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Localization schemes: A framework for proving
mixing bounds for Markov chains

Yuansi Chen* and Ronen Eldan’

Abstract

Two recent and seemingly-unrelated techniques for proving mixing bounds for Markov
chains are: (i) the framework of Spectral Independence, introduced by Anari, Liu and Oveis
Gharan, and its numerous extensions, which have given rise to several breakthroughs in the
analysis of mixing times of discrete Markov chains and (ii) the Stochastic Localization tech-
nique which has proven useful in establishing mixing and expansion bounds for both log-
concave measures and for measures on the discrete hypercube. In this paper, we introduce
a framework which connects ideas from both techniques. Our framework unifies, simplifies
and extends those two techniques. In its center is the concept of a “localization scheme”
which, to every probability measure on some space €, assigns a martingale of probability
measures which “localize” in space as time evolves. As it turns out, to every such scheme
corresponds a Markov chain, and many chains of interest appear naturally in this frame-
work. This viewpoint provides tools for deriving mixing bounds for the dynamics through
the analysis of the corresponding localization process. Generalizations of concepts of Spec-
tral Independence and Entropic Independence naturally arise from our definitions, and in
particular we recover the main theorems in the spectral and entropic independence frame-
works via simple martingale arguments (completely bypassing the need to use the theory of
high-dimensional expanders). We demonstrate the strength of our proposed machinery by
giving short and (arguably) simpler proofs to many mixing bounds in the recent literature.
In particular, we: (i) Give the first O(n logn) bound for mixing time of the hardcore-model
(of arbitrary degree) in the tree-uniqueness regime, under Glauber dynamics, (ii) Give the
first optimal mixing bounds for Ising models in the uniqueness regime under any external
fields, (iii) Prove a KL-divergence decay bound for log-concave sampling via the Restricted
Gaussian Oracle, which achieves optimal mixing under any exp (n)-warm start, (iv) Prove
a logarithmic-Sobolev inequality for near-critical Ferromagnetic Ising models, recovering
in a simple way a variant of a recent result by Bauerschmidt and Dagallier.
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1 Introduction

Suppose that we would like to sample from a measure v on some set §). For the sake of dis-
cussion, suppose that either 2 = {—1,1}" is the Boolean hypercube or {2 = R". A common
algorithm is to find a Markov chain whose stationary distribution is ~ and which exhibits good
mixing bounds.

In the case 2 = {—1,1}", a very useful Markov chain associated to a measure v is the
Glauber dynamics, defined as follows: Given x € {—1,1}", the transition kernel from z, P, _, .,
is the law which describes the point Y picked according to following random procedure: Pick
uniformly a coordinate ¢ € [n] and then take Y according to the law v conditioned on the event
{Y; = w5, Vj € [n] \ {i}}.

For a Markov chain (X;), in a state space (2 which has a unique stationary measure v,
a mixing bound typically asserts that for every ¢ > 0 there is a time ¢(¢) such that for all
measurable A C 2 and all ¢ > ¢(¢), one has |P(X; € A) —v(A)|] < e. See [ ] for an
extensive account of this subject.

In recent years, there appeared two seemingly-unrelated new techniques which were used
to establish mixing bounds through functional inequalities:

* The work [ ] put forth the notion of Spectral independence and developed a
framework which relies on those notions in order to establish mixing bounds for measures
on the set of subsets of [n]. This framework relies on the theory of high-dimensional ex-
panders. Some follow-up works which extended this technique are [ , ,

2 2 2 2 2 ]'

* The stochastic localization technique, introduced by the second author in [ ], is the
central ingredient used in the proofs of several functional inequalities, both in the contin-
uous setting where {2 = R"™ and v is a logarithmically-concave measure and in the setting
of the discrete hypercube. Most notably, the technique gives the state-of-the-art bounds,

due to the first author ([ ]), for the so-called Kannan-Lovasz-Simonovits conjecture
( ]) and Bourgain’s slicing problem (see [ ]). Some follow-up works based
on this technique are [ , , , , ].

In this work, we both unify and expand these two techniques towards a new framework
which can be used to establish mixing bounds in various settings, showing that the same prin-
ciples govern in a wide variety scenarios.

One of the main principles underlying both techniques is that concentration bounds on a
measure can be deduced from bounds on the covariance structure of a certain family of measures
which are transformations of the original measure: In the spectral independence framework, a



sufficient condition for a spectral gap is the boundedness of the influence matrices of restrictions
of the measure (the influence matrix has a simple correspondence with the covariance matrix),
and in the stochastic localization framework a spectral gap is implied by the boundedness of the
covariance matrix along a certain stochastic process which is associated with the measure.

This work shows that with the correct point of view, those two reductions follow from the
exact same argument. By approaching the notions of spectral and entropic independence from
this point of view, we will be able to:

@

(i)

(iii)

Generalize the theory, giving rise to a natural family of Markov chains together with a
toolbox of ingredients that can be used to prove mixing bounds for those chains.

Simplify the proofs in the foundations of the framework of spectral and entropic indepen-
dence, and in particular completely bypass the need to use the theory of high-dimensional
expanders.

Provide a self-contained and (arguably) simpler proofs for many of the expansions of the
spectral/entropic independence machinery, and in particular reprove in a more general
context several main theorems which appear in [ , , , ,

9 2 2 ]'

Summary of applications

To demonstrate the strength of our machinery, we apply it in several settings:

We derive the optimal mixing rate for Glauber dynamics on the hardcore model of any
degree in the tree-uniqueness regime, showing that it mixes in time O(nlogn). A similar
mixing rate was obtained in [ ] for a different Markov chain which was tailored
for the hardcore model. Additionally, our framework (arguably) allows us to significantly
simplify the argument.

We give the first optimal mixing bounds for graphical Ising models in the uniqueness
regime under any external fields, improving the results in [ ] in the sense that
there is no dependence of the bound on the external field. In this case as well, the proof
is significantly simpler.

Provide a very simple proof of a KL-divergence decay bound for log-concave sampling
via the so-called Restricted-Gaussian-Oracle introduced in [ ]. Our bound works
under any exp(n)-warm start, resolving an issue raised in [ ].

Give a self-contained and simpler proof of mixing for the Glauber dynamics for Ising
models whose interaction matrix has operator norm bounded by 1, which in particular
gives optimal mixing for Glauber dynamics on the Sherrington-Kirkpatrick model in high
enough temperature, recovering the result derived from [ , ].

We recover, in a simple way, a variant of a recent result by Bauerschmidt and Dagal-
lier [ ], proving a logarithmic-Sobolev inequality for Ferromagnetic Ising models in
terms of the model’s susceptibility.



Concurrent work

Shortly before submitting this manuscript, we were informed by Chen, Feng, Yin and Zhang of a
manuscript in preparation [ ] which independently proves parts of the results regarding
antiferromagnetic Ising models that we prove here, and in particular gives the same mixing
bound for the hardcore model, using a different proof technique.

Mixing via functional inequalities

Consider a reversible transition operator P = P,_,, with stationary measure v on a state space
Q. Its spectral gap is defined as the quantity

Joxa((@) = ¢)*dPa(y)dv(z)

P:OR 2Var, [¢]

gap(P) =

Next, define

Ent, [ /f )log f(z)dv(z /f )dv(z 1og</f )dv(z )

We define the modified log-Sobolev Inequality (MLSI) coefficient as

o Ent, [P f]
pstP) =1 Fosinoe) Ent[f]

Remark 1. The above definition is only valid if the Markov transmon kernel P is reversible (or
self adjoint). If it is not reversible, P f needs to be replaced by ( “) In this work we only
discuss the reversible case, so we stick to the simpler notation.

It is standard to deduce mixing bounds for the associated Markov chain from the above
quantities. Given an initial distribution g which is absolutely continuous with respect to v,
consider the total-variation mixing time

tmix(P,e; 1) = min {t > 0; |P'[)(A) — v(A)| <e, VACQ}

Moreover, define
tmix(P, €) = max tmix( P, €, 0z).

xe

The following fact is standard (see e.g. [ , Theorem 12.4] and [ , Fact 3.5]).

Fact 2. Suppose that for all x € 2 one has v({x}) > 1. Then,

twix(P,€) < Cgap(P) ™" (log(1/n) +log(1/e)), and
tmix(P,€) < Cprs(P) " (loglog(1/n) + log(1/¢)) .
The main aim of our machinery is to provide tools which give lower bounds for the spectral

gap and modified log-Sobolev coefficient for a family of Markov chains that arise naturally in
our framework.



1.1 Review of the framework and ideas

We now give a brief overview of the framework constructed in the next sections.

* The key definitions in the framework are a localization process and a localization scheme.
A localization process is a stochastic process (v;):>o Where each v; is a probability mea-
sure on some space €2, having the property that for every subset A C (2, the stochastic
process t — 1;(A) is a martingale which satisfies lim;_,, 14(A) € {0, 1}. A localization
scheme is a mapping which, to every probability measure v on {2, assigns a localization
process (14); with vy = v. Thus, a localization scheme can be thought of as a way to
interpolate between a given measure v and a (random) Dirac measure, via a martingale
on the space of measures.

* Given a localization process (1), and a time 7 > 0, there is a reversible Markov chain on
v, whose stationary measure is ¥ = 14, which is naturally associated to the localization
process. This Markov chain is defined by the formula

It turns out that many Markov chains arise via naturally defined localization schemes.
In particular, the Glauber dynamics on ({—1,1}", ) can be derived from what we call
the coordinate-by-coordinate localization scheme. This scheme is defined by taking
(k1, ..., ky,) to be a uniformly random permutation of [n], taking X ~ v and setting v; to
be the law of X conditioned on Xy, , ..., Xj,. Some other chains that arise via this frame-
work (using other localization schemes) are the hit-and-run walk, the up-down walk, the
Restricted-Gaussian dynamics and the field dynamics.

* Next, we will see that there is a simple way to analyze the spectral gap and MLSI coef-

ficient of the Markov chain associated to a localization scheme: In order to give a bound

Vary, [g]
Vary ]

arbitrary test function ¢ : 2 — R. Similarly, for MLSI, one needs to lower bound the

Ent vr [f]
Ent, [f]

cess 14 “zooms in” on smaller and smaller portions of (2, and we want to establish that
there is still some variance (or entropy) left all the way up to time 7, while the measure
v, is already focused on a small portion of the space.

on the spectral gap, one needs to give a lower bound to the quantity E [ } for an

quantity £ [ ] for f : Q — [0, 00). Intuitively speaking, the measure-valued pro-

* In light of the above intuition, it makes sense to analyze the time differentials of the
stochastic processes t — log(Var,,[p]) and ¢ — log(Ent,,[f]) (which can be in either
continuous or discrete time, depending on the localization scheme). Roughly speaking,
we want to obtain lower bounds for their drifts. By integrating those bounds with respect

to time, we could then obtain bounds on the spectral gap and MLSI. When a measure
dVary,, [¢]
Vary, [¢]

v satisfies the lower bound > —adt + martingale, we say that it satisfies a-

dEnt,, [f] .
Enty:[f] Z adt -+

martingale, we say that it satisfies a-approximate conservation of entropy.

approximate conservation of variance bound, and similarly when

* It turns out that there is an efficient way to obtain approximate conservation of variance
and entropy bounds for a family of localization schemes which we call linear-tilt lo-
calizations. Roughly speaking, these are schemes where ”ty—t" is a linear function up to



o(h). We will see that many localization schemes of interest, including the coordinate-
by-coordinate scheme and the stochastic localization scheme of [ ] can be described
this way.

(a) (b)

Mo

k—1: v
P : localization
s %
Ent,(f) ~ E[Ent,,(f)]
approximate conservation of entropy
P ? MLSI of v,
supermartingale
Ent,(Pf) > E[Ent,, (P f)]
ME+1

Figure 1: (a). Probability measures encountered during the iterates of a Markov chain P with
target distribution v and initial distribution z5. We wish to establish the entropy decay (or MLSI)
for each iteration of the Markov chain. (b). Probability measures generated via a localization
scheme. If a stochastic scheme is used, the red box indicates that one may generate multiple
random instances of (v, ux¢) starting from (v, ug). The localization scheme is designed such
that it is easier to establish the entropy decay for the new measures on (b). With f = L& the
entropy decay properties of the measures on (b) can be related to those on (a) thanks to the
martingale properties of the localization.

* For linear-tilt localization scheme, we see that a simple argument which uses the Cauchy-
Schwartz inequality shows that approximate variance conservation is related to the pro-
cess of covariance matrices ¢ — Cov(14). For the case of coordinate-by-coordinate
localization this argument recovers the spectral independence framework of Anari, Liu
and Oveis Gharan in a very simple way that completely bypasses the need to use high-
dimensional expanders.

* Approximate conservation of entropy turns out to follow from a natural condition that we
call entropic stability, which roughly says that the center of mass of the measure cannot
move too much under perturbations with small relative entropy. This can be thought of as
a weak form of transportation-entropy inequalities. In the context of the coordinate-
by-coordinate localization we will see that it amounts to a very simple property of the
logarithmic Laplace transform which is very similar to fractional log-concavity. This
would give us a way to recover a variant of the entropic-independence framework intro-
duced in [ ].

* Another ingredient in our framework will be the concept of annealing via a localization



scheme. Given two localization schemes on the same space, we can “concatenate” them
by running one scheme up to some time ¢ and then running the other on the measure
v, produced by the first scheme. What we will see is that we can produce spectral gap
and MLSI bounds, with respect to the dynamics associated with the second localization
scheme, by showing that the first localization scheme does not contract the variance /
entropy and “anneals” the measure in a way that it outputs a measure to which we can
ensure mixing for the second scheme. Such annealing procedure will be useful in many
of the applications.

In Figure 1, we summarize the conceptual diagram used to analyze the MLSI coefficient of
a Markov chain via a localization scheme.

1.2 Related techniques
Local-to-global theorems and high-dimensional expanders

The framework of spectral independence was originally based on local-spectral-expansion in-
equalities in high-dimensional expanders, which was defined and derived in works of Aleyv,
Dinur, Kaufmann, Lau, Mass and Oppenheim ([ , , , , ]). These
inequalities allow us to compare between the spectral gap of the /-down-up-walk and that of
the ¢ + 1-up-down-walk on spectral expanders. This principle was first used towards estab-
lishing bounds on the spectral gap by Anari, Liu, Oveis Gharan and Vinzant | ]. Our
framework could be thought as an alternative way to prove “local-to-global” theorems.

Pathwise analysis

Our technique can be seen as a manifestation of the pathwise analysis method (see [ D.
This method is closely-related to the so-called semigroup technique where, in order to prove
an inequality regarding a measure, one considers an evolution of the measure via a semigroup
(usually the heat semigroup) which provides an interpolation between the measure in hand and
a simpler one, and the analysis amounts to showing inequalities regarding the evolution (e.g.,
monotonicity of certain quantities). Pathwise-analysis considers a random evolution rather than
a deterministic one which allows arguments to be carried out path-by-path rather than on an
average sense.

The logarithmic Laplace transform

The logarithmic Laplace transform is central to our framework: Upper bounds on either itself or
its Hessian turn out to be naturally related to functional inequalities of the underlying measure,
and it is also used associate between inequalities regarding the center of mass and the covariance
structure and relative entropies. In the context of measures on the discrete cube, it was suggested
that the log-Laplace transform performs a natural role in concentration inequalities in a paper
by Shamir and the second author [ ]. In the context of log-concave measures on R"” the
log-Laplace transform was long known to perform a central role in concentration inequalities,
see | , , ].

