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Abstract

In many mammals, spectral properties of acoustic signals scale with body size within and among
species. In rodents, however, despite drastic changes in body size, fundamental frequency (FO0)
range of ultrasonic whistles produced for social communication remain relatively uniform from
birth to adulthood. Such divergent patterns may be due to a novel sound production mechanism
unique to rodents involving an intralaryngeal midline pocket termed the ventral pouch. In this
study, we analyzed the postnatal shape and size of the laryngeal airway in CDI1 mice over
ontogeny to better understand the association between ventral pouch geometry and FO of
ultrasonic whistles. Ventral pouch volume (0.06+0.01 mm?) did not differ between pups and 1-
year-old adults despite extensive shape-inducing remodeling of the intralaryngeal musculature
and connective tissue. In contrast, ventral pouch volume was 50% smaller in 2-year-old
compared to 1-year-old mice. Thus, allometry of the laryngeal airway appears to explain spectral
overlap between ultrasonic whistles of young, small mice and older, larger mice. The causal
association between the reduction in vocal behavior and a seemingly shrinking ventral pouch in
geriatric mice remains unclear. Together, these data inform our understanding of the postnatal

development and remodeling of the intralaryngeal airway in Mus musculus.
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Introduction

In many mammals, body size is often correlated with the fundamental frequencies (F0) of
vocalizations (e.g., Tembrock 1996; Fletcher 2004; Gillooly and Ophir 2010, Riede and Brown
2013, Charlton and Reby 2016). However, anatomical or physiological innovations can
overcome size constraints. For example, vocal fold length and tension determine FO range (Titze
et al. 2016), but the amount and organization of viscoelastic collagen and elastic fibers in the
lamina propria of vocal folds permits expansion of the spectral range beyond the boundaries
defined by size (Titze et al. 2016). In humans, both vocal fold length and viscoelastic properties
change with age (e.g., Kahane 1987; Hirano et al. 2000; Filho et al. 2003; Abdelkafy et al. 2007),
leading to (sometimes large) age (e.g., Heylen et al.1998; Siupsinskiene, Lycke 2011) and sex
differences (e.g., Hammond et al. 1998, Titze 1989) in FO ranges. Similarly, vocal tract length
determines resonance frequencies. However, some species can modify resonance spectral range
into higher or lower regions through dynamic modulation of vocal tract length via a flexible
larynx position (e.g., Reby, McComb 2003; Nishimura et al. 2003) or the ability to protrude or
retract lips (Hauser, Ybarra 1994). Both mechanisms (vocal fold design and vocal tract
flexibility) provide adaptations to escape the size-typical spectral range to produce vocal signals
with higher or lower frequencies.

Rodents produce a rich repertoire of high-frequency communication signals in a variety
of social contexts (e.g., Shelley, Blumstein 2005; Brudzynski 2018; Dent et al. 2018). For
example, pup isolation vocalizations used to induce maternal care are ubiquitous among rodents
(Lingle et al. 2012). In addition, many rodents produce vocalizations as adults to mediate a
variety of social interactions, including mate acquisition (Fernandez et al. 2021). Surprisingly,

although spectral features of vocal repertoires differ at various life stages (e.g., Grimsley et al.
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2013; Riede et al. 2015; Zaytseva et al. 2019; Yurlova et al. 2020), the FO ranges of certain high-
frequency vocalizations (aka ‘ultrasonic vocalizations’, USVs) overlap between small pups and
large adults (e.g., Liu et al. 2003; Grimsley et al. 2011; Yurlova et al. 2020). The phenomenon is
also known in other rodents (e.g., Matrosova et al. 2007). In lab mice (Mus musculus), for
example, temporal and spectral features of ultrasonic whistles can reliably differentiate pup and
adult vocalizations. However, the FO range used by pups and adults appears remarkably similar
(e.g., Liu et al. 2003). Such a pattern stands in stark contrast with allometric relationships that
typify vertebrate vocalizations produced by airflow-induced vocal fold vibration. In contrast to
the clear dependency of FO range on size and viscoelastic properties of vocal folds , the factors
underlying FO regulation in rodent whistle production are incompletely understood. A more
detailed description of the anatomy of the rodent vocal organ and its airway is needed to inform
our understanding of the mechanisms that permit such atypical non-allometry of vocal
frequencies.

