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Abstract

For any real numbers B > 1 and 6 € (0,1) and function f : [0, B] — R, let dg,s(f) € Z>o
denote the minimum degree of a polynomial p(z) satisfying |p(z) — f(z)| < § for each z € [0, B].
In this paper, we provide precise asymptotics for dp.s(e~*) and dp,s(e”) in terms of both B
and ¢, improving both the previously known upper bounds and lower bounds. In particular, we
show that

dps(e™™) = © <max{ Blos(0 1), ooy éo_gl(fo_gl&_l)) }) , and

log(6~!
inte) = (mox{ B. oy ).
and we explicitly determine the leading coefficients in most parameter regimes.

Polynomial approximations for e and e” have applications to the design of algorithms
for many problems, including in scientific computing, graph algorithms, machine learning, and
statistics. Our degree bounds show both the power and limitations of these algorithms.

We focus in particular on the Batch Gaussian Kernel Density Estimation problem for n
sample points in ©(logn) dimensions with error § = n=®1). We show that the running time
one can achieve depends on the square of the diameter of the point set, B, with a transition at
B = O(logn) mirroring the corresponding transition in dp.s(e™):

e When B = o(logn), we give the first algorithm running in time n!*+°(),

e When B = K logn flor a small constant k > 0, we give an algorithm running in time
pitOUoglogs™"/logn™") The Joglog k~1/log k™! term in the exponent comes from analyz-
ing the behavior of the leading constant in our computation of dp.s(e™").

e When B = w(logn), we show that time n?~°(1) is necessary assuming SETH.

“Department  of Mathematics at Columbia  University and Institute for Advanced Study.
amolaggarwal@math.columbia.edu. Partially supported by NSF grants DGE-1144152 and DMS-1664619, a
Harvard Merit/Graduate Society Term-time Research Fellowship, and a Clay Research Fellowship.

"Department of Computer Science at Columbia University. josh@cs.columbia.edu. Partially supported by a
Harvard Michael O. Rabin postdoctoral fellowship.


http://arxiv.org/abs/2205.06249v1
amolaggarwal@math.columbia.edu
josh@cs.columbia.edu

1 Introduction

Polynomial approximations of important functions play a key role in many areas of computer science
and mathematics. We measure the extent to which a function can be approximated by a degree d
polynomial as follows.

Definition 1.1. For any real numbers B > 1 and § € (0,1), and function f : [0,B] — R, let
dp.s(f) € Zs( denote the minimum degree of a non-constant polynomial p(z) satisfying

sup ‘p(:n) - f(x)| < 4.
z€[0,B]

Past work in polynomial approximation theory has typically focused on the case when B = O(1);
see, for example, [Tim94, Chapter 7]. However, recent computer science applications have motivated
studying the setting where both B and 6! are growing simultaneously. Indeed, in algorithmic
applications, both the magnitude of the input to the function f and the tolerance for error can
scale with the size of the input to the problem.

In this paper, we focus specifically’ on the functions e* and e™®. As we will discuss more
shortly, polynomial approximations for these functions appear naturally in computational problems
throughout scientific computing, graph algorithms, machine learning, statistics, and many other
areas. Precisely determining dp.5(e~*) and dp.s(e”) is particularly important since in a number of
algorithmic applications, such as the batch Gaussian Kernel Density Estimation that we discuss in
Section 1.2 below, these quantities appear in the exponent of the input size in the running time.
In these settings, logarithmic or even constant factors can be the difference between a fast or a
trivially slow running time (see especially Sections 1.2.1 and 1.2.3 below). The standard framework
of approximation theory (e.g., [Pow67, Tim94, Trel3]) can be used to deduce bounds on dp.; that
are typically suboptimal, often losing (at least) such logarithmic factors, especially in the regime
when B is large.

Our main results are tight asymptotics, including the exact leading constant in most parameter
regimes (see Remark 1.5 below), for both dp.s(e™) and dp.s(e”).

In what follows, we define the function

G(z)=Va?+1+zlog (Va2 +1-2z), (1)

for each x € R>q.

Theorem 1.2 (Approximate degree of e™*). Let B > 1 and § € (0,1). Then,

inate~) =0 (max{ VBTG B )

More precisely, we have the following asymptotics as B + 61 tends to .

log ((5‘1) )
log (B—1 log((?—l)) > (1 + (1))

2. If B=2rlog(671) for fized r > 0, then dp,s(e™*) = (vr+o(1)) log(6~"), where v =v(r) >0

is the unique positive solution® to the equation G(v) =1 —r~1,

1. If B=o(log(07")), then dp,s(e™™) = <

We mention, however, that the method used in this paper is quite general and is expected to more broadly apply
for functions f whose Taylor series coefficients decay sufficiently quickly.

?The uniqueness of this solution (and the ones to be mentioned below) follows from the facts that G(0) = 1,
lim,_, o G(2) = —o0, and G'(2) < 0 for z > 0.



3. If B=w(log(67Y)) and B < 6=°W, then dp,s(e™) = (1 +o(1))\/Blog(6-1).
4. If B> 652 then dps(e™) = © ( Blog (5—1)>.

Theorem 1.3 (Approximate degree of €*). Let B > 1 and ¢ € (0,1). Then,

dps(e") = © (max {B’ 1og<;—gl(fo:gl<)a—l>> }> '

More precisely, we have the following asymptotics as B + 61 tends to .

o (51
1. If B=o0(log(671)), then dpys(e”) = <log (lBi(ng(z;—l)) ) (1+0(1)).

2. If B =2rlog(6~") for fized r > 0, then dp,s(e”) = (pr + o(1)) log(6~"), where p = p(r) >0
is the unique positive solution to the equation G(u) = —1 —r~1.

2B

3. If B=w(log (671)), then dp,s(e”) = (1+0(1)), where z, ~ 2.2334 denotes the unique

positive solution to the equation G(zy) = —1.

Remark 1.4. Polynomials achieving the degree upper bounds stated in Theorems 1.2 and 1.3
can be constructed in poly(d) time, with coefficients which are rational numbers with poly(d)-bit
integer numerators and denominators, where d is the degree.

Remark 1.5. In the fourth case of Theorem 1.2, we do not determine the leading constant A =
A(B;0) for which dp,s(e™) = (A+ o(1))y/Blog (6-1); as we will see below, when § = o(1), we

only bound it between % < A < 1. It is unclear to us whether or not this constant would admit a
concise description in this parameter regime, especially in the case when ¢ is fixed as B tends to
oo. In all other parameter regimes of Theorem 1.2, and in every case of Theorem 1.3, we determine
the exact leading constant.?

Previous bounds. The question of providing tight bounds on dp.s(e™") was posed in works
of Orecchia, Sachdeva, and Vishnoi [OSV12, Sections 4 and 7], and Sachdeva and Vishnoi [SV14,
Section 5|. They were motivated by algorithmic applications, as [OSV12] showed how upper bounds
on dp.s(e”") can be used to design faster algorithms for the Balanced Separator problem from spec-
tral graph theory. They gave an upper bound of dp.s(e™) < O(y/max{log(6—1), B} - log3/2(571)),
and a lower bound of dps(e~*) > $v/B. Later, [SV14] improved the upper bound to dps(e™) <
O(y/max{log(6=1), B} - log'/2(671)) (noting that such a bound was also implicit in [HL97]). The-
orem 1.2 provides precise asymptotics for dp.;(e™"), thereby answering the above question.

In particular, Theorem 1.2 shows that the prior upper bound could be improved by a logarith-
mic factor in some parameter regimes, but was otherwise asymptotically tight. For the Balanced
Separator problem studied by [OSV12], where the running time depends polynomially on dp.s(e™"),
this rules out a big improvement without a new approach. For other applications where the running
time has an exponential dependence on dp.s(e™*), our improvements have more significant impli-
cations. For instance, as we discuss below in Section 1.2.1, in some parameter regimes of the batch
Gaussian Kernel Density Estimation problem, our Theorem 1.2 yields a near linear time algorithm,

3Tt is quickly verified that the constants v, p, and z. from Theorem 1.2 and Theorem 1.3 satisfy 2r /2 < v <
max{rilm} and z, < pu < max{rilm} for all » > 0.



whereas applying instead the prior bound of [SV14] would only yield a trivial quadratic running
time.