Related techniques in Markov chains

Our technique is also related to Markov chain decomposition techniques ([ , )]
where the analysis of mixing times of a Markov chain is carried out by splitting the chain into

8



simple-to-analyze components via restriction and projection-like operations. Another common
technique in Markov chains is coupling, of paths. The coupling technique is also based on
path-by-path analysis but otherwise is very different in spirit from our technique, which does
not consider paths of the random walk but rather of the measure-evolution process.

Localization techniques

The idea of proving concentration inequalities by considering a certain scheme which con-
verts the measures into simpler ones by localizing on space goes back to Gromov and Milman

[ ] and Kannan, Lovasz and Simonivits ([ , ]). In these works, a measure
is effectively decomposed into one-dimensional components called “needles”. More recently,
needle-decompositions of measures were also used in Riemannian geometry [ , ].

Summary of notation

* prs(+) - Modified log-Sobolev (MLSI) coefficient.
* gap(-) - Spectral gap.
Ent,[f] := [ f(z)log f(x — [ fdvlog ([ fdv).

Dt (ul[v) == [log fl—’j(fc)du(fc)-

* For a matrix A € M,,«,,, ||Al|op - operator norm; p(A) - spectral norm.

¢ For a measure v on R":

- b(v) := [xdv(z) - The center of mass.

Cov(u) = [(z— b(u))®2du(:c) - The covariance matrix.

Cor(v) := diag(Cov(v))~Y2Cov(v)diag(Cov(r))~1/2, where diag(-) is the diago-
nal matrix obtained by setting all the off-diagonal entries to 0, called the correlation
matrix.

U (v) := Cov(v)diag(Cov(r))~! the influence matrix.

— T,v where v € R" is defined as dzl%g) =7 Z:i;idyf(cz)) (exponential tilt of a mea-
sure).
- (eq,...,e,) is the standard basis of R".

— S™!is the unit sphere in R™.

* For a measure v on {—1,1}",

Foru € {—1,0,1}" define S, := {z € {-1,1}"; zu; > 0, Vi € [n]}.

R,V is the normalized restriction of v to S, (pinning of v according to w).

For A C [n], Rav = R ,v (by abuse of notation, pinning of coordinates in A to
+1).

— PSYP(v) is the transition kernel for the Glauber-dynamics on v.
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2 Localization schemes and their associated dynamics

In this section, first we introduce the central object in our framework: a localization scheme.
Second we discuss the dynamics associated with a localization scheme. Finally, we present
several examples of localization schemes.

We fix a set () equipped with a o-algebra >. For simplicity the reader may assume that
either ) is R™ equipped the o-algebra of Lebesgue measurable sets, or €2 is {—1, 1}" equipped
with the discrete o-algebra. Denote by M (£2) the space of probability measures on (.

Definition 3. A localization process on () is a measure-valued stochastic process (1;):>o wWhich
satisfies the following properties:

(P1) Almost surely, v; is a probability measure on €2 for all £.
(P2) For every measurable A C €, the process t — 14(A) is a martingale.

(P3) For any measurable A C (2, the process v;(A) almost surely converges to either 0 or 1 as
t — oo.

Remark 4. In the following, we deal with both continuous-time localization processes (namely
the time parameter ¢ lives in [0, 00)) and discrete-time localization processes (with the discrete
time parameter ¢ = 0, 1, 2, ...). In order to keep the notation simple, we always assume that 7 is
real-valued, but in the latter case we simply assume that the process is constant in intervals of
the form [k, k + 1) for k € Z.

Definition 5. A localization scheme on 2 is a mapping that assigns to each probability measure
v € M() alocalization process (14);>o Which satisfies vy = v.

If £ is a localization scheme and (1;):>0 = L£(v), then we say that (1;)>¢ is the localization
process associated with v via the localization scheme L.

2.1 Simple examples of localization schemes

To better understand the definition of localization schemes, we give a few simple examples.

2.1.1 Example 1: Coordinate-by-coordinate localization

Let v be a probability measure on {—1, 1}". Define a process v, ..., v, in the following way:
Let (k1, ..., k,,) be a random variable drawn from the uniform distribution over all permutations
of [n]. Let X be a random point sampled from v, independent of (k1, ..., k). For ¢ > 0, define
v; to be the law of X conditioned on Xy, ..., Xy, for i = min(|¢],n).

Note that, by definition, the sequence (1;);>¢ is a martingale, the measures v, are probability
measures and almost surely v is a Dirac measure for all ¢ > n. Thus, (1), is a localization pro-
cess. The coordinate-by-coordinate localization scheme is the scheme that assigns the process
(¢)¢>0 to the measure v.

10



2.1.2 Example 2: Random-subspace localization

Let v be a probability measure on R™ and let (uy, ..., u,) be a random orthogonal basis in R",
distributed according to the Haar measure on the orthogonal group O(n). Sample Z a random
point from v independently of (uy, ..., u,). For all t > 0, let v, be the law of Z conditioned on
(Z,u1),...,(Z,u;) fori = min(|¢|,n). Then v; is a Doob martingale of probability measures
and v, is a Dirac point measure supported on Z. Thus, (14);>0 is a localization process.

2.1.3 Example 3: Halfspace-bisection localization

Let v be an absolutely continuous probability measure on R”. Let 6,6, ... be a sequence of
independent points generated from the Haar measure on S"~! and let €1, €5, . . . be a sequence of
independent +1 Bernoulli random variables. Set vy = v and for all © € Z, define v; inductively
as follows. Set

ti=min{s € R; v, 1({z; -0, <s})=1/2},

define H; = {x € R"; (z-6; —t;)e; > 0}. For all measurable A C R", set 1;(A) :=
2v;_1(A N H), the normalized restriction of v;_; to H. In words, v; is generated by choosing
a uniformly random direction in the sphere and picking one of the two half-spaces that bisect
v;—1 into two parts of equal mass in that direction. Define vy = Vyjn(|¢],n)- It is not hard to check
that this process is a martingale and thus (P1) and (P2) are satisfied. It can be shown that (P3) is
also satisfies, and so the process (1), is a localization process, but we omit the proof since this
process is only given for the sake of the example and is not used in the rest of the paper.

2.1.4 Example 4: Gaussian channel localization

Consider the case {2 = R"™. Let v be a probability measure on 2. We construct the process
(1) as follows. Let X ~ v and let B, be a standard Brownian motion on R” independent of
X. Define v; to be the law of X conditioned on ¢t X + B,. This process clearly satisfies (P1)
and (P2). Under mild conditions we have that X5t = X + Bt converges to X and that (1),
is a localization process. More details about the Gaussian channel localization are provided in
section 2.4.

2.1.5 Example 5: Subset simplicial-complex localization

Let k be an integer less than or equal to n. Let €2 be the set of all subsets of size of & of [n], and let
v be a probability measure on (2. We construct a sequence of measures as follows: Let X ~ v
and let j;,...j, be a random permutation of [k], independent of X. Write X = {z1,.., 2},
where 1 < .-+ < x. Fori € {1,...,k}, define v; to be the law of X conditioned on

Xy, ..., Xj,. Define vy = v .-

2.2 Dynamics associated with a localization scheme

Given a localization scheme, there is a natural way to introduce a sampling algorithm associated
with it. Specifically, starting from a localization process associated with v with a localization
scheme, we can define a Markov chain whose stationary measure is v.

Definition 6. (Markov chain associated with a localization process) Let (1), be a localiza-
tion process on €2 and let 7 > 0. The dynamics associated with v; and 7 is the Markov chain

11



whose transition kernel is defined by the formula

v (x)v-(A)
v(x)

Remark 7. The above definition only makes sense under the condition that v; is almost surely

absolutely-continuous with respect to v, in which case the quantity ”Vt((f)) is well-defined for

v-almost every x. Below, we will see how to remedy this issue if this is not the case.

PHA:E[ },ver,AcQ. (1)

Fact 8. The operator defined in (1) is the transition kernel of a reversible Markov chain whose
stationary measure is v.

Proof. By property (P2) of Definition 3, we have E[v,] = v, which implies that for v-almost

every z € 2,
g [2@r @) _ g [r@]
v(x) v(x)
so that P,_,. is indeed a probability measure. It is evident from the definition that for all A, B C
Q,

/A Py pdu(z) = /A E {‘fi”; ((;U;VT(B)] d ()
—E [ (A)r(B)] = [ Proadv(y).

B

hence the Markov chain is reversible and has stationary measure v. O

Remark 9. Instead of taking the time 7 to be deterministic, we can take it to be a stopping time.
It is not hard to verify that we still get a reversible Markov chain.

Another interpretation of the Markov chain associated to localization process is the follow-
ing: consider a random variable (X,Y") € Q x ) defined by

P(X €A Y € B)=E[v.(A)v.(B)]. 2)
Define a transition kernel by the formula
Pooa=PY € A|X =ux).

If 1, is absolutely continuous with respect to v, the conditioning is well-defined for r-almost
every x. If that is the case, it is not hard to check that the above transition kernel coincides with
the one in definition 6.

Definition 6 introduces a Markov chain with a localization process and a parameter 7. Con-
sequently, every localization scheme gives rise to a sampling algorithm.

Definition 10. (Sampling algorithm associated to a localization scheme). Given a localiza-
tion scheme £ on a space €2 and given 7 > 0, we define P\ as the mapping from M (Q) to
the space of Markov kernels on 2 where P“7)(v) is given by equation (1).
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Example 1: The coordinate-by-coordinate scheme and Glauber dynamics

Let us show that the dynamics associated with the coordinate-by-coordinate localization scheme
from subsection 2.1.1, with the choice 7 = n — 1, is the Glauber dynamics, defined as follows.

Definition 11. (Glauber dynamics) For a measure v on {—1, 1}", the Glauber dynamics is the
Markov chain whose transition kernel PSP (v) is

1 vy)
P (v) == 1{ja—yl— 1o
W) = @) + ) Hlevii=n + PLa=yy,

with p=1 Z?:l W and = @ e; denotes the vector of {—1,1}" obtaining by flipping
the i-th coordinate of z.
Consider the dynamics obtained from the formula (1) with 7 = n — 1. First, fory =z G e,

we have

gt

Jj€ln]
_ Plsupp(va i) = {z,4}) {an(x)ynl(y) kn = i, supp(vo_1) = {z,y}
n v(x) S i ’
) irly) ey
nv(z) v(z)+v(y)v(z) +v(y)
1 vy

nv(x) +v(y)

Second, if ||z — y||; > 1 then PSP (v) = 0, which establishes the fact that the Markov chain

T—Y
associated with the coordinate-by-coordinate process is Glauber dynamics.

Remark 12. We can also consider the Markov chain obtained by choosing 7 = n — ¢, for some
¢ > 1. The transition kernel of this Markov chain can be described as follows: Given that the
current state is some x € {—1, 1}", the next state will be generated by first choosing a subset
of coordinates A C [n]| with |A| = ¢ uniformly at random, and then choosing a point according
to the restriction of v to the subcube defined by {y; v; = x;, Vi € [n]\ A}. We refer to this
Markov chain as the /-Glauber-dynamics.

Example 2: The subspace localization scheme and the hit-and-run walk

Fix a measure » on R™ and let (1), be the subspace-localization process defined in Subsection
2.1.2. Define 7 = n — 1. Let (X, Y') obey equation (2). Given x € (2, consider the expression

Poya=PlY € AIX = 4]
=Eu . w z[PY € AIX =2,u1, ..., up—1, Z)].

Note that, by definition, conditioned on u, .., u,_1, Z we have that X, Y have the law of the
restriction of v to {x; (v — Z,u;) = 0, Vi € [n — 1]}. Therefore, we can understand the

13



conditioning on X = z as conditioning on the event £, = {(Z —z,u;) =0, Vi € [n—1]}. In
other words

Posa=E, . [P(ZeA(Z —x,u;) =0, Vi € [n—1])]
= E,, [P(Z € AlProj,.(Z —z) =0)].

In words, given the point x, to generate the next point in the Markov chain, we first generate
the direction u,, uniformly from the Haar measure on the unit sphere and then generate a point
from the restriction of v to the fiber Proj, .« + Span(u,). This Markov chain is known as the
hit-and-run walk (see e.g, [ D.

Other examples of Markov chains

* In Subsection 2.4.3, we show that the Gaussian-channel localization gives rise to the
sampling algorithm introduced in [ ], where each step is a restricted Gaussian
oracle step.

* The dynamics associated to the subset simplicial-complex localization in Subsection 2.1.5
with time 7 = k£ — { leads to the /-down-up walk (see [ D.

* A continuous analogue of the coordinate-by-coordinate localization scheme gives rise to
the coordinate hit-and-run algorithm (see [ D.

* The dynamics associated with the negative-fields localization constructed in Subsection
2.4.4 is the field dynamics introduced in [ ].

2.3 Doob localization schemes

In this subsection, we describe a class of localization schemes which generalizes several exam-
ples we have seen so far. Given a set {2 equipped with a o-algebra ¥, we say that a filtration
(Ft)>p of s precise if & (Ut>0 ft) = 2. Let F, be the space of probability measures over
the set of precise filtrations on €.

Given a distribution m € Fgq, we can introduce a localization scheme using the filtration
generated from m. For any measure v on (2, we construct a localization process (1), as follows:
Let Y be a v-distributed random variable and let F; be a precise filtration generated from m
independently of Y. 14 is defined as follows

n(A) =E[P(Y € A|F,)], VA C Q measurable .

It is evident that v, satisfies (P1) and (P2). Since F; is precise we also have that 1, satisfies (P3).
We call localization schemes constructed this way Doob localization schemes.

We can verify that coordinate-by-coordinate scheme and the random-subspace localization
schemes are Doob localization schemes. For the coordinate-by-coordinate localization scheme,
it suffices to take (), to be o-algebra generated by the maps x — x; fori € ky,... k.
For the random-subspace localization scheme, we take (F;),, to be o-algebra generated by the
maps x — (z,u;) fori € ki, ... k. -

14



2.4 Linear-tilt-localizations

In this subsection, we describe a family of localization schemes which arise from a process
known in the literature under the name stochastic localization. To avoid confusion and to
make it possible to include new localization schemes to this family, we refer to this family as
linear-tilt localizations. The general idea behind these schemes is that, in order to obtain the
measure v 4 from the measure v, one multiplies the density by a random linear function. Our
definitions in this section make sense whenever {2 can be naturally embedded in a linear space.
However, we will mainly focus our attention on the cases {2 = R" and Q = {—1,1}" C R".
Given a measure v on 2, denote the center of mass of v as b(v) := [, zv(dx).

2.4.1 An alternative viewpoint on the coordinate-by-coordinate localization

We begin with an alternative description of the coordinate-by-coordinate localization scheme
described in Subsection 2.1.1, which serves as our first example for a linear-tilt localization.
Fix a measure v on Q = {—1,1}". Let (ky, ..., k,) be a uniform permutation of [n] and

let Uy, ..., U, be an i.i.d. sequence of independent random variables drawn from the uniform
distribution on [—1, 1].
Define vy = v. Fori = 0, 1, ...,n define
vie1(z) = vi(2) (1 + (2 — b(w), Zy)) A3)

where Z; is defined by

1 .
T, i PWik 2 Ui,
Zi = eki X 1+b£lil)ki . ( ) (4)
oo i Pk < Ui
and where ey, ..., e, is the standard basis of R" . Finally, to extend the process beyond times

1,...,n, take vy = v|tjpn.

