

# Journal of Zoology



## **Postnatal remodeling of the laryngeal airway removes body size-dependency of spectral features for ultrasonic whistling in laboratory mice**

|                               |                                                                                                     |
|-------------------------------|-----------------------------------------------------------------------------------------------------|
| Journal:                      | <i>Journal of Zoology</i>                                                                           |
| Manuscript ID:                | JZO-07-21-OM-186.R2                                                                                 |
| Manuscript Type:              | Original Manuscript                                                                                 |
| Date Submitted by the Author: | n/a                                                                                                 |
| Complete List of Authors:     | Darwaiz, Tarana; Midwestern University<br>Pasch, Bret; Northern Arizona University<br>Riede, Tobias |
| Keywords:                     | rodents, development, airway                                                                        |
|                               |                                                                                                     |

**SCHOLARONE™**  
Manuscripts

# Postnatal remodeling of the laryngeal airway removes body size-dependency of spectral features for ultrasonic whistling in laboratory mice

Tarana Darwaiz, Bret Pasch, Tobias Riede

Department of Physiology, College of Graduate Studies, Midwestern University Glendale, AZ,  
USA

10

11

12

15

14

19 **Keywords:** vocal production; mammals; geometric morphometrics; ultrasonic vocalization

21 **Abstract**

22 In many mammals, spectral properties of acoustic signals scale with body size within and among  
23 species. In rodents, however, despite drastic changes in body size, fundamental frequency (F0)  
24 range of ultrasonic whistles produced for social communication remain relatively uniform from  
25 birth to adulthood. Such divergent patterns may be due to a novel sound production mechanism  
26 unique to rodents involving an intralaryngeal midline pocket termed the ventral pouch. In this  
27 study, we analyzed the postnatal shape and size of the laryngeal airway in CD1 mice over  
28 ontogeny to better understand the association between ventral pouch geometry and F0 of  
29 ultrasonic whistles. Ventral pouch volume ( $0.06 \pm 0.01 \text{ mm}^3$ ) did not differ between pups and 1-  
30 year-old adults despite extensive shape-inducing remodeling of the intralaryngeal musculature  
31 and connective tissue. In contrast, ventral pouch volume was 50% smaller in 2-year-old  
32 compared to 1-year-old mice. Thus, allometry of the laryngeal airway appears to explain spectral  
33 overlap between ultrasonic whistles of young, small mice and older, larger mice. The causal  
34 association between the reduction in vocal behavior and a seemingly shrinking ventral pouch in  
35 geriatric mice remains unclear. Together, these data inform our understanding of the postnatal  
36 development and remodeling of the intralaryngeal airway in *Mus musculus*.

### 38      **Introduction**

39            In many mammals, body size is often correlated with the fundamental frequencies (F0) of  
40            vocalizations (e.g., Tembrock 1996; Fletcher 2004; Gillooly and Ophir 2010, Riede and Brown  
41            2013, Charlton and Reby 2016). However, anatomical or physiological innovations can  
42            overcome size constraints. For example, vocal fold length and tension determine F0 range (Titze  
43            et al. 2016), but the amount and organization of viscoelastic collagen and elastic fibers in the  
44            lamina propria of vocal folds permits expansion of the spectral range beyond the boundaries  
45            defined by size (Titze et al. 2016). In humans, both vocal fold length and viscoelastic properties  
46            change with age (e.g., Kahane 1987; Hirano et al. 2000; Filho et al. 2003; Abdelkafy et al. 2007),  
47            leading to (sometimes large) age (e.g., Heylen et al. 1998; Siupsinskiene, Lycke 2011) and sex  
48            differences (e.g., Hammond et al. 1998, Titze 1989) in F0 ranges. Similarly, vocal tract length  
49            determines resonance frequencies. However, some species can modify resonance spectral range  
50            into higher or lower regions through dynamic modulation of vocal tract length via a flexible  
51            larynx position (e.g., Reby, McComb 2003; Nishimura et al. 2003) or the ability to protrude or  
52            retract lips (Hauser, Ybarra 1994). Both mechanisms (vocal fold design and vocal tract  
53            flexibility) provide adaptations to escape the size-typical spectral range to produce vocal signals  
54            with higher or lower frequencies.

55            Rodents produce a rich repertoire of high-frequency communication signals in a variety  
56            of social contexts (e.g., Shelley, Blumstein 2005; Brudzynski 2018; Dent et al. 2018). For  
57            example, pup isolation vocalizations used to induce maternal care are ubiquitous among rodents  
58            (Lingle et al. 2012). In addition, many rodents produce vocalizations as adults to mediate a  
59            variety of social interactions, including mate acquisition (Fernandez et al. 2021). Surprisingly,  
60            although spectral features of vocal repertoires differ at various life stages (e.g., Grimsley et al.

1  
2  
3 61 2013; Riede et al. 2015; Zaytseva et al. 2019; Yurlova et al. 2020), the F0 ranges of certain high-  
4 frequency vocalizations (aka ‘ultrasonic vocalizations’, USVs) overlap between small pups and  
5  
6 62 large adults (e.g., Liu et al. 2003; Grimsley et al. 2011; Yurlova et al. 2020). The phenomenon is  
7  
8 63 also known in other rodents (e.g., Matrosova et al. 2007). In lab mice (*Mus musculus*), for  
9  
10 64 example, temporal and spectral features of ultrasonic whistles can reliably differentiate pup and  
11  
12 65 adult vocalizations. However, the F0 *range* used by pups and adults appears remarkably similar  
13  
14 66 (e.g., Liu et al. 2003). Such a pattern stands in stark contrast with allometric relationships that  
15  
16 67 typify vertebrate vocalizations produced by airflow-induced vocal fold vibration. In contrast to  
17  
18 68 the clear dependency of F0 range on size and viscoelastic properties of vocal folds, the factors  
19  
20 69 underlying F0 regulation in rodent whistle production are incompletely understood. A more  
21  
22 70 detailed description of the anatomy of the rodent vocal organ and its airway is needed to inform  
23  
24 71 our understanding of the mechanisms that permit such atypical non-allometry of vocal  
25  
26 72 frequencies.  
27  
28  
29  
30  
31  
32

33 74 The larynx and its airway are part of the upper respiratory tract. Control of the larynx  
34  
35 75 plays a role in breathing, swallowing, and vocalization. Understanding the function of  
36  
37 76 anatomical structures underlying behavioral performance requires characterization of such  
38  
39 77 structures over ontogeny. In humans, for example, the laryngeal cartilaginous framework  
40  
41 78 (Kahane 1982; Eckel et al. 1999), the vocal fold tissue, (Ishii et al. 2000; Hartnick et al. 2005;  
42  
43 79 Lungova et al. 2015) and the intralaryngeal airway experience shape changes and remodeling  
44  
45 80 during ontogeny (Wheeler et al. 2009) with consequences for speech, breathing, and swallowing  
46  
47 81 (Bosma 1985; Stevenson, Allaire 1991). In nonhuman species, ontogenetic changes in vocal  
48  
49 82 organ form, shape, and mechanical properties contribute to functional changes in vocal patterns  
50  
51 83 (e.g., tungara frog: Guerra et al. 2014; American alligator: Riede et al. 2011; zebra finch: Wade  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 84 et al. 2002; Veney & Wade 2005; Goitred gazelle: Efremova et al. 2016; North American elk:  
4  
5 85 Frey, Riede 2013; nonhuman primates: Zhang et al. 2019). With the increasing accessibility to  
6  
7 86 emerging imaging technologies (e.g micro-CT), the mouse model (*Mus musculus*) offers a more  
8  
9 87 tractable model to explore the form-function relationship in detail.

10  
11 88 In rodents, laryngeal sound is either produced by airflow induced vocal fold vibrations or  
12  
13 89 an aerodynamic whistle mechanism (Roberts 1975; Pasch et al. 2017). Many high-fundamental  
14  
15 90 frequency vocalizations produced by *Mus* are generated via the latter mechanism. Riede et al.  
16  
17 91 (2017) proposed an edgetone mechanism model, which in contrast to an alternative jet  
18  
19 mechanism model (Mahrt et al. 2016), predicts a strong relationship between ventral pouch size  
20  
21 92 and vocal frequency. Briefly, spectral properties of whistles produced by an edgetone mechanism  
22  
23 93 depend on airflow velocity and the geometry of the sound source (Coleman 1973; Fletcher  
24  
25 94 1973). In mice, whistles are produced inside the larynx when an expiratory glottal airflow  
26  
27 95 interacts with rigid structures behind (i.e., rostral from) the vocal folds. Production of high-  
28  
29 96 frequency whistles is dependent on the intactness of both the intra-laryngeal supraglottal ventral  
30  
31 97 pouch and the alar cartilage located at the entrance of the ventral pouch (Riede et al. 2017).  
32  
33 99 Damage to either the ventral pouch and/or the alar cartilage compromises a rodent's ability to  
34  
35 100 produce ultrasonic vocalizations (Riede et al. 2017). The geometry of the ventral pouch is  
36  
37 101 controlled through intrinsic laryngeal muscle activity, whereby contraction of a portion of the  
38  
39 102 thyroarytenoid muscle moves the alar cartilage closer to the glottis (Riede 2013). However, this  
40  
41 103 movement is limited and therefore the intralaryngeal airway, including ventral pouch  
42  
43 104 morphology (i.e., size and shape), likely contributes to acoustic variation. Such a difference in  
44  
45 105 the sound production mechanism of whistles may explain the size-independence of vocal  
46  
47 106 frequencies.