We are unaware of prior work which specifically bounded dp.5(e”), although one could apply
standard results on Chebyshev interpolation (such as [Trel3, Theorem 8.2]) with some work to
yield a bound dp.s(e*) > Q(max{B,log(671)}).

Phase transitions. In fact, Theorem 1.2 and Theorem 1.3 indicate that the dependence of the
optimal degrees dp.;(e™") and dp.;(e”) on the parameters B and § is quite intricate. First, their
orders of magnitudes both exhibit transitions depending on the relative sizes of B and log(d~!). For
example, when B = w(log(6~"!)), Theorem 1.2 shows that dp,s(e™") exhibits square root depen-
dence on both log(6~!) and B, but when B = o(log(6~')) it exhibits nearly linear dependence on
log(6—1) and only logarithmic dependence on B. Second, in the “critical regime” B = 2rlog(61),
Theorem 1.2 shows that dp.s(e™) = @(log(é_l)), whose implicit constant is obtained by solving
the transcendental equation G(z) = 1 —r~!. A similar transition (with a transcendental leading
constant in the critical regime) is shown for the approximating degrees of e* in Theorem 1.3, but
with the qualitative difference that dp.;(e”) is linear in B (to leading order) and independent of ¢,
for B =w(log(671)).

To our knowledge, this is the first appearance of a transition arising when one simultaneously
scales B and ¢ in the context of polynomial approximation theory. Indeed, as mentioned previously,
prior works in this direction typically analyzed the case B = O(1), where transitions like these are
not visible. As we will explain in Section 1.1 below, these behaviors for dp.s(e™*) and dp.s(e”) will
have algorithmic interpretations. For example, we will see that the estimates on dp.5(e™") provided
in Theorem 1.2 imply a fine-grained computational phase transition for Gaussian Kernel Density
Estimation in certain parameter regimes.

Previous methods. In the theoretical computer science literature, proofs of upper and lower
bounds on the approximate degree dp.s(f) of a function f had been typically based on two distinct
arguments [NS94, Shi02, AS04, Amb05, OSV12, SV14, BT15]. Upper bounds were often shown by
providing an explicit polynomial approximation for f, usually given by (a truncation of) the ex-
pansion of f in the basis of Chebyshev polynomials. Lower bounds were typically shown by making
use of an estimate, such as Markov Brothers’ inequality, that constrains the maximum derivative of
a bounded polynomial in terms of its degree. Both ideas are archetypes of classical approximation
theory; see [Tim94, Chapters 2 and 4].

Our methods. As above, to upper bound dp.s(f) we will explicitly provide an approximating
polynomial for f, obtained from the Chebyshev expansion of its rescale fp(z) = f (%(1 —z)) (whose
domain is now [—1, 1]). However, derivative-degree estimates such as Markov’s inequality that prior
works used to lower bound dp.;(f) usually become insensitive to the tolerance parameter § once
it passes below a (typically non-optimal) threshold. Thus, they will not suffice for our purposes of
pinpointing the precise asymptotic behavior of dp.s(f).

We therefore proceed differently, by instead again making use of the Chebyshev expansion of
fB(z). In particular, we use the orthogonality of the Chebsyhev polynomials to lower bound the
minimal distance from fp to a polynomial of degree d in terms of the series coefficients of fp
when expanded in the Chebyshev basis; see Proposition 2.2 below. Thus, bounds on these series
coefficients can be used to bound dp.s(f). This idea was also ubiquitous in the traditional theory
and practice of approximating polynomials; for instance, it was very fruitful in proving the classical
sharp estimates [Tim94, Chapter 7.8 (22)] on dp,s(e™") and dp.s(e”") when B = O(1).

However, to our understanding, this idea has not been implemented before in our context where



B and ¢ scale jointly (either in the computer science or approximation theory literature). In this
setting, we must study the limiting behaviors for the high-degree coefficients in the Chebyshev
expansion fp, simultaneously as the degree and as B tend to oo; see Proposition 2.4 below. This
analysis becomes more involved than in the case B = O(1), as it should in order to give rise to
the intricate asymptotic phenomena described in Theorem 1.2 and Theorem 1.3. In particular, the
phase transitions observed in those results can be traced to corresponding phase transitions for
these series coefficients, given in Lemma 2.6 below.

1.1 Algorithmic Applications

Polynomial approximations with low error have numerous applications throughout algorithm de-
sign and complexity theory; see, for instance, the introduction of the survey by Sachdeva and
Vishnoi [SV14] for an overview. The quantities dp.s(e™) and dp.s(e”), in particular, play a central
role in many algorithms due to the prevalence of exponential functions. Some examples include:

e Approximating matrix exponentials. Given a matrix A and a vector v, approximate
e - . One of the most common algorithms in theory and in practice for this problem is
the Lanczos method [Lan50], whose running time is bounded by O(d - m4 + d?) [MMS18§],
where m 4 is the amount of time required to do a matrix-vector multiplication by A, and
d = dp,s(€”) is the approximate degree which we compute in Theorem 1.3 with B = [|A|| and

¢ is the desired approximation error parameter.

¢ Finding balanced separators in graphs. The aforementioned work by Orecchia, Sachdeva
and Vishnoi [OSV12] uses polynomial approximations of e~* in a way similar to the Lanczos
method to give fast, practical algorithms for the Balanced Separator problem.*

e Estimating softmax. Many “multinomial classification” problems in natural language pro-
cessing and other areas make use of the softmaz function to convert vectors representing the
different classes into estimated probabilities. Given n vectors wi,...,w, € RY,, an index
i € [n] and a sample vector h € RZ,, softmax is defined as N

e<wivh>

S el

Training models in these applications frequently requires many softmax computations, and so
approximations of softmax which are faster to compute are often used [CGA15]. Replacing
the exponentials in softmax by the optimal polynomial approximations we give in Theorem 1.3
can be used to more quickly compute such approximations [JCGT17, NSGH14].

softmax(h, i, wy, ..., wy) :=

e Kernel methods. Polynomial approximations for e~ have been used to design faster
sketching and estimation techniques for Gaussian kernels, including in a number of recent
algorithms; see e.g. [YDGDO03, LLM ™19, ACSS20, AKK*20]. In Section 1.2 below, we show
a new application along these lines to batch Gaussian Kernel Density Estimation.

1.2 Gaussian Kernel Density Estimation

Kernel Density Estimation (KDE) is one of the most common methods for non-parametric estima-
tion of the density of an unknown distribution D. Given a set P C R" of samples from D, along

4They also give a faster algorithm in some special cases using rational approzimations of e .



with a weight w, € R for each y € P, the kernel density function (KDF) of P at a point = € R™ is
given by

KDFp(z) = Z wy - k(z,y),
yeP

where k£ : R™ x R™ — R is a carefully chosen kernel function. In most applications, one would like
to compute K DFp at many points x. Perhaps the most commonly studied kernel function is the
Gaussian kernel k(z,y) = e~ lz=vl3. This motivates the question:

Problem 1.6 (Batch Gaussian KDE). Given as input 2n points =M ,a:(”),y(l), e ,y(”) e R™
which implicitly define the matrix K € R™*" by K]i, j| = e‘”l’(i)—y(j)ll%, as well as a vector w € R",
and an error parameter ¢ > 0, compute an approximation to K - w, meaning, output a vector
v € R™ such that ||K - w — v|[eo < I - ||w];.

Polynomial method algorithm. This problem can be solved by using a polynomial approx-
imation to e~* in order to construct a low-rank approximation to the matrix K, as follows. Let
B >1and ¢ € (0,1) denote real numbers, and suppose p(z) is a univariate polynomial of degree
d > dp.s(e”") such that

sup |p(z) —e % <6
z€[0,B]

Thus, for z,y € R™ with ||z —y||3 < B, the polynomial p(>_;", (z¢—y,)?) outputs a value within an
additive § of e~ llz=vl3 Hence, to solve Batch Gaussian KDE, it suffices to output the vector K - w,
where K € R™™ is the matrix given by K[i,j] = p(Z’f’:l(mél) - éj))2). By a standard argument,
the rank of K is at most the number of monomials in the expansion of p(3"7", (z; —y¢)?), which is
bounded above by M < (2d42'd2m), and the corresponding low rank expression for K can be found
in time O(n - M - m).

