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EF-Train: Enable E!icient On-device CNN Training on FPGA
through Data Reshaping for Online Adaptation or
Personalization

YUE TANG, XINYI ZHANG, PEIPEI ZHOU, and JINGTONG HU, University of Pittsburgh, USA

Conventionally, DNN models are trained once in the cloud and deployed in edge devices such as cars, robots,
or unmanned aerial vehicles (UAVs) for real-time inference. However, there are many cases that require the
models to adapt to new environments, domains, or users. In order to realize such domain adaption or per-
sonalization, the models on devices need to be continuously trained on the device. In this work, we design
EF-Train, an e!cient DNN training accelerator with a uni"ed channel-level parallelism-based convolution
kernel that can achieve end-to-end training on resource-limited low-power edge-level FPGAs. It is challeng-
ing to implement on-device training on resource-limited FPGAs due to the low e!ciency caused by di#er-
ent memory access patterns among forward and backward propagation and weight update. Therefore, we
developed a data reshaping approach with intra-tile continuous memory allocation and weight reuse. An an-
alytical model is established to automatically schedule computation and memory resources to achieve high
energy e!ciency on edge FPGAs. The experimental results show that our design achieves 46.99 GFLOPS and
6.09 GFLOPS/W in terms of throughput and energy e!ciency, respectively.
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erators;
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1 INTRODUCTION
Deep Neural Networks (DNNs) have been widely used in edge devices such as cars, robotics [1],
and unmanned aerial vehicles (UAVs) [2] to accomplish various tasks, including autonomous
driving, object detection, and so forth. FPGAs are promising platforms with higher computational
density, communication bandwidth, and energy e!ciency and can be con"gured based on dif-
ferent tasks. Nowadays, FPGAs have been widely used in various edge device domains. For ex-
ample, edge-scale FPGAs are commonly utilized in object detection tasks with high frames per
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second and low power consumption [3]. The Corazon-AI built on Xilinx Zynq is a perfect "t
for various computer-vision-based applications including video surveillance, advanced driver-
assistance systems (ADASs), medical robotics, industrial automation, and augmented reality [4].
Combined with recon"gurability, FPGAs have been adopted in several autonomous platforms such
as pony.ai [5] and ZF ProAI [6]. In medical applications, an FPGA-based low-latency multi-layer
perception (MLP) processor for real-time cancer detection has been developed, since FPGA-based
design can directly interface with sensors, display devices, and reduce data movement delays [7].
Burger et al. applied an FPGA-based embedded device to monitor users’ electrocardiograms
(ECGs) in a pervasive Internet of Things (IoT) system [8]. FPGAs have also performed well in
other areas such as agricultural robots [9], UAVs [10], and so forth.

In traditional FPGA-based edge device applications, DNNs are pre-trained in the cloud before
being deployed in FPGAs, which is not e!cient for domain adaption. When the environments,
tasks, or users change, data needs to be collected from the edge FPGAs and transmitted to the
cloud. Then, the cloud retrains a new model, transmitting the model back to the edge devices. The
whole process is ine!cient and time-consuming. Therefore, it is often desirable for edge FPGAs to
continuously and locally learn from new data. Such on-device learning can directly improve model
accuracy and adapt to new environments. Currently, several algorithms have been proposed to en-
able edge devices to achieve domain adaption locally. For example, a MobileDA framework [11]
has been developed to allow a novel teacher network trained in the server to distill the knowl-
edge for a student network running in the edge device, and the algorithm was employed on an
embedded GPU and NVIDIA Jetson TX2. A transductive transfer learning model HDCNN [12] has
been proposed to allow adaptation without requiring collecting large volumes of labeled training
data in the target domain, and the algorithm was tested on 1080 Ti GPU. To implement these com-
plex and fantastic software-level algorithms on FPGA-based edge devices, an FPGA-based training
accelerator is indispensable. However, traditional FPGA-based edge device applications lack such
hardware-level designs for training operations, which prevents FPGA-based devices from applying
these algorithms directly.

Furthermore, directly training Convolutional Neural Network (CNN) models on local FPGAs
can facilitate personalization. For example, in some medical applications such as home monitor-
ing [13], long-term ECG monitoring [14], and so forth, the distinction of di#erent users’ physical
conditions will impact data distribution, so models need to be "ne-tuned based on speci"c users.
The system in [8] utilized cloud services to log a user’s condition over time and continuously im-
prove the system’s performance. It would be more e#ective if models could be directly updated on
the FPGA device. Besides, learning at the edge can provide better privacy since users do not need
to upload data into the central cloud [15].

However, it has been challenging to implement on-device training on FPGAs. Previous works
mainly focused on implementing CNN inference on FPGAs. For example, Zhang et al. [16]
exploited various optimization techniques including loop unrolling, loop tiling, and loop trans-
formation on the FPGA accelerator and proposed a roo$ine model to quantitatively analyze its
computing throughput and required memory bandwidth. Various designs [17, 18] have been
proposed to map well-trained neural networks on FPGAs for inference with high throughput and
low latency. Compared with CNN inference, it is more complex to e!ciently implement CNN
training on FPGAs in terms of the following aspects. First, the inference process only includes
forward propagation (FP), whereas the training process includes FP, backward propagation
(BP), and weight update (WU), which leads to a 3X computation operation count with more
types of operations [19]. Second, the large volume of activation data in FP needs to be used in BP
and WU, and the loss data generated in BP is also required in WU. Such data dependency across
multiple layers makes it di!cult for on-board memory management and data reusing in dynamic
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random access memory (DRAM) in an end-to-end training system [20]. Third, since FP, BP,
and WU have di#erent memory access patterns, simply using the memory optimizations of FP in
the whole training process leads to low memory access e!ciency in BP and WU. Because of the
above-mentioned challenges, CNN training on FPGAs has not been comprehensively investigated.

Recently, several FPGA-based architectures have been designed to accelerate training on large-
scale FPGAs. F-CNN [21] "rst performed FP and BP on a Maxeler MPC-X data$ow FPGA node
but WU on CPU. Designs such as [22, 23] aimed to further reduce the CNN training latency and
improve throughput. However, these works mainly focused on cloud-level devices with abundant
resources. A straightforward training implementation on edge FPGAs is still challenging.

To tackle the challenges in implementing on-device training on edge-level FPGAs, we propose
EF-Train, a new e!cient FPGA-based training accelerator with a uni"ed channel-level parallelism-
based convolution kernel to handle the computation complexity. The uni"ed kernel means that
it processes convolution operations of FP, BP, and WU in the training phase utilizing the same
computation resources on the FPGA chip. The channel-level parallelism means that the kernel al-
locates these computation resources to process multiple channels of feature maps in parallel. We
also propose a data reshaping approach to solve the communication bottleneck in realistic end-
to-end training processes. The overview of the design framework is shown in Figure 1. The data
reshaping approach is a compile-time optimization that achieves intra-tile and inter-tile memory
access continuity and weight reuse in mini-batch training. The proposed design can be imple-
mented on resource-limited FPGAs without sacri"cing precision. Neural networks can be trained
on both small batches and large batches. Since training and inference are conducted separately in
realistic applications, while FPGAs are con"gurable to implement di#erent designs on the same
hardware platform for di#erent applications, our design can be applied to those well-developed
FPGA-based inference devices. In a relatively long life cycle of the inference phase, the original
design can guarantee high throughput and low latency. If users or the environments change, the
device can be switched to implement our design immediately to learn from local data for online
adaptation or personalization rather than transmitting data to the cloud centers and waiting for
the cloud centers to transmit the well-trained model back to the device. Our main contributions
are as follows:
• We propose EF-Train, an e!cient FPGA-based CNN training accelerator with a uni"ed con-

volution kernel to process FP, BP, and WU with full precision. The accelerator exploits
channel-level parallelism to achieve high computation utilization for both small and large
batch sizes. Our accelerator supports end-to-end CNN training with convolutional (Conv)
layers, fully connected (FC) layers, batch normalization (BN) layers, recti!ed linear
unit (ReLU) layers, and pooling layers (Section 3).
• We propose a data reshaping approach to solve the o#-chip communication bottleneck. The

features and weights are stored in o#-chip memory with intra-tile continuous memory al-
location to remove discontinuous memory accesses within a tile. We also reduce inter-tile
discontinuous memory accesses by scheduling loop orders between tiles. We further exploit
weight reuse among multiple images in a mini-batch to improve communication e!ciency
when the batch size is larger than one (Section 4).
• We build a performance and resource model for the proposed accelerator. Based on the model,

a computation and memory resource scheduling tool is established to determine design pa-
rameters for di#erent FPGA devices and di#erent neural networks (Section 5).
• We deploy the training process on PYNQ-Z1 and ZCU102 for various CNNs on both Cifar-10

and ImageNet datasets. Experimental results show that our design can achieve 46.99 GFLOPS
and 6.09 GFLOPS/W in terms of throughput and energy e!ciency, respectively (Section 6).
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Fig. 1. Overview of our design framework.

Fig. 2. CNN training process.

2 BACKGROUND AND MOTIVATIONS
2.1 CNN Training
The training process of a "ve-layer CNN is shown in Figure 2, including the FP process (red arrows),
the BP process (black arrows), and the WU process (yellow arrows). The network includes two
Conv layers, one FC layer, one BN layer, one ReLU layer, and one pooling layer, which are practical
and can make up most neural networks in real-world scenarios.

In the FP process, activation is propagated layer by layer. In a Conv layer such as layer 1, the
input activation A1 conducts multiply-accumulate (MAC) operations with the weights W1. A
BN layer is always followed by a Conv layer. In layer 2, the inputs of the BN layer include the
input activation A2 and learnable parameters γ2 and β2. The immediate outputs include λ2, Â2,
and output activation A3. A3 then goes through the ReLU and pooling layers. Finally, the FC layer
provides classi"cation results for the input image.

In the BP process, the loss will be calculated and propagated back to the "rst layer. The loss
of the last layer is calculated by the loss function f . This article adopts the most commonly used
cross-entropy loss function. The stochastic gradient descent (SGD) is applied in CNN training.
In a Conv layer, layer 5 for example, the loss L6 needs to be padded "rst to ensure the size of the
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convolution results L5 is the same as the size of A5. The tensors for weightsW5 are transposed on
dimensions for output channels and input channels. The original kernel tensors need to be $ipped.
Then, L5 is calculated by the convolution operation between the transposed weights and L6. In the
maximum pooling layer, layer 4,A4 is compared withA5 to determine which element on L4 should
obtain the value from the corresponding position on L5. If layer 4 is an average pooling layer, the
values for each element of each patch in L5 will be directly accumulated and propagated to L4. In
the ReLU layer, layer 3, an element of L3 will return zero if the value in the same position of A3 is
less than zero. Otherwise, the value of the corresponding position in L4 will be propagated back.
In the BN layer, layer 2, γ2 and β2 are updated according to the value of λ2, Â2, and L3. Then the
loss is propagated back to L2.

The gradients of weights in layer i is calculated after the loss of layer i+1 is propagated. In layer 5,
dW5 is calculated by conducting MAC operations for A5 and L6. The gradients are accumulated
inside a batch. In a mini-batch, after the above-mentioned operations are conducted for all images,
W5 will be updated by subtracting dW5 × learninд rate .

2.2 Related Works
DRAM Access Issues for Current FPGA-based Inference Accelerators: Currently, FPGAs
have been widely adopted in edge domains thanks to the well-developed FPGA-based inference
accelerators [16, 17]. Among the inference accelerators, many works [16, 24, 25] mainly focused on
selecting optimal design parameters to improve the acceleration performance for individual Conv
layers. Optimizing techniques such as loop tiling and loop unrolling are adopted by these works.
Although the proposed algorithms achieved higher performance e!ciency on a given Conv layer,
the proposed designs only presented isolated accelerators without completing end-to-end infer-
ence where all layers of a neural network are tested continuously. In an end-to-end system, the
layers’ intermediate results are usually transferred between on-chip bu#er and o#-chip DRAM
due to the limited on-chip storage size, so the impact of o#-chip memory accesses should be con-
sidered in realistic scenarios. For most edge-level FPGAs, direct memory access (DMA) is a
commonly used e#ective data swapping way for continuous address data access. However, in cur-
rent FPGA-based DNN deployments, when the on-chip memory cannot hold all the features and
weights of a Conv layer, data need to be fetched and processed in tiles based on the computation
pattern. Such tiling schemes break the continuity of data addresses in DRAM and thus reduce the
DMA transmission e!ciency. The detailed analysis will be further discussed in Section 4. This dis-
continuity can degrade the DMA transferring speed from about 8GB/s to around 1GB/s [26]. The
optimal algorithms proposed in the above-mentioned accelerators are based on the assumption
that data are well pre-allocated between adjacent layers, so tiles can be loaded from and stored
back to the DRAM continuously. However, in actual end-to-end systems, such allocation overhead
is extremely large compared to the acceleration time.