1  
2  
3 107 In this study, we investigated size and shape changes of the laryngeal airway. Larynx size  
4 scales allometrically with body size and the laryngeal cartilaginous framework experiences shape  
5 changes throughout life (Riede et al. 2020). However, because fundamental frequencies of *Mus*  
6  
7 109 vocalizations overlap between pups and larger adults, we hypothesized that there would be little  
8  
9 110 change in size to the laryngeal airway underlying vocal production.  
11  
12 111  
13  
14 112  
15  
16  
17 113 **Methods**  
18  
19 114 *Study sample*  
20  
21 115 Postnatal development of ventral pouch size and shape was quantified in 30 mice (*Mus*  
22  
23 116 *musculus*, CD 1 strain, colony maintained at MWU). Animals were housed in same sex groups of  
24  
25 117 3 to 5 animals in standard rodent cages (33cm long x 18cm wide x 14cm deep) on a 12:12 h  
26  
27 118 light/dark cycle. Rodent chow and water were available ad libitum. Animals (3/sex) were raised  
28  
29 119 to 5 age classes (postnatal days 2, 21, 90, 365 and 755). Adult animals (365 and 755 days) were  
30  
31 120 temporarily used for breeding, and thus experienced hormonal changes that could affect  
32  
33 121 laryngeal shape (e.g., Saez, Martin 1976; Aufdemorte et al. 1983).  
34  
35  
36  
37 122 Following euthanasia with ketamine and xylazine, mice were transcardially perfused with  
38  
39 123 lactated Ringer solution, and tissues were fixed with 10% buffered formalin phosphate (SF100-4;  
40  
41 124 Fisher Scientific). Larynx tissue was then dissected, stained, and imaged using a microCT  
42  
43 125 scanner (Skyscan 1172; Bruker-microCT, Kontich, Belgium) at 5 micrometer resolution. Further  
44  
45 126 details can be found in Riede et al. (2020). Derived three-dimensional surfaces in STL format of  
46  
47 127 the intralaryngeal airway and thyroid cartilages are available on Morphobank (O'Leary and  
48  
49 128 Kaufman 2012) (project P4018).  
50  
51  
52 129  
53  
54  
55  
56  
57  
58  
59  
60

130 *Morphometric Analysis*

131 Ventral pouch size was estimated by linear measures and volume estimates. Three linear  
132 measures were: (a) distance between glottal and alar edge ("CC"), (b) largest latero-lateral  
133 distance ("LL"), and (c) the distance between the most ventral point and a line described by  
134 distance CC ("VD") (Figure 1). The volume was estimated using the 3D model surface. The STL  
135 files of the 30 ventral pouches were uploaded to FIJI-ImageJ (Schindelin et al. 2012). The 3D  
136 viewer plugin facilitates visualization and volume calculation. The size of the thyroid cartilage  
137 was estimated using the thyroid cartilage bounding box volume. Bounding box refers to the  
138 minimum enclosing box for the set of points comprising the 3D rendition of a structure present in  
139 STL format. The ratio between the bounding box volume and the ventral pouch volume was used  
140 as an estimate for ventral pouch shape and size change with age.

141 Three-dimensional geometric morphometrics was used to describe shape of the ventral  
142 pouch. We established a set of 5 fixed and 50 semi-(surface) landmarks using the *geomorph*  
143 package (Adams et al. 2017) in R 3.4.4 (R Core Team 2015). The 5 fixed landmarks were placed  
144 interactively in mid-sagittal position on the alar edge, the glottal edge, on the most left and right  
145 lateral points and on the most ventral point of the ventral pouch. The landmark coordinate data  
146 were then superimposed using generalized Procrustes analysis (GPA) for each set of landmarks  
147 analyzed (Gower, 1975; Rohlf and Slice 1990). This produces a set of transformed coordinates  
148 that reflect shape differences among cartilages independent of scaling. Then a principal  
149 component analysis was done to derive shape axes. Those shape axes (principal components)  
150 help to convert variation in shape into a set of linearly uncorrelated variables.

## 151

152 *Acoustic analysis*

1  
2  
3 153 For three of five age classes (PND 2, 90, 365), ultrasonic whistles were successfully  
4 recorded. Recording attempts in weanlings (PND 21) and in geriatric mice (PND 755) were  
5 unsuccessful. Pup vocal behavior was triggered by a 1 minute separation of the pup from the  
6 litter. Vocalizations in 90 and 365 day-old animals was induced by placing the animal into a  
7 separate cage and adding bedding of the opposite sex. Further details on sound recording can be  
8 found in Riede et al. (2020).

9  
10 159 We analyzed 1008 syllables from six pups, 104 syllables from three young adults (PND  
11 90) and 287 syllables from five adult mice (PND 365). Syllable types were not assigned because  
12 160 all syllables were ultrasonic vocalizations produced by the same whistle mechanism.  
13  
14 162 Fundamental frequency was quantified every 30 ms using the pitch tracking tool in PRAAT  
15 (PRAAT software, v. 5.2.12). Visual inspection confirmed that frequency tracking was  
16 successful. The frequency was extracted every 5 ms and placed in 500Hz bins. Center frequency  
17 was determined as the frequency bin in which the median of the data sample was located.  
18  
19 166 Minimum and maximum fundamental frequency represented the lowest and the highest value in  
20 the histogram.

21  
22 168

23  
24 169 *Statistical Analysis*

25  
26 170 Univariate analysis was performed to assess ventral pouch growth. An analysis of  
27 variance (ANOVA) was used to test for age differences in three linear ventral pouch distances,  
28 ventral pouch volume, and two shape axes (principal components). Scaling relationships of  
29 various dimensions on body mass were analyzed using Pearson correlation coefficients. We  
30 performed a Kolmogorov-Smirnov test on the distribution of fundamental frequencies between  
31 the three age classes to test for statistical significance.

176

177 **Results**

178 Figure 2 illustrates ventral views and midsagittal sections of 3D renditions of the thyroid  
179 cartilage and the laryngeal airway. The airway is shown in two colors with the main airway in  
180 yellow and the ventral pouch in blue. Figure 3 provides three different views of the laryngeal  
181 airway of all 30 CD1 mice. Table 1 provides a summary of linear and volumetric measurements  
182 in this mouse sample. The ventral pouch is relatively large and shaped like a sphere in 2-day old  
183 pups but appears flattened, disk-shaped, and relatively smaller in older individuals. All three  
184 linear dimensions were different among the five age classes (ANOVA, LL:  $F_{4,25}=8.82$ ,  $p<0.001$ ;  
185 VD:  $F_{4,25}= 4.42$ ,  $p<0.01$ ; CC:  $F_{4,25}=16.4$ ,  $p<0.001$ ) (Table 1). Two measures (LL and VD)  
186 showed no change in size during the first year (Pearson correlation, LL:  $r = 0.25$ ,  $p = 0.25$ ; VD:  $r$   
187 = 0.26,  $p = 0.22$ ) (Figure 4 A and B). In other words, we found no increase in size associated  
188 with overall body size. The CC distance increased by a factor of 1.9 from pups to one-year-old  
189 adults (Pearson correlation,  $r = 0.83$ ,  $p < 0.01$ ) (Figure 4C). All three distances were smaller in  
190 2-year old than in 1-year old mice (t-test, LL:  $t_{1,10} = 3.98$ ,  $p < 0.01$ ; VD:  $t_{1,10} = 4.0$ ,  $p < 0.01$ ; CC:  
191  $t_{1,10} = 3.07$ ,  $p < 0.01$ ) (Table 1; Figure 4).

192 Laryngeal size estimated by the bounding box differed among five age classes ( $F_{4,25}=110.7$ ,  
193  $p<0.001$ ) and increased with age (Pearson correlation,  $r = 0.84$ ,  $p < 0.001$ ) (Figure 3D). The size  
194 of the ventral pouch did not change with age (Table 1) (Figure 4E). Ventral pouch volume was  
195 not significantly different between the first four age classes ( $F_{3,23}=1.0$ ,  $p = 0.41$ ). Ventral pouch  
196 volume was smaller in two-year old than in one-year old mice (t-test,  $t_{1,10} = 3.07$ ,  $p < 0.01$ ). The  
197 ratio between thyroid cartilage bounding box volume and ventral pouch volume decreased from  
198 about  $1.7\pm0.4\%$  in pups to  $0.27\pm0.08\%$  in old adults ( $F_{4,25}=53.1$ ,  $p < 0.001$ ;  $r = -0.55$ ,  $p < 0.01$ )

1  
2  
3 199 (Figure 4F). Data suggest that ventral pouch volume is maintained throughout most of the  
4 200 postnatal development despite the increase in size of the larynx and its lumen. For all six  
5 201 laryngeal variables listed in Table 1, the differences between males and females were not  
6 202 statistically significant (ANOVA,  $p>0.05$ ).  
7  
8

9  
10 203 The ventral pouch changed in shape from sphere-like to disk-shaped (Figures 2 and 3). Next,  
11 204 we quantified ventral pouch shape using surface landmarks. The first and second shape axes  
12 205 described 56% and 15%, of the variation, respectively. The first but not the second shape axis  
13 206 differentiated among the 5 age classes (ANOVA, PC1:  $F_{4,25}=32.4$ ,  $p<0.001$ ; PC2:  $F_{4,25}= 2.21$ ,  
14 207  $p=0.09$ ) and all plots that included the first axis similarly differentiated the five age classes  
15 208 (Figure 4G and H).  
16  
17

18  
19 209 Figure 5 illustrates the extent of the intra-laryngeal airway remodeling. Virtual coronal  
20 210 sections through the larynx organs show that the ventral pouch airway fills the entire lumen  
21 211 between the two thyroid cartilage lamina in pups. In adults, the lumen within the thyroid  
22 212 cartilage is filled with airway and soft connective tissue (Figure 5).  
23  
24

25  
26 213 Finally, we investigated the association between body size, ventral pouch size and spectral  
27 214 properties of high frequency whistles. Importantly, all three age classes produced sound across  
28 215 the entire range between 30 and 90 kHz. Figure 6 A illustrates spectrographic images of 8  
29 216 inverted-U shaped syllables produced by a female pup. Fundamental frequency was tracked  
30 217 every 5 ms. The overlaid tracking result is shown in Figure 6B. Figure 6C illustrates the  
31 218 extracted fundamental frequency measurements. The most prominent frequency in those 8  
32 219 syllables was 60 kHz, the center frequency was 50.8kHz, minimum frequency was 37.7 and  
33 220 maximum frequency was 64.0 kHz (Figure 6C).  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 221 The frequency distribution of three *Mus* age classes are shown in Figure 6D. The frequency  
4  
5 222 distribution between pups and 90-day old mice (Kolmogorov-Smirnov,  $Z=0.96$ ;  $P>0.05$ ), and  
6  
7 223 between pups and 365-day old mice did not differ (Kolmogorov-Smirnov,  $Z=0.96$ ;  $P>0.05$ ). The  
8  
9 224 distribution was different between 90-day old and 365-day old mice (Kolmogorov-Smirnov,  
10  
11 225  $Z=1.54$ ;  $P<0.05$ ). Neither body mass nor ventral pouch size explain center (Pearson correlation,  $r$   
12  
13 226  $= -0.43$  and  $-0.32$ ,  $p > 0.05$ ), minimum ( $r = -0.90$  and  $-0.94$ ,  $p > 0.05$ ) or maximum fundamental  
14  
15 227 frequency ( $r = 0.10$  and  $-0.76$ ,  $p > 0.05$ ) (Figure 6D, E).

16  
17 228

## 229 Discussion

230

231 The results of our experiments suggest that shape and size changes of laryngeal cartilages  
232 (Riede et al. 2020) are accompanied by intralaryngeal airway changes. Specifically, although the  
233 ventral pouch maintains a similar size for the first year despite a massive increase in body mass  
234 and larynx size, it shrinks by approximately 50% between PND 365 and PND 755. Ventral  
235 pouch shape in pups and weanlings was also different from older animals. Both the remodeling  
236 of the laryngeal cartilaginous framework (Riede et al. 2020), the intralaryngeal soft tissue  
237 (Tateya et al. 2006) and the laryngeal airway (this study) inform our understanding of the  
238 functional morphology of the rodent larynx. We explore the implications of our findings for  
239 understanding high frequency whistle production in rodents and discuss factors that determine  
240 upper airway form and function.