In other words, whenever M < n°), we can solve Batch Gaussian KDE in deterministic
n!to() time in this way (see also [ACSS20, Section 5.3] where this approach was previously laid
out). Theorem 1.2 characterizes exactly when this is possible in terms of m (the dimension of the
points), B (the square of the diameter of the point set), and ¢ (the error parameter):

1)

Corollary 1.7. For any positive integer m < n°Y, and real numbers B > 1 and § € (0,1), define
d =dp,s(e™™) as in Theorem 1.2. Then, batch Gaussian KDE can be solved in deterministic time
nite) whenever (2d;rjm) < n°W - Similarly, if (2dJ2rd2m) < n€ for some constant 0 < ¢ < 1, then

batch Gaussian KDE can be solved in truly subquadratic deterministic time n'tetol),

1.2.1 Comparison with prior work.

The previous best known algorithm for Batch Gaussian KDE is due to recent work of Charikar
and Siminelakis [CS17], which showed how to solve this problem in randomized time §—2n!*+e() .
(log n)O(B2/3) for any dimension m < n°1). Their algorithm achieves randomized running time
ntto) whenever §~1 < n°M, B < o((log n/loglogn)?/?), and m < n°M).

Focusing on the setting® where m = O(logn), Corollary 1.7 achieves deterministic running
time n't°M) in all the same parameter settings as the previous algorithm, and also new settings
including;:

50Often, depending on the desired error guarantees, one can reduce to roughly this case using dimensionality
reduction like the Johnson—-Lindenstrauss lemma.



e When B = o(log?n) and 6! < n°(°e/B) (slightly improving the parameter B), or
e When B = o(logn) and §~! = n®1) (considerably improving the parameter §).

In particular, the latter setting enables us to take ¢ to depend polynomially in n, while still
retaining an n'T°) running time.

The above parameter regimes are also where our upper bound on dp.5(e”*) from Theorem 1.2
logarithmically improves on the one given in [SV14]. This improvement was in fact necessary for
our application to KDE, as the estimate from [SV14] was dp;(e™) = Q(logn) in these settings,
which would give a running time of n - (2d;5m) > 21 as opposed to our near-linear one.

Interestingly, our algorithm and that of [CS17] take approaches which rely on very different
properties of the kernel function k. Charikar and Siminelakis’s algorithm uses a clever Locality-
Sensitive Hashing-based approach, and also works well for other kernels with efficient hash func-
tions, whereas our approach instead requires k to have a low-degree polynomial approximation.
Other popular algorithmic techniques for KDE, such as the Fast Multipole Method [GR87], or
core-sets [AHPV 105, Phil3], lead to n'T2() running times in the high-dimensional d = Q(logn),
low-error £ < n~9W getting; see [Sym19, Section 1.3.2] for an overview of these known approaches.

1.2.2 SETH lower bound.

To complement Corollary 1.7, we also show a fine-grained lower bound, that assuming the Strong
Exponential Time Hypothesis (SETH), when m = ©(logn) and 61 = n®1) one cannot achieve
running time 7'M when B = Q(logn).

Proposition 1.8. Assuming SETH, for every q > 0, there are constants o, 5,k > 0 such that
Batch Gaussian KDE in dimension m = alogn and error 6 = n=? for input points whose diameter
squared is at most B = rlogn requires time Q(n?~9).

The proof of Proposition 1.8 is a slight modification of a similar lower bound of Backurs, Indyk,
and Schmidt [BIS17], which relates Gaussian KDE to nearest neighbor search (for which SETH
lower bounds are already known [Rub18]).

To summarize, in the natural setting where m = ©(logn) and §=1 = n®W)

e Our algorithm using the polynomial method achieves running time n!*°(!) when B = o(logn).

e Assume SETH. It is not possible to improve our algorithm to achieve running time n!+o()

when B = O(logn). Moreover, if B = w(logn), then no algorithm achieves running time

faster than n2—°),

1.2.3 Critical regime behavior from the leading constant in Theorem 1.2.

Thus, assuming SETH (and under the setting m = O(logn) and 6~ = n®(M), the complexity of
Batch Gaussian KDE exhibits a transition mirroring the one exhibited by dp.s(e™) in Theorem 1.2.
More specifically, as B goes from o(logn) to w(logn), this complexity transitions from n'+t°() to
n2=°M)_ In the “critical regime” where B = xklogn for some fixed x > 0, this suggests that its
complexity should grow as n'T#(®)  for some non-decreasing function ¢ : Req — Ry satisfying
lim, 0 ¢(k) = 0 and lim,_,o @(k) = 1. It would be fascinating to better understand more precise
behavior of this function ¢. Does it continuously transition from 0 to 1 as k increases, or does it
admit a sudden “jump” at a specific threshold value for x?



While these questions remain open, we can use our asymptotics for dp.;(e~*) to provide bounds
on (k) for small k. In particular, the below corollary implies that p(k) = O( loglog k™! /log /{_1).
Our derivation of the term loglog x~!/log s~ appearing in the exponent makes use of the leading
constant v (defined in the second part of Theorem 1.2) for the asymptotics of dp.5(e™*). Indeed,
this is the case of Corollary 1.7 where d = dps(e™*) = O(logn) and m = O(logn), and so
(2d;—d2m) o(1)

=n°W, where the leading constant in dp.s(e™") determines the value of the ©(1).

Corollary 1.9. Fiz constants o, f > 0, and suppose that m = alogn and 6 =n=P. If B = klogn
for some Kk < %, then Batch Gaussian KDE can be solved in time O(n1+01°g1°g“71/1°g“71), where
¢ =c(a,B) >0 only depends on o and 3.

Prior work has shown similar “critical regime” behavior for other problems with SETH-based
lower bounds. The Orthogonal Vectors problem for n vectors in dimension klogn for large
can be solved in time n?~1/90°8%) [AWY14, CW16], whereas the problem in dimension w(logn)
requires time n27°1) assuming SETH. The Batch Hamming Nearest Neighbors problem for n
vectors in dimension & logn for large & can be solved in time n2~ /9K [AW15, ACW16], whereas
the problem in dimension w(logn) also requires time n2=°() assuming SETH. Interestingly, these
algorithms make use of variants on the polynomial method using probabilistic polynomials, whereas
we make use of approximate polynomials here.

2 Proof Overview

In this section we outline the proofs of Theorem 1.2 and Theorem 1.3, which will be established in
detail in Section 3 below. To that end, we will use the Chebyshev polynomials, which are defined
as follows; see Section 3 for a more thorough explanation of its properties.

Definition 2.1. Fix an integer d > 0. Let P; C R[x] denote the set of single-variable polynomials
p(z) with degp < d, and define the degree d monic Chebyshev polynomial Qq(x) € Py as follows.
Set Qo(x) =1 and, for each d > 1, define Q4(x) by imposing that

Qa(cos B) = 214 cos(db), for each 6 € [0, 27]. (2)

It is well understood in the literature that smooth functions f are typically well-approximated by
polynomials obtained by truncating the series expansion of f in the basis of Chebyshev polynomials;
see, for instance, [Trel3, (15.5), (15.8)] for more precise formulations of this statement.

In particular, the following proposition provides a version of this statement that will be more
useful for our purposes. It provides upper and lower bounds on the optimal error of a polynomial
approximation p(z) of a function f : [—1,1] — R in terms of its Chebyshev expansion coefficients.
Both bounds in this result are known; the lower bound follows from the L?-orthogonality of the
Chebyshev polynomials, and the upper bound follows from (2). Still, we provide a short and
self-contained proof of the below proposition in Section 3.3.

Proposition 2.2. Let ag,aq,... € R satisfy Z;io laj| < co. Then, the absolutely convergent series
f:[=1,1] = R defined by f(z) = Z]O'io 2071a;Q;(x) satisfies

S 1/2 00
(% Z f) < inf  sup ‘p(:ﬂ) — f(il?)‘ < Z |aj], (3)
j=D

= ~ PEPD-1z¢[-1,1]

for any integer D > 1.



In particular, (3) provides nearly matching upper and lower bounds (up to a factor of (2D)'/?)
if the coefficients {a;} decay sufficiently quickly. Indeed, then the left and right sides of that
inequality are asymptotically governed by their leading terms ap.