Solutions for the DRAM Access Issues in the Inference Phase: Issues related to DRAM
memory access have been addressed in recent works. For example, ROMANet [27] proposed a de-
sign space exploration (DSE) by searching for the appropriate data partitioning and scheduling
for each layer of a network to reduce the number of memory accesses. DRMap [28] proposed a
generic DRAM mapping policy and a DSE to reduce the DRAM access latency and energy. These
two works were implemented on Tensor Processing Units (TPUs). [29] de"ned a multi-bank
on-chip memory management (MOMM) problem to minimize the DRAM access overhead in
the processing of CNNs on a neural processing unit (NPU) with a multi-bank on-chip memory.
However, since FPGAs have di#erent hardware architectures with TPUs or NPUs, their optimiz-
ing algorithms cannot be directly applied to FPGA-based designs. For example, in the TPU-based
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designs [27, 28], the architecture of the on-chip accelerator is already "xed, with "xed MAC ar-
rays and "xed on-chip bu#ers for input features, output features, and weights, respectively. In
FPGA-based designs, only the total number of digital signal processors (DSPs) and on-chip
memory sizes are given, and the allocation and connection of MAC arrays and individual bu#ers
are con"gured by the designer. Therefore, optimizations on FPGA-based designs should not only
reduce DRAM access latency or frequency based on the o#-chip DRAM access policy but also be
comparable to support the on-chip acceleration designs.

A few FPGA-based works reorganized the DRAM layout to relieve the memory access disconti-
nuity and validated the approaches on realistic end-to-end tests. For example, [26] compared three
di#erent layout schemes of input features in the inference phase and "nally found that the channel-
major scheme where the input features are fetched and stored along the input channel direction
"rst could improve access continuity and reduce data duplication. Ca#eine [30] combined both on-
chip and o#-chip data reorganizations for the convolutional matrix-multiplication representation
to maximize the underlying memory bandwidth utilization. FlexCNNe [31] further optimized data
layout optimizations on the concatenation layers.

However, all these works [26]–[31] are based on the computation and memory access pattern
in the inference phase, which only has FP. The training phase involves FP, BP, and WU, where
their data access pattern for output features, input features, and weights are di#erent. Therefore,
the above-mentioned approaches cannot be directly applied in CNN training, and a new optimized
design considering FP, BP, and WU together is required.

FPGA-based Training Accelerators: As mentioned in Section 1, CNN training on FPGAs has
not been comprehensively investigated. The training process is much more complicated than the
inference process, so it is sub-optimal to directly adopt the frameworks of inference accelerators
for training.

Due to the computation complexity and communication bottleneck, currently, only a few works
aim to achieve e!cient FPGA-based training. With FPGA clusters, FPDeep explored layer-level
parallelism for training a CNN model in a "ne-grained pipeline [32], which has superior scalabil-
ity to a large number of FPGAs. However, such larger clusters are not suitable to be adopted on
edge-level applications. For training on a single FPGA, an automatic compiler for a training accel-
erator on Stratix 10 was developed in the precision of 16-bit "xed point [22]. DarkFPGA adopted
batch-level parallelism using 8-bit integers for training a VGG-like network on the Maxeler MAX5
platform [23]. It achieved high throughput when the batch size was large. A sparse CNN training
accelerator was designed on VCU1525. The accelerator was implemented on a pre-trained CNN
model with 85% of parameters pruned [33]. However, these existing works mainly focused on
cloud-level devices with abundant computation and memory resources.

Besides, even with cloud-level resources, reduced precision and pruning approaches have also
been utilized to decrease computation intensity and communication bottleneck. Although quanti-
zation adopted in prior training accelerators [23, 34] led to remarkable bene"ts in terms of resource
usage and power consumption, these works have not provided any evidence that such quantiza-
tion techniques can maintain high accuracy on a large dataset (e.g., ImageNet) with dense neural
networks. Currently, training with full precision is still preferred in most realistic applications, and
its high computation and memory overhead should be faced directly. However, none of the above-
mentioned state-of-the-art training accelerators targeted resource-limited edge FPGAs with full
precision, which is more challenging to implement in end-to-end CNN training but is more prac-
tical in real-world scenarios. Therefore, an optimized design is necessary to implement on-device
training on resource-limited FPGAs without sacri"cing precision.

Implementation of BN Layers: Apart from the computation-intensive Conv layer, the BN
layer is also a key component and is essential for the training process. In inference, a BN layer can
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be folded into the adjacent CONV layer, since it just performs a simple linear transformation [35].
However, the batch normalization process in the training phase is much more complex. It needs
to calculate the expected value and variance of the data in the whole mini-batch, which involves
lots of on-chip and o#-chip data transmission. Lu et al. [35] optimized the computation $ow of BN
layers during FP and BP and implemented BN layers in their CNN training accelerator. Unlike [35],
which adopts the 8-bit "xed point in Conv layers and FP16 in BN layers, our work supports
BN layers with full precision, which brings more challenges for computation and transmission
requirements.

2.3 Motivations of the Proposed Design
To implement on-device training on resource-limited FPGAs, we need to solve the computation
complexity and communication bottleneck illustrated in Figure 1.

In the training phase, the FP, BP, and WU processes are conducted iteratively and need to be com-
pleted on the same accelerator. Edge FPGAs have limited computational resources. Using separate
kernels for FP, BP, and WU leads to resource underutilization and low energy e!ciency. Therefore,
to e!ciently process the complex computation for FP, BP, and WU, we need to design a training
accelerator that can handle the three processes in a uni"ed convolution kernel and can achieve a
high parallelism degree considering the $exibility of DNN architectures. For a Conv layer, there
are three levels of parallelism that are adopted in FPGA-based accelerators: batch-level parallelism,
feature-map-level parallelism, and channel-level parallelism. Figure 3(a) illustrates the process of
batch-level parallelism, whereTb nominates the number of output feature maps (OFMs) of im-
ages in a mini-batch that are processed in parallel. Figure 3(b) shows the process of feature-map-
level parallelism, whereT f ×T f features of OFMs are processed in parallel. Figure 3(c) shows the
process of channel-level parallelism, whereTm nominates the number of output channels of OFMs
that are processed in parallel, and Tn nominates the number of input channels of input feature
maps (IFMs) that are processed in parallel. The degree of parallelism depends on the amount of
utilized computation units on the hardware. Table 1 shows the comparisons of the three levels of
parallelism. Considering a Conv layer with B images in a mini-batch, it is assumed that the number
of input channels is N , the number of output channels is M , the size of an OFM is R ×C , and the
size of a weight kernel is K ×K . Tmops = B ×M ×N ×R ×C ×K ×K MAC operations are required
to process such a layer. For the batch-level parallelism, it takes # B

T b $ × M × N × R × C × K × K
cycles to complete the Conv layer. Such parallelism can achieve high throughput when the batch
size is large, and the size of the feature map and the number of channels have little impact on the
performance. For example, in previous works, DarkFPGA [23] built its accelerator with batch-level
parallelism and achieved high throughput when the batch size was 128. However, when the batch
size is small or even one (online learning), most computation units will remain idle. For example,
when B < Tb, completing the Conv layer costs Tmops cycles, and T b−B

T b of computation resources
remain idle. It leads to a low parallelism degree, and such under-utilization of resources makes
the performance sub-optimal. For the feature-map-level parallelism, which has been adopted by
works like [22], it takes B ×M ×N × # R

T f $ × # C
T f $ ×K ×K cycles to "nish a Conv layer. The batch

size and the number of channels have little impact on such parallelism. The parallelism will bene"t
from layers with large feature map size but has under-utilization for layers with small feature map
size. For example, when R < T f and C < T f , completing the Conv layer costs Tmops cycles, and
T f −R

T f ×
T f −C

T f of computation resources will remain idle. However, in CNN training, the size of a
feature map may vary from large size (like 224× 224 for the input image of the ImageNet) to 1× 1
for the FC layer. The feature-map-level parallelism will be ine!cient to process the layers with a
small feature map. For channel-level parallelism, it takes B× # M

T m $ × # N
T n $ ×R×C ×K ×K cycles to
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Fig. 3. Three levels of parallelism. (a) Batch-level parallelism. (b) Feature-map-level parallelism. (c) Channel-
level parallelism.

Table 1. Comparisons of the Three Levels of Parallelism

Parallelism Batch-level
Parallelism

Feature-map-level
Parallelism

Channel-level
Parallelism

Large Batch Size advantaged little impact little impact
Small Batch Size disadvantaged little impact little impact

Large Feature Map Size little impact advantaged little impact
Small Feature Map Size little impact disadvantaged little impact
Large Channel Number little impact little impact advantaged
Small Channel Number little impact little impact disadvantaged

complete the Conv layer. It acquires a high parallelism degree with a large channel number, and
the batch size and feature map size have little impact on it. When the channel number is small,
for example, when N < Tn, completing the Conv layer costs B × # M

T m $ × N × R × C × K × K
cycles, and T n−N

T n of computation resources will remain idle. However, for most neural networks,
only the "rst layer has a small input channel number (N = 3). For other layers, the channel size
(e.g., 32, 64, etc.) is usually larger than the maximum degree of parallelism that an edge FPGA can
achieve. Therefore, channel-level parallelism is widely adopted by FPGA-based inference accel-
erators [16, 24]. Generally speaking, the channel-level parallelism can achieve a constantly high
degree of parallelism across multiple layers, so it is adopted in the proposed design as shown in
Figure 1. The proposed accelerator with a channel-level parallelism-based convolution kernel to
process FP, BP, and WU will be introduced in detail in Section 3.

Furthermore, the communication bottleneck is also challenging for edge-level FPGAs in end-to-
end training. As illustrated in Figure 2, the activation data in FP needs to be used in BP and WU, and
the loss data generated in BP is also required in WU. The length and heterogeneity of the data de-
pendency paths in di#erent layers make external memory accesses inevitable [20]. Previous train-
ing accelerators attempted to avoid external memory accesses. For example, FPDeep [32] scaled
CNN computations to larger clusters so that only on-chip memory is needed for the CONV layers.
However, such larger clusters cannot be used on edge devices. [36] implemented LeNet-10 on an
FPGA and stored the inputs and outputs of one layer on the chip. Such design can only support
small networks, but for many larger networks (e.g., Vgg-16, AlexNet, etc.), the on-chip memory of
an edge FPGA is not big enough to hold weights or features in every Conv layer. Therefore, several
works [23, 33, 34] applied quantization or pruning to reduce o#-chip memory access. However, un-
like inference, where compressed networks cause little decrease in accuracy [37], these training
works have not proved that their compression techniques can maintain high accuracy on large
datasets with dense networks. To guarantee accuracy, it is necessary to implement CNN training
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Fig. 4. Accelerator architecture.

with full precision. Our goal is to design a general accelerator supporting end-to-end training with
both dense and small networks without sacri"cing precision, so it is necessary to appropriately
manage external memory access and allocate on-chip bu#ers. As mentioned in Section 2.2, the
tiling schemes involved in on-chip accelerator design break the continuity of data addresses in
DRAM and thus reduce the DMA transmission e!ciency. Therefore, it is necessary to improve the
address continuity of data to improve the e!ciency of data swapping considering the complex data
patterns in FP, BP, and WU altogether. To solve this communication issue, as shown in Figure 1, a
data reshaping approach is proposed and will be introduced in detail in Section 4.