241

242 *Implications for rodent aerodynamic whistle production*

1  
2  
3 243 The edge-tone model of whistle production (Riede et al. 2017) predicts that ventral pouch  
4  
5 244 size corresponds to vocal frequencies. This prediction is supported by large ventral pouch sizes  
6  
7 245 in *Baiomys* (Riede, Pasch 2020) and *Scotinomys* (Smith et al. 2021), both species that produce  
8  
9 246 unusually low-pitched ultrasonic whistles. Our findings herein further support predictions of the  
10  
11 247 edge-tone hypothesis; young and old mice had similar sized ventral pouch volumes and  
12  
13 248 overlapped in their spectral ranges. The absence of a quantifiable ventral pouch volume increase  
14  
15 249 during the first year is consistent with the overlap in spectral ranges between pups and older *Mus*  
16  
17 250 *musculus* (Grimsley et al. 2011) and other rodents (see Wiaderkiewicz et al. 2013; Hulsmann et  
18  
19 251 al. 2019; *Scotinomys*: Campbell et al. 2014). Although the functional significance of such  
20  
21 252 overlap is unclear (e.g. see Matrosova et al. 2007), active control of intralaryngeal airway  
22  
23 253 geometry by intrinsic muscles likely helps maintain a large spectral range (Riede 2011, 2013). In  
24  
25 254 our study, each of the three age classes achieved a considerable fundamental frequency range  
26  
27 255 (Figure 6).

32  
33 256 Validation of this hypothesis would benefit from comparisons of vocalizations from older  
34  
35 257 mice with reduced vocal pouch sizes. However, vocal activity declines in aging mice and we  
36  
37 258 were unable to record vocalizations in geriatric animals. In males, vocal decline has been  
38  
39 259 ascribed to hormonal changes and pheromonal processing (e.g., Kanno, Kikusui 2018; Nyby  
40  
41 260 2010). Our study indicates that morphological changes of the vocal organ and the upper airway  
42  
43 261 may also play a role. Further experimental manipulation of the laryngeal airway could provide  
44  
45 262 insight into whether morphological airway remodeling precedes or follows the behavioral  
46  
47 263 change.

50  
51 264  
52  
53 265 *Factors that determine phenotypic variation of larynx and upper airway*

1  
2  
3 266 Postnatal laryngeal airway remodeling is well-known in humans and is clinically relevant  
4  
5 267 (Wheeler et al. 2009). The intralaryngeal lumen develops from a conical shape to a more  
6  
7 268 cylindrical tube (Figure 7). In CD1 mice, airway remodeling resembles this change from a wide  
8  
9 269 intralaryngeal space narrowing caudally to a more uniform tubular lumen. The airway  
10  
11 270 remodeling is in part a consequence of the shape changes of the laryngeal cartilaginous  
12  
13 271 framework (e.g. the thyroid cartilage becomes wider in the latero-lateral dimension; Riede et al.  
14  
15 272 2020). Furthermore, soft tissue (Figure 5) accumulates in the laryngeal lumen being part of the  
16  
17 273 ventral pouch's boundary.

21  
22 274 The genetic and environmental factors determining the remodeling are likely complex. The  
23  
24 275 larynx is of mixed embryological origin (Tabler et al. 2017; Heude et al. 2018). Thyroid cartilage  
25  
26 276 originates from neural crest tissue and cricoid cartilage, arytenoid cartilages, epiglottis,  
27  
28 277 musculature and soft connective tissue (like vocal ligament) from mesoderm. The laryngeal  
29  
30 278 airway including the ventral pouch is therefore dependent on the development of both mesoderm  
31  
32 279 and neural crest tissue (Tabler et al. 2017; Heude et al. 2018).

35  
36 280 Environmental risk factors such as age and obesity may affect motor function and  
37  
38 281 neurochemical control of the upper airway with consequences for airway patency (e.g., Brennick  
39  
40 282 et al. 2009; Polotsky et al. 2011; Takahasi et al. 2020; Voituron et al. 2010). Airway remodeling  
41  
42 283 has been reported for obese rats and mice (Nakano et al. 2001, Ogasa et al. 2004; O'Donnell et  
43  
44 284 al. 1999; Polotsky et al. 2001, 2004). Those studies have focused on the pharyngeal area. The  
45  
46 285 current study demonstrates that the intralaryngeal airway is also remodeled throughout life of a  
47  
48 286 mouse. The mechanism by which risk factors affect this process remains to be seen. The  
49  
50 287 exploration of those factors seems worthwhile because the larynx has not only been implicated in  
51  
52 288 the etiology of sleep apnea and other problems associated with upper airway patency (e.g.,

1  
2  
3 289 Dedhia et al. 2014; Roy et al. 2021) but its evolvability remains speculative (Kingsley et al.  
4  
5 290 2018). The current study illustrates also a methodological approach to quantify shape changes in  
6  
7 291 the upper respiratory airway.  
8  
9  
10 292

11  
12 293 *Caveats*  
13  
14

15 294 We found considerable among-individual variation in laryngeal size and shape within age  
16  
17 295 classes (Table 1). The variation within each class remains unexplained, but tissue preparation  
18  
19 296 may have contributed. The current study used fixed tissue to quantify laryngeal airway  
20  
21 297 dimensions. Future studies should include laryngeal airway analyses *in vivo*. However, even if  
22  
23 298 one takes a fixation-related shrinkage into account, any deformation is countered by the cartilage  
24  
25 299 enforced structure of the larynx and it should apply equally to all age classes. However, we  
26  
27 300 expect this effect to be small on the overall results for two reasons. First, the constancy of the  
28  
29 301 ventral pouch volume is associated with massive tissue remodeling inside the larynx (Figure 5)  
30  
31 302 in the first year of life. Second, the thyroid cartilage experiences shape changes between PND  
32  
33 303 365 and 755 (Figure 5) which is associated with the shrinkage of the ventral pouch at old age.  
34  
35  
36

37 304 Finally, many of the 1-year old and 2-year old adult mice were retired breeders, i.e. they have  
38  
39 305 gone through mating and pregnancy related hormonal changes. Since estrogen, progesterone, and  
40  
41 306 testosterone effect cartilage remodeling (e.g., DaSilva et al. 1993; Richette et al. 2003; Johnston  
42  
43 307 et al. 2021; Montoya-Sanhueza et al. 2021), formal assessment it remains to be seen how large  
44  
45 308 this effect is on the post-puberty larynx.  
46  
47  
48 309  
49  
50

51 310 *Conclusion*  
52  
53  
54  
55  
56  
57  
58  
59  
60

311 Our findings herein suggest an alternative mechanism to remove constraints on the allometric  
312 relationships between size and spectral range. The size of a musical instrument is in many cases  
313 a good predictor of its spectral range (i.e., fundamental frequency and resonant frequency range).  
314 For ultrasonic whistling in rodents, it seems that remodeling of the laryngeal airway and the  
315 evolution of a novel structure (ventral pouch) enables extension of the spectral range of vocal  
316 signals. Together with how the instrument is played, i.e. the neural control which coordinates  
317 movements of the vocal organ (e.g., Nieder, Mooney 2020; Fernandez-Vargas et al. 2021), the  
318 constancy of ventral pouch lumen provides a compelling example for size-independency of the  
319 spectral range.

320 The constraints responsible for maintaining laryngeal airway features could be two-fold.  
321 First, the functional morphology required to produce whistles seems to depend on the integrity of  
322 the ventral pouch and its active control of shape and lumen (Riede et al. 2017). Second, changes  
323 in laryngeal airway likely also affect normal respiratory airflow patterns with subsequent  
324 consequences for gas exchange and penetrance of pathogens (e.g., Sagartz et al. 1992; Renne et  
325 al. 1992). The reasons for the static nature of the ventral pouch remain to be further explored.

326

328 **References**

329 Abdelkafy WM, Smith JQ, Henriquez OA, et al. Age-related changes in the murine larynx:  
330 initial validation of a mouse model. *Ann Otol Rhinol Laryngol* 2007; 116: 618– 622.

331 Adams, D. C., Collyer, M. L., Kaliontzopoulou, A., and Sherratt, E. (2017). Geomorph: Software  
332 for geometric morphometric analyses. R package version 3.0.5. (<https://cran.r-project.org/package=geomorph>.)

333

334 Aufdemorte, TB, Sheridan, PJ, Holt, GR 1983. Autoradiographic evidence of sex steroid  
335 receptors in the laryngeal tissues of the baboon (*Papio cynocephalus*). *Laryngoscope*; 93:  
336 1607–11.

337 Bosma, J.F. (1985). Postnatal ontogeny of performance of the pharynx, larynx, and mouth.  
338 *American Review of Respiratory Diseases*. 131, S10–S15.

339 Brennick, MJ , Pack, AI , Ko, K , Kim, E , Pickup, S , Maislin, G , Schwab, RJ. (2009). Altered  
340 upper airway and soft tissue structures in the New Zealand Obese mouse. *Am J Respir Crit  
341 Care Med* 179, 158–169.

342 Brudzynski, S.M. (2018). Handbook of Ultrasonic Vocalization. A Window into the Emotional  
343 Brain. Volume 25; Academic Press.

344 Campbell, P., Pasch, B., Warren, A.L., Phelps, S.M. (2014). Vocal ontogeny in neotropical  
345 singing mice (*Scotinomys*). *PloS One* 9, e113628

346 Charlton, B. D. & Reby, D. (2016). The evolution of acoustic size exaggeration in terrestrial  
347 mammals. *Nature Communications* 7, 12739.

348 Coltman, J. W. (1976). Jet drive mechanisms in edge tones and organ pipes. *The Journal of the  
349 Acoustical Society of America*, 60(3), 725–733.

350 Da Silva, J.A., Larbre, J.P., Spector, T.D., Perry, L.A., Scott, D.L., Willoughby, D.A. (1993).  
351 Protective effect of androgens against inflammation induced cartilage degradation in male  
352 rodents. *Annals of the Rheumatic Diseases* 52, 285-291.

353 Dedhia, R.C., Rosen, C.A., Soose, R.J. (2013). What is the role of the larynx in adult obstructive  
354 sleep apnea. *The Laryngoscope* 124, 1029-1034.

355 Dent, M.L., Fay, R.R., Popper, A.N. (2018). Rodent Bioacoustics. *Springer Handbook of  
356 Auditory Research* book series (SHAR, volume 67).