As stated, Proposition 2.2 only applies for approximating polynomials on the interval [—1,1].
However, we would like to approximate e~* and e” on [0, B], for some B > 1. Therefore, we rescale
by first setting )\ = 2 , and then by observing that to approximate e~* (or e*) on [0, B] it suffices
to approximate e~ (or e**, respectively) on [—1,1].

We will show that the coefficients of these latter functions, when written in the Chebyshev basis,
indeed decay quickly (with an explicit rate, dependent on A), and then apply Proposition 2.2. We
can in fact compute these coefficients exactly, by first expressing e™* and e through their Taylor
series, and then by changing basis from the monomials " to the Chebyshev polynomials. This
yields the following (known) lemma, whose short proof will be recalled in Section 4.1 below.

Lemma 2.3. For any real numbers A > 0 and x € [—1, 1], we have that
o0 o0
e—)\:c—)\ _ Z 2U_1Av,AQv(x)y e)\x-‘r)\ — Z 2v_1Bv,AQv(x)7 (4)
v=0 v=0
where for any integer v > 0 we have set

_ v A" n A n
A= B OGL(L) sas B Ogn(L) o
: 2 : 2

n—’l)e2ZZ() n—’l)E2ZZ()

We next apply a saddle point analysis to obtain precise asymptotics for A, and B, , as
A+ v tends to oco. In particular, the following proposition shows that these coefficients decay
exponentially in v, with an explicit rate function given by W, y in (6). This exact form of this
rate function will eventually serve as the source of the phase transitions for dp.s(e™) and dp,s(e”)
explained in Theorem 1.2 and Theorem 1.3, respectively. Indeed, one might already observe that
Uy = AG(%), where we recall the function G(x) from those results. The below proposition will be
stated a bit informally; we refer to Proposition 4.1 below for the more precise formulation needed
for our purposes.

Proposition 2.4. Recall the quantities A, \ and B, x from (5) for any integer v > 0 and real
number \ > % Denote

vl
=Vv2+ A2 +olog <¥> (6)

As v+ X tends to oo, we have that
(—1)"Apn = A+ 0)Wexp (T, \ — N); Byx = +v)Wexp (¥, \ + \).

Combining Proposition 2.2 and Proposition 2.4, we obtain the following corollary, which pro-
vides nearly sharp bounds on the error one can achieve for a degree d polynomial approximation
of e=* and e” on [0, B]. Once again, the below proposition will be stated a bit informally, and we
refer to Proposition 4.5 below for a more precise formulation.

Corollary 2.5. Let d > 1 be an integer, and let B > 1 be a real number. Set A\ = % and recall W
from (6). As A+ d tends to co, we have that

inf sup |p(z) —e | =(A+ )°W exp(Tyy — ), (7)
PEPA z¢[0,B]
inf sup |p(z) — €| = (A + d)°W exp(Tg\ + A). (8)
PEPa z¢(0,B]



Now Theorem 1.2 and Theorem 1.3 will follow from an explicit analysis of (7) and (8), re-
spectively. For the purposes of this outline, we will omit the remaining details of analyzing the
asymptotics of these expressions (referring to Section 4 for a more detailed exposition). However,
let us briefly explain how the transitions from B = w(log(é‘l)) to B = o(log(&‘l)) arise, for
example in Theorem 1.2.

They ultimately follow from the fact that the function ¥, y — A behaves differently depending
on whether v = O(X) or v = Q()), as different terms in the definition of ¥, \ are dominant in
each of these settings; this is stated more precisely through the following lemma, which will be
established in Section 4.2 below.

Lemma 2.6. Let A\ > % be a real number, v > 0 be an integer, denote k = %, and recall the

function U, 5 from (6).

2

1. If v < 2\ (that is, k < 2) then ¥, x — A = —;)—)\(1 + O(k)).

2. If v> 2\ (that is, k > 2) then ¥, \ — X = —vlog (%) (1 + O((log /1)_1)).

In particular, the first part of Lemma 2.6 gives rise to the first part of Theorem 1.2, and the second
part of Lemma 2.6 gives rise to the third part of Theorem 1.2.

Finally, we need one last tool to prove the fourth part of Theorem 1.2. In Theorem 1.3 as well as
the first three parts of Theorem 1.2, our degree lower bound ultimately followed by finding a large
coefficient in the Chebyshev expansion of e**** or e**~* and then applying Proposition 2.2. How-
ever, when B (and hence \) is very large compared to the desired error, the Chebyshev expansion
of e’ actually has no sufficiently large coefficients.

We instead take a different approach in this last case. We observe that any polynomial p

satisfying the bound sup,¢ g ‘p(m) - e‘m| < ¢ must have,
e [p(z)| < 2§ in the entire interval z € [log(6~'), B], and
e p(0) >1-4.

It is known (see Fact 3.1 below) that the polynomial of lowest degree achieving these two properties
must in fact be a (rescaled) Chebyshev polynomial. We then show that a Chebyshev polynomial
requires degree Q(1/Blog(d—1)) to realize these properties, from which the desired result follows.

3 Preliminaries

3.1 Notation
For a nonnegative integer d, we write Py to denote the set of polynomials p : R — R with real
coefficients of degree at most d. For a Boolean predicate P, we write

~ )1 if Pis true,
P 0 if P is false.

All logarithms in this paper are assumed to have base e, and we similarly write exp(x) := e*.



3.2 Chebyshev Polynomials

In this paper we make heavy use of the Chebyshev polynomials. Chebyshev polynomials appear
prominently throughout polynomial approximation theory, and have been used in numerous other
areas of theoretical computer science, including in Boolean function analysis and quantum com-
puting; see e.g., [BT21]. Here we define them and give some of their well-known properties which
will be important in our proofs. We refer the reader to [MHO03] for more details.

The degree d monic Chebyshev polynomial Qq(x) € Py is defined in many equivalent ways:

Definition 1 Set Qo(x) = 1 and, for each d > 1, define Q4(z) by imposing that, for each 6 € [0, 27],
we have Qg(cos ) = 2"~ cos(dh).

Definition 2 Qo(z) = 1, Q1(z) = z, and for d > 2 we have Qq(z) = z - Q4—1(2) — 3Qq—2(2).
Definition 3 Qg(x) = 1 and for each d > 1 we have Qq(z) = 2'"¢. ,Edz/gJ (262) (22 — 1)kxd—2k,

In particular, Q4(z) is an even function when d is even, and an odd function when d is odd.
From Definition 1, one observes several simple properties of Qg(x) for all d > 0 for = € [—1,1]:

e For all z € [~1,1], we have 2971 . Qq(x) € [-1,1].

e All d roots of Q4(z) lie in [~1,1], and they lie at the points z = cos (7(2k + 1)/2d) for each
integer 0 < k < d.

e On the interval [—1,1], the extrema of Q)4 are located at the points x = cos (7k/d) for each
integer 0 < k < d. Qg(x) alternates between the values 2'~¢ and —2!~% at these extrema,
starting at Qg(cos(0)) = Qq(1) = 217

Outside of the interval [—1, 1], it is well-known that the Chebyshev polynomials exhibit useful
extremal properties.

Fact 3.1. For every integer d > 0, every polynomial p(x) € Py of degree d such that 27~ - p(z) €
[—1,1] for all x € [—1,1], and every real 2’ ¢ [—1,1], we have |Qq(z")| > |p(a’)].

Proof. Assume to the contrary that there is an 2/ ¢ [—1, 1] such that |Q4(z")| < |p(z’)|. By rescaling
p by a factor in the range (|Qq(z)|/|p(x")|,1), we can further assume that 27~ . p(x) € (—1,1) for
all z € [—1,1]. By the symmetry of Q4(z) (and by negating p if necessary), we may also assume
without loss of generality that 2’ > 1 and that p(z') > Qq(z’) > 0 are positive.

Define the difference polynomial g(x) = p(z) — Qg(z), which has degree at most d. Consider
the d + 2 points x_1 > xg > x1 > 29 > -+ > x4 € R given by

e x_1 =2/, and
e x; = cos (mk/d) for each integer 0 < k < d.