3 FPGA-BASED CNN TRAINING ACCELERATOR
In this section, we propose an FPGA-based accelerator exploiting channel-level parallelism to deal
with the training process. A uni"ed convolution kernel is designed to process FP, BP, and WU with
full precision.

3.1 The Architecture of the Training Accelerator
The proposed training accelerator is shown in Figure 4. We implement our accelerator on an end-
to-end training system. At "rst, the CPU transmits labels, initial weights, the activation data of the
"rst layer, layer parameters, initial parameters for BN layers, and the DMA start addresses for each
layer to the o#-chip DRAM. The layer parameters include computation type (e.g., Conv, ReLU, BN,
or pooling) and the shape information. The DMA start addresses are calculated o#-line according
to the o#-chip memory layout based on our data reshaping approach mentioned in Section 4. Our
accelerator executes computation-intensive kernels based on data dependencies within a CNN
model, while the entropy loss function is computed on the o#-chip ARM core.

As illustrated in Figure 4, the o#-chip memory (DRAM) stores data for activation, loss, weights,
labels, indexes for pooling, and parameters for BN. Data are transmitted through the DMA AXI-
stream bus to on-chip memory for computation. There are four DMA stream channels: IFM DMA,
OFM DMA, WEI DMA, and OUT DMA. These four channels are independent and can work in
parallel. On the FPGA chip, a uni"ed Conv kernel is designed to process FP, BP, and WU with
the same computation resources, i.e., the DSPs. The Conv kernel is composed of multiple process-
ing elements (PEs) to implement MAC operations. The adder tree structure is adopted for the
proposed kernel since it is $exible to support di#erent computation patterns for FP, BP, and WU.
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Table 2. Definitions of Symbols

Notation Description
i ,j Index of a Conv layer
B Batch size
N i Number of the input channels of the ith Conv layer
M i Number of the output channels of the ith Conv layer
Ri Number of the rows of the OFMs for the ith Conv layer
Ci Number of the columns of the OFMs for the ith Conv layer
K i Size of the weights kernel for the ith Conv layer
S i Stride for the ith Conv layer

Ai [b,m, r , c] Activation for the ith Conv layer in FP
Li [b,n, r , c] Loss for the ith Conv layer in BP

Wi [n,m,kr ,kc] Weights for the ith Conv layer
dWi [n,m,kr ,kc] Weight gradients for the ith Conv layer in WU

Tm Number of the output channels in a tile of output features
in each Conv layer

Tn Number of the input channels in a tile of input features in
each Conv layer

Tr i Number of the rows in a tile of output features in the ith Conv layer
Tci Number of the columns in a tile of output features in the ith Conv layer

M i _on Number of the output channels of the weights stored on-chip in
the ith Conv layer

R j _in Number of the rows of the IFMs for the jth Conv layer
C j _in Number of the columns of the IFMs for the jth Conv layer
Tr j _in Number of the rows in a tile of input features in the jth Conv layer
Tc j _in Number of the columns in a tile of input features in the jth Conv layer

The connection of each multiplier and adder for FP and BP is shown in 1© of Figure 4, while the
connection of each multiplier and adder for WU is shown in 2© of Figure 4. The Pooling Kernel
focuses on the pooling operation. The BN Kernel achieves batch normalization and updates BN
parameters during FP and BP. ReLU is always followed by a Conv or BN layer. The accelerator
compares the output features with 0 when storing output features back to the DRAM in Conv or
BN layers, so ReLU does not need a unique functional unit. Five types of on-chip block RAMs
(BRAMs) are used to bu#er IFMs, weights or weights gradients, OFMs, pooling indexes, and BN
parameters. We adopt double-bu#er designs so that data transmission and computation can be
conducted in parallel.

3.2 The Forward and Backward Propagation of a Convolutional Layer
Our accelerator adopts channel-level parallelism, loop unrolling, and loop tiling. The symbols are
de"ned in Table 2. In channel-level parallelism, Tn and Tm are determined by available compu-
tation resources (i.e., DSPs) on the FPGA chip and are "xed for all Conv layers. The degree of
parallelism is determined by Tn ×Tm.

Our accelerator achieves SGD in CNN training. The forward and backward propagation pro-
cesses of a Conv layer processing the bth image in a mini-batch can be formulated in Equations (1)
and (2), whereW ′

i is the transposed and $ipped tensor ofWi . As illustrated in 1© of Figure 4, in FP
and BP, the Conv Kernel conducts MAC operations for weights and input features from activation
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or loss. The IFM bu#er stores a tile of activation or loss transmitted via the IFM DMA channel, and
the Weight bu#er stores weights transmitted via the WEI DMA channel. The OFM bu#er stores a
tile of MAC outcomes. Computation results are transmitted to the DRAM via the OUT DMA chan-
nel. If a Conv layer is followed by a ReLU layer, for FP, the data in the OFM bu#er will be compared
with 0 before entering into the OUT DMA channel. For BP, the activation of the previous layer
will be transmitted via the OFM DMA channel, and the accelerator decides which value should be
propagated according to Equation (3).

Ai+1[b,m, r , c] =
N i∑

n=1

K i∑

kr=1

K i∑

kc=1
Ai [b,n, S i × r + kr , S i × c + kc] ×Wi [m,n,kr ,kc] (1)

Li [b,n, r , c] =
M i∑

m=1

K i∑

kr ′=1

K i∑

kc ′=1
Li+1[b,m, S i × r + kr ′, S i × c + kc ′] ×W ′

i [n,m,kr ′,kc ′] (2)

Li [b,m, r , c] =

Li+1[b,m, r , c], Ai [b,m, r , c] > 0,
0, others

(3)

3.3 The Weight Update of a Convolutional Layer
The gradients of weights can be calculated in Equation (4). The generated hardware implementa-
tion of the PE architecture processing WU operations in the Conv kernel is shown in 2© of Figure 4.
During the WU, the Conv Kernel conducts MAC operations for the activation data transmitted via
the IFM DMA channel and the loss data transmitted via the OFM DMA channel. The gradients are
stored in the Weight bu#er. Once the Conv Kernel completes the computation for the last image
in a mini-batch, the original weights are transmitted via the WEI DMA channel. Then, weights are
updated by deducting the product of the gradients and learning rate. New weights are sent back
to DRAM via the OUT DMA channel.

dWi [m,n,kr ,kc] =
B∑

b=1

Ri∑

r=1

C i∑

c=1
Li+1[b,m, r , c] ×Ai [b,n, S i × r + kr , S i × c + kc] (4)

3.4 The Forward and Backward Propagation of a Pooling Layer
In the FP process of a pooling layer, the activation is transmitted via the IFM DMA channel and
stored in the IFM bu#er. In the maximum pooling, the Pooling Kernel compares adjacent pixels,
transfers the results back to DRAM via the OUT DMA channel, and records the index for the
maximal pixel into the Pooling Indexes bu#er. The index of a pixel is a 2-bit integer. For average
pooling, the kernel just calculates the average value of a patch of features. In the BP process of
maximum pooling, the indexes are loaded back via the WEI DMA channel, and loss from the
previous layer is loaded via the IFM DMA channel. The Pooling Kernel compares the indexes
and stores the propagated value into the IFM bu#er. The BP process of the maximum pooling is
formulated in Equation (5). For average pooling, the loss values of a patch are directly accumulated.
After a tile of data is processed, the calculated loss is sent back via the OUT DMA channel.

Li [b,m, Si × r + kr , Si × c + kc] =
{
Li+1[b,m, r , c],Ai+1[b,m, r , c] = Ai [b,m, Si × r + kr , Si × c + kc],
0,others (5)

3.5 The Forward Propagation of a BN Layer
Our BN kernel is based on the computation $ow in [35]. However, unlike the prior work, which
utilizes half-precision, we adopt full precision, which brings more computation and transmission
challenges. The BN parameters in Figure 4 include learnable parametersγi [m] and βi [m] and imme-
diate parameters λi [m] and Âi [b,m, r , c], wherem is the index of the channel. The γi [m] and βi [m]
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are used to generate the immediate parameters and the output activationAi+1[b,m, r , c] during FP.
During BP, the immediate parameters and the loss propagated from the next layer Li+1[b,m, r , c]
are used to update the learn parameters and propagate the loss Li [b,m, r , c] back. Since the size of
γi [m], βi [m], and λi [m] is M (the number of the output channels), the on-chip BRAMs are large
enough to hold these data in a BN layer. Therefore, we use the BN Parameters bu#er to store these
parameters as well as the expected value and variance. The Âi [b,m, r , c] is transmitted to DRAM
together with Ai+1[b,m, r , c].

In FP, the BN Kernel "rst loads γi [m] and βi [m] from DRAM to the BN Parameters bu#er via
the WEI DMA channel. Then it loads Ai [b,m, r , c] via the IFM DMA channel and calculates the
expected value E (X )i [m] and variance V (X )i [m] according to Equations (6) to (8). To avoid disar-
ranging the DRAM data layout for adjacent Conv layers, we load data tile by tile using the same
data format as that in Conv layers. The expected value and variance are calculated after the entire
data of a mini-batch is accessed. Then input activation is loaded from the beginning to calculate the
immediate parameters according to Equations (9) and (10), where ϵ is a constant parameter. λi [m]
is stored in the BN Parameters bu#er, while Âi [b,m, r , c] is transmitted to DRAM via the OUT
channel in parallel with activation loading. Finally, the output activation is calculated according to
Equation (11). The BN operation completes afterAi+1[b,m, r , c], γi [m], βi [m], and λi [m] are stored
to DRAM.

E (X )i [m] = 1
B × Ri ×Ci

B∑

b=1

Ri∑

r=1

C i∑

c=1
Ai [b,m, r , c] (6)

E (X 2)i [m] = 1
B × Ri ×Ci

B∑

b=1

Ri∑

r=1

C i∑

c=1
A2

i [b,m, r , c] (7)

V (X )i [m] = E (X 2)i [m] − (E (X )i [m])2 (8)

λi [m] = 1
√
V (X )i [m] + ϵ

(9)

Âi [b,m, r , c] = (Ai [b,m, r , c] − E (X )i [m]) × λi [m] (10)

Ai+1[b,m, r , c] = Âi [b,m, r , c] × γi [m] + βi [m] (11)

3.6 The Backward Propagation of a BN Layer
In BP, Âi [b,m, r , c], λi [m] and Li+1[b,m, r , c] are used to update the learnable parameters γi [m]
and βi [m], and Li [b,m, r , c] is propagated back. λi [m], γi [m], and βi [m] are "rst uploaded via the
WEI channel and stored in the BN Parameters bu#er. Then, the BN Kernel loads Âi [b,m, r , c] and
Li+1[b,m, r , c] via the IFM and OFM channel, respectively, to calculate the gradients for γi [m] and
βi [m] according to Equations (12) and (13). The learnable parameters are updated by deducting
the gradients, while Li [b,m, r , c] is calculated according to Equation (14).

dγi [m] =
B∑

b=1

Ri∑

r=1

C i∑

c=1
Li+1[b,m, r , c] × Âi [b,m, r , c] (12)

dβi [m] =
B∑

b=1

Ri∑

r=1

C i∑

c=1
Li+1[b,m, r , c] (13)
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Fig. 5. Pseudo-code of a tiled convolution layer. (a) Pseudo-code for FP and BP. (b) Pseudo-code for WU.

Li [b,m, r , c] = γi [m]×λi [m]×
(
Li+1[b,m, r , c] − dβi [m]

B × Ri ×Ci − Âi [b,m, r , c] × dγi [m]
B × Ri ×Ci

)
(14)

4 DATA RESHAPING APPROACH
In this section, we propose a data reshaping approach to solve the communication bottleneck
between the on-chip bu#er and o#-chip memory in realistic end-to-end training processes.
We "rst analyze the discontinuous memory access for the isolate accelerator with the uni"ed
channel-level parallelism-based Conv kernel proposed in Section 3. Then we introduce our
data reshaping approach, which involves three aspects. We "rst achieve intra-tile continuous
memory allocation by reorganizing the DRAM layouts for input features, output features, and
weights. Then, we re-schedule the loop order to achieve inter-tile continuous memory allocation.
These two parts are optimized together. Finally, considering that the training process involves
convolution operations among a mini-batch, we propose and apply a weight reuse strategy based
on the proposed data layout.

