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ABSTRACT

Inversion symmetry breaking could lead to the creation of a Rashba–Dresselhauls magnetic field, which plays the key role in spintronic
devices. In this work, we propose and develop a composition gradient engineering approach that breaks inversion symmetry into inorganic
halide perovskites with strong spin–orbit coupling. We synthesize epitaxial CsPbBrxCl(3�x) with Br/Cl composition gradient by a two-step
chemical vapor deposition approach. Through optoelectronic measurements, we show the presence of circular photogalvanic effects
(CPGEs), evidencing a Rashba-like spin polarized band structure. By spatially resolved photoluminescence spectra, we find that the observed
CPGE is likely a cumulative result of inversion symmetry-broken interfaces featured by abrupt and stepwise composition gradient between
the pristine and separated daughter phases. Our work suggests an avenue in engineering the spintronic property of halide perovskites for
information processing.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0083187

Spintronic devices are expected to deliver energy-efficient and
high-speed computing.1–6 An important aspect related to spintronics
is spin–orbit coupling (SOC).7,8 For solids, when inversion symmetry
is broken, SOC gives rise to the Rashba–Dresselhaus effect by which
the twofold spin degeneracy is lifted.9–12 The Rashba–Dresselhaus field
allows the control of spin precession.12,13 The Rashba–Dresselhaus
effect has been revealed in many materials systems such as heavy
metals/semiconductors,14,15 topological insulators,16–18 Weyl semime-
tals,19–21 two-dimensional (2D) crystals/heterostructures,22–24 and
hybrid organic–inorganic perovskites (HOIPs).25–29

3D halide perovskites are characterized by a general formula
AMX3, where A is an organic group or inorganic cation such as Csþ or
MAþ, M is a heavy metal cation such as Pb2þ or Sn2þ, and X is a halide
anion including Cl�, Br�, and I�. AMX3 are widely studied due to
promising optoelectronic properties.30–35 These properties together with
heavy metal Pb carrying strong SOC in 3D halide perovskites make
them excellent candidates for exploration of Rashba–Dresselhaus opto-
spintronics.7,10 So far, most studies of the Rashba–Dresselhaus effect in
halide perovskites have been based on HOIPs with either the crystal
structure lacking inversion symmetry or the device structure dominated
by interfaces.7,10,28,36–48 It has been under debate that whether the 3D
organic–inorganic perovskite has intrinsic inversion symmetry or not.

This debate associated with the alignment of the organic molecules influ-
ences the elucidation of the source of the observed Rashba–Dresselhaus
effect in some perovskite devices.7,49,50

In this work, we introduce inversion symmetry breaking in epi-
taxial inorganic 3D halide perovskites through the composition gradi-
ent. We design a Br/Cl composition gradient along the in-plane x
direction of CsPbBrxCl(3�x), as shown in Fig. 1(a). Here, a monotonic
change in the concentration of Br/Cl is designed along the x direction
[e.g., more Br atoms in the left and less on the right in Fig. 1(a)].
Figure 1(b) shows a part of the CsPbBrxCl(3�x) lattice, where we can
identify such a composition-modified structure with a point group C4v

(assuming a pseudocubic structure). It has a fourfold rotation symme-
try with the rotation axis along the x axis and two mirror planes xy
and xz. Figure 1(c) depicts the schematic band structure in momen-
tum space for an inorganic perovskite, e.g., CsPbBr3 with inversion
symmetry, where a linear s-like combination of Pb 6s- and Br 5p-
orbitals forms the valence band maximum (VBM) [Fig. 1(d)], and the
degenerated Pb 6p-orbitals [Fig. 1(e)] form the conduction band mini-
mum (CBM). For CsPbBrxCl(3�x) with inversion symmetry breaking
(i.e., with a C4v point group), Fig. 1(f) shows its band structure where
Rashba–Dresselhaus band splitting is expected. Such a band structure
is derived based on the density functional theory calculation of
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CH3NH3PbI3 with prescribed symmetry breaking of the same point
group.48 In Fig. 1(f), the directional green and red arrows denote the
spin-up (ms¼þ 1