To see that this is indeed a localization process, first observe that to obtain 1,1, we multiply
v; by a linear function which is equal to 1 at its center of mass, meaning that v4(2) = v;,1(2).
It is easy to check that E[Z;] = 0, which verifies (P2). Finally, a direct calculation shows that
v;11 is in fact a pinning of the k;-th coordinate of v;. Indeed, if 2, = — sign(U; — b(v;)y, ) then
(x — b(v;), Z;) = —1 in which case the right-hand side of (3) vanishes.

It follows from the above that the definition in this subsection is equivalent to the one given
in subsection 2.1.1. This point of view can be used as a motivation for the family of localization
schemes considered in this section: Note that it is not evident at all from this definition that the
described scheme is a Doob localization scheme. However, in this case (1), can be thought of
as a Markov chain on the space of measures, where the transition corresponds to multiplication
by linear functions with random slopes whose conditional expectation is 0. In this example, the
slopes are chosen in the unique way so that it will cause the measure 1, to be a restriction of
V4 to a subcube.

2.4.2 Stochastic localization driven by a Brownian motion

Next we describe the stochastic localization process initially constructed in [ ]. Let v be
a probability measure on R", and let B; be a standard Brownian motion in R™ adapted to a
filtration F;. Let (C}); be an F;-measurable process which takes values in the space of n X n
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positive-definite matrices. We define a process (1), via the change of measure % (z) = Fy(z),
where the functions F;(x) solve the following system of stochastic differential equations:

Fo(x) =1, dFy(x) = Fy(x)(x — b(vy), CydBy;), Y € R™. 5)

The above is an infinite system of differential equations (one for each x € R"), but it turns out
that a slightly different point of view allows us to view it as a finite system. The uniqueness
and existence of the solution of the system of stochastic differential equations are established in
[ , ]. The following fact gives a sufficient condition for the process to be a local-
ization process. It was proved in [ , ], but we provide a sketch for completeness.

Fact 13. If, for every unit vector 0 € S*', one has [;° |Cy0|*dt = oo almost surely, then the
process (1) is a localization process.

Proof. A direct calculation shows that
dv(R™) = / dFy(x)v(dr)

_ /R (= b(n), CudB,) Fy(x)v(d)

_ < / zdvy — (1), CtdBt> ~0.

dlog Fi(x) = {2 — (), CuBy) — |Gyl — b(w)) P di

Moreover, by Ito’s formula

which shows that F;(z) is non-negative almost surely for all x,¢. The above establishes (P1).
The martingale property (P2) follows directly from (5). Property (P3) follows from a calcu-
lation carried out using Ito’s formula which shows that dCov(v;) = —Cov(v;)C2Cov(1;)dt +
martingale , see [ , Section 2]. O

A very useful property of the stochastic localization process is the following.

Fact 14. For every t > 0, we have almost surely that v, attains the form,

v (dx)
v(dx)

1
= exp <Zt ~ 3 (3, x) + (yt,x)) , (6)
where X, = [ C2ds, y, = [} (CsdB, + C?b(vy)ds) and Z, is a normalizing constant to ensure
v, is a probability measure.

This process turns out to be useful in proving concentration inequalities in both the contin-
uous setting of log-concave measures and the discrete setting, see [ , , , ,

9 ]'
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2.4.3 Stochastic localization and sampling via a restricted Gaussian oracle

With the specific choice C; = 1, the stochastic localization scheme gives rise, via equation
(1), to a natural reversible Markov chain associated with a measure on R", which happens to
coincide with the restricted Gaussian dynamics given in [ , ].

For a measure v on R", y € R™ and n > 0, define the measure S, ,,v by

v(dw)exp (~55le — yl?)

fRn exp (—%|z — y|2> v(dz)

Definition 15. (The restricted Gaussian dynamics) For a measure v on R™ and > 0, the
restricted Gaussian dynamics for v with parameter 7 is the Markov chain defined by

Synv(dx) =

PRGDy (V):cﬁA = IEy~/\f(ﬂw71n) [Sy,nV(A)] .

The next proposition is based on an alternative point of view on stochastic localization which
was suggested by El Alaoui and Montanari [ ].

Proposition 16. The dynamics associated to the stochastic localization process with Cy = 1,
and time T is the restricted Gaussian dynamics of v withn = 1/.

Proof. It follows from equation (6) that v, = S, 1V, where y, = B, + fot b(vs)ds. Define
X = limy_o %yt. It is shown in [ , Section 2] that b(r;) almost-surely converges and that
lim; ., b(1;) has the law v. Therefore,

B 1 [ :
X = tlg]élo -t ¥/0 b(vs)ds = tlg?o b(1) ~ v.
An application of [ , Theorem 2] tells us that (X, y;) have the same joint law as (X, t.X +

VI') where T' ~ N(0,1,) is independent of X. Therefore, if we generate the measure v;
according to the process and then generate X’ according to 14, then the joint law of (X', 1) is
the same as that of (X', Sy 1/, ,V)- In light of equation (2), this completes the proof. O

The last proposition also shows that the stochastic localization process with the choice C; =
I, is identical to the Gaussian channel localization from Subsection 2.1.4.

2.4.4 The Negative-Fields localization

In this subsection, we introduce a localization scheme which is only relevant for the setting
2 = {—1,1}" Roughly speaking, the Negative-Fields localization process associated to a
measure v on {—1, 1}" is the unique process (1;); where v, is almost surely an exponential tilt
of the measure by some deterministic external field v(¢), and a random pinning of the measure.

Before we move on to the construction of the process, let us introduce some notation. For a
measure v on {—1,1}" and for v € R™ define

ey ()

 Jewddv(y)’

the measure obtained by applying external field v to v (or the exponential tilt).

Tov()
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For u € {—1,0, 1} we define the u-pinning R, v to be the restriction of u to the subcube
Sy i={z e {-1,1}"; zyu; >0, Vi € [n]}

By slight abuse of notation, for A C [n] define Rav(z) = Rq,v(x), namely the measure v
where the coordinates in A are pinned to +1.

We first give a slightly informal account of the construction. Given an initial measure v
on (), the negative-fields localization process is the unique martingale of probability measures,
(v¢)¢, which has the form

vy = [tfRAtl/, Vit > 0,

where T = (1,...,1) and (A,); is an almost-surely increasing process of subsets of [n).

A different point of view on the process is to express it as a linear-tilt localization by noting
that both the operation of applying an infinitesimal external field and that of pinning amount to
linear tilts. Hence, we suppose that for all ¢ > 0

virn(z) = w(z) (14 (x —b(1y), Z(t + h) — Z(t))) + o(h), Vh >0, (7

where )
1 {Z € At+h \ At}

1 + b(”t)i
and the process (A;); of increasing sets is uniquely defined by the equation

P('l € At+h \ At |At) = 1{Z¢At} (1 + b(Vt)Z)h + 0<h), Vh > 0.

Z(t) = —t +

The two last equations render that
E[Z(t+ h)|A] = Z(t) +o(h), Vt>0,h>0

which, as we will see, implies that the process is a martingale.

Remark 17. Roughly speaking, the measure 1, evolves by applying increasingly stronger neg-
ative external fields to all sites, and occasionally pinning sites to the value +1 in a way that
balances the effect of the external fields resulting in a martingale. The dynamics associated
with this localization is called the field dynamics, and was introduced in [ ]. Below,
will not study the field dynamics itself, but we will be able to apply this localization to obtain
the same results in a way that bypass the dynamics.

The next proposition gives a rigorous account of the above and establishes the existence of
a slightly generalized version of the process.

Proposition 18. Letr v be a probability measure on {—1,1}" and let v : [0,00) — R" be a
differentiable curve satisfying v(0) = 0. There exists a (unique) stochastic process (u(t)); with
uy € {—1,0,1}", such that the process (1), defined by v, := Ry Tow) v is a martingale. This
process is uniquely defined by

E(u(t+h); — u(t); [u(t)) = —Luw,=o (1 —sign(v](t))b(14);)vi(t)h + o(h), ¥Vt >0,i € [n].

Moreover, we have for allt > 0 and x € {—1,1}",

uw(t+h); —u(t);
= 1 ; — b( hv.(t h). (8
pate) =) | 1+ 3 (o= bl ) (ot + D) ) o).
If, in addition, lim;_,, |v;(t)] = oo for all i € [n], then the above process is a localization
process.

The proof of this proposition is postponed to Appendix A.
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2.4.5 General linear-tilt localizations

Let us now consider a natural family of localization processes which generalizes the two pre-
vious examples. Let 1, be a localization process on {2 C R" (in general we can consider any
linear space). Suppose that for every ¢ > 0 and h > 0 we can write

dviyn,
dv

() = 1+ (z = b(1), Zin) + 0u(h), )

such that E[Z; ,|14] = 0. In other words, the measure 14, is generated from v; via multiplica-
tion by a linear function whose slope is a conditionally-centered random variable. Note that the
linear functions is equal to 1 at the center of mass of v;, which has to be the case given that 1/
remains a probability measure.

It is not hard to see that the family of localization processes which obey equation (9) contains
the coordinate-by-coordinate localization, the stochastic localization and the negative-fields lo-
calization.

2.5 Spectral gap and modified log-Sobolev inequalities

Consider a localization process (1;); obtained from v via some localization scheme £, and let
7> 0. Let P = P*7)(v) be the Markov chain obtained by formula (1). The following result
establishes functional inequalities regarding the transition kernel P through the analysis of the
corresponding localization process.

Proposition 19. If the transition kernel P is the one associated to the localization process (V)
via equation (1), then

_ . E[Var, [¢]
gap(P) = <p:15%l—f>]RW’ and (10)
ps(P) > EBoty, ] (an

f:le[O,oo) Ent,[f]

Proof. For a test function ¢ : 2 — R, we have

Awm(éw@wygywwzéwm<E
—5 | [ (o (o)

{0\
S
—~
N
SN—
oY
N
—~~
<
SN—
N——
—_ 1

Consequently,

Joa0(2) — o) PP, ()dv(a) o el dv(z) — B[ (Jy p(a)dvs (2))’]

2Var, [¢] Vary[ ]
_ E UQ p(z)*dv,(x (fQ p(x )2]
B Varu[w]
_ E|[Van, [y]
Var,[p]
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Taking the infimum over all o, we obtain (10). For the MLSI, observe that by Jensen’s inequality
we have forall x € Qandall f: Q — R,
L [ ]

22 [ e [
<& =0 ([ s ( [ rman))|
where we used the fact that E [ ele) ” — 1. We therefore have

/Q (P)(2) log(P ) (x))dv(x)

:/Q { /f Y )]ng{ /f Vv (y ]du()
I {J@) ([ stopav-oos [ f<y>duT<y>))} e

B |([ ) [ swantos( [ swan)]

—& | [ sinos ([ soanm)|

IN

Therefore,
E [Ent,, [f“ E [J, f(z)log f(z)dv:(2)] — E [ [, f(y)dv:(y)log (J, f(y)dv-(y))]
Ent,[f] Ent,[f]
_ Jo I (@)log f(w)dv(z)  [o(Pf)(x)log(Pf)(z)dv(w)
B Ent, [f] Ent, [f]
_ Ent, [P/f]
Ent,[f]
Equation (11) follows by taking infimum over all f : Q — R,. O

3 Approximate conservation of variance and entropy

In this section we describe the main tools used to prove mixing bounds for the dynamics as-
sociated with a localization scheme. We introduce the notions of approximate conservation
of variance and entropy which, in the context of the coordinate-by-coordinate localization are
related in a simple way to spectral independence and entropic independence. In the context
of stochastic localization, the concept of variance decay has been applied in order to prove a
spectral gap for log-concave measures.

Here, we will see that the same underlying principle is relevant to both techniques, and the
difference is in the localization scheme being considered: In both proof techniques, one of the
main insights has to do with a connection between the rate of variance decay and the covariance
structure of a certain class of measures. Thus our framework captures the relation between
covariance structures and variance / entropy decay in both settings using the same derivation.
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Definition 20. (Approximate Conservation of Variance, discrete time). We say that a local-
ization process (1;); satisfies (K1, ko, ...)-variance conservation up to time t, if for every test
function ¢ : 2 — R one has

E[Var,,[¢] | vi—1] > (1 — k) Var,,_,[p], V1 <i<t.

The motivation behind this definition is given by the fact that

E[Var,,[¢]] ! Var,, [¢
t — E ’L
Var, [¢] H Var,,l al

. d Var,, [¢]
= _[[E {Varuil[w] )

In light of (10), we immediately obtain the following simple theorem which relates between
variance conservation and the spectral gap of the dynamics associated with the localization
process.

Proposition 21. If the localization process (1), satisfies (K1, ..., K;)-approximate variance
conservation then the dynamics given equation (1) with T = t has a spectral gap bounded

below by T[i_,(1 — &;).

3.1 Approximate conservation of variance for linear-tilt localizations and
spectral independence

In this section we will present very simple derivation, which gives a powerful tool for proving
approximate variance conservation bounds for linear-tilt localization schemes. A special case of
this derivation will recover (in a very simple way) the main theorem in the spectral independence
framework of [ ].

Suppose that 2 C R". Suppose that (1), is a localization process on {2 whose evolution is
given by the equation

Vi () = v(x) (14 (x —b(y), Zy)), Vo € Q, (12)

where Z, is a random vector satisfying E[Z;|v;] = 0.
Our first objective is to calculate the variance decay of a test function along this process.

Claim 22. For a test function ¢ : ) — R, we have
E [Var,,., [¢]| ] — Var,[g] = — (v, Cuy). (13)

where
v = /Q(x —b())e(x)r(dx) and Cy:= Cov(Zw).

21



Proof. Fix ¢ : 2 — R. We calculate

(f w(x)utmd:c))z

([ @+ =pwo.z) w(ﬂf)vt(dx))Q

Vt:| —E

4
4

2

E Vot o]l v = | [ olaPueaa

()
= Elft [902] - EVt [()0]2 —E

(/Q<:c —b(1), Zt><P(SU)Vt(d:(;))

4
|

where (i) uses (P2) and (ii) uses the fact that E[Z;|r4] = 0. By definition of C; and v,, the
right-hand side is equal to Var,,[¢] — (v, Cyv;), which completes the proof. O

= v i) Var [{ [ & = blyta(an), 2

In order to establish an approximate variance conservation bound, we need to give an upper
bound on the expression (v;, Cyv;). We now arrive at what is perhaps the heart of the argument.
We use the Cauchy-Schwartz inequality, obtaining

2

<Ut> CtUt> =

/Q CI2(x — b)) pla)(de)

~ up ( JREEE b(vt>>,e>go<x>vt<da:>)2

10|=1

< sup /(C’tl/Q(x —b(w)), 0)*v(dz) Var,, [¢]
o|=1Jq

= ||C"* Cov () C; | op Var,, [¢)]. (14)
Combining with (13) yields that

E [Var,,t+1 [@]} Vt}

Ve 21T 1C, 72 Cov (1) C % lop. (15)

The derivation above is one of the key insights in the framework presented here: A simple
application of the Cauchy Schwartz inequality gives rise to the role of the covariance structure
in variance conservation.