The larynx and its airway are part of the upper respiratory tract. Control of the larynx
plays a role in breathing, swallowing, and vocalization. Understanding the function of
anatomical structures underlying behavioral performance requires characterization of such
structures over ontogeny. In humans, for example, the laryngeal cartilaginous framework
(Kahane 1982; Eckel et al. 1999), the vocal fold tissue, (Ishii et al. 2000; Hartnick et al. 2005;
Lungova et al. 2015) and the intralaryngeal airway experience shape changes and remodeling
during ontogeny (Wheeler et al. 2009) with consequences for speech, breathing, and swallowing
(Bosma 1985; Stevenson, Allaire 1991). In nonhuman species, ontogenetic changes in vocal
organ form, shape, and mechanical properties contribute to functional changes in vocal patterns

(e.g., tungara frog: Guerra et al. 2014; American alligator: Riede et al. 2011; zebra finch: Wade
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et al. 2002; Veney & Wade 2005; Goitred gazelle: Efremova et al. 2016; North American elk:
Frey, Riede 2013; nonhuman primates: Zhang et al. 2019). With the increasing accessibility to
emerging imaging technologies (e.g micro-CT), the mouse model (Mus musculus) offers a more
tractable model to explore the form-function relationship in detail.

In rodents, laryngeal sound is either produced by airflow induced vocal fold vibrations or
an aerodynamic whistle mechanism (Roberts 1975; Pasch et al. 2017). Many high-fundamental
frequency vocalizations produced by Mus are generated via the latter mechanism. Riede et al.
(2017) proposed an edgetone mechanism model, which in contrast to an alternative jet
mechanism model (Mahrt et al. 2016), predicts a strong relationship between ventral pouch size
and vocal frequency. Briefly, spectral properties of whistles produced by an edgetone mechanism
depend on airflow velocity and the geometry of the sound source (Coleman 1973; Fletcher
1973). In mice, whistles are produced inside the larynx when an expiratory glottal airflow
interacts with rigid structures behind (i.e., rostral from) the vocal folds. Production of high-
frequency whistles is dependent on the intactness of both the intra-laryngeal supraglottal ventral
pouch and the alar cartilage located at the entrance of the ventral pouch (Riede et al. 2017).
Damage to either the ventral pouch and/or the alar cartilage compromises a rodent’s ability to
produce ultrasonic vocalizations (Riede et al. 2017). The geometry of the ventral pouch is
controlled through intrinsic laryngeal muscle activity, whereby contraction of a portion of the
thyroarytenoid muscle moves the alar cartilage closer to the glottis (Riede 2013). However, this
movement is limited and therefore the intralaryngeal airway, including ventral pouch
morphology (i.e., size and shape), likely contributes to acoustic variation. Such a difference in
the sound production mechanism of whistles may explain the size-independence of vocal

frequencies.
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In this study, we investigated size and shape changes of the laryngeal airway. Larynx size
scales allometrically with body size and the laryngeal cartilaginous framework experiences shape
changes throughout life (Riede et al. 2020). However, because fundamental frequencies of Mus
vocalizations overlap between pups and larger adults, we hypothesized that there would be little

change in size to the laryngeal airway underlying vocal production.

Methods
Study sample

Postnatal development of ventral pouch size and shape was quantified in 30 mice (Mus
musculus, CD 1 strain, colony maintained at MWU). Animals were housed in same sex groups of
3 to 5 animals in standard rodent cages (33cm long x 18cm wide x 14cm deep) on a 12:12 h
light/dark cycle. Rodent chow and water were available ad libitum. Animals (3/sex) were raised
to 5 age classes (postnatal days 2, 21, 90, 365 and 755). Adult animals (365 and 755 days) were
temporarily used for breeding, and thus experienced hormonal changes that could affect
laryngeal shape (e.g., Saez, Martin 1976; Aufdemorte et al. 1983).