2) and spin-down (ms¼� 1
2) states, respectively. r

þ

and r� represent right-circularly polarized (RCP) light (S¼þ1) and
left-circularly polarized (LCP) light (S¼�1), respectively. Since the
VBM is formed by s-like orbitals whose orbital angular momentum is
0 (i.e., l¼ 0),mj is equal to ms. For the CBM, due to the dominance of
p-orbitals contributions, l¼ 1. The optical selection rule for circularly
polarized light would allow the absorption of rþ photons between the
CBM and VBM in the�ky/�kz valley (i.e., fromms¼� 1

2 tomj¼þ 1
2),

and the absorption of r� photons in the ky/kz valley (i.e., from
ms¼þ 1

2 to mj¼� 1
2). This spin-polarized band splitting can be

revealed experimentally by circular photogalvanic effects (CPGEs),
where photocurrents of opposite directions between RCP and LCP
illuminations are expected. An optical orientation approach is also
common in investigating other SOC-related phenomena51–55 such as
inverse spin-Hall effects.

Figure 2(a) illustrates a two-step chemical vapor deposition
(CVD) process for our film growth. First, we deposited a CsPbCl3 film
on a freshly cleaved NaCl substrate horizontally aligned in the cham-
ber at 600 �C. In this step, the thickness of CsPbCl3 will reduce along
the air flow direction (i. e., þx direction) due to the diffusion length
limit.56 Then we conducted a second deposition at 500 �C with precur-
sors set for CsPbBr3. We set the sample with a 45�-oblique angle in
the growth chamber for thickness uniformity. At the same time, a high
temperature will enable the diffusion of Cl� and Br�. Details on the
growth conditions are shown in supplementary note I. As a control
experiment, a pure CsPbCl3 epitaxial film was grown on NaCl without
the second growth step. Figure 2(b) shows an x-ray diffraction (XRD)
pattern of the CsPbBrxCl(3�x)/NaCl heterostructure and the NaCl

substrate. The crystal structure for CsPbBrxCl(3�x) could be assigned
to the orthorhombic structure.57–59 Strong peaks at 2h¼ 15.2� and
30.6� shown in the inset can be assigned to CsPbBrxCl(3�x)(002) and
(004) (see details in supplementary material note II). Figure 2(c)
shows the XRD patterns for CsPbCl3/NaCl and NaCl. The
CsPbCl3(004) peak is close60 to and overwhelmed by the NaCl(002)
peak. The inset is an enlarged CsPbCl3(002) peak at 15.8� for com-
parison. It is worth noting that there are clear shoulders for both
CsPbBrxCl(3�x)(002) and (004) peaks. As it will become clear later,
the large full width at half maximum (FWHM) is consistent with the
observation of a gradual change of the Br composition across the
x-direction of the film by other means. The XRD patterns reveal the
out-of-plane epitaxial relation: CsPbBrxCl(3�x)(001)jjNaCl(001).
The in-plane orientation of the epitaxial heterostructure is investi-
gated by the x-ray azimuthal u scan in Fig. 2(d). Here, for conve-
nience, we index CsPbBrxCl(3�x) with a pseudocubic structure.57,61

The (224) reflections of CsPbBrxCl(3�x) and NaCl are at the same u
angle, indicating an in-plane epitaxial relationship for the hetero-
structure as CsPbBrxCl(3�x)[100]jjNaCl[100].

The composition gradient in CsPbBrxCl(3�x) is further investi-
gated by position-dependent photoluminescence (PL) spectra and
energy-dispersive x-ray spectroscopy (EDS) analysis. The PL spec-
trum was collected at a spatial interval of 0.3mm along the x direc-
tion and is normalized in Fig. 2(e). The wavelength at each peak is
replotted in Fig. 2(f), which shows a clear red shift along the þx
direction. Since PL peaks for pure CsPbBr3 and CsPbCl3 are located
at 52157 and 415 nm,62 respectively, the observation suggests a grad-
ual composition for Br/Cl. Figure 2(g) shows the Br/Pb ratios along
the x direction extracted from EDS. The evidence of the composition
change of Br in CsPbBrxCl(3�x) should induce a wide range of lattice