1  
2  
3 357 Eckel, H.E., Koebke, J., Sittel, C., Sprinzl, G.M., Potoschnig, C., Stennert, E. (1999).  
4  
5 358 Morphology of the human larynx during the first five years of life studied on whole organ  
6  
7 359 serial sections. *Annals of Otology, Rhinology & Laryngology* 108, 232–238.  
8  
9 360 Efremova, K.O., Frey, R., Volodin, I.A., Fritsch, G., Soldatova, N.V., Volodina, E.V. (2016).  
10  
11 361 The postnatal ontogeny of the sexually dimorphic vocal apparatus in goitred gazelles  
12 362 (*Gazella subgutturosa*). *J Morphology* 277, 826-844.  
13  
14 363 Fernandez-Vargas, M., Riede, T., Pasch, B. (2021). Mechanisms and constraints underlying  
15  
16 acoustic variation in rodents: emerging themes and future directions. *Animal Behavior*, in  
17  
18 365 press.  
19  
20 366 Filho JAX, Tsuji DH, Nascimento PH, Sennes LU. Histologic changes in human vocal folds  
21  
22 367 correlated with aging: a histomorphometric study. *Ann Otol rhinol Laryngol* 2003; 112: 894–  
23 368 899.  
24  
25 369 Fletcher, N. H. (1979). Air Flow and Sound Generation in Musical Wind Instruments. *Annual*  
26  
27 370 *Review of Fluid Mechanics*, 11, 123–146.  
28  
29 371 Fletcher, N. H. (2004). A simple frequency-scaling rule for animal communication. *J. Acoust.*  
30  
31 372 *Soc. Amer.* 115, 2334-2338.  
32  
33 373 Frey, R., Riede, T. (2013). The anatomy of vocal divergence in North American elk and  
34  
35 374 European red deer. *J. Morphology* 274, 307-319.  
36  
37 375 Gillooly, J.F., Ophir, A.G. (2010). The energetic basis of acoustic communication. *Proceedings*  
38  
39 376 *of the Royal Society B* 277, 1325–1331.  
40  
41 377 Gower, J.C. (1975). Generalized procrustes analysis. *Psychometrika* 40, 33-51.  
42  
43 378 Grimsley, J.M.S., Monaghan, J.J.M., Wenstrup, J.J. (2011). Development of Social  
44  
45 379 Vocalizations in Mice. *PLoS One* 6, e17460.  
46  
47 380 Grimsley, J., Gadziola, M., Wenstrup, J. (2013). Automated classification of mouse pup isolation  
48  
49 381 syllables: from cluster analysis to an Excel-based “mouse pup syllable classification  
50  
51 382 calculator”. *Front. Behav. Neurosci.* 6, 10.3389.  
52  
53 383 Guerra, M.J., Ryan, M.J., Cannatella, D.C. (2014). Ontogeny of sexual dimorphism in the larynx  
54  
55 384 of the Túngara Frog, *Physalaemus pustulosus*. *Copeia* 2014, 123-129.  
56  
57 385 Hammond TH, Gray SD, Bulter J, Zhou R, Hammond E. Age- and gender-related elastin  
58  
59 386 distribution changes in human vocal fold. *Otolaryngol Head Neck Surg* 1998; 119: 314– 322.  
60