Following euthanasia with ketamine and xylazine, mice were transcardially perfused with
lactated Ringer solution, and tissues were fixed with 10% buffered formalin phosphate (SF100-4;
Fisher Scientific). Larynx tissue was then dissected, stained, and imaged using a microCT
scanner (Skyscan 1172; Bruker-microCT, Kontich, Belgium) at 5 micrometer resolution. Further
details can be found in Riede et al. (2020). Derived three-dimensional surfaces in STL format of
the intralaryngeal airway and thyroid cartilages are available on Morphobank (O’Leary and

Kaufman 2012) (project P4018).
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Morphometric Analysis

Ventral pouch size was estimated by linear measures and volume estimates. Three linear
measures were: (a) distance between glottal and alar edge (“CC”), (b) largest latero-lateral
distance (“LL”), and (c) the distance between the most ventral point and a line described by
distance CC (“VD”) (Figure 1). The volume was estimated using the 3D model surface. The STL
files of the 30 ventral pouches were uploaded to FIJI-ImageJ (Schindelin et al. 2012). The 3D
viewer plugin facilitates visualization and volume calculation. The size of the thyroid cartilage
was estimated using the thyroid cartilage bounding box volume. Bounding box refers to the
minimum enclosing box for the set of points comprising the 3D rendition of a structure present in
STL format. The ratio between the bounding box volume and the ventral pouch volume was used
as an estimate for ventral pouch shape and size change with age.

Three-dimensional geometric morphometrics was used to describe shape of the ventral
pouch. We established a set of 5 fixed and 50 semi-(surface) landmarks using the geomorph
package (Adams et al. 2017) in R 3.4.4 (R Core Team 2015). The 5 fixed landmarks were placed
interactively in mid-sagittal position on the alar edge, the glottal edge, on the most left and right
lateral points and on the most ventral point of the ventral pouch. The landmark coordinate data
were then superimposed using generalized Procrustes analysis (GPA) for each set of landmarks
analyzed (Gower, 1975; Rohlf and Slice 1990). This produces a set of transformed coordinates
that reflect shape differences among cartilages independent of scaling. Then a principal
component analysis was done to derive shape axes. Those shape axes (principal components)

help to convert variation in shape into a set of linearly uncorrelated variables.

Acoustic analysis
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For three of five age classes (PND 2, 90, 365), ultrasonic whistles were successfully
recorded. Recording attempts in weanlings (PND 21) and in geriatric mice (PND 755) were
unsuccessful. Pup vocal behavior was triggered by a 1 minute separation of the pup from the
litter. Vocalizations in 90 and 365 day-old animals was induced by placing the animal into a
separate cage and adding bedding of the opposite sex. Further details on sound recording can be
found in Riede et al. (2020).

We analyzed 1008 syllables from six pups, 104 syllables from three young adults (PND
90) and 287 syllables from five adult mice (PND 365). Syllable types were not assigned because
all syllables were ultrasonic vocalizations produced by the same whistle mechanism.
Fundamental frequency was quantified every 30 ms using the pitch tracking tool in PRAAT
(PRAAT software, v. 5.2.12). Visual inspection confirmed that frequency tracking was
successful. The frequency was extracted every 5 ms and placed in 5S00Hz bins. Center frequency
was determined as the frequency bin in which the median of the data sample was located.
Minimum and maximum fundamental frequency represented the lowest and the highest value in

the histogram.

Statistical Analysis

Univariate analysis was performed to assess ventral pouch growth. An analysis of
variance (ANOVA) was used to test for age differences in three linear ventral pouch distances,
ventral pouch volume, and two shape axes (principal components). Scaling relationships of
various dimensions on body mass were analyzed using Pearson correlation coefficients. We
performed a Kolmogorov-Smirnov test on the distribution of fundamental frequencies between

the three age classes to test for statistical significance.
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Results