4.1 Analysis on Discontinuous Memory Access
The pseudo-code of a tiled convolution layer is shown in Figure 5. The pseudo-code in Figure 5(a)
is applied in FP and BP, following previous FPGA-based inference works [16, 30], while the pseudo-
code in Figure 5(b) is applied in WU, based on the accelerator design proposed in Section 3. As dis-
cussed in Section 2, the continuity of data signi"cantly in$uences the DMA transmission e!ciency.
In this section, we analyze the data discontinuity when features are placed with the BCHW pat-
tern and the BHWC pattern, where B represents batch, C represents channel, H represents height
(row), and W represents width (column).

Features Are Placed in the BCHW Pattern: Figure 6(a) shows the data layout of M i ×Ri ×Ci

output features stored in DRAM for the ith layer. The output features are placed with the
BCHW pattern commonly used in CNN accelerating CPU and GPU platforms [38, 39]. While
OpenVINO [39] is primarily for CPUs, it would also work for CPU, GPU, and FPGA platforms. In
this layout, a cube represents an element of the features, and the indexes represent the orders of
the elements stored in DRAM. In FPGA-based DNN deployments, data are fetched and processed
in tiles. As shown in Figure 6, the size of a tile is Tm ×Tr i ×Tci for output features.

The output features of layer i are also the input features for its next layer j. As shown in Fig-
ure 7(a), the size of the input features in layer j is N j × R j _in ×C j _in. For input features, the size
of a tile is Tn ×Tr j _in ×Tc j _in.
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Fig. 6. Data layout of output features before reshaping. (a) Data stored in DRAM. (b) Data transmi"ed via
the OUT DMA channel in FP/BP. (c) Data transmi"ed via the OFM DMA channel in WU.

Fig. 7. Data layout of input features before reshaping. (a) Data stored in DRAM. (b) Data transmi"ed via the
IFM DMA channel in FP/BP. (c) Data transmi"ed via the IFM DMA channel in WU.

In each DMA stream, the AXI-stream bus allows a pipeline data stream when the data addresses
are continuous. Burst length represents the number of data with continuous addresses in the data
stream. When a discontinuity happens, the DMA needs to be restarted. Therefore, our goal is to
avoid discontinuity, i.e., elongate the burst length for di#erent transmission patterns.

During FP, the Conv Kernel conducts MAC operations with weights and input features, and
then it generates output features. The output features are transmitted to the DRAM via the OUT
DMA channel, which is shown in Figure 6(b). For the next layer, the input features are fetched from
DRAM to the FPGA chip via the IFM DMA stream, which is shown in Figure 7(b). As illustrated
in Figure 5(a), in a Conv layer, the OFM bu#er is reused to store and accumulate the immediate
convolution results between each tile of input features and each tile of weights. The "rst tile of
output features is generated by accumulating the convolution results when the input feature tiles
move from the "rst input channel to the last channel. It corresponds to the movement in the X
direction in Figure 7. Then, the next tiles of output features are generated in the X direction in
Figure 6, so the data access pattern of input features (the dashed box in Figure 7(b)) repeats # M

T m $
times. After the output feature tiles move from the "rst output channel to the last output channel,
they begin to move in the Z direction, and the input feature tiles follow the Z direction as well.
From Figures 6(b) and 7(b), the address of data is discontinuous both inside and outside of a tile.
The burst length of the output features in the ith layer is Tci , and the burst length of the input
features in the jth layer is Tc j _in. The data movement in BP is similar to that in FP.
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Fig. 8. Data layout of weights before reshaping. (a) Weights stored in DRAM. (b) Weights transmi"ed via the
WEI DMA channel in FP. (c) Weights transmi"ed via the WEI DMA channel in BP. (d) Weights transmi"ed
via the OUT DMA channel in WU.

In WU, the data access pattern inside a tile is the same as that in FP/BP. However, the inter-
tile data access pattern is di#erent from that for FP/BP. This is because, in WU, the Conv Kernel
conducts MAC operations for input features (the activation data transmitted via the IFM DMA
channel) and output features (the loss data transmitted via the OFM DMA channel) to calculate
weight gradients. Therefore, as shown in Figure 5(b), the WEI bu#er is reused to store and accumu-
late the immediate convolution result between each tile of input features and each tile of output
features. The "rst tile of weight gradients is generated when the input and output feature tiles
move from the "rst row and the "rst column to the last row and the last column. It corresponds
to the movement in the Z direction in Figures 6 and 7. Then, the next tile of weight gradients is
generated along the input channel direction. The tiles of input features move along the X direc-
tion, while the pattern of output feature tiles (the dashed box in Figure 6(c)) repeats # N

T n $ times.
After the gradients of weights are calculated from the "rst input channel to the last input channel,
the next tiles are generated along the output channel direction. Thus, the pattern of input feature
tiles (the dashed box in Figure 7(c)) repeats # M

T m $ times, while the output feature tiles move along
the X direction. As shown in Figure 7(c), the burst length for input features is Tc j _in. As shown
in Figure 6(c), the burst length for output features is Tci .

In CNN training, the data layout of weights is also more complex compared to the inference
process. As illustrated in Figure 8(a), M i × N i × K i × K i weights of layer i are stored in DRAM.
In FP, weights are fetched in the input channel "rst and then the output channel when the output
features are generated along the X direction in Figure 6. Then, the output features are generated
along the Z direction, while the weight access pattern (the dashed box in Figure 8(a)) repeats
# R

T r $ × # C
T c $ times. WU shares the same intra-tile weight access pattern with FP, but it does not

need to repeat during inter-tile data access. The burst lengths for FP and WU are both Tn. In BP,
each K i × K i kernel needs to be $ipped. Such reallocation can be processed on the FPGA chip.
However, since the numbers of input channels and output channels are interchanged, the memory
access pattern of a tile is also changed. The weight kernels are transposed between the input
channel dimension and the output channel dimension. In Figure 8, the yellow cubes represent a
tile of weights in FP and WU, and the cubes with the red box represent a tile of weights in BP. As
illustrated in Figure 8(c), in BP, the number of output channels becomes M i′ = N i , the number of
input channels becomes N i′ = M i , and the burst length is Tm.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 49. Pub. date: June 2022.



49:16 Y. Tang et al.

Fig. 9. Data layout of output features with the BHWC memory allocation and feature reuse. (a) Data stored
in DRAM. (b) Data transmi"ed via the OUT DMA channel in FP/BP. (c) Data transmi"ed via the OFM DMA
channel in WU.

Fig. 10. Data layout of input features with the BHWC memory allocation and feature reuse. (a) Data stored
in DRAM. (b) Data transmi"ed via the IFM DMA channel in FP/BP. (c) Data transmi"ed via the IFM DMA
channel in WU.

Features Are Placed in the BHWC Pattern: As can be seen from Figures 6, 7, and 8, the tiled
data breaks the data continuity of memory access in FP, BP, and WU for the isolate accelerator.
In FPGA-based inference works, the BHWC pattern is also commonly used in end-to-end designs
to optimize memory access [26, 30]. Figures 9(a) and 10(a) show the data layout of features placed
in the BHWC pattern following previous inference-based works. According to the loop order
in Figure 5(a), in FP and BP, tiles move in the channel dimension "rst and then move in the Z
direction. Therefore, it is e#ective to fetch # N

T n $ tiles of input features to the on-chip memory and
reuse the data after # M

T m $ tiles of output features are calculated. With such optimizations, the data
discontinuity of features is alleviated in FP and BP. As shown in Figures 9(b) and 10(b), the burst
length for output features isM i×Tci , and the burst length for input features is N j×Tc j _in. Besides,
the FPGA accelerator does not need to repeatedly load the input feature tiles from the DRAM.

However, in WU, the Conv Kernel conducts MAC operations for input features and output fea-
tures to calculate weight gradients, so input and output feature tiles should move in the Z direction
"rst to calculate the weight gradients of Tm × Tn weight kernels and then move in the channel
direction, which is illustrated in Figure 5(b). Therefore, features cannot be continuously fetched to
the on-chip bu#er and reused as that in the inference phase unless the on-chip memory is large
enough to hold all features of each layer. When the on-chip memory cannot hold all features of
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Fig. 11. Data layout of weights placed tile by tile based on inference-based data flow. (a) Weights stored in
DRAM. (b) Weights transmi"ed via the WEI DMA channel in FP. (c) Weights transmi"ed via the WEI DMA
channel in BP. (d) Weights transmi"ed via the OUT DMA channel in WU.

a Conv layer in resource-limited FPGAs, the burst length for output features is Tm, and the burst
length for input features is Tn. The data layouts are shown in Figures 9(c) and 10(c).

In CNN inference, weights will not change in the whole process, and they are loaded in the same
pattern for di#erent layers. Therefore, in the inference phase, weights can be pre-allocated tile by
tile to ensure continuous memory access. The pre-allocated data layout is illustrated in Figure 11(a).
As shown in Figures 11(b) and 11(d), the burst length is M i × N i in FP and WU. However, as illus-
trated in Figure 11(c), the weight kernels are transposed between the input channel dimension and
the output channel dimension, and the tiling scheme in BP breaks the memory access continuity.
Since weights are updated after one iteration of FP, BP, and WU, it is impossible to pre-allocate
them before each iteration. Therefore, data discontinuity is inevitable in BP. As shown in Figure 11,
the burst length is Tm.

4.2 Optimizing Discontinuous Memory Access
To optimize the discontinuous memory access, our data reshaping approach includes the following
steps. First, we achieve intra-tile continuous memory allocation for both features and weights by
reorganizing the DRAM layouts for output features, input features, and weights, which are shown
in Figures 12, 13, and 14, respectively. Then we schedule the loop order based on the pseudo-code
in Figure 15 to achieve inter-tile continuous memory allocation. Finally, weights are reused among
a mini-batch based on the proposed data layouts. In this section, we reorganize the data layouts
and schedule the loop order together to achieve both intra-tile and inter-tile continuous memory
address allocation.

Intra-tile Continuous Memory Allocation: Inspired by previous inference works [26, 30],
employing a channel-last data layout can improve data continuity for the channel-level parallelism-
based accelerator. However, as explained in Section 4.1, simply changing the data layout cannot
optimize the memory access continuity in FP, BP, and WU together. The memory access patterns
in the three processes need to be considered together. In CNN inference, the selection of Tm and
Tn is $exible. However, to ensure data continuity of weight kernels in both FP and BP, we "x
Tm = Tn in our training accelerator so that weights can be loaded tile by tile in both FP and BP.

Figure 12(a) shows the data layout of the output features in DRAM after data reshaping. The
"rst Tm channels of OFMs are placed in the row-column-channel pattern. The next Tm chan-
nels of OFMs are followed with the same pattern. When applying loop tiling, we assign the tiling
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Fig. 12. Data layout of output features a#er reshaping. (a) Data stored in DRAM. (b) Data transmi"ed via
the OUT DMA channel in FP/BP. (c) Data transmi"ed via the OFM DMA channel in WU.

Fig. 13. Data layout of input features a#er reshaping. (a) Data stored in DRAM. (b) Data transmi"ed via the
IFM DMA channel in FP/BP. (c) Data transmi"ed via the IFM DMA channel in WU.

Fig. 14. Data layout of weights a#er reshaping. (a) Weights stored in DRAM. (b) Weights transmi"ed via the
WEI/OUT DMA channel in FP/WU. (c) Weights transmi"ed via the WEI DMA channel in BP.

parameterTci = Ci so that data are continuous inside a tile for both FP and WU. From Figures 12(b)
and 12(c), the burst lengths of output features during FP, BP, and WU are larger than the size of a
tile.

The selection of Tm = Tn, Tci = Ci , and Tci _in = Ci _in also guarantees that features of
di#erent layers share similar data layouts and tiling schemes no matter whether they serve as
output features or input features of a Conv layer in FP/BP/WU. Therefore, the intra-tile continuity
of input features is also guaranteed. The data layout of the input features in DRAM for the jth
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Fig. 15. Pseudo-code of loop order scheduling between tiles. (a) Loop order for FP and BP. (b) Loop order for
WU. (c) Loop order for WU when Ri ≤ Tr i .

layer is shown in Figure 13(a). According to Figures 13(b) and 13(c), the burst length equals the
size of a tile.