We have g(z_1) = p(z') — Qq(2’) > 0 by assumption. For even k > 0 we have Qg(z)) = 2'~¢

and |p(zy)| < 279, and so g(z) < 0. Similarly, for odd k > 0 we have g(x;) > 0. Hence, g(x)
alternates signs at least d + 2 times in the interval x4, x_1], meaning it has at least d + 1 roots in
that interval, a contradiction. O

In fact, Qq4(1 4 ¢) for small € > 0 is very closely approximated by an exponential in /e:

Fact 3.2. For any e > 0 we have Qq(1 +¢) = 277 . ¢V2:(1+0(V5)),

10



Proof. Extending Definition 1 of Q4(x) to = ¢ [—1,1], we find that

Qa(x) =274 ((m — Va2 — 1)d + (:17 + Va2 — 1)d> , for each x with |z| > 1.

For x = 1+ ¢ with € > 0, we thus get

d d
Qa(l+e) =271 ((1 —V2e + O(e)) + (1 +V2e + O(e)) ) = 97 dedV2e(1H0(VE))
as desired. O

3.3 Chebyshev Expansion Coefficients

In this section we prove Proposition 2.2, which shows how the coefficients of a function f written
in the basis of Chebyshev polynomials can be used to bound how well f can be approximated by
low-degree polynomials.

Proof of Proposition 2.2. Observe for any d € Zso and z € [—1,1] that |Qg(x)| < 2'~%, which
follows from (2) after setting x = cos . This implies the absolute convergence of f(x) for x € [—1,1],
since )72 aj| < 0o. So, it remains to establish (3).

To establish the upper bound there, define

D—-1

Hp(e) = 3 27'4;Q;(x). (9)

J=0

Since |Qq(z)| < 2! for each € [-1,1], we have that

Z 2J— 1a]QJ

sup |Hp(z)— f(z)| = sup
ze[—1,1] ze[—1,1]

<> lajl, (10)
j=D

which proves the upper bound in (3).
To establish the lower bound, fix p € Pp_1, and let ¢y, ¢y, ... € R satisfy

r) =Y 27'¢Q;(z), and¢;=0forj>D.

Then, applying (2), we obtain

1 ap — Co - .
p(cos @) — f(cosB) Z 21~ —¢j)Qj(cos ) = 5 + Z(aj — ¢j) cos(j). (11)

j=1

Define bg, b1, ... € R by setting by = 5% and b; = a; — ¢; for j > 0, and observe that

2
/ cos(j0) cos(k0)do = 0, for j # k,
0
and

2 2
/ cos®(k6)do = % / cos?(0)d0 = 7|k| ' 1rz0 + (27)Lx=o,
0 0

11



it follows that

/0% |p(cos ) — f(cosH / <Zb cos(j0) )

0o 00 o o b2

= E b;by, cos(j6) cos(k0)dd = 2mb3 + E K
: 0 k
7=0 k=0 k=1

Thus, since b; = a; for j > D (since ¢; = 0 for j > D), we deduce

1 2m
sup |p(z) — f(a:)‘2 = sup |p(cos) — f(cos 9)!2 > Dy p(cos @) — f(cos 6)|2d9
z€[—1,1] 6€[0,27] ™ Jo
1 & ai
> 5 Z ?7
k=D
which yields the proposition. O

Finally, we recall a well-known [MHO3] identity expressing a monomial as an explicit linear
combination of Chebyshev polynomials.

Lemma 3.3 ([MHO03, (2.14)]). For any integer n > 0, we have that

nf 2_2k< )Qn 2r().

4 Degree Bounds for Polynomial Approximations
4.1 Estimating A, and B,
In this section we analyze A, ) and B, ) from (5). We begin with the proof of Lemma 2.3.

Proof of Lemma 2.3. We only establish the first statement in (4), as the proof of the second is

entirely analogous. To that end, first using the series expansion for e™* = > > (_:!)n and then

applying Lemma 3.3, yields

e—Ax—A _ e—)\ i (_)\)n 2" = —)\ Z LnE/EJ 2—2k< >Q ( )
n nl n—2k\L
n=0

Then, by setting v = n — 2k, we obtain

(e}

A _ + 2k .
oA = AZQU Z ’U—|—2k‘ (U > 22 lAvAQv()

=0

from which we deduce the lemma. O
We next have the following proposition that more precisely formulates Proposition 2.4.

Proposition 4.1. There exist constants C,c > 0 such that the following holds. For any integer
v >0 and real number A\ > 1, recall the quantities A, \ and B, x from (5) and ¥y, from (6).

12



1. For any v and X\ as above, we have that

c(v+A)"lexp (Tyn—A) < (—=1)"A,\ < C(v+ N exp (T, ) — A);
c(v+N)"Lexp (Tyr+A) < Bya < C(v+ A)exp (U, ) + A).

2. If v < A, then
c(v+ )\)_1 exp (\I/U,A — )\) < (—1)"Ayx < CA Y2 exp (\IIW\ — )\).

To to establish the above result, observe that the two quantities A, y and B, ) are quite similar,
in that they both involve certain sum given by

A" n
E,) = Z 2W<%>.a (12)

TL—’U€2ZZO

We therefore require the following proposition that estimates E, y. Observe its second statement
slightly improves the upper bound in its first statement for A large (which will be useful in analyzing
dp;s in the regime of large B below).

Proposition 4.2. There exist constants C,c > 0 such that the following holds. For any integer

v > 0 and real number \ > %, recall the quantities E, \ and W,  from (12) and (6), respectively.

1. If v > A, then c(v+ \)"lexp (\I/U,A) <Ey)<C(v+A)exp (\IIW\).
2. If v <\, then c(v+ \)"lexp (\I!U,)\) <E,\ < CA 12 exp (‘I’v,)\)-
Proposition 2.4 now follows directly from Proposition 4.2.

Proof of Proposition 4.1 Assuming Proposition 4.2. Given Proposition 4.2, Proposition 4.1 follows
from the facts that (—1)"A, ) = 2€_>‘EU,)\ and B, ) = 26)‘Ev7)\. O

We must thus establish Proposition 4.2, to which end we begin with the following lemma.
Lemma 4.3. For any integer v > 1 and real number \ > %, we have that
E, )= (9( Z (n® —v*+ n)_1/2 exp (F(n))) , (13)
TL—U€2ZZO

where for any real number n > v we have defined F(n) = F(n) by

F(n) =nlog\ —nlog2+n— (n;?})log (n;v) - (n—2HJ>10g<n—2i—fu>‘ (14)

Proof. The explicit form (12) for E,  and the Stirling estimate n! = ©((n + 1)"+1/2e_"), which
holds uniformly in n > 0, together imply

E, )= @< Z (n+2)*— vz)_l/z exp (F(n)))

’fL—’UG2ZzO

From this, we deduce the lemma since (n + 2)? — v? = O(n? — v2 + n), uniformly in n > v. O

13



The right side of (13) will be dominated by the terms near which F' is maximized, so we next
perform a critical point analysis on F'.

Lemma 4.4. Fiz an integer v > 1 and a real number A > %, and set ng = ng(v, \) = Vo2 + \2.
There exist constants ¢,C > 0 (independent of v and X) such that the following holds.

1. The function F'(n) is maximized at n = ng, and F(ng) = ¥,  (recall (6)).

2. For z > 2\, we have that F(ng+ z) < F(ng) — cz.

3. For at least one choice of m € {|no], [no]}, we have that F(m) > F(ng) — C.

4. If v <\, then for any z € [v — ng, 2] we have that F(ng + 2) < F(ng) — eA™122%.

Proof. Using the explicit form (14) for F(n), we deduce for n > v that

1 n 1
F'(n) =log A\ — 5 log(n® —v?), and F"(n)= 22 € [— ;,0} (15)

which implies that F'(ng) = 0 and that F' is maximized at ng. Upon insertion into (14) (and
recalling (6)), we also find that

/22 2 _
F(ng) = Vv2 4+ A2 +vlog <%/\U) =T,

which verifies the first statement of the lemma.
To establish the second, first observe since F”(n) < 0 and ng — v? = A\? that

1 1 log 2
F'(ng + ) =log A — 5 log ((no + A)? — v?) < log A — 5 log(ng 4+ A2 —v?) = — og . (16)
Thus, we deduce for z > 2\ that
, log 2 zlog?2
Fno+2z)—F(ng) < F(ng+2)—F(no+A) < (z—=NF'(ng+ ) < AN—2)<—

4 )
where in the first inequality we used the fact that F' is maximized at ng; in the second we used the
fact that F’(n) < 0; in the third we used (16); and in the fourth we used the fact that z — A > 2.
This verifies the second statement of the lemma.