FIG. 1. Theoretical design of the composition gradient-enabled spin-polarized band structure through Rashba–Dresselhaus effects. (a) Top view of the proposed structure of
CsPbBrxCl(3�x) with composition gradient of Br/Cl along the x direction. (b) CsPbBrxCl(3�x) structure has a fourfold rotation axis (x axis) and two mirror planes (xy, xz). (c)
Schematic band structure of CsPbBr3 without composition gradient. (d) Linear combination of Pb 6s- and Br 5p-orbitals (s-like) with antibonding configuration for VBM. (e) One
Pb 6p-orbital for CBM. (f) Schematic band structure with Rashba–Dresselhaus effects induced by the composition gradient.
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constants along the x direction, which are consistent with the wid-
ened FWHM in Fig. 2(b).

To conduct CPGE measurement for confirming the spin-
polarized band structure, the device is configured in a manner with
the current direction being perpendicular to the rotation axis (x
direction). Figure 3(a) shows the schematic drawing of the device
where the device channel is along the y direction. The channel
length is 60 lm and can be homogenously covered by the laser
beam. The laser propagates through a quarter-waveplate (QWP) to
the channel, and the incident plane is perpendicular to the channel
direction y. The laser incident angle a is with reference to the z axis
while u is the angle between the fast axis of the QWP and the polar-
ization direction of the incident beam. Thus the polarization of an
incident beam can be modulated from linear polarization (LP) to
RCP, to LP, then to LCP and finally back to LP, by rotating the
QWP.

The CPGE current is commonly expressed by a phenomenologi-
cal equation,63 which consists of four contributions

I ¼ C sin 2uþ L1 sin 4uþ L2 cos 4uþ D; (1)

where the helicity-dependent parameter C accounts for CPGE. L1 and
L2 account for the linear photogalvanic effect (LPGE) or photon drag
effect.24,64,65 It should be noted that C, L1, and L2 all depend on the
incident angle, a. D accounts for all the polarization-independent
background current.24,66–68 Further discussion on the LPGE term is
provided in the supplementary material, Note III.

The CPGE-related parameter C in the CPGE term is related to a
second-order tensor, bC

ij . For crystals with the lowest symmetry C1, the
CPGE tensor bC

ij can be represented as

bC
ij ¼

bC
11 bC

12 bC
13

bC
21 bC

22 bC
23

bC
31 bC

32 bC
33

2
664

3
775: (2)

Thus, the CPGE current, Ici , can be calculated as

ICi
A
¼ ibC

ij Ej � E*
j

� �
; (3)

where A is the electrode area, i is the unit imaginary number, E is the
incident light polarization vector, bC is the CPGE tensor, and sub-
scripts i and j are index notations. When the xz plane is the laser inci-
dent plane and the short-circuit current is measured along the y
direction, as is in our device configuration,

ICy
A
¼ I0 sin 2u bC

21 sin a� bC
23 cos a

� �
; (4)

where I0 ¼ Ej j2 is the laser energy density on the channel.
Since the channel is along the y direction, from Eq. (1), we can

also define the CPGE current as

ICy ¼ C sin 2u: (5)

Combining Eq. (5) with Eq. (4), we can get

C ¼ AI0 bC
21 sin a�bC

23 cos a
� �

: (6)

We first investigate the CPGE current, Iy , as a function of beam
polarization at different incident angles, a¼ 0�, 30�, and 45� [Fig.
3(b)]. The experimental data are fitted using Eq. (1) with solid lines,
from which we can obtain all four parameters, C, L1, L2, and D. For

FIG. 2. Structural and compositional characterizations. (a) A two-step CVD growth process. (b) XRD patterns of the CsPbBrxCl(3�x) film and the NaCl substrate. (c) XRD pat-
terns of the CsPbCl3 film and the NaCl substrate. (d) X-ray u scan of NaCl(224) and CsPbCl3(224) and NaCl(224) and CsPbBrxCl(3�x)(224) reflections. (e) Normalized PL
spectra along the x direction of the CsPbBrxCl(3�x) film. (f) Replot of PL peak wavelengths in (e). (g) Br/Pb ratios along the x direction of the CsPbBrxCl(3�x) film. The inset
shows a cross-sectional scanning electron microscopy (SEM) image. The red box is the area for collecting EDS.
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clarity, the polarization-independent background photocurrent, D is
subtracted. Figure 3(c) shows the CPGE-related parameter C as a func-
tion of a extracted from the fitting curves. All parameters C, L1, L2,
and D are summarized in the supplementary material, Note III. We
can also obtain the tensor elements, bC