After selecting Tm = Tn, weights can be placed and fetched tile by tile during FP, BP, and WU.
The data layout is illustrated in Figure 14. Before data reshaping, weights need to be repeatedly
transmitted between the FPGA chip and the DRAM in FP and BP, which is ine!cient especially
for mini-batch training. Therefore, weight reuse based on our unique data layout is necessary,
which will be introduced in detail in Section 4.3. After reshaping, the burst length for FP and WU
is M i × N i , while the burst length for BP is Tm × Tn; these are shown in Figures 14(b) and 14(c),
respectively.

Inter-tile Loop Order Optimization: The proposed data reshaping approach also achieves
inter-tile data continuity by rescheduling the loop order in Figure 5. The loop order of 1, 2, and
3 in Figure 5(a) does not have data dependency. Based on our data layout, we move loop 3 to the
outermost loop so that the output features share similar memory access patterns in FP/BP and
WU. The loop order of o#-chip data transmission in FP/BP is shown in Figure 15(a). As shown in
Figures 12 and 13, in FP/BP, tiles of input features are fetched in the X direction "rst to generate
the "rst output features tile. Then the tiles of output features are generated and stored in the Y
direction "rst, so the input feature tiles’ movement follows the Y direction as well. Then the output
feature tiles are generated and stored in the X direction, and the access pattern of input features
repeats # M

T m $ times. The burst length of output features in the OUT DMA channel is M i ×Ri ×Ci .
The loop order in Figure 15(b) is adopted in WU. From Figures 12 and 13, tiles of both input

features and output features are fetched and stored in the Y direction "rst to calculate weight
gradients for the "rst tile. Then weights are updated along the input channel dimension, so the
input feature tiles move in the X direction, while the output feature access pattern (the dashed
box in Figure 12(c)) repeats # N

T n $ times. After that, weights are updated along the output channel
dimension, so the output feature tiles move in the X direction, while the input feature access
pattern (the dashed box in Figure 13(c)) repeats # N

T n $ times. The burst length of output features
in the OFM DMA channel is Tm × Ri × Ci . When the IFM bu#er and the OFM bu#er are large
enough to hold the Tn × Ri _in ×Ci _in input and Tmi × Ri ×Ci output features, i.e., Ri ≤ Tr i , the
output features do not need to be repeatedly loaded. The loop order can be optimized as shown in
Figure 15(c).

4.3 Weight Reuse in Mini-batch Training
Based on the above-mentioned optimization, we further reduce DRAM data access by reusing
weights in mini-batch training. Di#erent from inference, training involves processing a batch of
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Fig. 16. Data layout of weights a#er weight reuse. (a) Weights stored in DRAM. (b) Weights transmi"ed via
the WEI/OUT DMA channel in FP/WU. (c) Weights transmi"ed via the WEI DMA channel in BP.

Fig. 17. Data layout of output features in mini-batch training a#er weight reuse. (a) Output features of two
images in a batch. (b) Output features transmi"ed the via the OUT DMA channel in FP/BP.

data at once, so data reuse is necessary to decrease the transmission times of weights between on-
chip bu#er and o#-chip memory. On FPGAs, a BRAM bank size is large enough to store multiple
tiles of weights. Therefore, we propose a weight reuse strategy based on our data layout. Thanks
to our loop order shown in Figure 15, we can load weights only when the accelerator processes the
output feature tile lying in the "rst row. As illustrated in Figure 16, when the accelerator processes
a tile of features in the "rst row of the "rst image in a batch, M i _on × N i × K i × K i weights
are loaded and stored in the WEI double bu#ers, where M i _on is the multiple ofTm depending on
the on-chip BRAM resources. After the "rst M i _on channels of OFMs in the image are processed,
the "rst M i _on channels of OFMs of the next image will be processed, so weights do not need to
be uploaded again. The next M i _on channels of the "rst image will be processed after the "rst
M i _on channels of all images in the batch are processed. Therefore, weights do not need to be
transmitted back and forth. After the above-mentioned steps, the burst length isM i×N i for FP/WU
and Tm ×M i _on′ for BP; this is illustrated in Figures 16(b) and 16(c), respectively.

In mini-batch training, weight reuse will not a#ect the burst length of output features in WU
and input features. For output features in FP and BP, after the "rst M i _on channels of OFMs of the
"rst image are transmitted to DRAM, the next image of the batch will be processed before other
channels of the prior image. Therefore, as shown in Figure 17, the burst length is M i _on×Ri ×Ci .

5 PERFORMANCE AND RESOURCE MODEL
In this section, we establish an analytic model to calculate the latency and resources for our design.
Unlike previous works [16, 24], which only focused on the performance of a bare accelerator
running on separate Conv layers, our model considers the discontinuity of o#-chip memory
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access in a realistic end-to-end training process. Based on the model, we build a scheduling tool
to determine design parameters for given FPGA devices and given network models.

5.1 Performance Model
For a [M i ,N i ,Ri ,Ci ,K i ,K i , S i ] Conv layer i , we assume the parameters of a tile are
[Tm,Tn,Tr i ,Tci ]. Tm and Tn are "xed for all layers since they are determined by the number
of DSPs, while Tr i and Tci are adjustable according to di#erent layer parameters. In our design,
Tm = Tn, and Tci = Ci . The computation latency of a tile of features in FP, BP, and WU can be
represented as t i

COMP = Tr
i ×Tci × K i × K i clock cycles.

The continuity of memory address signi"cantly impacts the o#-chip communication e!ciency.
To consider the memory access discontinuity, we assume the start time of the DMA stream is tstar t .
When discontinuity happens, DMA restarts. We have tested the start time on both the PYNQ-Z1
and the ZCU102 board, and tstar t ≈ 400 cycles under a 100MHz clock. We determine the data width
parameters p to model the o#-chip/on-chip communication bandwidth. For 32-bit $oating point, if
the DMA stream width is 128 bits, p = 4. Since the burst length of input features equals the size of
a tile, discontinuity happens every time a tile of input features is fetched. The latency of loading a
tile of input features is formulated as t i

I F M = tstar t + #T n
p $× ((Tr i−1)×S i+K i )× ((Tci−1)×S i+K i )

clock cycles. The weight loading latency can be represented as t i
W EI = #T m×T n

p $ × K i × K i clock
cycles, and the latency of storing a tile of output features is formulated as t i

OU T = #T m
p $ ×Tr i ×Tci

clock cycles. tstar t is added to t i
W EI and t i

OU T only when the discontinuity happens, which will be
discussed in detail as follows. We de"ne t i

LOAD = max{t i
I F M , t

i
W EI }, t i

PROD1 = max{t i
I F M , t

i
COMP },

t i
PROD2 = max{t i

LOAD , t
i
COMP }, and t i

ST ORE = max{t i
COMP , t

i
OU T }.

We assume in layer i that M i _on×Tn×K i ×K i weights are stored on-chip. If the batch size is B,
weights will be loaded only during the iteration when the proposed accelerator processes the "rst
image in the batch. For other iterations, the latency of processing M i _on channels of an image in
FP can be formulated as follows:

Lat1i =

⌈
N i

Tn
− 1

⌉
× t i

PROD1 + t
i
I F M + t

i
COMP (15)

Lat2i =

⌈
N i

Tn
− 1

⌉
× t i

PROD1 + t
i
I F M + t

i
ST ORE (16)

Lat3i =

(⌈
M i _on
Tm

⌉
×
⌈
Ri

Tr i

⌉
− 1

)
× Lat2i + Lat1i + t i

OU T + t
i
star t . (17)

Weights need to be loaded when our accelerator processes the "rst image in the mini-batch. In
FP, tstar t can be neglected in weight transmission since the burst length equals the size of weights,
which means the addresses are continuous during the whole Conv layer. Therefore, the latency
of the proposed accelerator processing M i _on channels of the "rst image can be formulated as
follows:

Latb1i =

⌈
N i

Tn
− 1

⌉
× t i

PROD2 + t
i
LOAD + t

i
COMP (18)

Latb2i =

⌈
N i

Tn
− 1

⌉
× t i

PROD2 + t
i
LOAD + t

i
ST ORE (19)

Latb3i =

⌈
M i _on
Tm

⌉
×
⌈
Ri

Tr i − 1
⌉
× Lat2i +

⌈
M i _on
Tm

− 1
⌉
× Latb2i + Latb1i + t i

OU T + t
i
star t . (20)
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The latency of our accelerator processing the whole Conv layer in FP is formulated in Equa-
tion (21):

Lat i =

⌈
M i

M i _on

⌉
× ((B − 1) × Lat3i + Latb3i ). (21)

In BP, the situation is similar to that in FP, except that the addresses of weights are discon-
tinuous after M i _on channels. The accelerator loads M i _on × Tn × K i × K i weights together
when processing the "rst tile of the "rst image, so it costs t i

W EI = #
M i _on×T n

p $ × K i × K i + t i
star t

clock cycles. Lat1i , Lat2i , Lat3i , Lat2i , Latb1i , and Latb2i remain unchanged, while Latb3i =

(#M i _on
T m $ × # Ri

T r i $ − 1) × Lat2i + Latb1i + t i
OU T + t

i
star t .

In WU, loss features are loaded from the o#-chip memory to the OFM bu#er. Transmitting a
tile of loss features costs t i

O F M = t i
star t + Tr

i × Tci × #T m
p $ clock cycles. Weights are updated

after all the gradients of the batch are accumulated, so transmitting the updated weights costs the
same time as loading weights, which means t i

OU T =t
i
W EI . As with FP, tstar t can be neglected when

calculating t i
W EI . We de"ne t i

LOAD = max{t i
I F M , t

i
O F M }, t i

PROD1 = max{t i
LOAD , t

i
COMP }, t i

PROD2 =
max{t i

I F M , t
i
COMP }, and t i

ST ORE = max{t i
COMP , t

i
OU T }. The latency of WU of the ith Conv layer is

formulated as follows:

Lat1i =

⌈
Ri

Tr i − 1
⌉
× t i

PROD1 + t
i
LOAD + t

i
COMP (22)

Latb1i =

⌈
Ri

Tr i − 1
⌉
× t i

PROD1 + t
i
LOAD + t

i
ST ORE (23)

Lat i =

((
(B − 1) ×

⌈
M i _on

T m

⌉
×
⌈

N i

T n

⌉
+ 1

)
× Lat1i +

(⌈
M i _on

T m

⌉
×
⌈

N i

T n

⌉
− 1

)
× Latb1i + t i

OU T

)
×
⌈

M i

M i _on

⌉
. (24)

As illustrated in Figure 15(c), when Ri ≤ Tr i , the output features do not need to be repeatedly
loaded. Under this circumstance, the latency of WU is formulated as follows:

Lat1i =

⌈
N i

Tni − 1
⌉
× t i

PROD2 + t
i
LOAD + t

i
COMP (25)

Latb1i =

⌈
N i

Tni − 1
⌉
×

(
t i
PROD2 + t

i
OU T

)
+ t i

LOAD + t
i
COMP + t

i
OU T (26)

Lat i =

⌈
M i

M i _on

⌉
×
⌈
M i _on
Tm

⌉
×

(
(B − 1) × Lat1i + Lat1bi

)
. (27)

5.2 Resource Model
For Conv layers, the on-chip resources that need to be considered for Conv layers include DSPs and
BRAMs. For DSPs,Tm ×Tn MAC operations are conducted in parallel. Therefore, the computation
constraint is shown in Equation (28), where q is the factor depending on data types. On Xilinx
FPGAs, each MAC utilizes "ve DSPs for 32-bit $oating point, so q = 5 in the proposed design.
In terms of on-chip memory, we select double bu#ers to load and store data and conduct Conv
operations in parallel. The number of BRAM banks for each IFM bu#er and OFM bu#er is shown
in Equations (29) and (30), respectively. The notation BITs is the data bit-width adopted in the
design. For the Weight bu#er, we place M i _on × N i kernels together for weight reuse. These data
are scattered in double bu#ers. The number of BRAM banks for one Weight bu#er is shown in
Equation (31). The on-chip memory constraint is shown in Equation (32).