Figure 2 illustrates ventral views and midsagittal sections of 3D renditions of the thyroid
cartilage and the laryngeal airway. The airway is shown in two colors with the main airway in
yellow and the ventral pouch in blue. Figure 3 provides three different views of the laryngeal
airway of all 30 CD1 mice. Table 1 provides a summary of linear and volumetric measurements
in this mouse sample. The ventral pouch is relatively large and shaped like a sphere in 2-day old
pups but appears flattened, disk-shaped, and relatively smaller in older individuals. All three
linear dimensions were different among the five age classes (ANOVA, LL: F4,5=8.82, p<0.001;
VD: Fyy5= 4.42, p<0.01; CC: F425=16.4, p<0.001) (Table 1). Two measures (LL and VD)
showed no change in size during the first year (Pearson correlation, LL: » = 0.25, p = 0.25; VD: r
= 0.26, p = 0.22) (Figure 4 A and B). In other words, we found no increase in size associated
with overall body size. The CC distance increased by a factor of 1.9 from pups to one-year-old
adults (Pearson correlation, » = 0.83, p < 0.01) (Figure 4C). All three distances were smaller in
2-year old than in 1-year old mice (t-test, LL: t; ;o =3.98, p < 0.01; VD: t; ;0 =4.0, p < 0.01; CC:
t110=3.07, p < 0.01) (Table 1; Figure 4).

Laryngeal size estimated by the bounding box differed among five age classes (F4,5=110.7,
p<0.001) and increased with age (Pearson correlation, » = 0.84, p < 0.001) (Figure 3D). The size
of the ventral pouch did not change with age (Table 1) (Figure 4E). Ventral pouch volume was
not significantly different between the first four age classes (F3,3=1.0, p = 0.41). Ventral pouch
volume was smaller in two-year old than in one-year old mice (t-test, t; ;o = 3.07, p < 0.01). The
ratio between thyroid cartilage bounding box volume and ventral pouch volume decreased from

about 1.7+0.4% in pups to 0.27+0.08% in old adults (F4,5=53.1, p < 0.001; » = -0.55, p < 0.01)
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(Figure 4F). Data suggest that ventral pouch volume is maintained throughout most of the
postnatal development despite the increase in size of the larynx and its lumen. For all six
laryngeal variables listed in Table 1, the differences between males and females were not
statistically significant (ANOVA, p>0.05).

The ventral pouch changed in shape from sphere-like to disk-shaped (Figures 2 and 3). Next,
we quantified ventral pouch shape using surface landmarks. The first and second shape axes
described 56% and 15%, of the variation, respectively. The first but not the second shape axis
differentiated among the 5 age classes (ANOVA, PCl1: F455=32.4, p<0.001; PC2: Fy,s= 2.21,
p=0.09) and all plots that included the first axis similarly differentiated the five age classes
(Figure 4G and H).

Figure 5 illustrates the extent of the intra-laryngeal airway remodeling. Virtual coronal
sections through the larynx organs show that the ventral pouch airway fills the entire lumen
between the two thyroid cartilage lamina in pups. In adults, the lumen within the thyroid
cartilage is filled with airway and soft connective tissue (Figure 5).

Finally, we investigated the association between body size, ventral pouch size and spectral
properties of high frequency whistles. Importantly, all three age classes produced sound across
the entire range between 30 and 90 kHz. Figure 6 A illustrates spectrographic images of 8
inverted-U shaped syllables produced by a female pup. Fundamental frequency was tracked
every 5 ms. The overlaid tracking result is shown in Figure 6B. Figure 6C illustrates the
extracted fundamental frequency measurements. The most prominent frequency in those 8
syllables was 60 kHz, the center frequency was 50.8kHz, minimum frequency was 37.7 and

maximum frequency was 64.0 kHz (Figure 6C).
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The frequency distribution of three Mus age classes are shown in Figure 6D. The frequency
distribution between pups and 90-day old mice (Kolmogorov-Smirnov, Z=0.96; P>0.05), and
between pups and 365-day old mice did not differ (Kolmogorov-Smirnov, Z=0.96; P>0.05). The
distribution was different between 90-day old and 365-day old mice (Kolmogorov-Smirnov,
7=1.54; P<0.05). Neither body mass nor ventral pouch size explain center (Pearson correlation,
=-0.43 and -0.32, p > 0.05), minimum (» = -0.90 and -0.94, p > 0.05) or maximum fundamental

frequency (» = 0.10 and -0.76, p > 0.05) (Figure 6D, E).