Let us now examine how to apply (15) to the case of the coordinate-by-coordinate localiza-
tion. A simple calculation, using the definition (4) gives that

1 1+ b(); 1 1 —b();
(1+ b(ry);)? 2 (1 —b(1y);)? 2

1 -1
— TW = (COV(%)M) )

(n — t) COV[Zt|Vt]Z',Z' =

where the last equality is a consequence of the fact that [, 71,(dz) = 1. Denoting D, to be the
diagonal matrix whose entries coincide with the diagonal entries of Cov(1;), we finally have

1
(n—1)
22
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Define for a measure 7 on {—1,1}",
Cor () := diag(Cov(#))2Cov(7)diag(Cov(7)) /2, (16)

where diag(+) is the diagonal matrix obtained by setting all the off-diagonal entries to 0. So
Cor(7) is just the matrix of correlations between different coordinates of 7. We will also
consider the closely-related influence matrix of the measure, defined as

\I’(l/)z"j = EXNV[XZ'|XJ‘ = ]_] — EXNV[XZ'|XJ‘ = —1] (17)

The following fact relates the correlation matrix and the influence matrix. Its proof is postponed
to Appendix A.

Fact 23. We have ¥ (v) = Cov(v) diag(Cov(v))™! and
|Cor(v)lop = p(¥(v)) < [[¥(¥)]lop- (18)
In light of the above fact, Equation (15) becomes

E [Var,,,, [¢]| vi] 1
Var,, [¢] =1- mp(m(l]t))'

For v € {—1,0, 1}" define the u-pinning of a measure, R, to be the restriction of 7 to the
sub-cube S,,, where
Sy = {x e{-1,1}"; zu; >0, Vi € [n]} (19)

Observe that under the coordinate-by-coordinate localization, 14 is of the form R,v for some
u = wu(t). The condition that | ¥(R,v;)|op is bounded uniformly in u is called spectral
independence. Plugging the above into (15) and applying Proposition 21 recovers the main
theorem in the spectral independence framework [ ]:

Theorem 24. (A reformulation of [ , Theorem 1.3]) Suppose that v is a measure on
{—1,1}" such that for all v € {—1,0,1}",

P(¥(Ruv)) < Njufy-

Then the spectral gap of the k-Glauber dynamics on v is at least H;.Zokfl(l — i),

n—i

Remark 25. There are some delicate differences between the above theorem and [ ,
Theorem 1.3]. In the latter, 7); is taken to be the operator norm of the matrix ¥(R;v) — I, rather
than that of the matrix W(v). Precisely, their result states that spectral gap is bounded from
below by the expression + H?;Okfl(l — #) where 7; = 1; — 1. So the extra factor 1/n is

n

traded for the fact that 7; can be replaced by n; = n; — 1.

In our proof, we completely bypassed the need to use the notion of high-dimensional ex-
panders or the up-down walk. The inequalities relating different levels of the up-down walk
were replaced by a simple application of the Cauchy-Schwartz inequality.
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3.1.1 The case of stochastic localization; bounds for the spectral gap of log-concave mea-
sures

The same derivation (almost verbatim) as above gives a similar bound for the variance decay
of the stochastic localization process (5). Here we briefly outline the argument which can be
found in [Eld].

Let v; be the stochastic localization process associated to a measure v on R", via equation
(5) with some driving matrix C}. Fix a test function ¢ : R” — R. The continuous analogue of
(13) takes the form

dVar,,[¢] = — ’/ Ctl/Q(az — b(y))p(z)dv(x)| dt + martingale.

Equation (14) (or, in other words, an application of Cauchy Schwartz) gives

\ / C?(x — b(w))p(x)dvi(x)| < (G2 Cov (1) C?[op Vary, []

which implies that
1/2 1/2 :
dVar,,[¢] > —||C;“Cov(1y)C,""||op Var,, [¢]dt + martingale
By integration, we get the variance decay bound

E[Var,[¢]] _ o fbiecoeac o] (20)
Var,[p] —

Therefore, upper bounds on the process ¢t — ||Cov(1;)||op correspond to approximate conser-
vation of variance bounds.

A classical inequality by Brascamp and Lieb allows us to relate the Dirichlet form E, [|V|?]
to E[Var,,[¢]]. Namely, due to (6) we have that the measure v; is a;-strongly log-concave with
o, being the smallest eigenvalue of Y, = fot C2ds, which implies that

E[Var,, [¢l] < B, [Vl

Combining this with (20) gives a way to obtain lower bounds for the spectral gap of a measure
v on R" via the analysis of the process ¢ — ||Cov(v;)|op. This is one of the main ideas
underlying the stochastic localization technique, which in particular led to the near-solution,
due to the first author ([ ]), of the Kannan-Lovasz-Simonovits conjecture ([ ]) and
Bourgain’s slicing problem.

3.2 Approximate conservation of entropy

It turns out that there are also natural sufficient conditions regarding the conservation of the en-
tropy along a localization process. These conditions are closely related to the notion of entropic
independence put forth in [ ].

Definition 26. (Entropy conservation, discrete time). We say that a localization process (;);
satisfies (K1, ko, ...)-entropy conservation up to time ¢, if for every test function f : Q — R,
one has

E[Ent,,[f] | vic1] > (1 — k;)Ent,,_[f], V1<i<t.
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A telescopic-product argument, completely analogous to the one in the proof of Proposition
21, together with equation (11), yields the following.

Proposition 27. If the localization process (1), satisfies a (K1, ..., K¢)-entropy conservation
then the dynamics given equation (1) with 7 = t has a MLSI coefficient bounded below by

H§:1(1 — Ki).

Remark 28. We refer the reader to | , Section 1.1] for some examples where this bound
can be applied. Usually, however, the expression [['_, (1 — ;) will give optimal bounds. Below
we will see better ways to extracting the power of approximate conservation of entropy.

3.2.1 Entropic stability

Next, we discuss the case {2 C R™ (relevant in particular to 2 = R” and 2 = {—1,1}"). We
introduce a notion which turns out to be very useful in controlling the decay of entropy along
linear-tilt localizations.

For a measure v on R™ and v € R", define the exponential tilt 7, by

dT,v(x) o elvw)
dv(z) = [eladu(z)

A central definition in our framework is the following.

Definition 29. (Entropic stability). For » on {2 C R", a function¢) : R” x R” — R, and o > 0,
we say that v is a-entropically stable with respect to v if

»(b(T,v),b(v)) < aDkr(T,v||lv), Vv e R™.

In order for the definition to make sense, ¢)(z, y) needs to vanish when = = y. For the sake
of intuition, we may think of the case ¥ (z,y) = |z — y|?. Roughly speaking, entropic stability
amounts to the fact that the center of mass does not move much when tilting the measure in
terms of the relative entropy of the tilt.

What follows is a very useful observation, based the principle of maximum entropy. This
observation is essentially due to [ ], where it was used in the context of entropic inde-
pendence, which can be understood as a specific case of entropic stability.

Fact 30. For every measure v on () and every function g : R — R, one has

o D) e Drn(Tor||v) 21

wog(b(p)  verr g(b(To))

Proof. By the maximum entropy principle, the minimum over measures p of the relative en-
tropy Dkr(u||v) under the linear constraint b(i) = by is attained for a measure such that

Z—ff o exp(L(-)) for some linear function L : R™ — R, or in other words the optimal f is of the

form 7,v for some v € R". O

An immediate corollary is the following,

Lemma 31. Suppose that a measure v is a-entropically stable with respect to 1. Then, for
every measure [, which is absolutely continuous with respect to v, we have

¥ (b(p), b(v)) < aDky(pl|v).
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Remark 32. In view of the last lemma, we see that the notion of entropic stability is closely
related to transportation-entropy bounds introduced by Talagrand (see [ ] for a survey).
While entropic stability refers to the fact that the center of mass does not move under change
of measure with small relative entropy, a transportation-entropy inequality alludes to the trans-
portation distance being small under such change of measure. Thus, in a sense entropic stability
bounds are a weaker version of transportation-entropy bounds.

One last ingredient which will be useful to us is the following formula which can be obtained
via the logarithmic Laplace transform.

Lemma 33. (/ , Lemma 1]). Let v be a measure on R"™ such that Cov(v) is invertible.
Denote by K C R" the interior of the convex hull of the support of v. Then there exists a unique
SJunctionv : K — R" such that

b(lﬁ,(x)l/) =z, VreK.
Moreover, denoting g(x) := Dk, (T v||v), we have
Vg(b(r)) =0, V?g(x) = Cov(Tomr) ', Vz € K. (22)

Finally, if L,(0) = log [ % dv(z) is the Logarithmic Laplace transform of v, then we have
that
9(x) = sup (z,0) — L,(0)

OcRn

hence g is the Legendre dual of L,,.

Remark 34. The role of the logarithmic Laplace transform in concentration inequalities on the
discrete hypercube was suggested in [ ]. The boundedness of its hessian is closely related to
the notion of fractional log-concavity of the characteristic polynomial, introduced in [ ].

3.2.2 The case of the coordinate-by-coordinate localization: Entropic independence

As a warm-up, in this section we essentially recover the results of [ ], deriving a natural
criterion for approximate conservation of entropy for Q@ = {—1,1}" with the coordinate-by-
coordinate localization process. The proof here boils down to ideas which are quite similar to
the ones that appear in [ ], with two crucial differences which will (arguably) make
our argument cleaner: 1. We directly analyze measures on the hypercube rather than measures
on (7). 2. The notion of fractional log-concavity is replaced by a definition which involves the
logarithmic Laplace transform of the measure, which seems to arise naturally in this context,
and due to which the proof involves much simpler formulas.
For z,y € [—1, 1], define

H@y) =2 e (T tog <1+y-) Tyl <1 iy )) @
i=1 !

)

It turns out that in the context of the coordinate-by-coordinate scheme, the key will be to con-
sider a-entropic stability with respect to the function ¢ (z,y) = H(x,y). With this choice,
entropic stability is essentially the same is entropic independence introduced in [ 1,
and the following proposition shows that it implies approximate conservation of entropy under
the coordinate-by-coordinate localization.
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Proposition 35. Let v, be the coordinate-by-coordinate localization process for some measure
von{—1,1}". Foreveryt, if the measure v; is k-entropically stable with respect to the function
Y(x,y) = H(x,y) then we have the approximate conservation of entropy bound

E [Ent,,,,[f] [v] > (1 - %) Ent,,[f],

forall f - Q) — R, andt € [n — 1]. Consequently, if R, v is k-entropically stable with respect
to the same function, for all u € {—1,0,1}", then the (-Glauber dynamics P = PSP*(v) has
MLSI coefficient

n—~—~—

pLs (P) > ﬁl(l_nii)

Proof. Fix a probability measure v on (2 and a function f : Q@ — R,. Let (14); be the
coordinate-by-coordinate localization process of . The derivation obtained in Subsection 2.4.1
gives the following: Conditioned on v;, we have

/f<x>dyt+1(x) = /f(ﬂf) (14 (z —b(w), Z)) dv(z)

- e ({505 ) #)

— u(f) (1 + (V. 7)) (24)
where
V= f[['f({[’)l/t(dl') b(l/t)
[ f(@)vi(dr)
and -
W with probability M,
Z = ekt+1 X k41 b( )k
m with probability 7’5“
We have
1 :
E[(1+(V, Z))log(1 +(V, Z))|w] — > qltsi)
i€[n]\{k1,... ke }
where
a(t:i) = E[(1+ (V, 2)) log(1 + (V, Z)) v, ko1 = ]
Now, writing d‘“( ) = —L9__ we have V = b(u;) — b(1) and

Jf(R)dve(z)°

q(t;i) = % (1 + ﬁ) log (1 * ﬁ)

1+ b(p)i 1+ b(pe)i 1 —b(u); 1 —b(u)i
B ;8 (1 + b(Vt)i) i > 8 (1 - b(’/t)i) '

Combining the last three displays, we have

E[(1+(V, 2)0g(1 + (V, 2)) ] = —— H(b{j), b(w)) 25)
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We finally get

1
n—t

E[Entl/t+1[f]‘ Vt] = Entl/t [f] - Vt(f>H(b(:ut>7 b<Vt>>

The assumption that 1, is k-entropically stable with respect to i, combined with Lemma 31,
amounts to

K
H(b(p), b(ve)) < £Dx(pl|v) = Ent,, [f].
v(f)
Combining the last two displays gives
K
E [Enty,, [f]] ] 2 Bntu,[f] -~ Bnty,[f]

By definition of approximate entropy conservation, this completes the proof of the first part.
The second part follows immediately by the use of Proposition 27. O

In the paper [ ], the authors show that entropic independence is naturally related
to the log-concavity of a power of the characteristic polynomial, referred to as fractional log-
concavity. Next, we show that a somewhat analogous, very simple derivation, gives that entropic
stability with respect to the function A is implied by the fact that exponential tilts of the measure
have a bounded correlation matrix. The proof of the next lemma is found in Appendix A

Lemma 36. Suppose that a measure v on {—1,1}" satisfies
||Cor(T,v)|lop < o, Vv € R” (26)

where Cor(-) is defined in (16). In this case, v is c-entropically stable with respect to V) (z,y) =
H(z,y).

Remark 37. Fact 23 shows that a-spectral independence is equivalent to the fact that Cov(v) <
(a+1) diag(Cov(v)). Therefore, the condition given in the lemma can be thought of as spectral
independence for all tilts.

Remark 38. The condition (26) is the exact condition given in [ ], where it is shown that it
implies nontrivial concentration of Lipchitz functions.
3.2.3 Entropic decay for stochastic localization

Let v be a measure on R" and consider the stochastic localization process (1), defined by (5).
Fix a non-zero, measurable function f : {2 — R . For every ¢t > 0, define a probability measure

11; by the equation

—(2) = ———"F—.
dv, [ f(z)v(dx)
Consider the martingale

M, = w(f) = / f (@) F () (dz).

Using equation (5), we can calculate

dM; = /f(x)ﬂ(x)(x —b(1;), CidB;)v(dx)
= M(Cy(b(p1r) — b(1y)), dBy).
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Using It6’s formula, we have

d{M
d(M;log My) = Q[M]t + martingale
t
1
= §Mt|C’t(b(ut) —b(;))|?dt + martingale.

We finally obtain

dEnt,,[f] = d/f(x) log f(z)v,(dx) — d(M;log M)

= —20(7) 1€ (bs) — b)) di + martingale. @7)

We arrive at the following,

Proposition 39. For a fixed T' > 0, suppose that, almost surely for all t € [0,T] that v, is
ay-entropically stable with respect to the function ¥(x,y) = %|C’t(x — y)|%. Then we have the
approximate entropic conservation bound

E [Ent,,[f]] > e /o ““Ent,[f]. (28)

Proof. The entropic stability assumption combined with Lemma 31 and equation (27) yields
that
dEnt,,[f] > —a,Ent,,[f]dt + martingale, V¢ € [0,T].

Consequently, by applying Ito’s formula, we have that the process ¢ — elo @sdsEnt,, [f] is a
submartingale. Therefore,

E |eo “@Ent, [f]| > Ent,[f],

which completes the proof. O

The following lemma is useful for establishing entropic stability with respect to quadratic
functions.