To show the third part of the lemma, we separately consider the cases when v < A% and v > \2.
In the former situation v < A2, we select m = [ng]. Since F"'(n) = (n? + v?)(n? —v?)72 > 0, we
then have for for n € [ng, m] that
(n —mngp)? 1 _ ng

> >

2
F(n) > (n = no)F(ng) = 00 > > [,

using the last second identity in (15). Since ng < A+ v < 3A? (due to the facts that A > % and
v < A?), it follows that F'(n) > —% for n € [ng, m], which implies that F(m) > F(ng) — 3 if v < A2

Now instead suppose that v > A2 in which case we take m = |ng] = v. Then, using the second
identity in (15), we obtain

no—v 1 no—uv 2 2 1 no—v
F(ny) — F(v) :/0 Fl(v+ 2)dz = _5/0 log <WA7-2Fz>dZ . _5/0 og <§_§>dz.

14



Now set r» = ’\72, and observe that ng —v < r < 1. This yields

z

r r 1 r
F(m)zF(no)—F%/O log< >dz:F(n0)+§/0 (logy)dy:F(no)—§zF(no)—l,

,

where in the first equality we changed variables z = ry. This verifies the third part of the lemma.
To establish the fourth part of the lemma, let us first consider the case when z € [v — ng,0].

Then, since F'(ng) = 0 and F”(n) = (n? + v?)(n? — v?)~2 > 0 for each n > v, we have that

F(”O+Z)SF(n0)+w:F(no)—

22()\2 + 1)2)1/2

e , for z € [v—mny,0],

where in the last equality we used the second identity in (15) for F'(n) (and the fact that ng =
VAZ +02). Thus, we deduce that
52
F(no—kz)SF(no)—ﬁ, for z € [v —ng,0]. (17)

Next we consider the case when z € [0,2)]. In this case, the second identity in (15) implies for
each m € [ng,ng + 2]\ that

m A 1
F”m = ] -
(m) v2—m2 = m2 = 16\’

where in the last inequality we used the fact that m < ng+2\ <4\ (as v < X and ng = \/m)
Thus, it follows from the fact that F”(ng) = 0 that
2
o)
Now the fourth statement of the lemma follows from (17) and (18). O

F(no+z) < F(ng) — for each z € [0, 2)]. (18)

Now we can establish Proposition 4.2.

Proof of Proposition 4.2. We begin by establishing the lower bound on E, , simultaneously in both
cases v > A\ and v < A. To that end, we first apply Lemma 4.3 and then use the third part of
Lemma 4.4 to bound the sum on the right side of (13) its summand corresponding to a suitable
choice of index m € {[ng], [no]}. This yields constants ¢1,cp > 0 such that

—-1/2

E,\>c ()\2 + 1)2) exp ( — F(m)) > ci(A4v) Lexp (F(no) — 02),

which implies the lower bound on E;, ) (in either case v > X or v < \), since F(ng) = ¥ ,.

To establish the upper bound in the case v > A, observe that Lemma 4.3; the fact that F(n) <
F(ng) = ¥, for each n € [v,n9 + 2A] (by the first part of Lemma 4.4); and the existence of a
constant ¢ > 0 such that F(ng + z) < F(ng) — cz for z > 2\ (by the second part of Lemma 4.4)
together yield a constant C; > 0 such that

o0
E, x < Ci(ng +2X) exp(¥y.0) Z e * < 20_101(n0 +2)) exp(¥y, 5).
z=2)\

This establishes the upper bound on F, y when v > A.
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In the latter case v < A\, we proceed as above but additionally use the facts that F(ng + z) <
F(ng) —cA7122 for z € [v —ng,2)] (by the fourth part of Lemma 4.4) to deduce for some constant
Cy > 0 that

2 00
E,\ <Oy eXp(\IJU,)\)< S (o +2)* —o” +ng + 2) 2o 3 e—cz)
2=v—njo 2=2)

<(C; eXp(\va)\)( Z ((no + z)2 —vi 4 ngy + Z)_1/26—cz2/)\ + Z e cF/A + Z e—cz)

[z]<A/4 |z|>A/4 2=2)\

< Crexp(V¥,) (12)\_1 Z e~/ 356_16_2’\> < CoN1/2 exp(Vy2),
|z|<A/4

where in the third inequality we used the fact that (ng + 2)? — v? > % for [z < % (as ng =

VA2 + 02 > % + v for A > v). This establishes the upper bound on E, y when v < . O
4.2 Estimates for the Minimum Polynomial Approximation Error

In this section we establish the following proposition, which is the variant of Corollary 2.5 that will
be useful for our purposes.

Proposition 4.5. There exist constants C,c > 0 such that the following holds. Let d > 1 be an

integer, and let B > 1 be a real number. Set \ = g and recall U from (6).

1. For any B and d as above, we have

c(d+ )\)_3/2 exp(Ugr—A) < inf sup |p(m) — e_x‘ <C(d+ )\)2 exp(Wgx — A); (19)

PEPI 2€(0,B]
o(d+\)~3/2 exp(¥g )+ A) < inf sup |p(z) — €| < C(d+ NZexp(Tgy + \). (20)
PEPa 2€[0,B]
2. If B > 2d, then we have that
c(d+ N3 exp(Vyy — A) < inf  sup Ip(z) — ™| < Cexp(¥gx — A). (21)
PEPI ze[0,B]

We will establish Proposition 4.5 as a consequence of Proposition 2.2 and Proposition 4.1.
However, before doing so, it will be useful to obtain some properties for ¥, ). Therefore, we first
prove Lemma 2.6.

Proof of Lemma 2.6. First observe that
T\ — A= )\<\//12 +1-1+nrlog (VA2 +1— /-;)).

In particular, if x < 2 then using the series expansions

2
V22+1=1+ % +0(2%), and log(l+2) =2+ O(z?), wvalid for z € [0,2],

we obtain that
K2 5 9 K2\
Tpr = A 7+0(/€)+f@log<1—%+0(fi )) =-— (1+0(x)).
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If instead k > 2 then using the series expansion

1
224+1=z+ oy O(z™%), and log(z7'+4272) = —logz —O(z7"), walid for |z| > 2,

we deduce that

U, = )\(H‘l‘ O(%) + klog <i + O(%))) = —)\/ilog/i(l + O((logm)—l)).

This establishes the lemma. O
Now we can establish Proposition 4.5.

Proof of Proposition 4.5. First observe that by rescaling (namely, replacing z with A(z + 1) or
—A(z + 1)), we have that

inf sup |p(z)—e€*|= inf sup |p(z)— et
PEPa 1[0, B] p(@) | PEPa pe[-1,1] () | (22)
inf sup |p(z) —e | = inf sup |p(x) —e_)‘_’\x|.
PEPA 1c[0,B] PEPA gc[—1,1]
Therefore, Proposition 2.2 and the definitions of A4, \ and B, ) from (5), together yield
inf sup |p(z) —e*| > (2d)_1/2|Av7>\|; inf sup |p(z)—e€”| > (2d)_1/2|Bv7>\‘. (23)

pEP, 2€[0,B] PEPq z€[0,B]

Thus, the lower bounds on the minimal error for e™* and e¢* in both of the cases listed in the
proposition follow from (23) and the lower bounds on |A, x| and |B, | from the first part of
Proposition 4.1.

Now let us establish the upper bounds in this proposition; in what follows, C' > 0 will denote
a constant (uniform in d and \) that might change between appearances. We first show (20), to
which end, observe that (22), Proposition 2.2, and the upper bound for B, ) from the first part of
Proposition 4.1 together yield

inf sup |p(z)—e " < B,,<C v+ A)exp(Uyx + A). 24
pedee[o,B]| (x) | vz::d Uz:;l( ) exp( ) (24)

Next, observe from the second part of Lemma 2.6 that
Uyr+ A< o, for v > C\. (25)
Further observe that
VU,  is decreasing in v > 0 for fixed A, (26)

since

2\IIU;A:log (Ve2+1-k) <0, for K =

ov

> <
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From (24), (25), and (26), it follows that

inf sup [p(z) —e”| < C(d+N)exp (Ugr+A)[d+CA+ (v+N)e™
PEPA 1[0, B] ‘ ‘ ( ) vzg;cx

< C(d+A)%exp (g + A).