Discussion

The results of our experiments suggest that shape and size changes of laryngeal cartilages
(Riede et al. 2020) are accompanied by intralaryngeal airway changes. Specifically, although the
ventral pouch maintains a similar size for the first year despite a massive increase in body mass
and larynx size, it shrinks by approximately 50% between PND 365 and PND 755. Ventral
pouch shape in pups and weanlings was also different from older animals. Both the remodeling
of the laryngeal cartilaginous framework (Riede et al. 2020), the intralaryngeal soft tissue
(Tateya et al. 2006) and the laryngeal airway (this study) inform our understanding of the
functional morphology of the rodent larynx. We explore the implications of our findings for
understanding high frequency whistle production in rodents and discuss factors that determine

upper airway form and function.

Implications for rodent aerodynamic whistle production
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The edge-tone model of whistle production (Riede et al. 2017) predicts that ventral pouch
size corresponds to vocal frequencies. This prediction is supported by large ventral pouch sizes
in Baiomys (Riede, Pasch 2020) and Scotinomys (Smith et al. 2021), both species that produce
unusually low-pitched ultrasonic whistles. Our findings herein further support predictions of the
edge-tone hypothesis; young and old mice had similar sized ventral pouch volumes and
overlapped in their spectral ranges. The absence of a quantifiable ventral pouch volume increase
during the first year is consistent with the overlap in spectral ranges between pups and older Mus
musculus (Grimsley et al. 2011) and other rodents (see Wiaderkiewicz et al. 2013; Hulsmann et
al. 2019; Scotinomys: Campbell et al. 2014). Although the functional significance of such
overlap is unclear (e.g. see Matrosova et al. 2007), active control of intralaryngeal airway
geometry by intrinsic muscles likely helps maintain a large spectral range (Riede 2011, 2013). In
our study, each of the three age classes achieved a considerable fundamental frequency range
(Figure 6).

Validation of this hypothesis would benefit from comparisons of vocalizations from older
mice with reduced vocal pouch sizes. However, vocal activity declines in aging mice and we
were unable to record vocalizations in geriatric animals. In males, vocal decline has been
ascribed to hormonal changes and pheromonal processing (e.g., Kanno, Kikusui 2018; Nyby
2010). Our study indicates that morphological changes of the vocal organ and the upper airway
may also play a role. Further experimental manipulation of the laryngeal airway could provide
insight into whether morphological airway remodeling precedes or follows the behavioral

change.

Factors that determine phenotypic variation of larynx and upper airway
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Postnatal laryngeal airway remodeling is well-known in humans and is clinically relevant
(Wheeler et al. 2009). The intralaryngeal lumen develops from a conical shape to a more
cylindrical tube (Figure 7). In CD1 mice, airway remodeling resembles this change from a wide
intralaryngeal space narrowing caudally to a more uniform tubular lumen. The airway
remodeling is in part a consequence of the shape changes of the laryngeal cartilaginous
framework (e.g. the thyroid cartilage becomes wider in the latero-lateral dimension; Riede et al.
2020). Furthermore, soft tissue (Figure 5) accumulates in the laryngeal lumen being part of the
ventral pouch’s boundary.

The genetic and environmental factors determining the remodeling are likely complex. The
larynx is of mixed embryological origin (Tabler et al. 2017; Heude et al. 2018). Thyroid cartilage
originates from neural crest tissue and cricoid cartilage, arytenoid cartilages, epiglottis,
musculature and soft connective tissue (like vocal ligament) from mesoderm. The laryngeal
airway including the ventral pouch is therefore dependent on the development of both mesoderm
and neural crest tissue (Tabler et al. 2017; Heude et al. 2018).

Environmental risk factors such as age and obesity may affect motor function and
neurochemical control of the upper airway with consequences for airway patency (e.g., Brennick
et al. 2009; Polotsky et al. 2011; Takahasi et al. 2020; Voituron et al. 2010). Airway remodeling
has been reported for obese rats and mice (Nakano et al. 2001, Ogasa et al. 2004; O’Donnell et
al. 1999; Polotsky et al. 2001, 2004). Those studies have focused on the pharyngeal area. The
current study demonstrates that the intralaryngeal airway is also remodeled throughout life of a
mouse. The mechanism by which risk factors affect this process remains to be seen. The
exploration of those factors seems worthwhile because the larynx has not only been implicated in

the etiology of sleep apnea and other problems associated with upper airway patency (e.g.,
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Dedhia et al. 2014; Roy et al. 2021) but its evolvability remains speculative (Kingsley et al.
2018). The current study illustrates also a methodological approach to quantify shape changes in

the upper respiratory airway.