Lemma 40. Let v be a measure on R" and C, A be positive-definite matrices. Suppose that for
every v € R" one has
Cov(T,v) 2 A, (29)

Then v is a-entropically stable with respect to the function ¢ (x,y) = %|C (xr — )
ICAC]op-

Proof. Define v(x), g(x) := Dkr(Tu@v||v) and K as in Lemma 33. We have,

2 for a =

9

(29)
Vig(z) @ Cov(Towyr) ' = A7, Vo € K,
and Vg(b(v)) = 0. Define h(z) = %|C(x — b(v))|>. Then Vh(b(r)) = 0 and, for all z,

2
V2h(z) = C?. Therefore, for all z € K, we have

|CAC||opVZg(x) = ||[CAC|opA~" = C* = V2h(z).

Since g(b(v)) = h(b(v)) = 0 and Vg(b(v)) = Vh(b(r)) = 0, g and h coincide up to first
order Taylor expansion around b(v). It follows that ||C' AC||opg(x) > h(x). Together with
Fact 30, we complete the proof. O
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3.2.4 Entropic decay for the negative-fields localization

It turns out that the entropy decay for the negative-fields localization is also governed by the
function H(x,y) in equation (23).

Proposition 41. Consider a localization process v, obtained via the negative-fields localization
scheme (with the choice v(t) = —t1). Let f : {—1,1}" — R and let j1; be the measure obtained

‘;’ZZ—((;C)) = f(x). Suppose that v, is a-entropically stable with respect to the

function H(z,y) defined in equation (23), then we have the approximate entropy conservation
bound

via the formula

E[Ent,, . [f]|v] > Ent,,[f](1 — 4ha) 4+ o(h), Vi, h > 0.

Vit+h

The proof of the above proposition is just a calculation, in the same spirit as the derivation of
entropic decay for the coordinate-by-coordinate process and stochastic localization. The proof
is found in Appendix A.

3.3 Entropic stability via spectral independence

Lemma 36 and Lemma 40 both rely on the logarithmic Laplace transform to show that entropic-
stability can be deduced from bounds on the covariance matrix of different tilts of the measure.
On the other hand, the weaker notion of spectral independence only requires a corresponding
bound on the covariance matrix itself, and in order to get a spectral gap via the spectral inde-
pendence framework, we need a bound on the influence matrix for all pinnings rather than all
tilts (see remark 37).

It turns out that requiring all pinnings of a measure v to be spectrally-independent is suffi-
cient for entropic stability with respect to a quadratic function. Recall the definition of W¥(v)
from equation (16) and recall that for all u € {—1,0,1}", R,v is defined to be the restriction
of v to the subcube S, (defined in (19)).

Theorem 42. Let v be a probability measure on {—1,1}" and let « > 1. Suppose that
HCOI'(RUV)HOP < Q, Vu € {_17 07 1}” . (30)

Then v is 8a-entropically stable with respect to ) (x,y) = |z — y|
Furthermore, if for some constants K > 1,C" > 1, for every i € [n] and for every u,w €
{-1,0, 1}" with supp(u) N supp(w) = O with u; = w; = 0, we have

1-— bi(RwRul/)

1
(Ru) > =

1+ bZ(Rul/)
1-— bi(Rul/)’

IN

K and 3D

(32)

then v is 768K 3C-entropically stable with respect to the function H (x,y) as defined in equa-
tion (23).

The proof is found in Section 6.
Recall the /-Glauber dynamics (see remark 12 above), which is associated to the coordinate-
by-coordinate localization scheme with stopping time 7 = n — ¢. Denote its transition kernel

by PSP (v).
The above theorem will allow us to recover the extension of the spectral independence
framework due to Chen, Liu and Vigoda ([ 1), and show that spectral independence for
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all pinnings implies an MLSI for the ¢-Glauber dynamics with / = (n). This is true under
the extra condition that the marginals of the measure are bounded away from —1 and 1 under
pinnings:

Definition 43. (bounded marginals). We say that a measure v on R" has b-marginally bounded
ifforall i € [n]and all u € {—1,0,1}" with u; = 0, we have

Ib(R.v);| <1-—0.
The following theorem essentially recovers the framework of [ ].

Theorem 44. Let v be a probability measure on {—1,1}" and let « > 1. Suppose that
p(¥(Ruw)) <a, Vue{-1,0,1}". (33)

Moreover, suppose that v is b-marginally bounded. Then for every € € ( g—z, %)

pLS(PZ*GD)(V) > ECa/b.
where [ = [en] and C' > 0 is a universal constant.

Remark 45. This result also holds under a weaker condition than having bounded-marginals,
namely it is enough that the measure has (1/b)-tame marginals, see definition 59 below.

In [ ], a clever argument is used to show that when the model has bounded degrees
(see [ ] for a precise definition) and ¢ is a small enough constant (as a function of the
maximum degree), then mixing of the /-Glauber dynamics for { = en implies mixing of the
1-Glauber dynamics. In fact, it is even easier to show that in the case of bounded degrees,
one may sample directly by using the /-Glauber dynamics, as the single step has complexity
bounded by n°™.

Proof of Theorem 44. The bounded marginals assumption implies that the condition (31) holds
true for any pinning of the measure v with K = 2/b. Using Theorem 42, we have that for every
u e {—1,0,1}", R,v is (48c/b)-entropically stable with respect to H(x,y) defined in (23).
An application of Proposition 35 gives that the /-Glauber dynamics has MLSI

n—a1
=0
[(1—e)n] _
100ab™t
= Y log(1-
exp 2 og < S )
[(1—e)n] _
Q 200ab o
_ E a/b
> exp - — >

where (i) uses the assumption that ¢ > 3¢ and the fact that log(1 — z) > —2z for z > —1/2.
This completes the proof. O
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4 Annealing via a localization scheme

A powerful tool in our framework will be to conceptually concatenate two localization schemes,
running one localization scheme up to some time ¢ and then running a second scheme where v;
is used as the initial condition. As we will see, in many cases this tool will allow us to use the
first stage as an annealing procedure which tames the measure in a way that provides a good
starting point for the second stage.

Consider two localization schemes £;, £ on a space €). Let v be a measure on {2 and con-

sider localization the process (ut(i)> obtained from applying £; to v. Let a be a stopping time
t

adapted to the filtration of this process. Now, conditional on uc(f), let (ut(f )> be a localiza-
t

tion process obtained from applying L to Vc(f). We may obtain a localization process (v;); by

defining
yt(l) t<a
vy =
! z/t(f)T t>a.

We denote the localization scheme mapping v to (1), by concat(L;, Ly, a).
The advantage of concatenating two localization schemes is demonstrated by the following
theorem.

Theorem 46. (Annealing - variance). Let L;, Ly be two localization schemes on €) such that
the latter is a Doob localization scheme. Let v be a probability measure to which we assign a
localization process (1), from concat(L;, L, a) for a stopping time a. Fix 7 > 0 and let P =
PE57) (1) be the (random) transition kernel associated to v, via (Ly,T) using (1). Suppose
that,

1. We have the approximate variance conservation bound

E [Var,, [¢]]

> Yo : ) R.
Var, ] — ¥ -~

2. Almost-surely, we have

gap(P(va)) = 0.

Under these two assumptions, we have that the Markov chain associated to v via L has spectral
gap at least €9.

In the above theorem, the localization scheme L; is thought of as an annealing procedure
which takes a (potentially not well-behaved) measure v, and outputs a measure v, which is
well-behaved in the sense of assumption 2. Assumption 1 tells us that we did not lose much
of the variance throughout the annealing process. The proof relies on the fact that the Dirichlet
form associated by a Doob localization is a supermartingale - this fact was crucially used in
[ ] in the context of stochastic localization.

Next, we have a completely analogous theorem for the entropy.

Theorem 47. (Annealing - entropy). Let L;, L; be two localization schemes on ) such that
the latter is a Doob localization scheme. Let v be a probability measure to which we assign a
localization process (1), from concat(L;, L, a) for a stopping time a. Fix T > 0 and let P =
PYs7) (1) be the (random) transition kernel associated to v, via (L 7, ) using (1). Suppose
that,
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1. We have the entropy conservation inequality

E [Ent,, [f]] ,
WE&?, Vi:Q—R,.

2. Almost-surely, one has
prs(P(vq)) > 6. (34)

Under these two assumptions, we have that the Markov chain associated to v via L; has an
MLSI coefficient of at least 9.

Let P®) = P57 (1,). Our main step towards proving the two theorems is the following.
Proposition 48. For every ¢ : Q2 — Rand f : Q — R, the processes
t= | e@)e(y)dP(y)dy ()

OxN
and

t— / PY f(x)log P f(:L‘)dl/t(Z)(fL‘)

are submartingales.

The proof of Proposition 48 is deferred to Appendix A.1. Let us see how theorems 46 and
47 follow from this proposition.

Proof of Theorem 46. We write

/ / 2 dPO)(y)dv ()
= /Q / / (y)dPO (y)dv(x)
@EL/ //’ )P )i
—E[ / / dP;@(y)dyg”(x)]

Y ok [Var o [so]]

(i)

> deVar,[p],
where (i) uses Proposition 48 and the optional stopping theorem, (ii) uses the second assumption
of the theorem and (iii) uses the first assumption of the theorem. O

Proof of Theorem 47. We have,
Ent,[f] — Ent, [P f / f(z)log f(z)dv(x) — / PO f(x)log PO f(z)dv(x)
Q
z) E [ / f(z)log f(z)dv{)(z) — / P f(z)log P@ f(z)dv® (z)
Q Q
=K [Entygi) [f] — Entygi) [P(a) f]}
(? ok [Entygi) [f]]

(i)
> deEnt,[f],
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where (i) uses Proposition 48 and the optional stopping theorem, (ii) uses the second assumption
of the theorem and (iii) uses the first assumption of the theorem. O

S Applications

In this section we provide several applications to demonstrate ways to obtain mixing time results
via our framework.

5.1 Glauber dynamics for Ising models

As a first example, we will prove a general theorem that provides a sufficient condition for
MLSI, which as a special case recovers two results: the first one was shown in [ ,
] and establishes mixing time for Ising models whose interaction matrix has an oper-
ator norm bounded by a constant and in particular is relevant to the Sherrington-Kirkpatrick
model in high-enough temperatures. The second one concerns Ising models in the uniqueness
regime and improves upon the main theorem of [ ].
Both applications will rely on the following result, which is obtained through a simple com-
bination of several ingredients of our framework.

Theorem 49. Let v be a measure on {—1,1}" and let J be a positive-definite n x n matrix. For
any 0 < X\ < 1and every v € R", consider the probability measure |1y ,, defined by

d,u)\,v

7 (z) o< exp (=A(z, Jz) + (v, T)) . (35)

Suppose that, for some « : [0,1] — R,
|Cov(pan)llor < a(A), VA €[0,1], veR", (36)

and that for some € > (),
PLS(PGD(,ULU)) Z £, \V/U € Rna (37)

where PSP (-) denotes the transition kernel of the Glauber dynamics. Then,

prs(PYP(v)) > eexp (—QHJHOP /Ola()\)d)\) .

This theorem is particularly useful for measures with quadratic potentials, or Ising models.
For an n x n matrix J and a vector v € R", consider the probability measure defined by

vip({x}) ocexp ({z, Jz) + (2,0)), (38)

referred to as the Ising measure with interaction matrix J and external field v.

If we apply the above theorem to the measure v = v, (and with J taken to be the interaction
matrix), we have that the measure y; ,, defined in (35) is just a product measure, so that condition
(37) is trivially satisfied with ¢ = % In order to successfully apply the theorem, it therefore
remains to verify condition (36). We will show how to do so in two different settings.
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Proof of Theorem 49. Consider the localization process (v;); corresponding to v obtained via

the stochastic localization (5), with the choice C; = (2. )1/ 2, up to time ¢t = 1. Consider the

transition kernel PGD(I/l), hence, the random transition kernel associated to the measure v, via

the Glauber dynamics. We apply Theorem 47 in order to obtain a lower bound on p.g( PP (v)).
According to equation (6), v; has the form

v(x) o< exp (—t{x, Jx) + (ys, x)) v(x)

for some stochastic process y,, meaning that v, = u,,. Since in particular, v; = p1,,, the
assumption (37) then amounts to the fact that ps(P“P(v1)) > &, which fulfills the second
condition of Theorem 47.

Next, the assumption (36) tells us that

|Cov(v)|lop < a(t),Vt € [0,1].

By applying Lemma 40 with the choice A = a(t)I,, and C' = (2.J)/2, we conclude that v,
is a-entropically stable with respect to ¢(z,y) = 1 |(2J)"?(z — y)}2 with o = 2||.J||opa(t).
Invoking Proposition 39 gives the approximate-entropy-conservation bound

E [Ent,, [f] > e~ 2Mlor oty [ ]

Therefore, condition 1 of "lfheorem 47 is satisfied with o = e~2I7lop Jo a®dtand we conclude
that prg(P) > ee2I/llor Jo @®dt  This completes the proof. O

5.1.1 Mixing under a spectral condition on the interaction matrix

It turns out that if the interaction matrix has operator norm bounded by a certain constant, then
the covariance matrix of the model is also bounded. The following lemma is based on the
decomposition obtained by Bauerschmidt and Bodineau [ ]. For completeness, we include
a proof in Appendix B.

Lemma 50. Let J be a positive-definite matrix with ||J||op < 3 and let v € R™. One has

1
Cov(vy, < -
1Cov (vs)llor < 31 1lor

Combining the lemma with Theorem 49, we obtain

Corollary 51. Let J be a positive-definite matrix with ||.J | op < 5 and let v € R™. The Glauber
dynamics for v = v ,, mixes in time O(nlogn).

Proof. An application of Lemma 50 gives

1
2(1 =N J]lop’

so the assumption (36) holds with () equal to the right-hand side. Assumption (37) holds
with 6 = 1/n since i, , is a product measure. The conclusion of the Theorem 49 tells us that

1 ! 2

PSP(1;,)) > = ex <—/ dA)
1
n

1Cov(mrw)llor = 7—

(1 =2([Jllop)-

The proof is complete via fact 2. O
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Remark 52. The above corollary implies an optimal mixing bound for Glauber dynamics on the
Sherrington-Kirkpatrick model up to inverse temperature 5 = 1/4 (see [ ] for a detailed
discussion on the Sherrington-Kirkpatrick model). Very recently, El Alaoui, Montanari and
Sellke [ ] gave a polynomial time sampling algorithm which is valid all the way to the
critical temperature 5 = 1/2. The idea behind their algorithm is to simulate the stochastic
localization process. To do so, one needs to estimate the center of mass of tilted measures
which, in turn, is done using approximate message passing.

5.1.2 Near-critical ferromagnetic Ising models

Next, we show how to recover a variant of the result which appears in the very recent paper of
Bauerschmidt and Dagallier [ ]. Consider a measure of the form (38) which is ferromag-
netic in the sense that J; ; > 0 for all ¢ # j. For every A € (0, 1) define

X(A) = [[Cov(ro)llop

In the ferromagnetic case, following theorem, due to Ding, Song and Sun, is very helpful to-
wards verifying assumption (36) in Theorem 49.

Theorem 53. (/ 1) For any interaction matrix J which is ferromagnetic (hence J; ; > 0
forall i # j), for all v # j and for all v € R"™, we have

COV(VJW)Z j S COV(VJ,O)i,j-

By the above combined with the Perron-Frobenius theorem, it follows that
|Cov(vasw)llop < x(A), Vv € R"
Therefore, invoking Theorem 49 with py , = v(;1_))s,, immediately yields the following.