1  
2  
3 387 Hartnick, C.J., Rehbar, R., Prasad, V. (2005). Development and maturation of the pediatric  
4 human vocal fold lamina propria. *The Laryngoscope* 115, 4-15.  
5  
6 389 Hauser, M.D., Ybarra, M.S. (1994). The role of lip configuration in monkey vocalizations:  
7 experiments using xylocaine as a nerve block. *Brain and language* 46, 232-244.  
8  
9 391 Heude, E., Tesarova, M., Sefton, E. M., Jullian, E., Adachi, N., Grimaldi, A., Zikmund, T.,  
10 Kaiser, J., Kardon, G., Kelly, R. G., Tajbakhsh, S. (2018). Unique morphogenetic signatures  
11 define mammalian neck muscles and associated connective tissues. *eLife*, 7, e40179.  
12  
13 394 Heylen, L., Wuyts, F.L., Mertens, F., Bodt, M.D., Pattyn, J., Croux, C. and Heyning, P.H.V.D.,  
14 1998. Evaluation of the vocal performance of children using a voice range profile index.  
15  
16 396 *Journal of Speech, Language, and Hearing Research*, 41(2), pp.232-238.  
17  
18 397 Hirano M, Sato K, Nakashima T. Fibroblasts in geriatric vocal fold mucosa. *Acta Otolaryngol*  
19 2000; 120: 336– 340.  
20  
21 399 Hülsmann, S., Oke, Y., Mesuret, G., Latal, A. T., Fortuna, M. G., Niebert, M. (2019). The  
22 postnatal development of ultrasonic vocalization-associated breathing is altered in glycine  
23 transporter 2-deficient mice. *J. Physiol.* 597, 173–191.  
24  
25 402 Ishii, K., Yamashita, K., Akita, M., Hirose, H. (2000). Age-related development of the  
26 arrangement of connective tissue fibers in the lamina propria of the human vocal fold. *Ann*  
27  
28 404 *Otol Rhinol Laryngol* 109, 1055-1064.  
29  
30 405 Johnston, R.A., Vullioud, P., Thorley, J., Kirveslahti, H., Shen, L., Mukherjee, S., Karner, C.M.,  
31 Clutten-Brock, T., Tung, J. (2021). Morphological and genomic shifts in mole-rat ‘queens’  
32 increase fecundity but reduce skeletal integrity. *eLife* 10, e65760.  
33  
34 408 Kahane, J. C. (1982) Growth of the human prepubertal and pubertal larynx. *Journal of Speech*  
35 and Hearing Research 25, 446-455.  
36  
37 410 Kahane JC. (1987) Connective tissue changes in the larynx and their effects on voice. *J Voice*; 1:  
38 27– 30  
39  
40 412 Kanno K, Kikusui T. (2018). Effect of sociosexual experience and aging on number of courtship  
41 ultrasonic vocalizations in male mice. *Zoolod Sci.* 35, 208–214.  
42  
43 414 Kingsley, E.P., Eliason, C.M., Riede, T., Li, Z., Hiscock, T.W., Farnsworth, M., Thomson, S.L.,  
44 Goller, F., Tabin, C.J., Clarke, J.A. (2018). Identity and novelty in the avian syrinx. *PNAS*  
45 115, 10209–10217.  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 417 Lingle, S., Wyman, M.T., Kotrba, R., Teichroeb, L.J., Romanow, C.A. (2012). What makes a cry  
4 418 a cry? A review of infant distress vocalizations. *Current Zoology* 58, 698-726.  
5  
6 419 Liu, R.C., Miller, K.D., Merzenich, M.M., Schreiner, C.E. (2003). Acoustic variability and  
7 420 distinguishability among mouse ultrasound vocalizations. *J Acoust Soc Am* 114, 3412-3422.  
8  
9 421 Lungova, V., Verheyden, J.M., Herriges, J., Sun, X., Thibeault, S.L. (2015). Ontogeny of the  
10 422 mouse vocal fold epithelium. *Developmental Biology* 399, 263-282.  
11  
12 423 Mahrt, E., Agarwal, A., Perkel, D., Portfors, C., Elemans, C.P. (2016). Mice produce ultrasonic  
13 424 vocalizations by intra-laryngeal planar impinging jets. *Curr. Biol.* 26, R880-R881.  
14  
15 425 Matrosova, V.A., Volodin, I.A., Volodina, E.V. (2007). Pups crying bass: vocal adaptation for  
16 426 avoidance of age-dependent predation risk in ground squirrels? *Behav Ecol Sociobiol* 62,  
17 427 181-191.  
18  
19 428 Montoya-Sanhueza G, Bennett, N.C., Oosthuizen, M.K., Dengler-Crish, C.M., Chinsamy, A.  
20 429 (2021). Bone remodeling in the longest living rodent, the naked mole rat: Interelement  
21 430 variation and the effects of reproduction. *J. Anatomy* 239, 81-100.  
22  
23 431 Nakano, H., Magalang, U.J., Lee, S.D., Krasney, J.A., Farkas, G.A. (2001). Serotonergic  
24 432 modulation of ventilation and upper airway stability in obese Zucker rats. *Am J Respir Crit  
25 433 Care Med* 163, 1191-1197.  
26  
27 434 Nieder, A., Mooney, R. (2020). The neurobiology of innate, volitional and learned vocalizations  
28 435 in mammals and birds. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 375, 20190054.  
29  
30 436 Nishimura, T., Mikami, A. Suzuki, J., Matsuzawa, T. (2003). Descent of the larynx in  
31 437 chimpanzee infants. *Proceedings of the National Academy of Sciences* 100, 6930-33.  
32  
33 438 Nyby, J.G. (2010). Adult house mouse (*Mus musculus*) ultrasonic calls: hormonal and  
34 439 pheromonal regulation. In: Brudzynski SM, editor. *Handbook of Mammalian  
35 440 Vocalization—An Integrative Neuroscience Approach*: Elsevier Academic Press. p. 303-  
36 441 310.  
37  
38 442 O'Donnell, C.P., Schaub, C.D., Haines, A.S., Berkowitz, D.E., Tankersley, C.G., Schwartz,  
39 443 A.R., Smith, P.L. (1999). Leptin prevents respiratory depression in obesity. *Am J Respir  
40 444 Crit Care Med* 159, 1477-1484.  
41  
42 445 Ogasa, T., Ray, A.D., Michlin, C.P., Farkas, G.A., Grant, B.J., Magalang, U.J. (2004). Systemic  
43 446 administration of serotonin 2A/2C agonist improves upper airway stability in Zucker rats.  
44 447 *Am J Respir Crit Care Med* 170, 804-810.  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 448 O'Leary, M.A., Kaufman, S.G. (2012). MorphoBank 3.0: Web application for morphological  
4 449 phylogenetics and taxonomy.  
5  
6 450 Pasch, B., Tokuda, I.T., and Riede, T. (2017). Grasshopper mice employ distinct vocal  
7 451 production mechanisms in different social contexts. *Proc. Roy. Soc. Lond. B*, 284, 20171158.  
8  
9 452 Polotsky, V.Y., Smaldone, M.C., Scharf, M.T., Li, J., Tankersley, C.G., Smith, P.L., Schwartz,  
10 453 A.R., O'Donnell, C.P. (2004). Impact of interrupted leptin pathways on ventilatory control.  
11 454 *J Appl Physiol* 96, 991–998.  
12  
13 455 Polotsky, V.Y., Wilson, J.A., Smaldone, M.C., Haines, A.S., Hurn, P.D., Tankersley, C.G.,  
14 456 Smith, P.L., Schwartz, A.R., O'Donnell, C.P. (2001). Female gender exacerbates  
15 457 respiratory depression in leptin-deficient obesity. *Am J Respir Crit Care Med* 164, 1470–  
16 458 1475.  
17  
18 459 Polotsky, M., Elsayed-Ahmed, A.S., Pichard, L.E., Richardson, R.A., Smith, P.L., Schneider, H.,  
19 460 Kirkness, J.P., Polotsky, V.Y., Schwartz, A.R. (2011). Effect of age and weight on upper  
20 461 airway function in a mouse model. *J Appl Physiol* 111, 696–703.  
21  
22 462 Reby, D., McComb, K. (2003). Anatomical constraints generate honesty: Acoustic cues to age  
23 463 and weight in the roars of red deer stags. *Animal Behaviour* 65, 519–30.  
24  
25 464 Renne, R.A., Gideon, K.M., Miller, R.A., Mellick, P.W., Grumbein, S.L. (1992). Histologic  
26 465 methods and interspecies variations in the laryngeal histology of F344/N rats and B6C3F1  
27 466 mice. *Toxicol Pathol* 20, 44-51.  
28  
29 467 Richette, P.R., Corvol, M., Bardin, T. (2003). Estrogens, cartilage, and osteoarthritis. *Joint Bone*  
30 468 *Spine* 70, 257-262.  
31  
32 469 Riede, T. (2011). Subglottal pressure, tracheal airflow and intrinsic laryngeal muscle activity  
33 470 during rat ultrasound vocalization. *Journal of Neurophysiology* 106, 2580-2592.  
34  
35 471 Riede, T., Tokuda, I.T., Farmer, C.G. (2011). Subglottal pressure and fundamental frequency  
36 472 control in contact calls of juvenile *Alligator mississippiensis*. *Journal of Experimental*  
37 473 *Biology* 214, 3082-3095.  
38  
39 474 Riede, T. (2013). Call type specific motor patterns in rat ultrasound vocalization. *Journal of*  
40 475 *Experimental Zoology A* 319, 213–224.  
41  
42 476 Riede, T. (2018). Peripheral vocal motor dynamics and combinatorial call complexity of  
43 477 ultrasonic vocal production in rats. In *Handbook of Ultrasonic Vocalization*, edited by Stefan  
44 478 M. Brudzynski; Elsevier series '*Handbook of Behavioral Neuroscience*', Vol 25, pp. 45-60.  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 479 Riede, T., Zhao, Y., LeDoux, M.S. (2015). Vocal development in dystonic rats. *Physiological*  
4 480 *Reports* 3, e12350.  
5  
6 481 Riede, T., Borgard, H., Pasch, B. (2017). Laryngeal airway reconstruction indicates rodent  
7 482 ultrasonic vocalizations are produced by an edge tone mechanism. *Royal Society Open*  
8 483 *Science* 4, 170976.  
9  
10 484 Riede, T., Brown, C. (2013). Body size, vocal fold length and fundamental frequency -  
11 485 Implications for mammal vocal communication. *Nova Acta Leopoldina NF* 111 380: 1–20.  
12  
13 486 Riede, T., Coyne, M., Tafoya, B., Baab, K.L. (2020). Postnatal development of the mouse larynx  
14 487 – negative allometry, age-dependent shape changes, morphological integration and a size-  
15 488 dependent spectral feature. *J Speech Lang Hear Res.* 63, 2680-2694.  
16  
17 489 Roberts, L.H. (1975). The rodent ultrasound production mechanism. *Ultrasonics*, 13, 83–88.  
18  
19 490 Rohlf, F.J., Slice, D. (1990). Extension of the Procrustes method for the optimal superimposition  
20 491 of landmarks. *Systematic Zoology* 39, 40-59.  
21  
22 492 Roy, N., Merrill, R.M., Pierce, J., Sundar, K.M. (2021). Evidence of possible irritable larynx  
23 493 syndrome in obstructive sleep apnea: an epidemiologic approach. *J Voice*  
24 494 <https://doi.org/10.1016/j.jvoice.2020.02.006>  
25  
26 495 Saez, SJ, Martin, PM 1976. Androgen receptors in human pharyngo-laryngeal mucosa and  
27 496 pharyngo-laryngeal epithelium. *J Steroid Biochem*; 7: 919–21.  
28  
29 497 Sagartz, J.W., Madarasz, A.J., Forsell, M.A., Burger, G.T., Ayres, P.H., Coggins, C.R. (1992).  
30 498 Histological sectioning of the rodent larynx for inhalation toxicity testing. *Toxicol Pathol* 20,  
31 499 118-121.  
32  
33 500 Schindelin, J., Arganda-Carreras, I., Frise, E. (2012) Fiji: an open-source platform for biological-  
34 501 image analysis. *Nature methods* 9, 676-682.  
35  
36 502 Shelley, E.L., Blumstein, D.T. (2005). The evolution of vocal alarm communication in rodents.  
37 503 *Behavioral Ecology* 16, 169–177.  
38  
39 504 Siupsinskiene, N. and Lycke, H., 2011. Effects of vocal training on singing and speaking voice  
40 505 characteristics in vocally healthy adults and children based on choral and nonchoral data.  
41 506 *Journal of voice*, 25(4), pp.e177-e189.  
42  
43 507 Smith, S.K., Burkhard, T.T., Phelps, S.M. (2021). A comparative characterization of laryngeal  
44 508 anatomy 1086 in the singing mouse. *J Anatomy* 238, 308-320.  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 509 Stevenson, R.D., Allaire, J.H. (1991). The development of normal feeding and swallowing.  
4  
5 510 *Pediatric Clinics of North America* 38, 1439–53  
6  
7 511 Tabler, J. M., Rigney, M. M., Berman, G. J., Gopalakrishnan, S., Heude, E., Al-Lami, H. A.,  
8  
9 512 Yannakoudakis, B. Z., Fitch, R. D., Carter, C., Vokes, S., Liu, K. J., Tajbakhsh, S., Egnor, S.  
10  
11 513 E. R., & Wallingford, J. B. (2017). Cilia-mediated Hedgehog signaling controls form and  
12  
13 514 function in the mammalian larynx. *elife*, 6, e19153.  
14  
15 515 Takahashi, T., Sakai, N., Iwasaki, T. (2020). Detailed evaluation of the upper airway in the  
16  
17 516 Dp(16)1Yey mouse model of Down syndrome. *Sci Rep* 10, 21323.  
18  
19 517 Tateya T, Tateya I, Munoz-del-Rio A, Bless DM 2006. Postnatal development of rat vocal folds.  
20  
21 518 *Annals of Otology, Rhinology & Laryngology* 115, 215-224.  
22  
23 519 Tembrock, G. (1996). Akustische Kommunikation bei Säugetieren. Darmstadt, Germany:  
24  
25 520 Wissenschaftliche Buchgesellschaft.  
26  
27 521 Titze, I.R., 1989. Physiologic and acoustic differences between male and female voices. *The*  
28  
29 522 *Journal of the Acoustical Society of America*, 85(4), pp.1699-1707.  
30  
31 523 Titze, I., Riede, T., Mau, T. (2016). Predicting Achievable fundamental frequency ranges in  
32  
33 524 vocalization across species. *PLoS Comput. Biol.* 12, e1004907.  
34  
35 525 Veney, S.L., Wade, J. (2005). Post-hatching syrinx development in the zebra finch: an analysis  
36  
37 526 of androgen receptor, aromatase, estrogen receptor  $\alpha$  and estrogen receptor  $\beta$  mRNAs.  
38  
39 527 *Journal of Comparative Physiology A* 191, 97-104.  
40  
41 528 Voituron, N., Clément, M., Dutschmann, M., Hilaire, G. (2020). Physiological definition of  
42  
43 529 upper airway obstructions in mouse model for Rett syndrome. *Respiratory Physiology &*  
44  
45 530 *Neurobiology* 173, 146-156.  
46  
47 531 Volodin, I.A., Zaytseva, A.S., Ilchenko, O.G., Volodina, E.V. (2015). Small mammals ignore  
48  
49 532 common rules: A comparison of vocal repertoires and the acoustics between pup and adult  
50  
51 533 Piebald shrews *Diplomesodon pulchellum*. *Ethology* 121, 103-115.  
52  
53 534 Wade, J., Buhlman, L., Swender, D. (2002). Post-hatching hormonal modulation of a sexually  
54  
55 535 dimorphic neuromuscular system controlling song in zebra finches. *Brain research* 929, 191-  
56  
57 536 201.  
58  
59 537 Wheeler, M., Cote, C.J., Todres, I.D. (2009). The Pediatric Airway. In Cote CJ, Lerman J,  
60  
61 538 Todres ID *et al. eds.* A Practice of Anaesthesia for Infants and Children, 4<sup>th</sup> ed., Philadelphia,  
62  
63 PA: Saunders Elsevier, pp. 237–273.

1  
2  
3 540 Wiaderkiewicz, J., Główacka, M., Grabowska, M., Barski, J.J. (2013). Ultrasonic vocalizations  
4 (USV) in the three standard laboratory mouse strains: Developmental analysis. *Acta*  
5  
6 541 *Neurobiol Exp.* 73, 557–563.  
7  
8 543 Yurlova, D.D., Volodin, I.A., Ilchenko, O.G., Volodina, E.V. (2020). Rapid development of  
9 mature vocal patterns of ultrasonic calls in a fast-growing rodent, the yellow steppe lemming  
10 (Eolagurus luteus). *PLoS ONE* 15, e0228892.  
11  
12 545 Zaytseva, A.S., Volodin, I.A., Ilchenko, O.G., Volodina, E.V. (2019). Ultrasonic vocalization of  
13 pup and adult fat-tailed gerbils (*Pachyuromys duprasi*). *PLoS ONE* 14, e0219749.  
14  
15 548 Zhang, Y.S., Takahashi, D.Y., Liao, D.A., Ghazanfar, A.A., Elemans, C.P.H. (2019). Vocal state  
16 change through laryngeal development. *Nature communications* 10, 1-12.  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

Review Copy

1  
2  
3 551 **Acknowledgement:** Financial support for this work provided by the National Science  
4 Foundation IOS # 1754332 and by the NIDDK Mouse Metabolic Phenotyping Centers  
5 (RRID:SCR\_008997, MMPC, [www.mmpc.org](http://www.mmpc.org)) under the MICROMouse Funding Program,  
6 grants DK076169.  
7  
8 554  
9