Caveats

We found considerable among-individual variation in laryngeal size and shape within age
classes (Table 1). The variation within each class remains unexplained, but tissue preparation
may have contributed. The current study used fixed tissue to quantify laryngeal airway
dimensions. Future studies should include laryngeal airway analyses in vivo. However, even if
one takes a fixation-related shrinkage into account, any deformation is countered by the cartilage
enforced structure of the larynx and it should apply equally to all age classes. However, we
expect this effect to be small on the overall results for two reasons. First, the constancy of the
ventral pouch volume is associated with massive tissue remodeling inside the larynx (Figure 5)
in the first year of life. Second, the thyroid cartilage experiences shape changes between PND
365 and 755 (Figure 5) which is associated with the shrinkage of the ventral pouch at old age.

Finally, many of the 1-year old and 2-year old adult mice were retired breeders, i.e. they have
gone through mating and pregnancy related hormonal changes. Since estrogen, progesterone, and
testosterone effect cartilage remodeling (e.g., DaSilva et al. 1993; Richette et al. 2003; Johnston
et al. 2021; Montoya-Sanhueza et al. 2021), formal assessment it remains to be seen how large

this effect is on the post-puberty larynx.

Conclusion
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Our findings herein suggest an alternative mechanism to remove constraints on the allometric
relationships between size and spectral range. The size of a musical instrument is in many cases
a good predictor of its spectral range (i.e., fundamental frequency and resonant frequency range).
For ultrasonic whistling in rodents, it seems that remodeling of the laryngeal airway and the
evolution of a novel structure (ventral pouch) enables extension of the spectral range of vocal
signals. Together with how the instrument is played, i.e. the neural control which coordinates
movements of the vocal organ (e.g., Nieder, Mooney 2020; Fernandez-Vargas et al. 2021), the
constancy of ventral pouch lumen provides a compelling example for size-independency of the
spectral range.

The constraints responsible for maintaining laryngeal airway features could be two-fold.
First, the functional morphology required to produce whistles seems to depend on the integrity of
the ventral pouch and its active control of shape and lumen (Riede et al. 2017). Second, changes
in laryngeal airway likely also affect normal respiratory airflow patterns with subsequent
consequences for gas exchange and penetrance of pathogens (e.g., Sagartz et al. 1992; Renne et

al. 1992). The reasons for the static nature of the ventral pouch remain to be further explored.
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Table 1: Averages and standard deviations of linear measures and volumes of the ventral pouch
as well as a volume ratio in five age classes of CD 1 mice. Six animals (3 per sex) were

analyzed in each age class.

Age class Body mass LL (um) VD (um) CC (um) VP volume B-Box volume B-Box/VP ratio
(® (mm?) (mm?) (%0)
PND2 M: 4.0£1.7 681+13.0  311+83.1  493+14.1 0.0609+0.007 3.741.7 1.8+0.5
F: 5.0+1.7 689+14.7  326+45.0  519+21.4 0.0706+0.007 4.6=1.0 1.6£0.3
PND 21 M: 13.3+0.6 680+96.6  346+58.4  565+39.1 0.0721+0.015 10.7+0.7 0.7+0.2
F: 13.3+2.3 690+£72.3  331+79.4  575+23.0 0.0674+0.007 9.1+0.9 0.7+0.1
PND 90 M: 29.7+5.0 547+40.6  316+£68.8  676+45.4 0.0484+0.011 16.7+1.5 0.3+0.05
F: 40.3+2.8 615+135.5  332+17.8  644+99.3 0.0626+0.030 18.0+3.2 0.4+0.2
PND 365 M: 60.3+4.0 694+39.2  308.7+6.8  725+60.9 0.0656+0.010 20.0+0.3 0.3+0.05
F: 52.0+£3.6 599+68.5  351+30.6  785+54.0 0.0524+0.014 19.0£0.8 0.3+0.06
PND 755 M: 55.0+11.3 505+43.1 183+£83.1  609+£92.5 0.0325+0.004 14.6+1.2 0.2+0.01
F: 49.0+18.2 4514982  276£17.0  654+69.6 0.0438+0.012 14.3+1.2 0.3+0.1