DConv = q ×Tm ×Tn < total DSPs number (28)
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BI F M = max
i

Bi
I F M = max

i

{
Tn ×

⌈
((Tr i − 1) × S i + K i ) × ((Tci − 1) × S i + K i ) × BITs

Size o f a BRAM Bank

⌉}
(29)

BO F M = max
i

Bi
O F M = max

i

{
Tm ×

⌈
Tr i ×Tci × BITs

Size o f a BRAM Bank

⌉}
(30)

BW EI = max
i

Bi
W EI = max

i


Tm ×Tn ×


K i × K i ×

⌈
N i

2×T n

⌉
×
⌈

M i _on
T m

⌉
× BITs

Size o f a BRAM Bank




(31)

BConv = 2 × (BI F M + BO F M + BW EI ) < total BRAMs number (32)

It should be noted that in realistic end-to-end system design, the boundary of DConv and BConv
should be slightly smaller than the total DSP and BRAM numbers. This is because except for the
MAC operations, several operations also take up a small fraction of on-chip resources. For example,
some non-Conv layers (e.g., maximum pooling, average pooling, ReLU, etc.), which are inevitable
in practical end-to-end training processes, need extra DSPs to make comparisons and extra BRAMs
to bu#er the indexes. Besides, some neural networks have irregular weight kernel shapes for dif-
ferent Conv layers. Adding an extra bu#er to fetch a tile of weights from the on-chip Weight bu#er
to the Conv Kernel can relieve the routing congestion in realistic FPGA implementation. Besides,
since FP, BP, and WU have di#erent loop orders, extra DSPs are utilized to calculate BRAM ad-
dresses under di#erent layer parameters. This address calculation is much more complex than
that in inference. Therefore, in practical design, the estimated boundary of the on-chip resources
should be set lower than the available resources empirically. The details will be further explained
in Section 5.3.

5.3 Computation and Memory Resources Scheduling Tool
Based on the above-mentioned model, we build a computation and memory resources scheduling
tool for di#erent devices and di#erent networks. Algorithm 1 shows the framework of our sched-
uling tool. As mentioned in Section 5.2, DConv and BConv are lower than the total DSP and BRAM
numbers in realistic FPGA implementation. Therefore, it is wise to set a boundary for DConv and
BConv that is lower than the available on-chip resources. According to the experimental results in
Section 6, assigning 80% of DSPs and 75% BRAMs to the estimated boundary for DConv and BConv
should be enough. Then we determineTm andTn according to the DSP number. Then we choose
the optimal Tr i , Tci , and M i _on for each layer according to Equations (15) to (27). Speci"cally, in
steps 3 and 4, we "nd the lower bound for BI F M and BO F M by assuming that the bu#ers can only
hold one row for the largest feature maps. Then, from step 5 to step 12, we try to assign resources
for Weight bu#ers so that they can hold as many weights for each layer as possible. After we de-
termine BW EI and M i _on for each layer, we re-assign IFM and OFM bu#ers under the constraints
shown in Equations (29), (30), and (32) and "nd the optimal Tr i and Tci for each layer. After Tm,
Tn, and [Tr i ,Tci ,M i _on]1≤i≤n are determined, we can calculate the DMA start addresses for each
layer o%ine based on the data reshaping approach in Section 4.

6 EXPERIMENTS
The proposed work is evaluated on edge-level FPGAs PYNQ-Z1 and ZCU102 with working fre-
quency at 100MHz. The accelerator is designed with Vivado HLS, which generates IP core from C
language. The obtained IP cores are connected, synthesized, and implemented in Vivado (v2019.1).
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ALGORITHM 1: Computation and Memory Resources Scheduling
Input:

CNN layers parameters [M i ,N i ,Ri ,Ci ,K i ,K i , S i ]1≤i≤n , batch size B, data type parameter q,
DMA stream width, total DSPs number, total BRAMs number;

Output:
Tm, Tn, [Tr i ,Tci ,M i _on]1≤i≤n , BI F M , BO F M , BW EI ;

1: Estimate the boundary for DConv and BConv ;
2: Assign Tm, Tn according to Equation (28), while Tm = Tn;
3: Find k = arg maxi {Ri ×Ci };
4: Determine the lower bound for BI F M and BO F M , i.e., inf BI F M = Bk

I F M , inf BO F M = Bk
O F M ,

when Tck = Ck , Trk = 1;
5: for i = 1; i ≤ n; i + + do
6: Calculate Bi

W EI based on (31) when M i _on = M i , and initialize l = 1;
7: if 2 × (inf BI F M + inf BO F M + Bi

W EI ) ≥ estimated BConv boundary then
8: l++;
9: Find the minimal M i _on satisfying M i

l ≤ M i _on, M i _on mod Tm = 0, and go to Step 7;
10: end if
11: end for
12: Calculate BW EI and M i _on for each layer based on Equation (31);
13: for i = 1; i ≤ n; i + + do
14: SetTci = Ci , and select allTr i

m satisfying Equations (29), (30), and (32), where 1 ≤ Tr i
m ≤ Ri ;

15: Determine Tr i = arg min
m

Lat i
m based on Equations (15) to (27);

16: end for
17: Calculate BI F M and BO F M based on Equations (29) and (30);

The Vivado Project Summary reports resource utilization and power after implementation. Finally,
we employ Xilinx SDK to program SoC on PYNQ-Z1 and ZCU102 to achieve end-to-end CNN
training.

6.1 E!ectiveness of the Data Reshaping Approach
In this section, we need to validate the e#ectiveness of the proposed data reshaping approach
([Tm,Tn] = [16, 16]). We test the Conv layers of the AlexNet on ZCU-102. We select the batch size
B as 4 and the DMA stream width as 128 bits. We adopt the results using the BCHW data layout
and the results using the BHWC data layout as baselines ([TmBase ,TnBase ] = [32, 8]). The BCHW
pattern does not involve any optimization. For the BHWC pattern, N /Tn tiles of the input features
and M/Tm tiles of the output features are bu#ered in the on-chip BRAM for data reuse based on
the loop order in the inference phase. Weights are pre-allocated tile by tile based on the data $ow
in inference. The comparisons are shown in Tables 3, 4, and 5.

As mentioned in Section 2.3, our goal is to design a general accelerator supporting end-to-
end training with both dense and small networks without sacri"cing precision, so it is neces-
sary to appropriately manage external memory access and allocate on-chip bu#ers. When ap-
plying loop tiling, the tiling schemes involved in the accelerator design break the continuity of
data addresses in DRAM and thus reduce the transmission e!ciency between on-chip bu#er and
o#-chip DRAM. Table 3 shows the experimental results of our baseline, which is a bare acceler-
ator with the uni"ed channel-level parallelism-based convolution kernel. It does not involve any
optimizations related to the o#-chip DRAM access policy. As illustrated in Section 4, the burst
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Table 3. Experimental Results of the Baseline with the BCHW Data Layout

AlexNet Process [Tr i
Base ,Tc

i
Base ] Acceleration

(Cycles)
Reallocation

(Cycles)
Total

(Cycles)
Conv 1 FP

BP
WU

[11, 11]
N/A

[11, 11]

6,732,837
N/A

4,496,029

151,846,336
N/A

152,110,235

158,579,173
N/A

156,606,264
Conv 2 FP

BP
WU

[27, 27]
[27, 27]
[27, 27]

7,105,292
7,066,705
9,258,823

69,743,160
68,271,764
57,303,397

76,848,452
75,338,469
66,562,220

Conv 3 FP
BP

WU

[13, 13]
[13, 13]
[13, 13]

2,410,532
2,401,320
4,448,898

101,062,954
98,646,892
83,566,193

103,473,486
101,048,212
88,015,091

Conv 4 FP
BP

WU

[13, 13]
[13, 13]
[13, 13]

3,596,425
3,596,400
6,669,238

150,012,382
149,621,995
126,214,297

153,608,807
153,218,395
132,883,535

Conv 5 FP
BP

WU

[13, 13]
[13, 13]
[13, 13]

2,401,212
2,410,637
4,448,751

102,632,162
99,408,011
84,518,969

105,033,374
101,818,648
88,967,720

Total 67,043,099 1,494,958,747 1,562,001,846

Table 4. Experimental Results of the Baseline with the BHWC Data Layout and Data Reuse

AlexNet Process [Tr i
Base ,Tc

i
Base ] Acceleration

(Cycles)
Reallocation

(Cycles)
Total

(Cycles)
Conv 1 FP

BP
WU

[11, 11]
N/A

[11, 11]

8,094,251
N/A

4,495,794

N/A
N/A

161,048,775

8,094,251
N/A

165,544,569
Conv 2 FP

BP
WU

[27, 27]
[27, 27]
[27, 27]

7,383,996
7,382,504
7,848,249

N/A
68,200,715

N/A

7,383,996
75,583,219
7,848,249

Conv 3 FP
BP

WU

[13, 13]
[13, 13]
[13, 13]

2,531,247
2,529,216
3,345,845

N/A
100,372,954

N/A

2,531,247
102,902,170
3,345,845

Conv 4 FP
BP

WU

[13, 13]
[13, 13]
[13, 13]

3,745,972
3,745,922
4,999,576

N/A
148,657,460

N/A

3,745,972
152,403,382
4,999,576

Conv 5 FP
BP

WU

[13, 13]
[13, 13]
[13, 13]

2,529,173
2,531,318
3,364,408

N/A
100,586,051

N/A

2,529,173
103,117,369
3,364,408

Total 64,527,471 578,865,955 643,393,426

length before data reshaping is much smaller than the size of a tile. To ensure that the accelerator
conducts MAC operations with correct features and weight matrices in realistic end-to-end train-
ing, data should be reallocated before being transmitted from DRAM to the on-chip accelerator.
Therefore, our baseline includes the on-chip acceleration time and o#-chip reallocation time. After
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Table 5. Experimental Results Validating Data Reshaping Approach

AlexNet Process [Tr i ,Tci ] Without Weight Reuse
(Cycles)

After Weight Reuse
(Cycles)

Conv 1 FP
BP

WU

[2, 55]
N/A

[2, 55]

11,498,545
N/A

9,598,744

11,419,835
N/A

9,299,086
Conv 2 FP

BP
WU

[27, 27]
[27, 27]
[27, 27]

7,283,187
7,128,663
7,910,148

7,312,794
7,146,578
7,430,533

Conv 3 FP
BP

WU

[13, 13]
[13, 13]
[13, 13]

2,491,672
2,461,694
3,402,418

2,510,310
2,671,392
2,706,696

Conv 4 FP
BP

WU

[13, 13]
[13, 13]
[13, 13]

3,689,930
3,688,961
5,053,485

3,708,934
3,972,757
4,014,651

Conv 5 FP
BP

WU

[13, 13]
[13, 13]
[13, 13]

2,462,778
2,490,897
3,373,373

2,475,263
2,686,910
2,677,726

Total 72,534,495 70,033,465

applying data reshaping, data can be fetched from DRAM to the accelerator directly without extra
reallocation.

For Conv 1, the number of input channels is only three, TnBase = 8, and Tn = 16. Therefore,
5/8 computation resources remain idle for the baseline, while 13/16 computation resources for
our proposed design remain idle. That’s why the acceleration time for the baseline is shorter than
the latency in our proposed design. However, features should be reallocated before entering the
next layer (for FP) or after being generated from the prior layer (for WU). As shown in Table 3,
the reallocation time is much longer than the acceleration time. For Conv 2 to Conv 5, Tr i ≥ Ri

and Tci ≥ Ci , so features do not need to be reallocated between adjacent layers, but weights still
need to be reallocated before entering the Conv layer (for FP and BP) or updated from the Conv
layer (for WU). To sum up, the total acceleration time for the baseline is close to that for our pro-
posed design under the same degree of parallelism (TmBase × TnBase = Tm × Tn) and tile size
boundary of features (max

i
Tr i

Base × max
i

Tci
Base = max

i
Tr i × max

i
Tci ), but the extra reallocation

time in realistic end-to-end training is even longer than the acceleration time. Therefore, acceler-
ating without considering the actual data layout in DRAM between adjacent layers is ine!cient
in realistic end-to-end training.

