the accuracy. The accuracy of
the proposed approaches quickly increases to 76.1% with 3.74M seen

data, which is 2.67⇥ faster than the random replacement policy that
needs 9.98M data to achieve similar accuracy. The FIFO replacement
policy cannot achieve this accuracy even with 25M data. Besides,
the proposed approaches achieve a much higher final accuracy than
the baselines. The proposed approaches achieve a final accuracy of
82.13%, while the random and FIFO replacement policies only achieve
79.63% and 74.51%, respectively.

Learning Curve on ImageNet-100. We further evaluate the
proposed approaches on the ImageNet-100 dataset. While this dataset
is a subset of the large-scale ImageNet dataset, it still features high-
resolution images and is challenging for the stream setting. As shown
in Fig. 4 (b), the proposed approaches achieve a consistently faster
learning speed than the baselines. The proposed approaches achieve
55.05% top-1 accuracy and outperform the baselines by 3.69% and
6.39%, respectively.
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Fig. 5: Learning curve on ImageNet-20 and ImageNet-50 dataset.

Learning Curve on ImageNet-20 and ImageNet-50. We evaluate
the proposed approaches on the ImageNet-20 and ImageNet-50 dataset.
As shown in Fig. 5, the proposed approaches achieve a significantly
faster learning speed and higher accuracy than the baselines. On
ImageNet-20, the proposed approaches achieve 70.64% top-1 accuracy
and outperform two baselines by 5.76% and 8.19%, respectively. On
ImageNet-50, the proposed approaches achieve 60.99% top-1 accuracy
and outperform the baselines by 3.94% and 6.39%, respectively.
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Fig. 6: Learning curve on SVHN and CIFAR-100 datasets.

Learning Curve on SVHN and CIFAR-100. We evaluate the
learning curve on the SVHN and CIFAR-100 datasets, and the results
are shown in Fig. 6. The learning curve of the proposed approaches
substantially outperforms the baselines.

D. The Impacts of Lazy Scoring

We also evaluate the impact of lazy scoring on the accuracy, runtime
overhead, and average percent of re-scored data in the buffer in each
training iteration. The model is trained on the CIFAR-10 dataset with
buffer size 256 and STC 500.
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TABLE I: Top-1 accuracy, average re-scoring percent, and batch time
(relative to that without scoring) on CIFAR-10 with different lazy
scoring intervals.

Lazy Scoring
Interval Disabled 4 20 50 100 200

Accuracy (%) 76.06 77.04
(+0.98)

77.18
(+1.12)

77.23
(+1.17)

76.38
(+0.32)

74.22
(-1.84)

Re-scoring
Pct. (%) 100.0 21.78 4.31 1.71 0.89 0.44

Relative
Batch Time 1.478 1.312 1.232 1.199 1.191 1.172

Lazy scoring effectively reduces the additional computation for
scoring during training and reduces the batch time. As shown in
Table I, when lazy scoring interval T in Eq.(7) increases, the average
re-scoring percent and the relative batch time (runtime overhead) are
effectively reduced. When lazy scoring is not used, each training step
of our method is 47.8% slower than the baselines (without scoring).
When lazy scoring is employed with interval 50, each training step
is only about 19.9% slower than the baselines. Besides, lazy scoring
slightly increases the final accuracy by up to 1.17%. We conjecture that
the increased accuracy is because the lazy scoring performs similarly to
the momentum encoder in [6]. The score computed multiple iterations
ago serves as a momentum score. This slowly updated score brings
more information from the past and benefits the data selection.

E. Improved Accuracy With Different Buffer Sizes

We evaluate the impact of buffer size on the performance of the
proposed approaches. The model is trained on the CIFAR-10 dataset.
The buffer size is in {8, 32, 128, 256}. The corresponding learning rate
is scaled to {1, 3, 5, 10}⇥10�5, roughly following a learning rate /p

batch size scaling scheme.

TABLE II: Accuracy on CIFAR-10 dataset with different buffer sizes.

Buffer Size Method Accuracy

8
Contrast Scoring 69.38
Random Replace 66.71 (-2.67)
FIFO Replace 65.91 (-3.47)

32
Contrast Scoring 73.26
Random Replace 70.65 (-2.61)
FIFO Replace 70.80(-2.46)

128
Contrast Scoring 73.97
Random Replace 71.28 (-2.69)
FIFO Replace 70.65 (-3.32)

256
Contrast Scoring 76.06
Random Replace 72.75(-3.31)
FIFO Replace 70.53 (-5.53)

The proposed approaches consistently outperform the baselines
under different buffer sizes. As shown in Table II, under different
buffer sizes, the accuracy by the proposed approaches maintains a
clear margin over the baselines. Besides, the margin becomes larger as
the buffer size increases. This is because a larger buffer size provides
the framework a better opportunity to select more informative data,
and the proposed approaches can leverage this opportunity to maintain
more representative data in the buffer for learning, while the baselines
cannot. Also, all the approaches achieve higher accuracy when the
buffer size becomes larger. This is because a larger buffer size provides
a larger batch size, and contrastive learning naturally benefits from a
large batch size since it provides more negative samples [7].

V. CONCLUSION

This work aims to enable on-device contrastive learning from
input streaming data. We propose a framework to maintain a small
data buffer filled with the most representative data for learning. To

achieve the data selection without requiring labels, we propose a
data replacement policy by contrast scoring. Experimental results on
multiple datasets show that the proposed approaches achieve superior
learning speed and accuracy compared with SOTA baselines.
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