23 � �7.97� 10�4 V�1 and
bC
21 � 9.86� 10�5 V�1 from Eq. (6). The absolute value of bC

23 is
almost one order in magnitude larger than bC

21, indicating that the
composition gradient along x plays a major role in inducing the CPGE
current. The inhomogeneous electric field near the electrode area along
the z direction can also break the local symmetry and contribute to
small bC

21, which is illustrated in the supplementary material, Note VII.
Figure 3(d) shows the CPGE current as a function of the beam

polarization with different laser energy densities at a¼�30� and 30�.
CPGE-related parameter C as a function of the laser energy density is
replotted in Fig. 3(e). The result follows the relationship in Eq. (6),
C / I0. Moreover, according to Eq. (6) and the tensor elements
extracted from Fig. 3(c), C is calculated to be 61.2 pA for a¼�30�
with a laser energy density of 0.53 mW/cm2. The measured C at �30�
is 65.4 pA, consistent with the result calculated in Eq. (6).
Measurement results at both a¼�30� and 30� are aligned with the
proposed symmetry in our device.

However, the observed composition gradient is too small to
enable measurable CPGE at room temperature. To understand the
underlying mechanism leading to the observed CPGE, we have con-
ducted further spatially resolved PL measurements. Recent studies
illustrate the phenomenon and theoretical analysis of the spinodal
decomposition in mixed halide perovskites.69,70 The uniform mixture
can be deposited at elevated temperatures. However, when we lower
down the temperature, the pristine phase becomes unstable due to the
reduction of entropy contribution. For TS term in G¼H � TS, see

details in the supplementary material, Note V. Here, T is temperature,
S entropy, G Gibbs free energy, and H enthalpy. The pristine perov-
skite CsPbBrxCl(3�x), thus, will decompose to Brþþ and Clþþ phases.
It is a slow process at room temperature, which can be accelerated by
high power light illumination.71,72 Our CPGE measurement is con-
ducted eight days after deposition while the characterizations in Fig. 2
were carried on freshly prepared samples. After storing for eight days
at room temperature under indoor light, we collected PL spectra with
a spatial interval of 0.1lm along the x direction. Figure 4(a) shows one
set of PL spectra within a 40lm-long local area. For better visualiza-
tion, we show a spectrum every 1lm along the x direction, and there
are 40 spectra for the 40-lm distance along the x direction. All 27
figure panels for the 1.08mm film are shown in supplementary note
V. Different from the PL spectra for the freshly deposited film, another
peak at�507nm appears besides the peak for the CsPbBrxCl(3�x) pris-
tine phase. As widely reported in the literature,71,73,74 the new peak
comes from a new phase, which is a consequence of phase separation
of the unstable pristine phase. We name this new phase as the Brþþ

phase. According to the phase diagram, when there is the Brþþ phase,
there will be the Clþþ phase due to mass conservation (see details in
the supplementary material, Note V). However, in our experimental
setup, an optical filter is inserted to block the light shorter than 420nm
to protect the CCD from damaging by the source laser (405 nm). The
amount of the Clþþ phase can be estimated by the lever rule. The PL
peak intensity ratios of Brþþ to the pristine phase are extracted and
replotted in Fig. 4(b), which can reflect the molar ratio of Brþþ to the
pristine phase. Based on this observation, the schematic of a possible
phase distribution for this 40-lm area is shown in Fig. 4(c). The steep
decrease in the intensity ratio at�30lm in Fig. 4(b) indicates the exis-
tence of an interface between the new phases and the pristine phase,