The baseline in Table 4 uses the BHWC data layout and applies data reuse to alleviate the dis-
continuous memory access. As illustrated in Figures 9 to 11, features and weights are continuous
in a long burst length in FP, so data are not reallocated during the Conv layers. Such an approach is
e!cient in the inference phase. In BP, although the memory access pattern of features is the same
as that in FP, the weight transmission patterns are quite di#erent. As shown in Figure 11(c), the
burst length is much less than the size of a tile, so weights should be reallocated in each Conv layer.
The extra reallocation time is much longer than the acceleration time. In WU, the on-chip bu#er
can hold all the features for Conv 2 to Conv 5 layers, so it is practical to load all the features to the
FPGA chip without extra reallocation. However, in the Conv 1 layer, the on-chip memory cannot
hold all the features. Even though the input features can be pre-allocated before entering into the
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Fig. 18. Experimental results of the data reshaping approach without weight reuse and a#er weight reuse.

neural network since they serve as the inputs for the whole process, the output features that are
calculated in BP cannot be allocated ahead of time. Therefore, the Conv 1 layer also requires extra
reallocation time in WU, which is quite ine!cient.

As mentioned in Section 4, we optimize the DRAM access incrementally. We "rst achieve intra-
tile continuous memory allocation by reorganizing the DRAM layouts for input features, output
features, and weights. Then we re-schedule the loop order to achieve inter-tile continuous memory
allocation. These two parts are combined to improve memory access continuity together when the
batch size is one. Considering the training process involves convolution operations among a mini-
batch, we further propose and apply a weight reuse strategy based on the proposed data layout.
Table 5 shows the experimental results of the data reshaping approach without weight reuse and
after weight reuse. The batch size is also four, and the latency for FP/BP without and after weight
reuse is nearly the same. This is because, in FP and BP, input features and weights are transmitted
together. As can be seen from Section 5, when #T n

p $ × ((Tr i − 1) ×S i +K i ) × ((Tci − 1) ×S i +K i ) >

#T m×T n
p $ × K i × K i , t i

I F M > t i
W EI . Therefore, reusing the weights may not reduce the latency

as a whole. However, in WU, the latency with weight reuse is apparently less than that without
reuse. This is because the transmission of weights happens during storing the results in WU, which
cannot be totally covered by t i

COMP (e.g., in the last iteration of the loop in line 2 from Figure 15(b)
and the loop in line 3 from Figure 15(c)). As a whole, reusing weights can reduce the latency of the
training phase of the whole network. Figure 18 shows the latency without and with weight reuse
when the batch size ranges from 2 to 128. It shows that when the batch size increases, applying
the reuse strategy has more apparent advantages than only achieving intra-tile and inter-tile data
access continuity.

6.2 Accuracy of the Performance Model
After displaying the e#ectiveness of the data reshaping approach, we use the AlexNet to validate
the accuracy of the performance model. Our scheduling tool "rst determines optimal tiling param-
eters, which are shown in Table 6. Then the latency is estimated by our model and tested on-board
separately. As shown in Table 6, the estimated results are close to the tested results. The results
verify the accuracy of the performance model.

6.3 CNN Training Performance
In this section, we conduct end-to-end evaluations on di#erent neural networks. We "rst com-
pare our design with the automatic compiler-based FPGA accelerator [22]. It adopted a combina-
tion of channel-level parallelism and feature-map-level parallelism with the unrolling factors for

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 49. Pub. date: June 2022.



49:28 Y. Tang et al.

Table 6. Experimental Results Validating the Performance Model

AlexNet Process [Tr i ,Tci ,M i _on] Our Model (Cycles) On-board (Cycles) Deviation
Conv 1 FP

BP
WU

[2, 55, 96]
N/A

[2, 55, 96]

11,504,640
N/A

9,043,384

11,419,835
N/A

9,299,086

0.74%
N/A

2.75%
Conv 2 FP

BP
WU

[27, 27, 112]
[27, 27, 48]
[27, 27, 112]

7,309,808
7,126,784
7,423,616

7,312,794
7,146,578
7,430,533

0.04%
0.28%
0.09%

Conv 3 FP
BP

WU

[13, 13, 112]
[13, 13, 112]
[13, 13, 112]

2,478,272
2,566,987
2,682,240

2,510,310
2,671,392
2,706,696

1.28%
3.91%
0.90%

Conv 4 FP
BP

WU

[13, 13, 112]
[13, 13, 112]
[13, 13, 112]

3,646,400
3,861,220
3,960,960

3,708,934
3,972,757
4,014,651

1.69%
2.81%
1.34%

Conv 5 FP
BP

WU

[13, 13, 112]
[13, 13, 112]
[13, 13, 112]

2,432,368
2,618,372
2,640,640

2,475,263
2,686,910
2,677,726

1.73%
2.55%
1.38%

Total 69,295,691 70,033,465 1.05%

columns, rows, and output channels. It initially stored weights tile by tile in a transposable for-
mat in DRAM and read the entire weights of a Conv layer from DRAM to their on-chip bu#er.
The baseline implemented a “1X” CNN on the CIFAR-10 dataset with the structure as Conv
1 ([M i ,N i ,Ri ,Ci ,K i , S i ] = [16, 3, 32, 32, 3, 1]) - Conv 2 ([16, 16, 32, 32, 3, 1]) - Pooling - Conv 3
([32, 16, 16, 16, 3, 1]) - Conv 4 ([32, 32, 16, 16, 3, 1]) - Pooling - Conv 5 ([64, 32, 8, 8, 3, 1]) - Conv 6
([64, 64, 8, 8, 3, 1]) - Pooling - FC ([10, 1024, 1, 1, 1, 1]), using 16-bit "xed-point precision. We test
the same network on both PYNQ-Z1 and ZCU102 boards. The DMA stream bandwidth is 128 bits
for ZCU102 and 32 bits for PYNQ-Z1. Our design focuses on implementing on-device FPGAs with-
out sacri"cing precision, so 32-bit $oating point is adopted. The Vivado utilization report provides
the utilization of BRAMs and DSPs, and the power report provides the total on-chip power. We
measure the latency of training the whole batch with the batch size of 128. Then we calculate the
latency per image and the throughput.

Table 7 shows the comparison results between the baseline [22] and our design in terms of re-
source utilization, throughput, energy e!ciency, and so forth. The Stratix 10 GX adopted in the
baseline is an advanced FPGA board developed by Intel. It is unfair to compare the throughput
directly for di#erent devices. However, energy e!ciency is an important metric to judge the per-
formance of edge devices, and thus we use energy e!ciency as the metric for di#erent designs on
di#erent FPGAs. We nominate the throughput and e!ciency by multiplying the bit width of the
data type. Although using the "xed-point data type is much more DSP e!cient and power e!cient
than adopting $oating point under the same bit width, our nominal e!ciency still can outperform
that of the baseline. The reason is that the baseline has more data transmission latency, especially
for WU, where accessing weight gradients, weights, and storing back the updated values leads to
DRAM access latency. Fifty-one percent of the overall latency in one iteration of a batch is con-
sumed in WU [22]. Figure 19 shows the latency breakdown of our design. The total latency for
each training process is calculated by summarizing the latency for each Conv layer, and the la-
tency for MAC is the theoretical computation latency calculated by accumulating t i

COMP for each
Conv layer based on the performance model. Since the “1X” CNN is a relatively small network,
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Table 7. Experimental Results on the “1X” CNN

Baseline [22] Ours Ours
Platform Stratix 10 GX PYNQ-Z1 ZCU102

Frequency (MHz) 240 100 100
DSP Utilization 1,699 (30%) 212 (96.4%) 1,315 (52.2%)

DConv (DConv/Used DSPs) 180 (84.9%) 1,280 (97.3%)
BRAM Utilization 10.6 (4.4%) 123 (87.9%) 324 (35.5%)

BConv (BConv/Used BRAMs) 108 (87.8%) 288 (88.9%)
Power (W) 20.6 1.85 (11.14X) 6.89 (2.99X)
Data Type Fixed 16 FP 32 FP 32
Batch Size 40 128 128

Latency/Image (ms) 0.36 14.32 2.08
Throughput 163 GOPS 4.08 GFLOPS 28.15 GFLOPS

Nominal Throughput
(GOPS × precision) 2608 130.56 900.8

Energy E!ciency 7.90 GOPS/W 2.21 GFLOPS/W 4.09 GFLOPS/W
Nominal E#ciency

(GOPS × precision/W) 126.4 70.72 130.88 (1.04X)

Fig. 19. Latency breakdown of CIFAR-10 “1X” CNN for FP, BP, and WU when the batch size is 128.

the number of loops is also small. According to the performance model, although double bu#ers
are adopted, the computation and data transmission are conducted sequentially in the "rst and
last iteration of the loop, while they are in parallel for the middle iterations. Therefore, when the
number of loops is small, the proposed design also includes much data transmission latency for
FP, BP, and WU. However, other optimizations like loop order scheduling and weight reuse in a
mini-batch reduce the number of o#-chip memory access. Therefore, our computation latency is
still much more than 50% of the total latency in FP, BP, or WU, which takes up a larger proportion
compared with the baseline.

Besides, the baseline stored the entire weights of a Conv layer from DRAM to the on-chip bu#er.
Their design cannot support denser networks where the on-chip bu#er cannot hold the entire
weights of each Conv layer. However, our design does not have such restrictions and can support
many larger networks.
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Fig. 20. The loss curves during the training phase.

In Table 7, the DConv and BConv are the DSP and BRAM numbers for the Conv layer estimated
by our resource model. The percentage shows the ratio between the estimated resources and actual
resources used in the whole end-to-end training. As mentioned in Sections 5.2 and 5.3, DConv and
BConv are lower than the DSP and BRAM numbers used in the realistic end-to-end training process.
For “1X” CNN, the extra on-chip resources mainly function for maximum pooling layers. Besides,
a few DSPs are utilized to calculate BRAM addresses of features and weights.

To validate the correctness of our design, we also implement the whole training phase of the
“1X” CNN on ZCU102 and compare the training result with that on GPU. We load the Cifar-10
dataset from the secure digital (SD) card to the DRAM and run 50 epochs. The batch size is also
128, and the learning rate is 0.008. We use the V-100 GPU from AWS to validate the training process.
The loss curves are shown in Figure 20. Since we adopt full precision and have not changed the
training algorithm, the training result should be nearly the same as that on GPU. As can be seen
in Figure 20, the two curves are really close to each other. We also test the trained model on the
test dataset. The test accuracy is 65.22% running on GPU and 64.82% running on FPGA.

Most state-of-the-art works [22, 23] mainly implemented their design on the Cifar-10 dataset,
whose input image is really small (3× 32× 32) compared to real-world on-device learning scenarios.
To verify that our accelerator with the data reshaping approach can support larger networks with
larger feature sizes, we test our design on AlexNet and Vgg-16 for ImageNet whose input image
parameters are 3 × 227 × 227 and 3 × 224 × 224, respectively.

The data reshaping approach enables our accelerator to support end-to-end training with the
following situations: (1) when the feature map size of a layer increases and the on-chip memory
is not big enough to hold all the feature maps of the layer and (2) when the number of channels
increases and the weight bu#er cannot hold all the weights of a layer. For AlexNet, its convolution
kernel size ranges from 11 × 11 to 1 × 1 and feature map size ranges from 227 × 227 to 1 × 1,
which covers the above-mentioned situations. Besides, the stride of the "rst Conv layer of AlexNet
is 4. Implementing Conv layers with di#erent stride sizes is more complex than only verifying
the design on CNNs where the stride remains one. Therefore, AlexNet is ideal to verify that our
design can support DNNs with a larger feature map size and larger weight density and can deal
with di#erent Conv layers shapes. Figure 21(a) shows the throughput and latency of a batch for
training the AlexNet model with batch size ranging from 2 to 128. When the batch size is 128, the
throughput reaches 34.52 GFLOPS. Because of weight reuse, the weight transmission bottleneck is
ameliorated when the batch size increases, so the throughput in larger batch size is slightly higher
than that for small batch size. However, unlike batch-level parallelism-based designs [23] where
the performance varies a lot under di#erent batch sizes, the performance of our channel-level
parallelism-based design is less a#ected by the batch size. As shown in Figure 21, the throughput
when the batch size is two is still above 32 GFLOPS.
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Fig. 21. Experimental results training di!erent CNNs. (a) Throughput and latency of AlexNet. (b) Throughput
and latency of Vgg-16 without BN layers. (c) Throughput and latency of Vgg-16 with BN layers.