10 555  
11  
12 556 **Data availability:** Derived 3D surfaces of airways have been archived at Morphobank, project #  
13  
14 557 P4018.  
15  
16 558  
17  
18 559 **Author contributions:** TD, BP and TR conceived and designed the study. TD lead the data  
19 analysis. BP, TR conducted the statistical analyses and drafted the manuscript. All authors  
20  
21 560 provided edits on the drafts of the manuscript and gave the final approval for publication.  
22  
23 561  
24  
25 562  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 564 **Table 1:** Averages and standard deviations of linear measures and volumes of the ventral pouch  
4  
5 565 as well as a volume ratio in five age classes of CD 1 mice. Six animals (3 per sex) were  
6  
7 566 analyzed in each age class.  
8  
9  
10 567

| Age class      | Body mass<br>(g) | LL (μm)   | VD (μm)   | CC (μm)  | VP volume<br>(mm <sup>3</sup> ) | B-Box volume<br>(mm <sup>3</sup> ) | B-Box/VP ratio<br>(%) |
|----------------|------------------|-----------|-----------|----------|---------------------------------|------------------------------------|-----------------------|
| <b>PND 2</b>   | M: 4.0±1.7       | 681±13.0  | 311±83.1  | 493±14.1 | 0.0609±0.007                    | 3.7±1.7                            | 1.8±0.5               |
|                | F: 5.0±1.7       | 689±14.7  | 326±45.0  | 519±21.4 | 0.0706±0.007                    | 4.6±1.0                            | 1.6±0.3               |
| <b>PND 21</b>  | M: 13.3±0.6      | 680±96.6  | 346±58.4  | 565±39.1 | 0.0721±0.015                    | 10.7±0.7                           | 0.7±0.2               |
|                | F: 13.3±2.3      | 690±72.3  | 331±79.4  | 575±23.0 | 0.0674±0.007                    | 9.1±0.9                            | 0.7±0.1               |
| <b>PND 90</b>  | M: 29.7±5.0      | 547±40.6  | 316±68.8  | 676±45.4 | 0.0484±0.011                    | 16.7±1.5                           | 0.3±0.05              |
|                | F: 40.3±2.8      | 615±135.5 | 332±17.8  | 644±99.3 | 0.0626±0.030                    | 18.0±3.2                           | 0.4±0.2               |
| <b>PND 365</b> | M: 60.3±4.0      | 694±39.2  | 308.7±6.8 | 725±60.9 | 0.0656±0.010                    | 20.0±0.3                           | 0.3±0.05              |
|                | F: 52.0±3.6      | 599±68.5  | 351±30.6  | 785±54.0 | 0.0524±0.014                    | 19.0±0.8                           | 0.3±0.06              |
| <b>PND 755</b> | M: 55.0±11.3     | 505±43.1  | 183±83.1  | 609±92.5 | 0.0325±0.004                    | 14.6±1.2                           | 0.2±0.01              |
|                | F: 49.0±18.2     | 451±98.2  | 276±17.0  | 654±69.6 | 0.0438±0.012                    | 14.3±1.2                           | 0.3±0.1               |

35 568  
36  
37 569 PND, postnatal day; LL, largest latero-lateral distance of the ventral pouch; VD, the  
38  
39 570 distance between the most ventral point and a line through the alar edge which runs parallel to  
40  
41 571 the tracheal center line; CC, largest rostro-caudal dimension of the ventral pouch; B-Box,  
42  
43 572 bounding box of the thyroid cartilage; VP, ventral pouch.  
44  
45  
46 573  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 575 **Figure 1:** Size of the ventral pouch (A, ventral view; B, mid-sagittal view). In order to estimate  
4  
5 576 the size of the ventral pouch, three linear distances and its volume were measured. The three  
6  
7 577 measurements were the distance between glottal and alar edge (CC), the largest latero-lateral  
8  
9 578 distance (LL), and the distance between the most ventral point and a line described by CC  
10  
11 579 (VD).  
12  
13  
14  
15 580  
16  
17 581  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

Review Copy

1  
2  
3 583  
4

5 584 **Figure 2:** Ventral view and mid-sagittal sections of *Mus musculus* airway at 2 (A), 21 (B), 90  
6 585 (C), 365 (D) and 755 (E) days of age. Three-dimensional renditions of the laryngeal airway. The  
7 586 thyroid cartilage is overlaid as transparent object. The ventral pouch (blue) is a small pocket-like  
8 587 expansion from the laryngeal airway which is positioned rostral from the vocal folds (white  
9 588 dashed line) but still inside the laryngeal lumen. The outlines of a box around the thyroid  
10 589 cartilage represent the cartilage's *bounding box* which was used as a proxy for the size of the  
11 590 thyroid cartilage. Note the shape difference of the thyroid cartilage. In pups it demonstrates a  
12 591 narrow cranial opening, but in adults the cranial opening is much wider, divergent (Riede et al.  
13 592 2020). Black reference bars in lower right corner represent 500 micrometers.

1  
2  
3 594  
4

5 595 **Figure 3 A and B:** Three-dimensional laryngeal airway representation of CD1 mice from four  
6 age classes (2 day old pups, 21 day old weanlings, 90 day old young adults and 365 day old  
7 adults). The ventral pouch is relatively large and sphere-like in pups (A), but increasingly flattens  
8 in weanlings (B), young (C) and old (D) adults.  
9  
10 597  
11  
12 598  
13

14 599  
15  
16

17 600  
18

19 601  
20

21 602 **Figure 3C and D:** *cont.*  
22

23 603  
24

25 604  
26

27 605 **Figure 3E:** *cont.*  
28

29 606  
30

31 32  
33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

1  
2  
3 608  
4

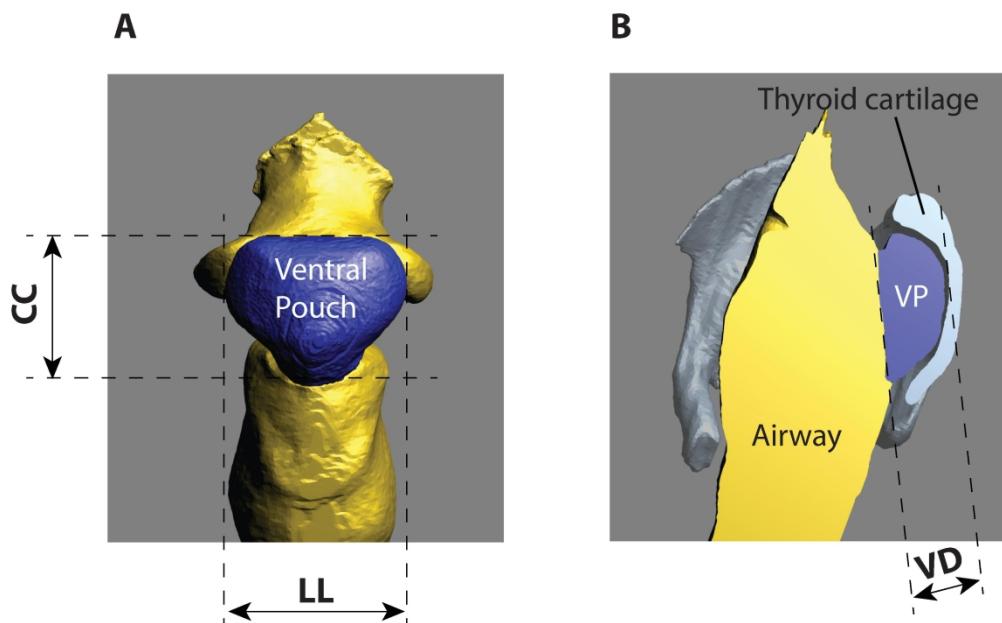
5 609 **Figure 4:** Size and shape development of the ventral pouch and of the bounding box of the  
6 thyroid cartilage throughout the first year of CD1 mice. Measurements were taken in five age  
7 classes (2 days; 21 days; 90 days; 365 days, 755 days) from six individuals (3/sex) in each class.  
8 611  
9 612 **A, B and C:** Body mass and three linear measures of the ventral pouch. **D:** The thyroid cartilage  
10 613 (described by its bounding box) increases with overall body size. **E:** Ventral pouch (VP) volume  
11 614 does not increase with body mass. **F:** The ratio between the volumes of the bounding box and the  
12 615 ventral pouch decreases with age. **G:** PCA ordinations summarizing major axes of shape  
13 616 variation for the ventral pouch. **H:** Note the almost linear developmental trajectory of the ventral  
14 617 pouch shape. A substantial portion of the shape variation is explained by first principal  
15 618 component (56%).  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 620  
4

5 621 **Figure 5:** Mid-organ coronal sections of the larynx of four mice of different ages (in *postnatal*  
6 622 *days*). In pups, the supraglottal airway, including the ventral pouch fills most of the laryngeal  
7 623 lumen. In older mice laryngeal size increases but the ventral pouch remains rather small. The  
8 624 laryngeal lumen is now filled with soft tissue. The white bar in each image indicates a 0.5 mm  
9 625 distance. Note the dorso-ventral 'flattening' of the thyroid cartilage from PND 365 to 755.

10 626  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

Review Copy


1  
2  
3 628  
4

5 629 **Figure 6:** Occurrence of fundamental frequencies in high-frequency whistle calls of three age  
6 classes of *Mus musculus*. **A:** Time series and spectrogram of eight inverted-U syllables produced  
7  
8 630 by a female pup. **B:** fundamental frequency was tracked with PRAAT's tracking tool and then  
9  
10 631 exported (**C**). For histogram generation, fundamental frequency was extracted every 5ms and  
11  
12 632 placed in 500 Hz bins. **D:** Fundamental frequency occurrence in syllables from six pups (PND  
13  
14 633 2), from three young adults (PND 90) and five adults (PND 365) were lumped and plotted in  
15  
16 634 histograms. Fundamental frequency occurrence was quantified by three frequency variables  
17  
18 635 (center F0; minimum and maximum F0). **E:** Strong associations were neither found with body  
19  
20 636 mass nor with ventral pouch (VP) volume. Note that the fundamental frequency range between  
21  
22 637 the three age classes overlap.  
23  
24  
25 638  
26  
27  
28 639  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3 641  
4

5 642 **Figure 7:** Schematic of laryngeal airways shapes in newborn humans (redrawn after Wheeler et  
6 al. 2009) and laboratory mice. The pediatric airway was described as conical in shape. The  
7 relatively large ventral pouch lumen in the mouse pup, gives its airway a similar wide intra-  
8 laryngeal lumen which narrows down into the tracheal airway.  
9  
10 644  
11  
12 645  
13  
14 646  
15  
16  
17 647  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

Review Copy



156x96mm (600 x 600 DPI)