PND, postnatal day; LL, largest latero-lateral distance of the ventral pouch; VD, the
distance between the most ventral point and a line through the alar edge which runs parallel to
the tracheal center line; CC, largest rostro-caudal dimension of the ventral pouch; B-Box,

bounding box of the thyroid cartilage; VP, ventral pouch.
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Figure 1: Size of the ventral pouch (A, ventral view; B, mid-sagittal view). In order to estimate
the size of the ventral pouch, three linear distances and its volume were measured. The three
measurements were the distance between glottal and alar edge (CC), the largest latero-lateral
distance (LL), and the distance between the most ventral point and a line described by CC

(VD).
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Figure 2: Ventral view and mid-sagittal sections of Mus musculus airway at 2 (A), 21 (B), 90
(C), 365 (D) and 755 (E) days of age. Three-dimensional renditions of the laryngeal airway. The
thyroid cartilage is overlaid as transparent object. The ventral pouch (blue) is a small pocket-like
expansion from the laryngeal airway which is positioned rostral from the vocal folds (white
dashed line) but still inside the laryngeal lumen. The outlines of a box around the thyroid
cartilage represent the cartilage’s bounding box which was used as a proxi for the size of the
thyroid cartilage. Note the shape difference of the thyroid cartilage. In pups it demonstrates a
narrow cranial opening, but in adults the cranial opening is much wider, divergent (Riede et al.

2020). Black reference bars in lower right corner represent 500 micrometers.
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Figure 3 A and B: Three-dimensional laryngeal airway representation of CD1 mice from four
age classes (2 day old pups, 21 day old weanlings, 90 day old young adults and 365 day old

adults). The ventral pouch is relatively large and sphere-like in pups (A), but increasingly flattens
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in weanlings (B), young (C) and old (D) adults.

Figure 3C and D: cont.

Figure 3E: cont.
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Figure 4: Size and shape development of the ventral pouch and of the bounding box of the
thyroid cartilage throughout the first year of CD1 mice. Measurements were taken in five age
classes (2 days; 21 days; 90 days; 365 days, 755 days) from six individuals (3/sex) in each class.

A, B and C: Body mass and three linear measures of the ventral pouch. D: The thyroid cartilage
(described by its bounding box) increases with overall body size. E: Ventral pouch (VP) volume
does not increase with body mass. F: The ratio between the volumes of the bounding box and the
ventral pouch decreases with age. G: PCA ordinations summarizing major axes of shape
variation for the ventral pouch. H: Note the almost linear developmental trajectory of the ventral
pouch shape. A substantial portion of the shape variation is explained by first principal

component (56%).
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Figure 5: Mid-organ coronal sections of the larynx of four mice of different ages (in postnatal
days). In pups, the supraglottal airway, including the ventral pouch fills most of the laryngeal
lumen. In older mice laryngeal size increases but the ventral pouch remains rather small. The
laryngeal lumen is now filled with soft tissue. The white bar in each image indicates a 0.5 mm

distance. Note the dorso-ventral ‘flattening’ of the thyroid cartilage from PND 365 to 755.
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Figure 6: Occurrence of fundamental frequencies in high-frequency whistle calls of three age
classes of Mus musculus. A: Time series and spectrogram of eight inverted-U syllables produced
by a female pup. B: fundamental frequency was tracked with PRAAT’s tracking tool and then
exported (C). For histogram generation, fundamental frequency was extracted every 5Sms and
placed in 500 Hz bins. D: Fundamental frequency occurrence in syllables from six pups (PND
2), from three young adults (PND 90) and five adults (PND 365) were lumped and plotted in
histograms. Fundamental frequency occurrence was quantified by three frequency variables
(center FO; minimum and maximum FO0). E: Strong associations were neither found with body
mass nor with ventral pouch (VP) volume. Note that the fundamental frequency range between

the three age classes overlap.
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Figure 7: Schematic of laryngeal airways shapes in newborn humans (redrawn after Wheeler et
al. 2009) and laboratory mice. The pediatric airway was described as conical in shape. The
relatively large ventral pouch lumen in the mouse pup, gives its airway a similar wide intra-

laryngeal lumen which narrows down into the tracheal airway.
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