We also test our design on Vgg-16, which has denser parameters, and the performance is shown
in Figure 21(b). Due to the DRAM memory size limitation of ZCU102, the maximum batch size is
16. As illustrated in Figure 21, our design achieves higher throughput on Vgg-16 compared with
AlexNet. This is because, for channel-level parallelism, the number of input channels of the "rst
Conv layer is only three, which is smaller than Tn, so the computation resources are not fully
utilized in this layer. This e#ect is also mentioned in Section 6.1. However, such underutilization
only happens in the "rst Conv layer and is alleviated when the neural network becomes deeper.
Hence, in the deeper network, Vgg-16, we achieve higher throughput.

To verify that our design can support the BN layer, which is a key component of typical CNN
architectures, we also test the proposed design on Vgg-16 with BN layers. The performance is
shown in Figure 21(c). Apart from the loss and activation, the immediate BN parameters also need
to be stored in DRAM. Due to the memory size limitation, the maximum batch size is eight. Unlike
computation-intensive Conv layers, BN layers involve lots of data transmission processes. Some
complex operations like extracting a root also cost extra computation resources and reduce the
timing performance. Therefore, the overall throughput is a little less than that for Vgg-16 without
BN layers.

Table 8 also shows the resource utilization and energy e!ciency of the FPGA for these networks.
With the same estimated DSPs and BRAMs for Conv layers (DConv and BConv ), AlexNet requires
more BRAMs than Vgg-16. This is because, compared to Vgg-16, AlexNet has a less regular weight
kernel shape (ranging from 11 × 11 to 1 × 1), so we add an extra bu#er to fetch a tile of weights from
the on-chip Weight bu#er before the Conv Kernel conducting MAC operations. Such optimization
can release routing congestion caused by complex BRAM address calculation and allocation in FP,
BP, and WU processes. Apart from the extra bu#er, a small fraction of DSPs and BRAMs func-
tion for non-Conv layers. The accelerator also utilizes a few DSPs to calculate BRAM addresses.
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Table 8. Experimental Results on AlexNet and Vgg-16

Network AlexNet Vgg-16 without BN Vgg-16 with BN
DSP Utilization 1,513 (60.0%) 1,508 (59.8%) 1,680 (66.7%)

DConv (DConv/Used DSPs) 1,280 (84.6%) 1,280 (84.9%) 1,280 (76.2%)
BRAM Utilization 857 (94.0%) 787 (86.3%) 812 (89.0%)

BConv (BConv/Used BRAMs) 672 (78.4%) 672 (85.4%) 672 (82.8%)
Power (W) 7.736 7.712 8.208
Batch Size 128 16 8

Throughput (GFLOPS) 34.52 46.99 40.08
E!ciency (GFLOPS/W) 4.46 6.09 4.88

Therefore, as mentioned in Section 5.3, the estimated boundary of DConv and BConv in realistic
end-to-end system design should be slightly smaller than the total DSP and BRAM numbers. From
our experimental results, assigning 80% of DSPs and 75% of BRAMs should be enough.

As for the Vgg-16 with BN layers, extra computation resources are utilized to do complex oper-
ations such as division, root extraction, and so forth. Therefore, Vgg-16 with BN layers costs more
DSP resources compared with Vgg-16 without BN layers. Additional BRAMs are also utilized to
bu#er BN parameters for a batch.

In our end-to-end training validation, we utilize 1,508 DSPs for the Vgg-16 model. The theoretical
peak performance with 1,508 DSPs on the 32-bit $oating-point accelerator is 1508

5 × 2 × 0.1 GHz=
60.3 GFLOPS, while our attainable end-to-end test is 46.99 GFLOPS including pooling and ReLU
operations.

6.4 Comparison with State-of-the-art Works
Comparisons of the best performance between our design and other state-of-the-art FPGA-based
training accelerators are shown in Table 9. In the table, “N/A” means that the metric is not provided,
and “≈” means that the value is obtained by approximate estimation. Since the platforms, the neural
networks for training, and the data type are di#erent, it is extremely di!cult to fairly compare
between di#erent training accelerators. However, our design still shows desirable performance
even under such circumstances.

To better illustrate the uniqueness of the proposed design, we also compare our work with the
accelerators that also adopted 32-bit $oating point. The comparisons are shown in Tables 10 and
11. The design in [36] was tested on LeNet-10, which is a really small network with the structure
as Conv 1 ([M i ,N i ,Ri ,Ci ,K i , S i ] = [32, 3, 32, 32, 3, 1]) - Pooling - Conv 2 ([32, 32, 16, 16, 3, 1]) -
Pooling - Conv 3 ([64, 32, 8, 8, 3, 1]) - Pooling - FC ([64, 1024, 1, 1, 1, 1]) - FC ([10, 64, 1, 1, 1, 1]). As
explained in Section 6.3, the underutilization of computation resources in the "rst Conv layer re-
duces the overall throughput. Therefore, the performance of the proposed design on this small
network cannot be as superior as that in deeper networks like Vgg-16. However, our design is a
general architecture that can support both small networks and larger networks, while the accel-
erator in [36] only targeted small networks. It "rst achieved feature-map-level parallelism in a
uniform computation engine and then unrolled channel-level parallelism factors to improve uti-
lization of computation resources. For the memory access issues, the input and output features of
each layer are all stored on the FPGA chip, which restricts the work from extending to support the
networks where the on-chip BRAMs are not large enough to hold entire features of a Conv layer.
However, larger networks like AlexNet and Vgg are commonly applied in practical applications.
Unlike [36], our work not only enables on-device training on larger CNN models but also achieves
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Table 9. Comparison of Di!erent FPGA-based Training Accelerators

Accelerator Liu et al.
2017 [36]

DarkFPGA
2020 [23]

Venkataramanaiah et al.
2020 [40]

FeCa#e
2020 [41]

Ours

Platform ZU19EG XCVU9P Stratix 10 MX Stratix 10 ZCU102
Technology 16nm 16nm 14nm 14nm 16nm

DSP Util. 1,500 4,202 1,040 1,796 1,508
Freq. (MHz) 200 200 185 253 100
Power (W) 14.24 13.5 ≈20 N/A 7.712
Network LeNet-10 Vgg-like ResNet-20 AlexNet Vgg-16
Dataset CIFAR-10 CIFAR-10 CIFAR-10 ImageNet ImageNet

Data Type FP 32 Fixed 8 FP 16 FP 32 FP 32
Throughput 86.12

GFLOPS
1417

GOPS
≈180

GFLOPS
≈24

GFLOPS
46.99

GFLOPS
Energy E!. 6.05

GFLOPS/W
104.96

GOPS/W
≈9

GFLOPS/W
N/A 6.09

GFLOPS/W
Nominal

Thro. (GOPS ×
precision)

2,755.84 11,336 ≈2,880 ≈768 1,503.68

Nominal
E!. (GOPS ×
precision/W)

193.6 839.68 ≈144 N/A 194.88

Table 10. Experimental Results on LeNet-10 Compared
with Liu et al. [36]

Liu et al. [36] Ours
Platform ZU19EG ZCU102

Frequency (MHz) 200 100
DSP Utilization 1,699 (76.2%) 1,315 (52.2%)

BRAM Utilization 174 (17.7%) 340 (37.3%)
Power (W) 14.24 7.14

Throughput 86.12 GFLOPS 15.47 GFLOPS
Energy E!ciency 6.05 GFLOPS/W 2.17 GFLOPS/W

higher throughput when the network becomes deeper. Besides, the number of operations of LeNet-
10 reported in [36] is 74.43 MFLOPs. However, according to total number o f traininд operations =
2 × (3 × ∑n

i=1 M
i × N i × Ri ×Ci × K i × K i − M1 × N 1 × R1 × C1 × K1 × K1), the actual number

of operations that we obtain is only 25.17 MFLOPs. In this formula, 2× is due to the FP 32 MAC
involving 2 operations, and 3× is due to the fact that each layer needs to conduct FP, BP, and WU
except the "rst layer, which only needs to conduct FP and WU.

FeCa#e [41] introduced a Ca#e framework with OpenCL, which can integrate FPGA to perform
CNN network training. It only provided DSP utilization and throughput, which are shown in Ta-
ble 11. Compared to the FeCa#e framework, our design utilized fewer computation resources but
achieved higher throughput implementing AlexNet.
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Table 11. Experimental Results on AlexNet Compared
with FeCa!e [41]

FeCa#e [41] Ours
Platform Stratix 10 ZCU102

Frequency (MHz) 253 100
DSP Utilization 1,796 (31.2%) 1,513 (60.0%)

BRAM Utilization N/A 857 (94.0%)
Power (W) N/A 7.736

Throughput ≈24 GFLOPS 34.52 GFLOPS
Energy E!ciency N/A 4.46 GFLOPS/W

The work in [40] also adopted both feature-map-level parallelism and channel-level parallelism,
similar to its preliminary work in [22]. The best nominal energy e!ciency reaches 144 (GOPS× pre-
cision), which is lower than our best nominal energy e!ciency, which is 194.88 (GOPS× precision).
As for the memory access issues, the accelerator in [40] targeted devices equipped with high band-
width memory (HBM2). Compared with DMA, the HBM2 is superiorly advanced with 16 pseudo
channels providing a high number of I/O data pins. However, HBM2 is a new high-speed memory
technology and is only integrated into a few modern FPGAs like Stratix 10 MX. Most FPGA-based
edge devices still rely on DMA to communicate between the FPGA chip and o#-chip DRAM. Be-
sides, [22] and [40] only tested their designs on the Cifar-10 dataset, where the input image size is
only 32 × 32, which is really small so that their on-chip BRAMs can easily hold P entire feature
maps, where P is the unrolling factors in the channel dimension. However, our design can support
both small and large feature map sizes.

DarkFPGA [23] placed DRAM data layout in the channel-height-width-batch (CHWB) pat-
tern based on its batch-level parallelism-based design. It achieves higher nominal energy e!ciency
because the 8-bit "xed points can improve the energy e!ciency and DSP e!ciency out of propor-
tion. The previous study has shown that if the data precision is no more than 8-bit, two MACs
can be calculated on one Xilinx DSP48, reducing the DSP usage by half [42]. However, for 32-bit
$oating point, one MAC operation takes up "ve DSPs in the Xilinx FPGA board. Besides, XCVU9P
is an extremely high-end cloud-level FPGA that has superior e!ciency than commonly used edge
FPGAs. However, as mentioned in Section 2.3, the batch-level parallelism adopted by DarkFPGA
only achieved high throughput when the batch size is large. From their experiments, when the
batch size is below 16, its throughput is below 100 GOPS, which is around 800 GOPS×precision
after nominating, while our nominal throughput is stably above 1,000 GOPS×precision among
di#erent batch sizes. Besides, as with [22, 40], DarkFPGA also implemented their design on the
Cifar-10 dataset with a relatively small feature map size.

7 CONCLUSION
In this article, we design EF-train, an e!cient DNN training accelerator enabling edge FPGAs
to continuously learn on the device, which makes it possible for current FPGA-based edge-level
applications to achieve domain adaption and personalization. We propose an FPGA-based CNN
training accelerator with a uni"ed convolution kernel to process FP, BP, and WU with full precision
and a data reshaping approach to ensure continuous memory access during end-to-end training
processes. We implement end-to-end CNN training e#ectively for low-power edge devices with
restricted resources. The experimental results show that our design achieves 46.99 GFLOPS and
6.09 GFLOPS/W in terms of throughput and energy e!ciency, respectively.
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