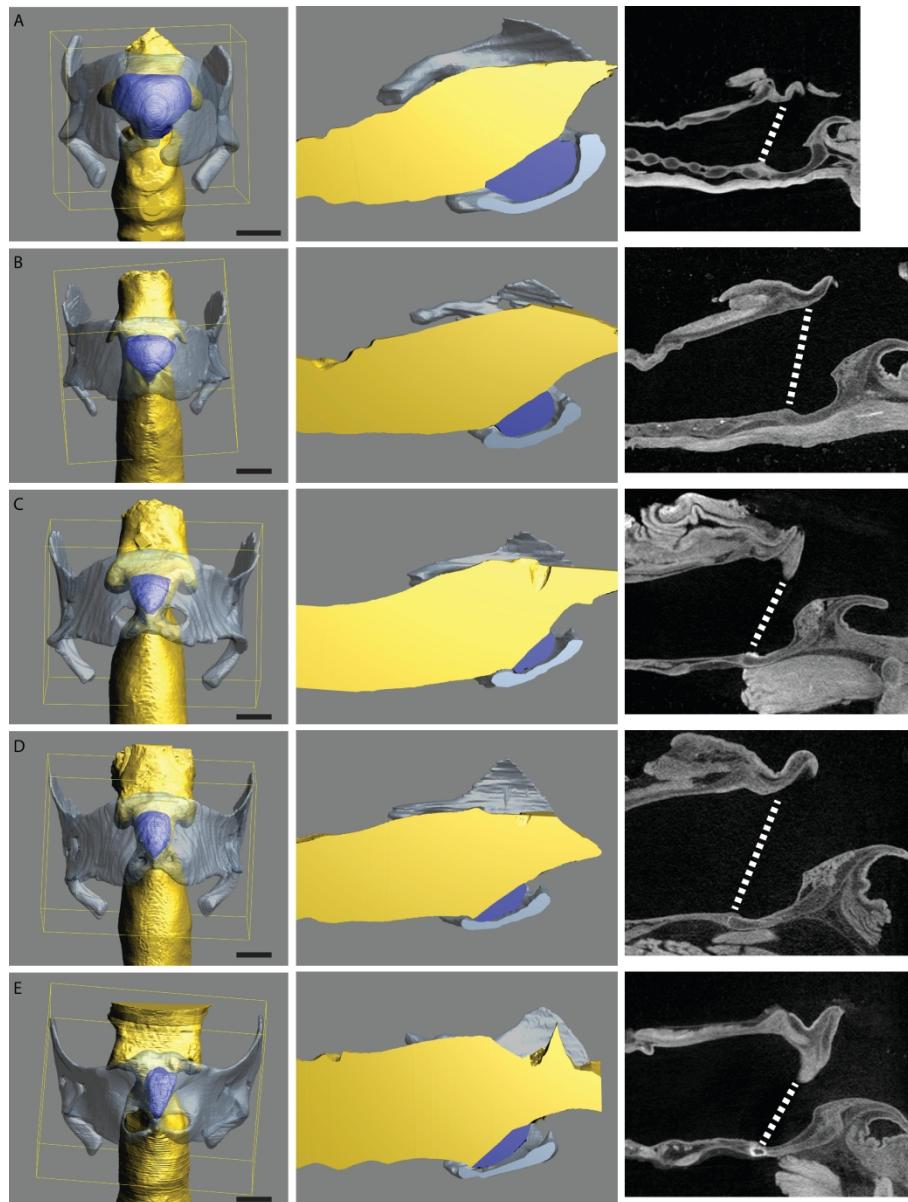



Figure 2

191x253mm (600 x 600 DPI)

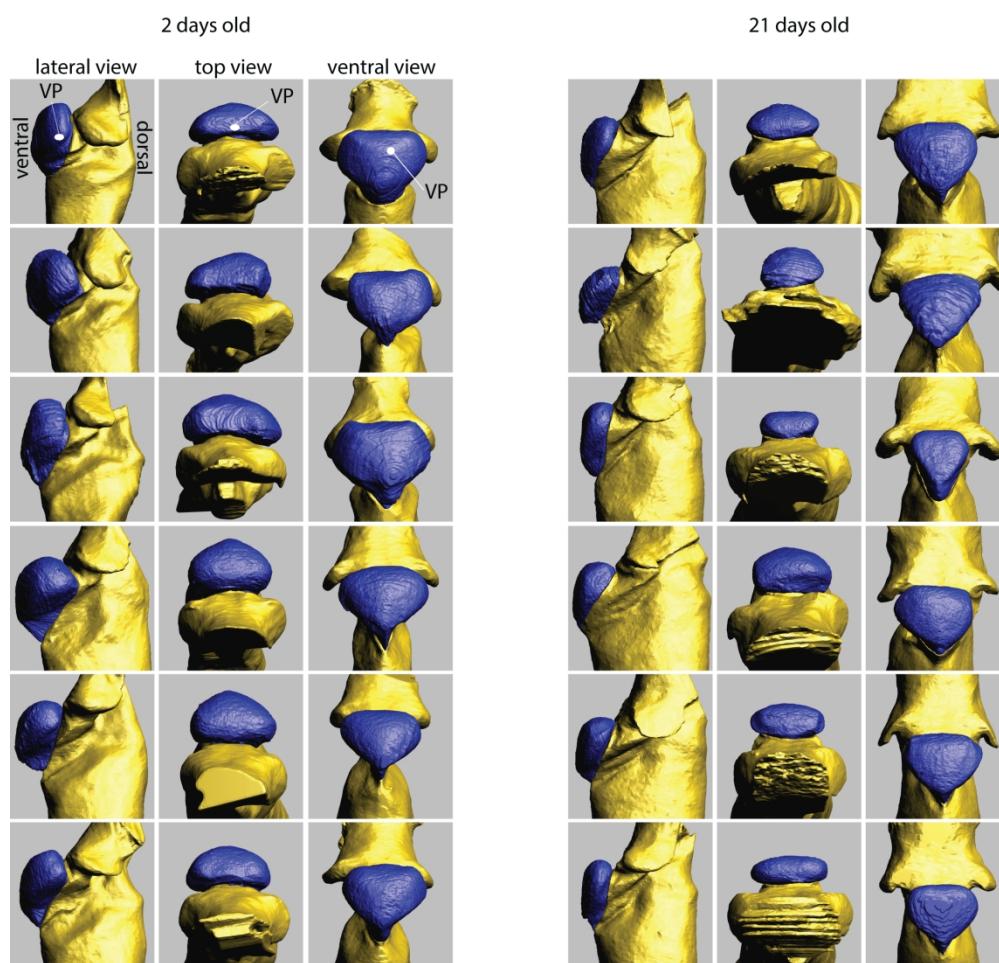



Figure 3AB

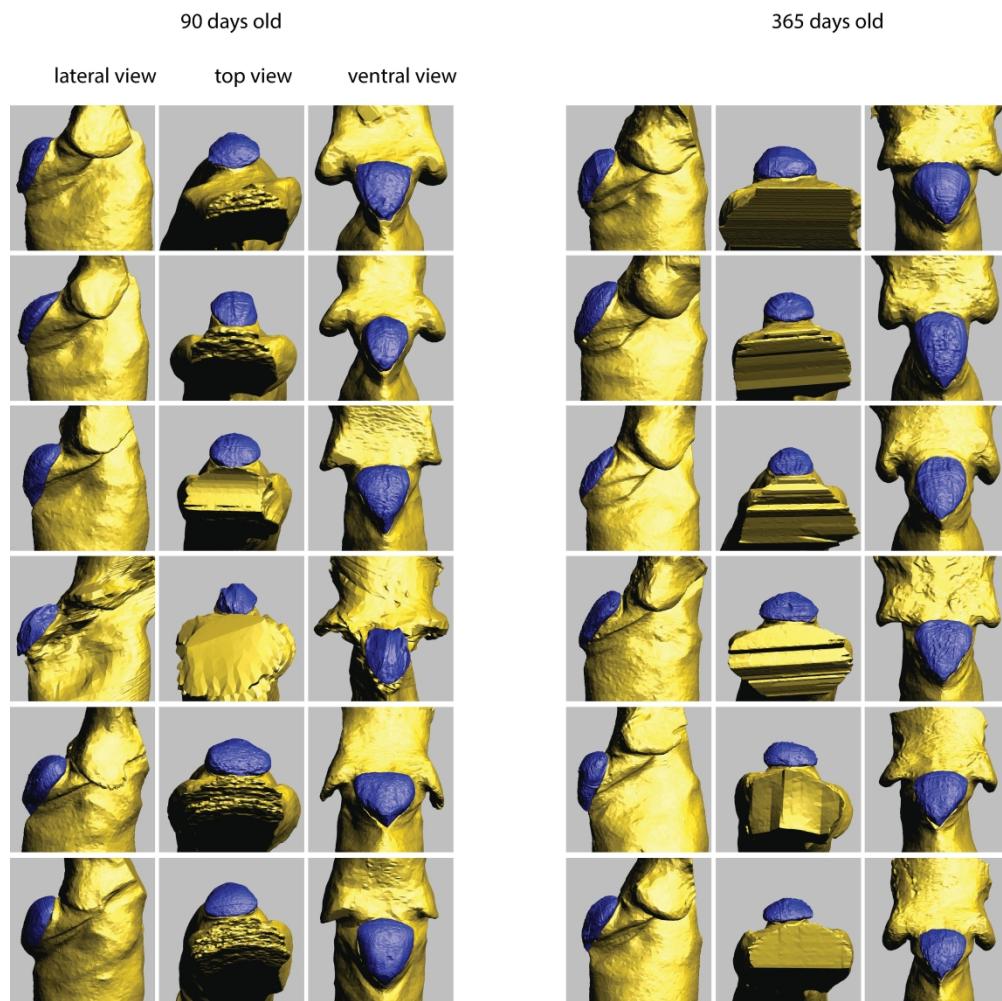



Figure 3CD

195x194mm (600 x 600 DPI)

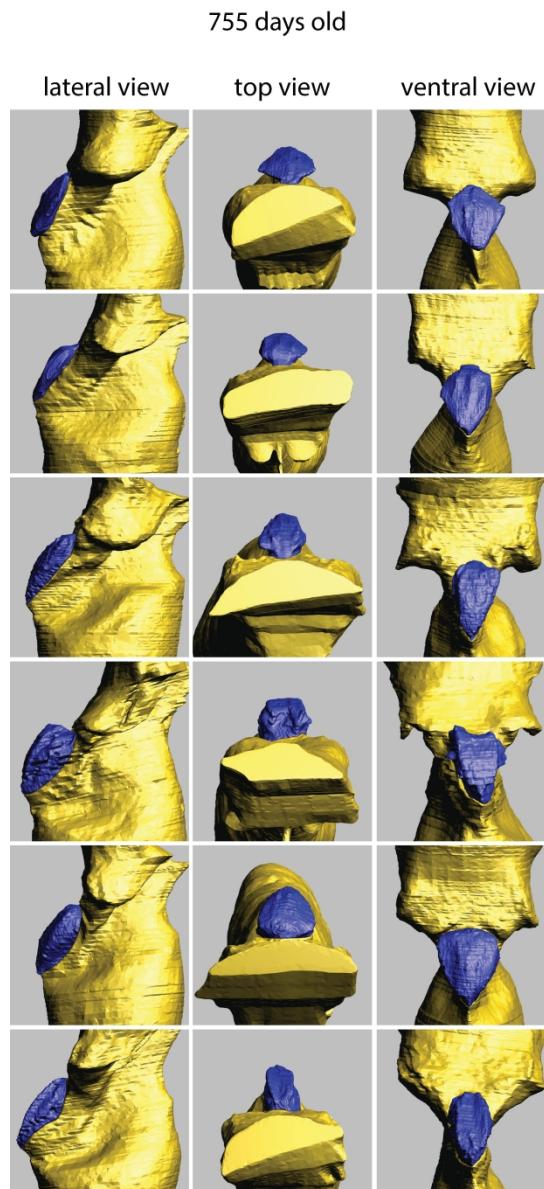



Figure 3E

86x189mm (600 x 600 DPI)