Corollary 54. For any ferromagnetic interaction matrix J which is positive definite, we have

1 1
pus(PP () 2 exp (<2l o [ XN
0

As noted in [ ], the positive definiteness can always be imposed by adding a diagonal
matrix without changing the corresponding Ising model.
5.1.3 Graphical Ising model in the uniqueness regime

For a graph G = (V, E)) with V' = [n] and 8 € R, the corresponding Ising model is defined as

vos(x) occexp [ (z,0) + 8 Y lm=ay | - (39)
(i,7)EF

We say that the measure v g satisfies the tree-uniqueness condition if

AG) -6

AG)—2+6 “0)

exp(|A]) <

for § € (0, 1), where A(G) > 3 is the maximum degree of the graph. The following result was
proven in [ ] (see also [ , Lemma 8.3]).
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Theorem S55. (Spectral independence for the Ising model). Let v = vg g be an Ising model
defined as in (39) which satisfies the tree-uniqueness condition (40). Then for any external field
veR"

p(¥(Tv)) <

[S2T )

Given a graph G = (V, E), define a matrix J = Jg by

Jig = 5 (Lagery + Li=jpdega(i) -

| —

It is straightforward to check that

Z ]-{xi:a:j} = <l‘, JG$>7

(i.4)eE
and that J is positive-definite.

Corollary 56. Any graphical Ising model v of the form (39) which satisfies (40), one has

pus(POP () > SRLEE0)

n

Consequently, the mixing time for Glauber dynamics is O(nlogn).

Proof. First, we deal with the case 5 > 0. Apply Theorem 49 with the choice J = SJg.
Observe that for all A € [0, 1], the measure y, , defined in (35) is of the form (39), with a
smaller value of 3, and therefore 1, is also in the uniqueness regime. An application of
Theorem 55 ensures that p(®¥ (y1,)) < 2. By Fact 23 we have

2
”COV(M,\,v)HOP < HCOI'(MA,v)HOP < 5

so (36) holds with a(\) = 2/6. Moreover, since j; , is a product measure, condition (37) holds
with € = 1/n. Therefore, we can conclude by Theorem 49 that

1 J 1
pLs(POP(v)) > —exp (—4M) > — 8,
n 4] n
The last step follows because Jo = I, — %Lsym where L™ is the symmetrically normalized
Laplacian which has eigenvalues between 0 and 2; and /5 < log (%) <2.
Second, the case 5 = 0 is trivial because it becomes a product measure. Finally, for the case
£ < 0, we observe that

=181 (x, Jox) = 6] ({z, (In = Ja)x) — (z, 7)) == [B] ({z, (I, — Ja)z) —n).

I, — Jg is positive-definite and has operator norm bounded by 1. Using the same argument as
the case 5 > 0 but with Jg replaced by I,, — J5, we obtain the same MLSI lower bound. O
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5.2 Sampling from strongly log-concave measures via a Restricted Gaus-
sian Oracle

Let v be a log-concave measure on R", hence, a measure of the form

d
% =exp(—V(z)), V :R" — R convex.
T
We assume that it is uniformly (or strongly) log-concave, namely that

V2V (x) = pl,, Yo € R" 41)
Let (14); be the process attained from v via the stochastic localization scheme (5) with the
choice C; = I,,. According to equation (6), v; has the form
d ~ t
d—l;t X exp (—V(x) - §|x|2) (42)
where V() is convex (it is an exponential tilt of V(). The following well-known bound goes

back to Brascamp and Lieb.

Theorem 57. If p is a measure on R™ of the form ?“2)  exp(—U (x)) that satisfies the uniform

dx
convexity condition
V2U(z) = al,, Yz € R

then ||Cov(p)|lop < L.

Equations (41) and (42) imply that 4 has the form dfl—g(f) = exp(—U(z)) with

V2U(z) = (p+t)I,, Vo eR™

Therefore, the above theorem gives
1
Cov(T, < ——, YveR™ 43
ICov(Tomllor < g 0 @)

An application of Lemma 40 gives that v; is a-entropically-stable with respect to ¢ (x,y) =
%|x — y|?, with a = ﬁ Proposition 39 now gives the approximate conservation of entropy

bound ro
E [Enty, [f]] = Ent, [f] exp (— / —dt) )

p+t ) u+T
for an arbitrary f : R” — R* such that [ fdv > 0. Using equation (11), this gives

W
pLs(PEEP1 (1) > ———,
p+1/n
where PRGDn (1) is the transition kernel of the restricted Gaussian dynamics (Definition 15
above). We have proved:

Theorem 58. If v is a p-strongly log-concave measure on R", then the associated restricted

Gaussian dynamics with parameter n satisfies pys(PR%Pn(v)) > " A T

The above theorem not only recovers Theorem 1.1 in [ ], but also resolves the open
problem discussed in section 1.4 of the same paper: it provides a proof to show that the Re-
stricted Gaussian Dynamics mixes in nu log(n) steps when started from any O(exp(n))-warm
start in the case < 1/u. As defined in [ ], an initial measure p is a S-warm start with re-
spect to v if %(:{;) < [ everywhere. The applications of the above theorem includes improving
dependency of condition number dependency of Markov chains for log-concave sampling and
introducing new sampling algorithms for composite log-concave distributions and log-concave
finite sums, which has been extensively discussed in [ ].
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5.3 A spectral-independence based condition for fast mixing and applica-
tions to sampling from the hardcore model

In this section we present the main application of the negative-fields localization, giving a suf-
ficient condition for fast mixing. In particular, it provides an optimal mixing time bound for
sampling the hardcore model via Glauber dynamics.
Recall that, for u € {—1,0, 1}, we define the u-pinning R, v to be the restriction of u to the
subcube S, := {x € {—1,1}"; x;u; > 0, Vi € [n]} and that 7,v is the v-exponential tilt of v.
The following definition relates the marginals of the pinned distribution to those of the
original distribution and lower bounds the marginals in a one-sided fashion.

Definition 59. For K > 1, a measure v on {—1, 1}" has K -tame marginals if for every i € [n]
and for every u,w € {—1,0, 1}" with supp(u) N supp(w) = () with u; = w; = 0, we have

1+ b;(RyRuv) 1+ b;(R.v)
<K d 44
- bi(RoRut) — " 1T—by(Ryr) “4)
1
— b, >
1 —bi(Ruv) > % (45)

Our main aim is to establish the following sufficient condition for a MLSI: Given a measure
von {—1,1}", if a MLSI can be established for a perturbed measured obtained after applying
an external field v, and if the correlation matrix has bounded operator norm for any external
field Av, A € [0, 1] and under all pinnings, then the original measure satisfies a MLSIL.

Theorem 60. Let s > 0. Let v be a measure on {—1,1}" such that forany X € [0, s], T_,;v has
K -tame marginals. Define 1 := (1, ..., 1). Suppose that for any X € [0, s] and v € {—1,0,1}",
we have

|Cor(RT_\1v)|| op < - (46)
Moreover, assume that for all u € {—1,0,1}",
prs(PEP(RLT_qv)) = 6. (47)
Then we have
4
pLs(PEP(v)) = e,
for a universal constant ¢ > 0.

Remark 61. In the above theorem we considered the “path” of tilts {—A1; A € [0, s]}. The
same proof works for the more general case that we consider 7,y v for an arbitrary curve

v : [0,1] — R™. The special case v(\) = —\1 is sufficient for the applications that we know
of, which is why we chose to stick to it for the sake of simplicity.

Proof of Theorem 60. The main proof strategy is to use the negative-fields-localization (con-
structed in Section 2.4.4) as an annealing scheme for the measure. Namely, we apply Proposi-
tion 18 with the choice v(t) = —t1 to obtain a localization process (1;);. We concatenate this
process to the coordinate-by-coordinate localization scheme at time s and apply theorem 47,
which gives us a MLSI bound for the Glauber dynamics PSP (v).

According to Proposition 18, for every ¢ > 0 there exists u(t) € {—1,0, 1}" such that

vy = [tfRu(t) V.

Therefore, condition 2 of theorem 47 follows immediately from equation (47).
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It remains to show that condition 1 of Theorem 47 is satisfied, which boils down to the
approximate entropy conservation bound

E[Ent,,[f] > e~ "Ent, [f], (48)

for an arbitrary function f : {—1,1}" — R,.

Fix t € [0, s]. We aim to apply Theorem 42 to the measure v;, which should be understood
as a measure on the sub-cube S, = { € {—1,1}"; x;u(t); > 0, Vi € [n]}. To check that
condition (30) is fulfilled, let @« € {—1,0, 1}" be such that @;u(t); = 0 for all i € [n] (which
amounts to all valid pinning for a function on S,)), then

HCOI‘(R@W)HOP = HCOI'(RﬂRU(t)[tIV)HOP

(46)
= ||Cor(Rasuy T_s¥) || op < 7-

Define F; = {i € [n];u;(t) = 0}, the set of coordinates which have not been pinned yet. In
order to verify condition (31) and (32) for 14, we use the fact that 1, is obtained by pinning
T _,7v which has K -tame martingales. First, for all i € F; and all u(t) L @ € {—1,0, 1}" with
4; = 0,1 —b;(Rary) = 1 — b;(RaRuwT_4iv) > 7. which verifies condition (32) for v;.
Second, using the /-tame marginals of 7_,;/, we obtain

14+bi(RyRave) 1+ bi(RuRaRuwyT_i7v)
1 —bi(RuRavy) 1 —bi(RuRaRuwyT_iiv)
< Kl + bz‘(Rth)’
- 1-— bz (Rwl/t)

which verifies condition (31) for v,. Apply Theorem 42 to v,, we obtain that v, is cK*n-
entropically stable with respect to the function H(x,y), where c is a universal constant. We
can finally use Proposition 41 which gives that for ¢, h > 0,

E[Ent,,,, [f)|u(t)] = Ent,, [f](1 — cK*nh) + ofh).
By integrating this inequality, we finally get
E[Ent,,[f]] > Ent,[f]exp (—cK"n) .

Both conditions of Theorem 47 are satisfied, and we conclude the proof. O

5.3.1 Application to an optimal mixing bound for Glauber dynamics in the hardcore
model

Given a graph G = (V| F), we define the set of all independent assignments as
I ={z e {-1,1}V: a;+z; <1, V(i,j) € E}.

If we associate a point z € {—1,1} the set A(z) = {v € V;z, = 1}, then A(Z) is the family
of independent sets in G.
For \ € (0, c0) let py be the product probability measure on {—1, 1} defined by

Lig,=—1} + Alyp,=1y

prl(ah) = [[ ===

veV
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The hardcore model on G with fugacity )\ is a probability measure on {—1, 1}V defined by

oz ey
veatr}) = oZa)

A hardcore model with fugacity A is called J-unique if A < (1 — §)Aa, where the critical
fugacity is

(A — 1)A-1

M=~ "7
A (A—2)A’

(49)
and where A is the maximal degree of G.

Our goal is to prove the following theorem, which asserts that the Glauber dynamics mixes
in time O(n logn) in the uniqueness regime.

Theorem 62. Given a graph G = (V,E). |V| =nand X\ > 0, let v = v\ be the hardcore
model on G with fugacity \. Suppose that v is 6-unique for some 6 > 0. Let jiy be an arbitrary
initial distribution supported on L. Then there exists a universal constant ¢ > 0, such that

i (PE2(v), 53 10) < exp (5 ) (nlog(n) + 3nlog(1/2)) .

Proving mixing bounds for the hardcore model has been one of the central applications of
the spectral and entropic independence frameworks. This model has inspired the first paper
which put forth the notion of spectral independence as well as many of the following works.
Let us summarize the progress made so far.

* Anari, Liu and Oveis Gharan were the first to introduce the notion of spectral indepen-

dence in [ 1, and proved an n®P©(1/9) mixing time.

e Chen, Liu and Vigoda [ ] proved tight bounds on spectral independence, gave an
improved n°(1/%) mixing time.

e Chen, Liu and Vigoda [ ] extended the framework towards MLSI bounds and
proved that AOL?/ 9nlog(n), which in particular gives an optimal bound for constant
A.

e Jain, Pham and Vuong [ ] proved a mixing time of A9(1/9)p2,

* Chen, Feng, Yin and Zhang [ ], in Theorem 1.3, obtained an optimal bound for

the relaxation time, which implies a mixing time of C'(§)n?log(A).

e Anarietal. | , Theorem 1], showed that a variant of Glauber dynamics called the
balanced Glauber dynamics gives an Os(n log(n)) mixing time.

Our result, Theorem 62 is the first to give an optimal mixing bound for the (usual) Glauber
dynamics.

The proof combines many of ingredients developed in our framework, together with the idea
of using a certain “restricted” type of entropy decay.
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5.3.2 Properties of the hardcore distribution

In this subsection, we collect four properties of the hardcore distribution: spectral independence
for all negative tilts and all pinnings, marginal upper and lower bounds, the fact that exponen-
tially tilt hardcore model remains a hardcore model and MLSI coefficient for hardcore model
with small fugacity. Throughout this section we fix graph G = (V, F) with maximum degree
A, afugacity A € (0, 00) and define v = v ) to be the corresponding hardcore model. Without
loss of generality, we identify V' with [n] for simplicity.

The first lemma establishes spectral independence of all negative tilts and all pinnings of
the hardcore distribution, and was proved in Lemma 8.4 of [ ] extending the analyses

in [ ].

Lemma 63. Consider the hardcore model v = vg ) with A = A(G) > 3. Furthermore,
suppose that v is §-unique on G. Then for all v € {—1,0,1}" and for every vector v €
(=00, 0]V, we have

144
| Cor(TRu)lop < ——

The next lemma gives bounds for the marginals of the hardcore distribution. It was essen-
tially proven in [ , Proposition 50], but we provide a proof in Appendix C for com-
pleteness.

Lemma 64. Let v = v, with A(G) > 3. Then for any v € V, for any u € {—1,0,1}" which
sets all neighbors of v to 0 (i.e., satisfying u, = 0,Va € N,), we have

A 1\ A
T N \T <]P>O'NV v — 1 ZZZO,VG < —
1+>\<1+>\) < Pony (o = +1 ] o el =15
Moreover, if the model is 0-unique, namely A < (1 — 0)\a, then
A A
1_'_—)\6_362 S ]P)O'NV (UU =+1 | OiUy; Z 07VZ S [’I’L]) S 1—1——)\
Recall that T = (1,...,1). The next lemma shows that the exponentially tilted hardcore
model remains a hardcore model.
Lemma 65. For every G and )\, we have for all t > 0,
T_qVG\ = Va,e-2ix- (50)

In other words, the exponential tilt T_ ;v corresponds to a hardcore model, on the same graph,
with fugacity e \.

Proof of Lemma 65. 1t is clear from the definition of the hardcore model. O

The final lemma states that if the fugacity of the model is small enough, then one has a
bound on the MLSI coefficient. This lemma was proved in [ , Corollary 4.7] (see also
[ , Proposition 51]).