This establishes (20); the proof of (19) is omitted as it is entirely analogous.

Now let us establish the improved upper bound on the minimum error in the case when B > 2d.
To that end, we as before apply (22), Proposition 2.2, and the upper bound for 4, y from the second
part of Proposition 4.1 to obtain

inf sup [p(z)—e*| <C A2 exp Uyn—A). 28
PEPy z€[0,B] | ‘ UZ:d ( ) ( )

y (27), we have that W,., < 0 for v > 0 and moreover that

8 2 ’U2 v
—_— N = — — = J— — — < .
(%\IJU,A log (1 )\+O<)\2>> O<)\2> 3 for v < 10;

S+ - (102 (). ez

In particular, there exist constants ¢y, ¢co > 0 such that for v, A > 1 5 We have -2 3o Vur < —c1 if v > o)
and 81)\1/”7)\ < —gx for v < e A Thus,

Wpn — Uy < _%(U —d)?, forv<e U~V <OTHd—v), forv> e,

and so
D exp(Wyn — A) < OA/Zexp(Tgn — N). (29)

The upper bound in (21) now follows from (28) and (29). O

4.3 Proofs of Theorem 1.2 and Theorem 1.3

In this section we establish Theorem 1.2 and Theorem 1.3. Recalling the function G(z) and the
quantity W, y from (6) from these statements, both of these proofs will use the fact that

v
T,y = AG(X). (30)
We begin with the proof of Theorem 1.3.

Proof of Theorem 1.3. Set A = %. Observe that there exists a constant ¢; > 0 such that G'(z) <
—c1 whenever z € [z, — 1,2« + ¢1]. Thus, G(x) +1 > ¢1(z — x4), and so (30) yields for some
constant ¢y > 0 that

(d+N)"Fexp(Wan +A) > (d+ A" Lexp(ear/?) > 10,
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if d < z,A — A2 and X is sufficiently large. Thus, by the lower bound in Proposition 4.5, for any
A sufficiently large and § < % we have

dps > (2 +0o(1))X = (24 + o(l))?. (31)

Now, assume first that B = w(log(é‘l)). Then, the upper bound in Proposition 4.5 implies
that d(B;4) < d if d satisfies (d + A\)?exp (¥gx + A) < 4. Since G(z,) = 0 and G'(z) < 0, there
exists a constant C' > 0 such that

(d+N)2exp (Tgp + A) < (d+ N)Ze Cld==A),
Since A = % = w(log(671)) implies that (d + A)?exp (¥gx + A) < § for d = (2. + o(1))\ =
(2: +0(1))Z. Hence, in this case dp.5(e”) < (2« + o(1)) %, which by (31) implies that dps(e®) =
(24 +0(1)) g.
Now assume that B = (2r+o(1)) log(6 ') for some fixed r > 0, so that A = (r+o(1)) log(6~1).

Suppose that d < g/ for some p/ < p(r). Then, G(i') +1 > —r~! and so we have again using (30)
(and the fact that G is decreasing) that there would exist a constant ¢ > 0 such that

(d+X\) "2 exp (Tgr+A) =(d+ )32 exp (AG(% + A))

> (d+X\) "3 exp ()\(G(,u/) + 1))
> (d+ N exp (e —r7'N) = 3(d+ N) e oA > 5,
Thus, the lower bound in Proposition 4.5 implies that dp,s(e”) > (u+0(1))A = (ur+o(1)) log(671).
Similarly, if d > "\ for some p” > p(r), then there exists some constant ¢4 > 0 such that
(d+ )2 exp (Wgn+A) > (d+ A2 exp (A(G(u”) + 1))
> (d+N)"exp (= AT+ ) = 6(d+ AP <,

which implies by the upper bound in Proposition 4.5 that dp,s(e”) < (ur + o(1)) log(6~1). Hence,

dps(e”) = (ur +o(1)) log(6—).
Now let us consider the final case B = o(log(6~')). Suppose that

~ qlog(67h)
~ log(B~'log(6-1))’

for some v € (0,00) (bounded above and below). Then, % = w(1l), and so the second part of
Lemma 2.6 implies that

Wi = —dlog (1) (1 +0(1).
Hence, if v < 1, then
(d+ 23 exp (War+ N
— (d+\) "2 exp ( — dlog (;) (1+ 0(1))>

_ ~log(67") 2yB " log(67")
=(d+N) 3/2 exp < — log(B—log(0-1) log (log(B_l log(é_l))) (1 + 0(1))>

= (d+ X)) exp ((’y +0(1)) log(5_1)> > §rto(d) (log(é—l))‘3/2 > 6.
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Hence, the lower bound in (4.5) implies that

oo (14 0(1)) log(67")
dp;5(e”) 2 log(B~!log(61)) ’

The proof of the matching upper bound is entirely analogous and is therefore omitted. O

Next we establish Theorem 1.2. To that end, we begin with the following lemma that addresses
the last part of that theorem, when B > 6~ (1),

Lemma 4.6. For every real § € (0,1/4) and B > 1 with B > w(log(§71)) we have dp.s(e™®) >
(1/24 0(1))y/Blog((26)~1).

Proof. Let p(z) be any polynomial satisfying sup,c g ‘p(az) — e_””‘ < 9, and set d = degp. Let
zg =0, 71 = log(67 1), and z9 = B. Tt follows that p(x¢) > 1 — 6, and that p(z) € [, 26] for all
x € [r1,22]. Let a : R — R be the linear function satisfying a(1) = z1 and a(—1) = z9, and let

_ 2(z1 — o) 2log(6~")
b=a Nz =1+ =1 .
Ty = a” (@) + To — T tBC log(6—1)

Finally, define the polynomial ¢(x) = £ (a 2(6 ) which also has degree d. It follows that ¢(x) € [—1,1]
for all € [—1,1], and that g(zf) > 12;65.

Applying Fact 3.1 to g, we see that |Qu(x))| > 2'"4q(z}) > 12d6 Furthermore, by Fact 3.2 we

have that [Qq(x()| < 92-de(VZto())dv/zy~1 - Combining the two bounds yields:

12;65 < 9= (VEH()dy/Th=T _ g—d(2+o(1))dy/log(6 D)/ (B—log(s 1))
Taking logs of both sides and rearranging gives the desired result. O

Now we can establish Theorem 1.2.

Proof of Theorem 1.2. The proofs of the estimates on dp.5(e™™) in the first and second cases, when
either B = o(log(6~')) and B = @(log(é‘l)) are entirely analogous to those for dp.s(e®) shown

in Theorem 1.3 above. Therefore, they are omitted.
So, let us assume that B = w(log(é‘l)), and let d > 0 be some integer with

d = \/yBlog(d~1) = \/2vAlog(6-1),

where « is uniformly bounded above and below. Observe since B = w(log(6~!)) that d = o(B),
and so Lemma 2.6 implies that

2

\Ifd)\—)\— —;i—A(l-i—O(l))

Now, let us first approximate dp,s(e™*) by (1 + o(1))y/Blog(6~1) in the regime where B <
6=°M) . To lower bound it, suppose that v < 1 (and is uniformly bounded away from 1). Then,

Atd) 3 2exp(Uyy —A) > (A +d) 3 ?ex —d—21 o(1
(A+d) p(Wgy—A) > (A+d) p(—gx(1+o()

> (A +d) " exp (= ylog(67)) = 870,

20



where in the last bound we used the fact that d = o(\) and that A = % < 6=°M). Hence, by the
lower bound in the second part of Proposition 4.5, we find that dp,s(e™*) > (1+0(1))/Blog(6~1).