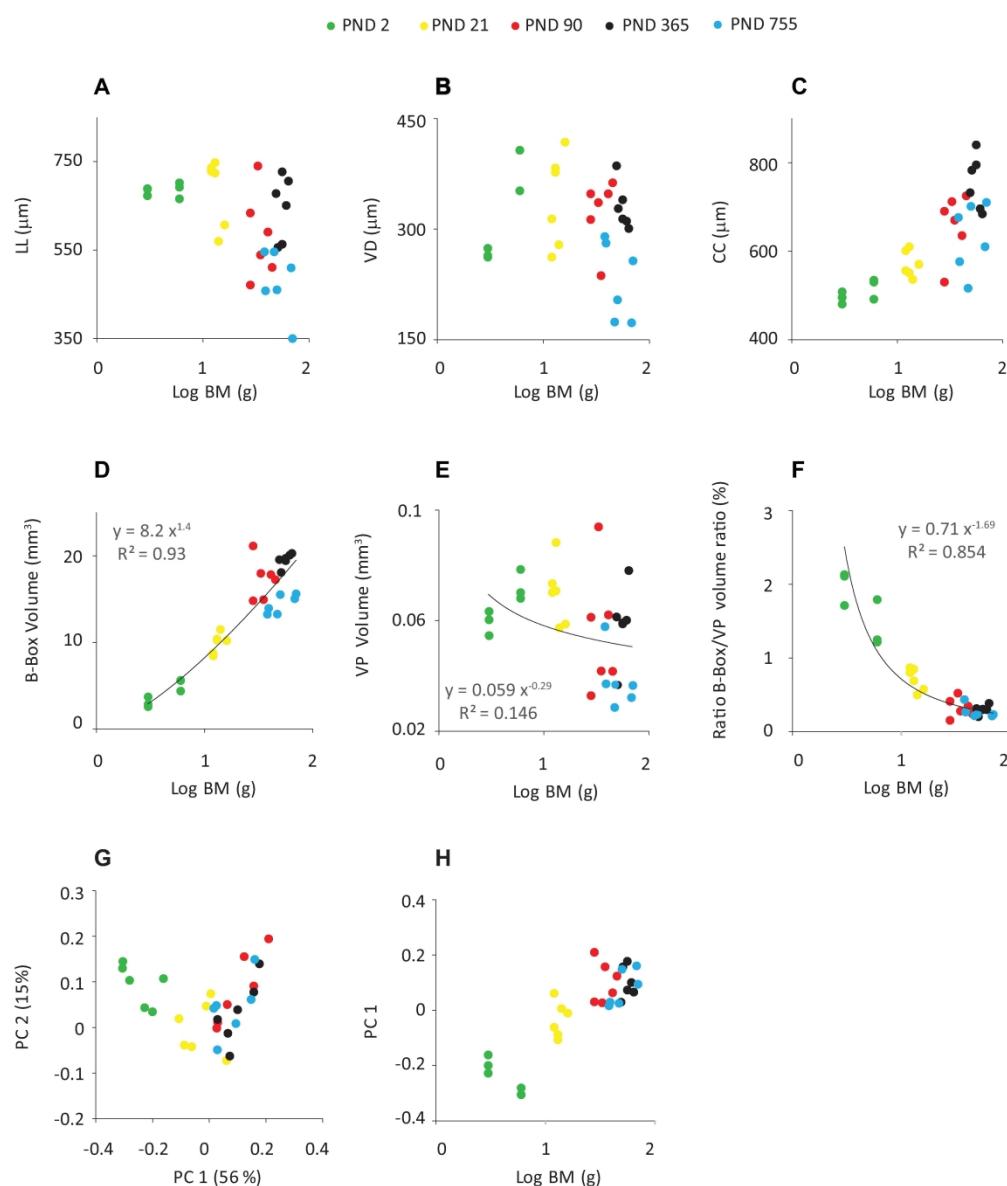



Figure 4

183x215mm (600 x 600 DPI)

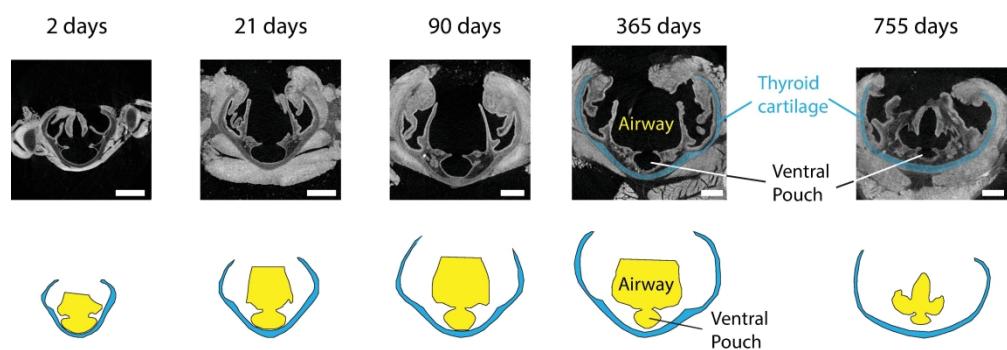



Figure 4

180x61mm (600 x 600 DPI)

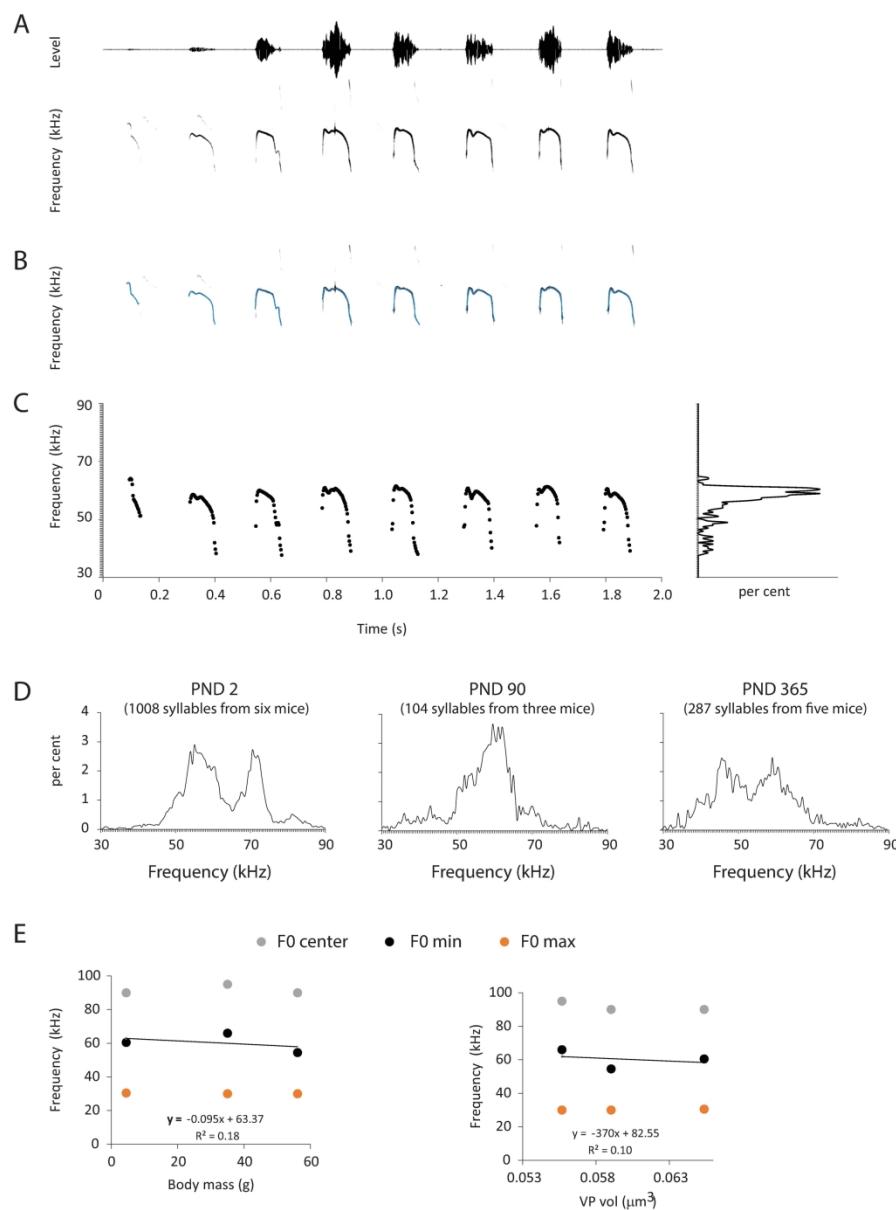
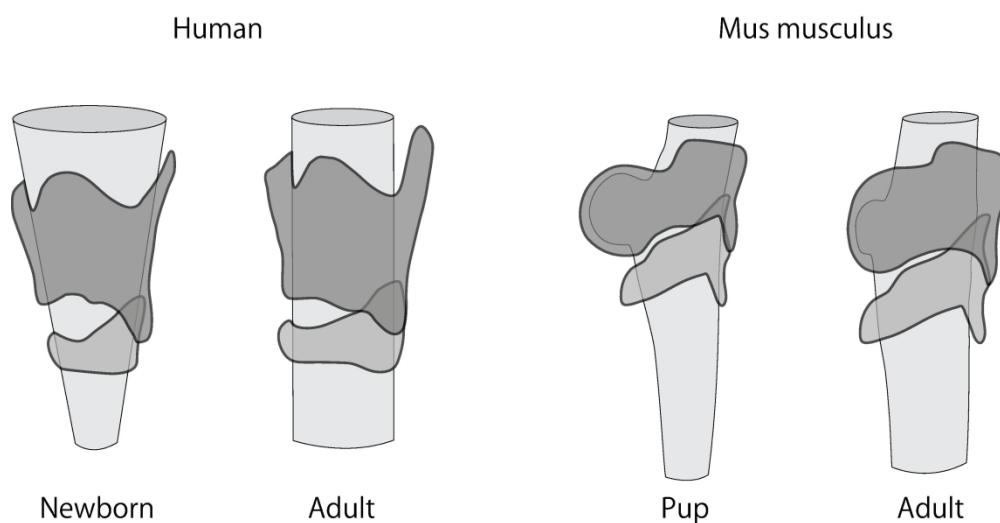




Figure 6

203x275mm (300 x 300 DPI)