Lemma 66. Let v be a hardcore model on G of maximum degree at most A with fugacity
A < 55 A > 3. Then one has prs(PP(v)) > +.
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Proof. Combine [ , Proposition 51] and [ , Fact 3.5]. O

Proof of Theorem 62. We simply verify that all the conditions of Theorem 60 hold. Lemma 63

verifies condition (46) with n = 1;1—4. Next, note that, since A > 3,
_ 1\A-1 —2t A-l 1-2¢
2N < 2 (A-1) _ € 14 ; < 9e .
(A —2)4 A—2 A -2 A

According to Lemma 65, the condition of Lemma 66 is verified for 7_,;v, which gives that
pLs(PCP(T_,7v)) > £ so that (47) holds true with s = 2 and 6 = 1/(4n). Lemma 64 and
Lemma 65 together ensure that

2 2

1 —by(T qv) > >
Tav) 2 ey 2 11

Finally, Lemma 64 ensures that 7_,;v has K -tame martingales with K = ¢, forany ¢ € [0, s].
Finally, we invoke Theorem 60 to obtain pys(P®P(v) > exp (=) 4= where c is a universal
constant. Using Fact 2, this completes the proof. O

6 Entropic stability via spectral independence

In this section, we prove Theorem 42, which shows that entropic stability is implied by spectral
independence for all pinnings. A priori, the formulation of this theorem has nothing to do with
the negative-fields localization, however the main argument of its proof relies on a coupling
argument based on the negative-fields localization.

For convenience, we repeat the formulation of Theorem 42 in the following theorem.

Theorem 67. Let v be a probability measure on {—1,1}" and let a« > 1. Suppose that
|Cor(Ruv)|lop <, Yue {—1,0,1}". (51)

Then v is 8c-entropically stable with respect to V(x,y) = %|x -yl
Furthermore, if for some constants K > 1,C" > 1, for every i € [n] and for every u,w €
{=1,0, 1}" with supp(u) N supp(w) = O with u; = w; = 0, we have

14+ b;(R,Ryuv) < Kl + b;(R,v)
1— bZ(RwRuV) - 1-— bZ(RuV)’

1
1—b, >
b;(R.v) > ok (53)

then v is 7168 K 3C-entropically stable with respect to the function H(z,y) as defined in equa-
tion (23).

and (52)

The proof of the theorem consists of the following two main lemmas.

Lemma 68. Suppose that v satisfies the assumption (51). Then for all v € R",
Ib(T,v) —b(v)|* < 16a2[v|%
If, furthermore, condition (52) and (53) hold then for all v € R",

(v,b(Tyv) — b(v)) < 4o Z K3C (14 by(v)) v2 exp(4|vi]).

1€[n]
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Lemma 69. Let v be a measure on R™. Suppose that
Ib(Tyv) —b(v)|> < &W?, W' e R", (54)

then
Ib(T,v) — b(v)|* < eDkr(Tov|lv), Vv € R™.

Furthermore, suppose that for some constant C' > 1, we have

(0,b(Tov) —=b(¥)) < Y en?exp(4fvi]), Vv e R, (55)
1€[n]
where 2 < e; < C (1 +by(v)) foralli € [n]. Then,
H(b;(T,v),bi(v)) < 192C - Dky(Tov||v), Vv € R™.

Plugging the two lemmas together immediately establishes Theorem 67. Before we move
on to the proofs of Lemmas 68 and 69, we need three more technical intermediate lemmas
whose proofs are found in Appendix A.

Lemma 70. Let v be a probability measure on {—1,1}". If s € {—1, 1} and e; is a vector of
the standard basis, then we have

b (Ree,v) — b(v) = (14 sb(v);) ' Cov(v)se;. (56)

Lemma 71. Define H(z,y) = % log (%Z) + 52 log (%Z) and ®(z) = (1 + z)log(1 +

x) — x. Then we have

1 —
SH(z,y) < (1+9)® (sz) < 2H(x,y), (57)

forally € (—1,1) and x € [—1,1]. Moreover, forall € > 1,

1 T —y
—H <e(1 ) . 58
) < <o (250 8
Finally, we also have
1
B(Js]) = 5(s), Vis| <1 (59)

Lemma 72. Let p be a measure on {—1,1}" which satisfies, for all i € [n] and for all u €
{—1,0,1}" such that u; = 0,
14 by(Rup) <9, (60)

Then for allv € R" and all u € {—1,0, 1}" with u; = 0, we have
1+ b (T,Rup) < dexp (max {0, 2v;}) < Jexp(2|v;]). (61)

Moreover, if for all i € [n] and for all u € {—1,0, 1}" such that u; = 0,

/ 1 +bl(Rup) "
< —2 <) 62
S 1-bi(Rup) ~ (62)

Then for allv € R" and all u € {—1,0, 1}" with u; = 0, we have

1+ bi(TyRup)

/ . 1) <
0" exp (min {0, 2v;}) < = by(T.Rup)

< §" exp (max {0, 2v;}) . (63)
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Proof of lemma 68. Define u = T,v. Consider the localization process (), obtained via the
negative-fields localization starting from p. More specifically, we invoke Proposition 18 with
the choice v(t) = —tv, to obtain a process (u(t)); of pinnings, u(t) € {—1,0, 1}", such that the
process defined by

He = Ru(t)%(t)u = Ru(t)ﬁlft)vy

is a martingale. Moreover, we have
Plu(t + h); # u(t);|u(t)] = h(1 + s;b(us):)|vi| + o(h), (64)

where s; := sign(v;).
We couple this process with a process (1), defined by

Vy = Ru(t) V.

We remark that 1, is not a martingale. By definition of 1, and y, it is evident that vy, =
almost surely. Since ji, is a martingale, we have

b(u) = E[b(111)] = E[b(11)]. (65)

Define F; = {i € [n]; u(t); = 0}, the set of coordinates which have not been pinned yet. Note
that P(||lu(t + h) — u(t)||1 > 2 |u(t)) = o(h). Therefore, we have

E[b(vie1) — b()|u(t)] = E[b(Rugmy) — b(Ruwp)lu(t)]
= 37 (b(Ruyssiest) — b(Ruo) Blult + h); # u(t);) + ofh)

i€k
(g) Z (b<Ru(t)+sieﬂ/) - b(Ru(t)V» |v2‘h<1 + SZb(’ut)Z) + O(h)

i€ F}

@, Z Cov(1y)s;e;

i€l

S SO o).
T sb(oy), Vil o)

Note that if ¢ ¢ Fj, then b(y,);b(14); = 1 and we can denote by convention that § = 1. Since
(1+ s;b(y)i) "t = (Cov(vy)ii) (1 — s;b(1y);), we finally get
E[b(vi4n) = b(wa)|u(t)] = h¥ (1) PQv + o(h),

where S = diag(Sgn(v)), P, = I, — Sdiag(b(1;)) and Q; = I,, + Sdiag(b(u)). Integrating
with respect to time gives

b(p) — b(v) @ Eb(11) — b(re) = /0 E [¥ (1) P,Qv] dt. (66)

Since v, is a pinning of v, the assumption (51) implies that ||[Cor(14)|lop < «. The triangle
inequality then gives

[b(p) —b(¥)| < a/O E|(L, — Sdiag(b(1))) (I, + Sdiag(b(s))) v|dt. (67)

Since |(I, — Sdiag(b(w))) (L, + Sdiag(b(u¢))) v| < 4|v|, this proves the first part of the
lemma.
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For the second part of the lemma, we write

(v, b(s) — b(v)) © / E (v, ¥(v) PQu)] d
Define E;, = diag(Cov(r4)). We have

(Et)ii =1- bz‘(Vt)2
= (L =b;i(1))(1 +bi(11)) < 2(1+by(1n)). (68)

Recall that by definition ¥ (1) = Cov(14)E; " and Cor (1) = E, */* Cov(v,) E; */?. We have

(0, (1) PQuw) = <E§/%, cor(yt)E;”?PtQtv>

< [[Cor()llop - | Ei*0| - | B PQuw)|.

(69)

The following diagonal matrix is entry-wise bounded.
(1 — sibi(y)) (1 + sibi(p1e))
(1-b2(n)"

]_ + bi(Vt)
1 — bi(Vt)

< 2K32CY2 exp (2 |vs]) (14 by ()2

(Et_l/QPtQt)ii =

< 2K exp (2 o]

The last step follows because: if i ¢ F;, meaning that i-th coordinate has been pinned, by the

convention on S (B 1/2PtQt)” < 1;if s; = —1, then we bound (1 + s;b; (1)) from above by
2; otherwise, applymg Lemma 72 to v, together with condition (52), we obtain

]_ + bz‘(l/t)

L+b(pe)i = 1+ bi(Ta—norr) < QKW exp (2 [vil) -

Plugging the above bound together with (68) back to (69), we obtain
(v, O(1vy) P,Qyv)

< [Cor(w)or \/Z 2(1+ bim))vz\/z AKIC exp(d fu) (1+bi(v) o?

< [|Cor (1) op <Z AKPCexp(4 fui]) (1 +bi(v)) v?)
where the last step follows from condition (52). Hence,

(v,b(p) = b(v)) < 4a Y K*C (14 b;(v)) v} exp(4]vi]),

1€[n]

which completes the proof. O
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Proof of lemma 69. Define f(v) := log f{fl 1y exp((v, x))dv(z) for v € R™, the logarithmic
Laplace transform of v. Define for x € R"

9(z) = max (v, ) — f(v),

its Legendre dual. According to Lemma 33, we have Dk (7,v||v) = ¢(Vf(v)) and that
b(7,v) = V f(v). With this notation, the assumption (54) amounts to

IVf(@) = VIO)* <], W' eR”, (70)
and the conclusion becomes
1
9(VIW) = o [Vf(v) = VO, ¥ € R". (71)

Define h(v) = f(v) — (Vf(0),v). Equation (70) implies

1 1 1
1
h(v) :/ (Vh(tv),v)dt < |v|/ |Vh(tv)|dt < |v|/ etlv|dt = §5|v|2.
0 0 0
Since the Legendre transform is order-reversing, we have

1
sup (z,v) — h(v) > 2—8|x|2, Ve € R"

veR?

which yields (71) by taking x = V f(v) — V f(0) and completes the proof for the first part of
the lemma.
For the second part, note that the assumption (55) amounts to

(v, Vf(v) Z g7 exp(4|vi]), Yo € R™

i€[n]
Define h(v) = f(v) — (Vf(0),v), then

(v, Vh(v)) < Z ev? exp(4ly;]), Vo € R™

i€[n]

We can upper bound h as follows
1
h(v) = h(0) +/ (v, Vh(tv)) dt
0
1
< / Z gv7t exp(4t|v;|)dt

0 i€[n]

= 3" et fep(dui (4] 1)+ 1

Ze[n]
< Zel exp(8|vs|) — 8Jvi| — 1]
ze [n]
< 3z fexp(16fus) — 16f0 — 1]
i€[n]
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The Legendre transform of the function s +— % (exp(|16s|) — [16s| — 1) is the function ¢ >
d

5 [(1 + g) log (1 + ?> — %] . Since the Legendre transform is order-reversing, we get

% € 2] 2] 2]

i€[n]

Lety = Vf(0). Taking e = -~ > 1 in equation (58) of Lemma 71, we obtain

I+uy (58) 2\ 69 i

(2

Finally, using the assumption ¢; < C' (1 + b;(v)) and taking x = V f(v) — V f(0), we get

> H(wi + i) < 192C - h*(x) = 192C - g(z +y) = 192C - Dir (Tov||v).

i€[n]

This completes the proof. O
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A Appendix A: Loose ends

Proof of Lemma 36. Let K and v(z) be defined as in Lemma 33. Define z = b(v). A direct
calculation shows that
H(z,2) =0, V.H(x,z)|,—, =0.

Moreover, we have
Dii(Toyv|lv) =0, ViDki(Towv|lv) = 0= = 0.
Therefore, if we establish that
V2H(z,2) = aViDgy(Towv| V), Vo € K (72)

Then it will follow that H (z, z) < aDgy(Tye)v||v) which will complete the proof. A direct
calculation yields

0? 1

Since v is supported on {—1,1}", we have [ 2®?dv(z) = I,,, which implies that

diag(Cov(Toyv)) = L, — 22

A combination of the last two displays gives
V2H(z,z) = diag(Cov(Tymyv))

Moreover, Formula (22) gives

V2Dxr(TowV||v) = Cov(Towyr) (73)
Combining the last two displays with the assumption Cor(7,(,)) = oI, implies (72). The proof
is complete. O

Proof of Fact 23. Let X ~ v. We have
2Cov(v);; = E[X;|X; = 1](1 + E[X}]) — E[X;|X; = —-1](1 — E[X}]) — 2E[X;]E[X]]
= (EIX|X; = 1] - EIX|X; = —1)) + E[X,) (EIX|X; = 1] + E[X|X; = -1
—E[X;|X; = 1](1 + E[X;) - E[X|X; = —1](1 — E[X,]))
= (E[X.|X; = 1) - E[Xi|X; = ~1])(1 - E[X,]?),

52



which readily implies that ¥(v) = Cov(v)D~! where D := diag(Cov(v)). To see that the
operator norm is that same as that of Cor(v) = D~'/2Cov(r)D~'/2, let v be an eigenvector of
Cor(v) with eigenvalue ), write u = D'/?v, then

M = D~ V2Cov(v) D™V & AD"Y?u = DV2Cov(v) D 'u & Au = Cov(v) D 'u

which implies that p(¥(v)) = p(Cor(v)). Since Cor(v) is symmetric, we have p(Cor(v)) =
||Cor(v)||op. This completes the proof. a

A.1 Supermartingality of the Dirichlet form: Proof of Proposition 48

Recall that we assume that L is a Doob localization. Let P be the transition kernel of the
Markov chain given by (L, t, /1), then there exists a random variable X ~ ; and a o-algebra ¥
on X such that

/Q Qs@(fﬁ)@(y)dPx(y)du(x) =E { /Q o(x)p(y)pe(da) e (dy)

xQ

= Ex [Ex [E[p(X)[=)]] .
Moreover,
/ Pf(z)log Pf(z)du(x) = Es [Ex [E[f(X)[E]log E[f (X)[X]] - B, [f]log E,[f].
QxQ
Fix a measure p on () and suppose that x4 is absolutely continuous with respect to p, hence
we may write 3—’;(33) = h(x).

Lemma 73. Fix a measure p on ) and ¢ : (1 — R and a o-algebra ¥ on ). For all x € (2
there exist linear functionals F,., G, : L1(£2, p) — R such that the following holds: For every
h:Q — Ry satisfying [, hdp =1,

[Ex [Elp(X)|=]] = /Q g((hfz) dp(z).

Analogously, for every non-negative f : () — R, there exist families of linear functionals F ., G,
such that

[Ex [E[f(X)[X]log E[f (X)[X]]] = / Fy(h)log (Fy(h)/Ga(h))

Q
where X ~ 1 and ?T;L = h.
Proof. The lemma follows from a standard disintegration theorem. For the sake of demystifying

the proof, let us first consider the case that X is a finite partition of € into sets €2y, ..., (2. Let
A(z) be the unique set €); such that = € €);. Then we have

Say ¢@)d(a)
H(A(X)

E[p(X)[x] =

33



Therefore,

La ¢(@)du(a)
H(A(X)

(fa o(a)dula))

)

)
(fg p(a)h(x)dp(x ))2
2 >p<dax> |

=1

Ex~y [E[o(X)[Z]] =

2
() Ex X € Qi]

k
i=1
k
=1

This completes the proof of the first part by choosing

1 1
F0) = sty L 0int) and G0 = e | nwant)
The proof of the second part is very similar. Define 1/(s) = slog s. We have,
B [EL (OIS og EF COIE] = D l@)v (EM U A@( "Il e, ] )

Z:l (
= Z V()Y

and the second part is proved by choosing

1 1
(A@) A(x)f(y)h(y)dp(y) and G,(h) := A /A@;) h(y)dp(y).