FIG. 3. CPGE measurement for the CsPbBrxCl(3�x) device. (a) Experimental setup. The inset shows a photo of the real device. (b) Polarization-dependent photocurrent at dif-
ferent incident angles, a. Dashed lines are the measured data, and solid lines are the fitting curves. For clarity, polarization-independent photocurrents, D, are subtracted, and
a constant offset is added. (c) CPGE-related term, C, as a function of the incident angle, a, extracted from fitting curves. (d) Polarization-dependent photocurrent at different
laser energy densities at a¼ 30� and �30�. Dashed lines are the measured data, and solid lines are the fitting curves. (e) CPGE-related term, C, as a function of the laser
energy density, extracted from the fitting curves in (d).
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which is highlighted by black boxes in Fig. 4(c). Figure 4(d) shows
the PL intensity ratio along the x direction for the 1.08mm
CsPbBrxCl(3�x) film. Every data point is the averaged result over 400
PL spectra collected for a 40lm long area along the x direction. In this
8-day-old sample, the PL peak intensity ratio fluctuates locally but
macroscopically decreases along the x direction, suggesting the rele-
vant molar ratio of the Brþþ over the pristine phase. This observation
suggests that less phase separation occurs in the region where the pris-
tine phase has more Br. This is reasonable since for the pristine sample
with high molar ratio of Br, the driving force for phase separation is
low75 (see details in the supplementary material, Note V). The macro-
scopic decreasing trend of phase separation can be schematically
described in Fig. 4(e). There will be interfaces between separated
phases and the pristine phase, which can be confirmed also in Figs.
4(b) and 4(c). Such an interface can be extremely sharp.76

We assign the interface between the pristine phase and the Clþþ

phase as InterfaceCl and the one between the pristine phase and the
Brþþ phase as InterfaceBr. There will be inversion symmetry breaking
at these interfaces since the composition difference exists. Both interfa-
ces lead to the generation of a C4v point group locally. However, the
direction of local electric fields at InterfaceCl and InterfaceBr is opposite
because of the opposite composition difference at two interfaces. This
will induce the different band splitting schematically shown in Figs.
4(f) and 4(g). Spin-up and spin-down bands will split oppositely along
the ky and kz directions. At the same temperature and illumination
condition, the current generated at these two interfaces will flow to the
opposite direction. The splitting energy ER will also be different (see
details in the supplementary material, Note V). Figures 4(h) and 4(i)
show the schematic spin-texture near the conduction band minimum

for the Brþþ/pristine interface and the Clþþ/pristine interface, respec-
tively, which also reveals the opposite spin direction both in inner and
outer bands and the different ER. According to our experimental obser-
vation, the net current due to the cumulative contributions of IInterfaceCl
and IInterfaceBr is not zero (see details in the supplementary material, Note
V). In addition, if there is no composition gradient along the x direction,
there will be no macroscopical decreasing trend of the phase separation
(see details in the supplementary material, Note V).

As a control experiment, a 60lm-channel device on pure
CsPbCl3 was prepared. The device also has a configuration as shown
in Fig. 3(a). Our test shows that without composition gradient there is
no CPGE (see the supplementary material, Note VI).

In summary, by a two-step CVD growth process, we achieved
the composition gradient in CsPbBrxCl(3�x). The CPGE is proposed to
be a cumulative result of the inversion symmetry-broken interfaces
induced by phase separation. This work suggests an approach in
designing halide perovskites materials for spintronic applications.

See the supplementary material for notes I–VII: experimental
method, LPGE, and CPGE fitting results.
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FIG. 4. Interfaces induced by phase separation in pristine halide perovskite CsPbBrxCl(3�x). (a) A set of consecutive PL spectra collected from a 40lm-long area along the x
direction. (b) PL peak intensity ratio of the Brþþ phase over the pristine phase in (a) for all consecutive 400 spectra (one spectrum per 0.1lm). (c) Schematic phase distribu-
tion for the 40-lm long area in (a) and (b). (d) PL peak intensity ratio of the Brþþ phase over the pristine phase along the x direction in 1.08mm. (e) Schematic phase distribu-
tion in the CsPbBrxCl(3�x) film over 1.08mm. Interfaces between Brþþ and pristine and Clþþ and pristine phases are highlighted with dashed boxes. (f) and (g) Schematic
conduction band structure at the interface between Brþþ and pristine phases and Clþþ and pristine phases, respectively. (h) and (i) Schematic spin texture near the conduc-
tion band minimum at the interface between Brþþ and pristine phases and Clþþ and pristine phases, respectively.
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