To upper bound dp.s(e*) for B < §7°) assume that v > 1 (and is uniformly bounded away
from 1). Then,

2

exp(War —N) < Ot dexp (— o (14 0(1)))

< (A +d)?exp ( —log(6 ") (v — 0(1))) <A+ d)2 M <,

and so again by Proposition 4.5 we deduce that dp.5(e™") (1+0 ) ))y/Blog(6—1). Together, these
upper and lower bounds imply that dp,s(e™®) = (1 + 0( ))v/Blog(6—1) when B = w(log(67"))
and B < §°1),

It remains to show that dp,s(e™*) = ©(y/Blog(6—")) when B > 6= The lower bound (with
implicit constant % + o(1)) was shown by Lemma 4.6, so we must verify the upper bound. To that
end, we assume 7 > 1 (uniformly bounded away from 1) and observe that B > 2d for B > o0
Then, the upper bound from (21) applies; since the first part of Lemma 2.6

2

exp(War — A) < exp ( - ;i—)\(l + 0(1))> < exp ( —log(67 1) (v - 0(1))> < 5o <,

we deduce that dp,s(e™) < (14 0(1))/Blog(6~1)), which establishes the theorem. O

5 Applications to Batch Gaussian KDE

In this section we prove the statements given in Section 1.2 above about the Batch Gaussian KDE
problem.

Proof of Corollary 1.7. Let B > 1 and § € (0,1) denote real numbers, and suppose p(z) is a
univariate polynomial of degree d = dp,5(e™") such that

sup |p(z) —e % <4
z€[0,B]

As discussed in the preamble to Corollary 1 7 it suffices to output the vector K -w, where K € R"*"
is the matrix given by K[i, j] = p(> o 1( yé )) ).

For two points z,y € R™, we have that p(>°)% (xe — ye)?) is a polynomial of degree at most
2d in the 2m variables in V := {@1,...,Zm,Y1,-.-,Ym}. Thus, letting My := {a : V — Z=0 |
> vey @(v) < 2d}, which has |[My| = (2m+2d) M, we can write

p(llz —yl3) = > ba- [Tv" (32)

CLEMd veV

for appropriate coefficients b, € R which can all be computed in O (m - (2"7’2;%)) time by expanding

p.

It follows that the matrix K, whose entries are given by the expression (32) has rank at most
|My| = M, and furthermore that the matrices X,Y € R™M guch that K = X x YT can be
computed in O (n-m - M) time by evaluating all the monomials in Mg on the partial assignments
of setting z + (9 for each i € [n] (to compute X) and setting y < y\) for each j € [n] (to compute

Y). We can then, as desired, compute Kw = X (YTw) in time O (n- m - M). O

21



Before proving Proposition 1.8, we give the necessary background about approximate nearest
neighbor search.

Problem 5.1 ((1+¢)-Approximate Hamming Nearest Neighbor). For € > 0, and positive integers
n,m, given as input vectors ay,...,an,b1,...,b, € {0,1}", as well as an integer t € [0,m], one
must:

e return ‘true’ if there are ¢, j € [n| such that |a; — b;| <,
e return ‘false’ if, for every i, j € [n], we have |a; — b;| > (1 +¢) - t,

and one may return either ‘true’ or ‘false’ otherwise. (Here, |a; —b;| denotes the Hamming distance
between a; and b;.)

Theorem 5.2 ([Rubl8]). Assuming SETH, for every q > 0, there are € > 0 and C > 0 such that
(1 + ¢)-Approzimate Hamming Nearest Neighbor in dimension m = Clogn requires time Q(n?~9).

Proof of Proposition 1.8. For any ¢ > 0, let ¢,C' > 0 be the corresponding constants from The-
orem 5.2. We will prove that Batch Gaussian KDE requires Q(n?~9) time when m = Clogn,
o= n_2/5_1/4, and B = 2C ¢ !'-e 1 logn for a constant ¢ depending only on ¢ that we will deter-
mine later. We will prove this by showing that (1 + ¢)-Approximate Hamming Nearest Neighbor
in dimension m can be solved using o(n?~%) time and one call to Batch Gaussian KDE with these
parameters, which implies the desired result when combined with Theorem 5.2.

Let m = C'logn, let ay,...,an,b1,...,b, € {0,1}"™ be the input vectors to (14 ¢)-Approximate
Hamming Nearest Neighbor, and let t € [0, m] be the target distance. First, if ¢ < clogn, we will
simply brute-force for the answer in the following way: we store the vectors bq,...,b, in a lookup
table, then for each i € [n], we iterate over every vector b’ € {0,1}"™ which has Hamming distance
at most t from a; and check whether it is in the lookup table. The running time will be only
0] (n - (T’)) when c is small enough. In particular,

<m> - <C’logn> < (€O
t )~ \clogn/ —

for some function f : Ryy x Ryg — R<g with the property that, for any fixed C' > 0, we have
lim. o f(C,c) = 0. We can thus pick a sufficiently small constant ¢ > 0, depending only on ¢ and
C (which itself depends only on ¢) such that this entire brute-force takes o(n?~%) time.

Henceforth, we assume that ¢ = 'logn for some C' > ¢ > ¢. Let k = /2(ce)~1. Using
our algorithm for Batch Gaussian KDE with the given parameters applied to the input points
kai, ..., kan, kby,..., kb, (i.e., the input points rescaled so they lie in {0,k}™), and the weight
vector w = 1 € R™, the all-1s vector, we get as output a vector v € R™ such that, for all i € [n], we
have the guarantee that

n
v — Z ek llwi—y;li3

J=1

<n~Ve /4.

Notice that, for z;,y; € {0,1}™, the quantity [|z; — y;||3 is equal to the Hamming distance |x; — y,|
between x; and y;. In particular, we have max; jepn ke — ky;[3 < k*m = (2C¢~e ) logn <
(2Cc ') logn = B, so this was a valid application of our given algorithm.
. 2

Suppose first that there are an i,j € [n] such that |z; — y;| < ¢. It follows that v; > e %"t —
n—2/e/4 _ %’I’L_2/E.

Suppose second that, for all 7, j € [n], we have |z; —y;| > t(1+¢). It follows that, for all ¢ € [n],
we have v; < n - e F10+e) 4 p=l/e g = p=2/e=1 4 n=2/c /g < %n_z/‘f for all n > 2.
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Hence, by checking whether any entry of v is at least %n_l/ ¢ we can distinguish the two cases,
as desired. ]

We conclude with the proof of Corollary 1.9.

Proof of Corollary 1.9. By Corollary 1.7, it suffices to show that there exists a constant ¢ =
c(a, B) > 0 such that

log 1 -1/1 -1
>§ncogogn /logk ’

<2d +2m (33)

2d

for m = alogn and d = dp.5(e~*), where § = n™" and B = klogn. In particular, B = 2rlog(d~!),
where r = % Thus, Theorem 1.2 gives

2d = (kv + o(1)) log n, (34)
where v = V(%) > 0 is the unique positive solution to G(v) =1 —r"1 =1 - % (where G is given

by (1)).
To establish (33), we must analyze the behavior of d and thus of v. We claim that

—1
. 203 O<10glog/£ >

klog k™1 k(log k=1)2 (35)

Let us quickly establish the corollary assuming (35). To that end, denote

26 0 log log k1
log k=1 (logr=1)2 J°

r = RV =

Then, (34) and a Taylor expansion together give

<2m +2d
log

9d > = ((2a + z)log(2a + z) — 2alog(2a) — zlogz + o(1)) log n

1
= (z + zlog(20 + ) — zlog z + O(z?)) log n = z|log z| (1 + O(ﬁ)) logn,
ogw

where the implicit constant in the error depends on « and 3. Thus,

<2m + 2d> < pellogz[+0(z) _ .28 loglog k™ 1/log k~14+O(1/log k1)

which verifies (33) and thus the corollary.
It thus remains to verify (35). To that end, observe that

%:1—G(1/):1—\/1/2—1—1—1/log(\/V2—|—1—1/):Vlog( V2+14v)—Vi2+1+1. (36)

K
In particular, this implies that

2 1
vlog ( 1/2—|—1—|—1/)2—5, sov=0Q——],
K klog k=1

where the implicit constant depends on 5. The above lower bound enables us to Taylor expand the
right side of (36). This gives
2
viogr +v(log2 — 1)+ 0O(v™!) = ?ﬁ,

from which (35) quickly follows. As mentioned above, this verifies the corollary. O
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