F.(h) =

To complete the proof, observe that for every linear functional F' : L, ({2, v) — R, we have
that t — F(%4) is a martingale.

Fact 74. If M,;, N; are martingales and N; > 0 almost surely, then is a submartingale. If
My is also positive almost-surely then Ny log - is a submartingale.

Proof. The first part follows immediately from the fact that the function (z,y) — x?/y is
convex in the domain {y > 0}. The second part follows from the convexity of (z,y) —
xlog(z/y) in the domain {z > 0,y > 0}. O

54



A.2 Existence and entropic decay of the negative-fields localization pro-
cess

Proof of Proposition 18. Forv € R" and u € {—1,0, 1}", define
a(v,u) = b(R,Tyv).

Fix t > 0 and suppose that the process u(t) has been constructed up to time ¢. We will first
show that the process can be extended up to some stopping time 7 > ¢. Define

F(t) := {i € [n];u:(z) = 0},

understood as the set of coordinates that have not been pinned. For any ¢« € F; consider a
random variable 7; defined by the formula

B(1 > 9) = e = [ (1= st @) lar).

where s;(r) := sign(v.(r)) (note that the right-hand side is «(¢)-measurable), and such that the
T;’s are independent. Define

T7:=min7; and J :=argminT;.
1€Fy i€F

We can now extend the process up to time 7 by setting

u(s):{u(t)’ t<s<rT

u(t) —ss(r)es, s=r,

where e; is the J-th standard basis vector. In words, up to the stopping time 7, we apply
an exponential tilt to the measure according to v(+), and at time 7 we pin the j-th coordinate
according to the sign of vé(r). We can now define the process for all times by iteratively
extending it until the next stopping time. Since at any such stopping time, one of the coordinates
is pinned, we only need to repeat this iteration at most n times and thus the process is well-
defined for ¢ € [0, c0).

Next, we show that the process is a martingale. First observe that the process is time-
equivariant in the sense that the evolution of (v;),>; conditioned on (v,),c[o,¢ is the same as
the evolution of (7 ),, the process obtained from the starting measure 7 = v, and using v(t) =
v(t + s) — v(s) as the driving curve. Indeed, this follows from the memoryless property of
exponential random variables, which implies that for every ¢ > 0 and every ¢ € F}, we have
that 7;|T; > s has the same distribution as T..

In order to show that the process is a martingale, we need to show that for every s,¢ > 0 we
have E[v,. ¢|vs] = v, and by the above discussion it is enough to consider the case s = 0, and
show that E[v;(z)] = v(x). We claim that it is yet enough to show that

Efvn(z)] = v(z) + o(h), VA >0. (74)

Indeed, if this is the case then we can write

k
E(n] = Y E[E [Vie — Yi-vulv-vee] | < ko(1/k),

i=1
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for all k& € N, which implies that E[v,(z)] = v(x).
Let us now prove (74). By reflecting both v and v(+) around coordinate directions, we may

clearly assume without loss of generality that v/(0) > 0 for all i € [n]. Since for all i we have
P(T;) € [0,h] = O(h), we can write

Un = To(h) (1{T>h}V + Lreo.n)y R—sign(v) (r)e V> +ol)

= Thr (o) | Lrsmyv + Z LizefonyR-e;v | 4+ 0(h)

i€[n]
= 7711/(0) v+ 1{Tie[0,h}} (’R,eiy — V) + O(h).
1€[n]

Now, note that for all x € {—1,1}",

Thr v (z) = v(@)(1+ (z = b(r), h'(0))) + o(h),
and b(v)

Tr; — V);
e = 1——-].
R_ev(x) =v(x) ( = b, )

Combining the last three displays gives

i) = ) {1+ (o = b). 0/ (0) = 3 Lencos S | + ot
i€[n] !
_ , Lirieq0.n

1€[n]

at which point we have established the correctness of (8). By definition of the random variables
T;, we have
P(T; € 0, h]) = h(1 = b(¥);)v;(0) + o(h),

and therefore

E [hv;(()) - 11{_”%] = o(h).

Plugging the last display into (75) implies that E[v},(z)] = v(z) + o(h) which proves (74), so
we have established that the process is a martingale.

Under the extra condition that lim,_,., |v;(f)| = oo, we just observe that v, converges to a
Dirac measure almost-surely under every pinning process u(t), and therefore the process is a
localization process. O

Proof of Proposition 41. Fix a measure v on {—1,1}" and let (1), be the process obtained via
the negative-fields localization process. Fix ¢ > 0. According to equation (7), we can write

vipn(r) = vi(z) (14 (x = b(11), 2)) + o(h), (76)
where, conditional on 14, the random variable Z has independent coordinates which satisfy

;o {—h with probability 1 — h(1 + b(1);)

m with probability A (1 + b(v;);).
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Let f : {—1,1}" — R, be such that [ fdv > 0. We have,

/f Vdvipn (z /f Vv (x < <( ‘jt”tdx —b(z/t)) Z>) +o(h)

—Vt ( <V Z)) (h

where
Sl
= T floym(ar) DW= blue) = bn)
and where
(ib% . Lf j?(ﬂi)(il/t(gj)

Therefore, we have

E [vien(f)logvien ()] = vi(f) logvi(f) = v()E[(1 + (Z,v)) log(1 + (Z,v))] + o(h). (77)
For a fixed ¢, define b; = b(v;);. We calculate,
E[(1+(Z,v))log(l+ (Z,v))]

= hS S b)) (14— log (14— h

;vﬁ ;( + Z)( +1+bi) og< +1+bi)+o()
" U; U; U;

S b)) (14— )rog (14— ) - Y h
;( +’)<< +1+bi> Og( +1+b,~) 1+bi)+0()

(57
< 4hH(b+ v,b) + o(h),

Combining the two last displays yields
E[Ent,,,, [f]l4] > Ent,,[f] — 4hw(f)H(b+ v,b) + oh)

The assumption that v is c-entropically stable with respect to H (z, y) together with Lemma 31
give
Ent,, [f]

v(f) .

Combining the last two displays completes the proof. O

H(b+v,b) < aDky(u||v) = «

A.3 Proofs of technical lemmas from Section 6
Proof of Lemma 70. For k € [n]. Let Z ~ v and define X = Z; and Y = Z,. We have
Cov(v);; = E[XY] - E[X]E[Y]
=E[X|Y = 1|P(Y = 1) —E[X|Y = —1]P(Y = —1) — E[X]E[Y]
= 9E[X|Y = 1|P(Y = 1) — E[X] — E[X]E[Y]
= (E[X|Y =1] - E[X]) (1 +E[Y]).

Therefore, we have

Cov(v);;
b (Re,v), —b(v); =E[X|Y =1] - E[X] = ——*Z
(Re,v); = b(r); = E[X] | - EX] T+ b,
which proves the lemma for the case s = +1. The proof for s = —1 is similar. O
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Proof of Lemma 71. We first deal with equation (57). Fixing y € (—1, 1), we calculate the first
derivatives with respect to

0 1 1+ 1 1—=x
9 H(z,y) = =1 _
ox () 2 Og<1+y) 2 Og(l—y)

0 =y 1+
e (153) ~o (1)

The two functions coincide up to the first order Taylor expansion in x at + = y. Next we look
at the second derivatives

5 |
oY) = T —o)

Ox?
0? T—y 1
—(1 P = .
8x2< ) (1+y) I+
Since 1 < 27—, we obtain the inequality on the right-hand side. Similarly, since == < 2 when

x < 1/2, we also obtain the inequality on the left-hand side for the case x < 1/2. For x > 1/2,
let

Glz,y) = 2(1 + y)@(%) — H(z,y).

Its first derivative is as follows

9 et = 1o (1+2)°(1—2)
axG( ') 21g<(1+y)3(1—y))’

We observe that x — (1 + 2)3(1 — z) is monotonically decreasing on [1/2,1]. Because
%G(O,y) < 0, z +— G(z,y) is either decreasing on [1/2, 1] or increasing then decreasing
on [1/2,1]. So it is sufficient to check that G(3,y) > 0 and G(1,y) > 0 to verify G(z,y) > 0
for z € [1/2, 1]. We verify that

2
G(l,y)=3log [ —— ) —1+y >0,
(1) 0g<1+y> y >

because a%G(l,y) =-3/(1+y)+1<0and G(1,0) > 0. And we have

1 5 1 9 1
G(5,y) = 5 log <m) +2y + 4 log(3/2) — 1~ log(1/2) 2 0,

because B%G(%, y) = —ﬁ +2 < 0and G(3,0) > 0. This proves (57). To prove (58), we

note that by using (57), it is enough to show that
20(8s) > 0°®(s), V&€ (0,1),s € [~1,00),

and then take s = 75 > —land § = e~!. To prove the last inequality, let F'(s) = 2®(ds) —

52®(s). We have

F'(s) = 20®'(ds) — 6°®'(s) = 25 log(1 + &s) — 6*log(1 + s).
1 1

F// -9 2 - 52

(s) 0 1+ds 1+s
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For s > 0, since F'(0) = 0 and F(s) > 0, we obtain that F'(s) is an increasing function of
s and hence F(s) > F(0) = 0. For s € [—1,0), since as a function of d, F"(s) is decreasing,
we have F’(s) > 0. We conclude that F'(s) is an increasing function of s on [—1,0). Hence,
F(s) > F(—1) = 2®(—4) — §°. Since

0
55 22(=0) = 0°] = 2(=9 —log(1 — 8)) > 0,
we have F(s) > 2®(—§) — 6% > 0.
Finally, we deal with equation (59). For s > 0, there is nothing to prove since ®(-) > 0 on
[—1,1]. For s € [—1,0), let J(s) = 3®(—s) — ®(s). It has derivatives

J'(s) = —=3log(1 — s) — log(1 + s)
3 1

J<8):1—s_1+3'

Since J”(—1/2) = 0,J"(0) > 0 and J"(—1) < 0, we have that J'(s) is minimized at 1/2 and
that it only crosses 0 once on (—1,0). To check J(s) > 0, it is sufficient to check J(0) > 0 and
J(—1) > 0. We conclude equation (59). O

Proof of Lemma 72. Clearly we may assume u = 0 (otherwise we just need to prove the lemma
on for the restriction of v to S,). Denote v = v;e; + © where v L e;. We have

7:)1/ - 7:)1'01'7:7]/
Define . = T;v. Note that
b;(1t) = Ex~7 bi(RProje_LXV)] .

According to equation (60), we have 1 + b;(Rp,o; . xV) < 4. Hence

1+ bi(p) < 0.

Define f(t) = b;(Tiwe,1t). If v; < 0 then f(v;) < f(0) and there is nothing to prove. Otherwise,
we have

fO)<=1+6, f()=1-f@)
Thus,
(14 f(1) <201+ f(1)).
By Gronwall’s inequality,
L+ f(t) < (1+ f(0)) exp(2t) < dexp(2t).
Therefore,

1+ bi(T,(v)) =1+ f(v;) < dexp(2v;).
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For the second part, let g(t) = i;gg Since = — 1% is an increasing function of z € (—1,1),

we have

5 < g(0) < 8",
If v; < 0, then f(v;) < f(0) and g(v;) < g(0). Otherwise, we have

J(t) = % — 2(1).

Integrating the above equation, we obtain

g(t) = g(0) exp(2t) < & exp(2t).

The lower bound is established similarly. O

B Appendix B: Entropic stability for Ising models under a
spectral condition
Proof of Lemma 50. Consider the Ising model whose density is
v(z) o exp ((Jz,z) + (v, 7))

Since v is arbitrary, it suffices to show that

1

Covi) < ——— .
W) 2 T2 Tor

(78)

Set a > 2||J||op whose value will be chosen later. Let M be a matrix such that M ! +
a1, = (oI, — 2J)~L. By the fact that

N0, M)+ N(0,07'L,) L N(0, (aT,, — 2J)7),
we have
exp (—%((aIn — 2J)x,x)) x /n e 2WMy) o= 5lo—yl g,
o e-olel?/2 / e~ 3 (M aTw) galza) gy,
o e-olel?/2 / e~ gl gy
Since |x| is constant on {—1, 1}", we get that there is a constant C'(.J, v) such that

exp ({(afa, 2) + (v,2)) = C(J,v) / e~ @@ ) glowran) gy vy € {1, 1)

n

It follows that

V(l‘) X / 67%<y7(a2(2J)—1)y>€<m,v+a>dy
Rn

o / e~ 3 W:(e?(27) " Ny)+log(Z (v+ay)) (Z(v + ya)—le(xwﬂvy)) dy,
R

n
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where Z(w) = [, |y, exp((z,w))dz. Since Z(v + ay)~'e!*" ) is the density of Tyayh
where o is the uniform measure, we have

v = / @) Trsapiidy,

where

) o exp (= o (@220 + loe(Z(aw) )

Let X be the random vector with density ﬁ Then the above formula and the law of total
variance give

Cov(v) = Cov(E[Tsraxv]) + E[Cov(Torax )]
= Cov(tanh(v + aX)) + E[Cov(Tirax )]
=< a*Cov(X) +1,, (79)
where we used the fact that tanh(X) is a contraction.

Since log Z () is the logarithmic Laplace transform of the uniform measure, we obtain that
VZlog(Z(w)) = L. Therefore, defining

U(y) = 5 (v, (0*(2))y) ~ log(Z(a),

we have

2
VU = o?(2J)7 ' = %1, = ( a —oﬂ) I,
= o’(2J) =\ 27T

An application of Theorem 57 gives
2| Jlop 1
1=2|[Jlor  1=2[J]lop
Combining with (79) completes the proof. O

1+ ||a®*Cov(X)|lop < 1+

C Appendix C: The hardcore model

Proof of Lemma 64. Denote &(o) the event o;u; > 0, Vi € [n]. For the upper bound, we have

) AV
oy=+1,0,u;>0,Vi

I, I,
)P Aol + )P Al

Powy (00 = +1] &(0)) =

(<i) ZJU:H,WWEQW Al

N ZJU:Jrl,UiuiZO,W Al - Zoszrl,oiuiZO,Vi Alfel=1

A

=TT
Inequality (i) follows from the observation that any configuration ¢ with o, = +1 gives a
configuration ¢’ with 0/, = —1 and 0, = 0,,, Vw € V' \ {v}.
For the lower bound, let (uq, ..., uk) be the elements of N,, K = |N,|, we have

P,y (0, = +1| &(0))
> Py (0y = +1ando,, = —1,Vk € [K] | €(0))
=Py (0w, = —1,Vk € [K] | €(0)) - Py (0, = +1 | 0y, = —1,Vk € [K], &(0))
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Conditioned on all neighbors of v being —1, o, can either be —1 or +1. We have

A

Powy (00 = +1] 00, = —1,Vk € [K], €(0)) = T

On the other hand, we have

Posy (0w, = =1, Vk € [K] | €(0))

L

.
Il
—

Poy (00, = =1 0y, = —1,Vj € [i — 1], &(0))

L

.
Il
—_

(1= Pony (00, = +1 ] 00, = —1,Vj € [i — 1], &(0)))

(-155)
o +

1=

1\ %l
<1+/\) ’

Inequality (i) follows from the upper bound of the marginal in the first part.
If in addition A < (1 — §)Aa, then we have

.
~

IV
=~

Inequality (i) follows from the fact that for A > 3,

o_@-prt T A*1< L s 3¢
ATTA—2)A T A2 A2 = N

Inequality (ii) follows from log(1 + z) < z, forx € (—1,1).
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