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The spatial distribution of galaxies at sufficiently small scales will encode information about the
identity of the dark matter. We develop a novel description of the halo distribution using persistent
homology summaries, in which collections of points are decomposed into clusters, loops and voids.
We apply these methods, together with a set of hypothesis tests, to dark matter haloes in MW-analog
environment regions of the cold dark matter (CDM) and warm dark matter (WDM) Copernicus
Complexio N -body cosmological simulations. The results of the hypothesis tests find statistically
significant differences (p-values ≤ 0.001) between the CDM and WDM structures, and the functional
summaries of persistence diagrams detect differences at scales that are distinct from the comparison
spatial point process functional summaries considered (including the two-point correlation function).
The differences between the models are driven most strongly at filtration scales ∼ 100 kpc, where
CDM generates larger numbers of unconnected halo clusters while WDM instead generates loops.
This study was conducted on dark matter haloes generally; future work will involve applying the
same methods to realistic galaxy catalogues.

I. INTRODUCTION

The large scale structure (LSS)—as defined by the
spatial distribution of galaxies—encodes information on
many vital aspects of the standard model of cosmology
that remain open questions in physics [1–4]. For example,
the LSS is sensitive to the characteristics of dark energy,
the unexplained phenomenon that drives the accelerated
expansion of the Universe [5, 6] and also holds clues as to
the nature of dark matter (DM). Typical LSS observables
that are relevant for DM studies include the abundance of
low mass galaxies [7, 8], the paucity of galaxies in voids
[9] and the spatial distribution of MW satellite galax-
ies [10]. An additional, as yet largely untapped, method
for analysing LSS models is the application of topological
methods to the distribution of galaxies and haloes. These
methods describe the spatial distribution of points as dif-
ferent dimensional holes with clusters, filaments loops,
and voids in dimensions 0, 1, and 2, respectively, and it
is possible to envisage that the imprint of DM physics on
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the primordial density field may be detectable in their
topological statistics [5, 11]. In this paper we will apply
topological methods in order to identify differences be-
tween two competing DM models. The simplest viable
model of DM is the cold DM matter model (CDM), in
which the DM particle has a negligible velocity dispersion
at early times and thus DM halos are able to start col-
lapsing early and in large quantities. The combination
of CDM with the cosmological constant model of dark
energy is known as ΛCDM. This model has enjoyed suc-
cess in predicting the properties of the cosmic microwave
background (CMB) radiation [12] and the distribution
of galaxies at large scales (>2 Mpc) [13]. However, at
smaller scales (<1 Mpc) there are tensions among oth-
ers with the densities of dwarf galaxies that may hint at
problems for the CDM model [3]. Given the simultaneous
failure to detect the particle physics candidates that cor-
respond to CDM in direct detection experiments [14, 15]
or in indirect detection observations [16], it is important
to consider alternatives.

One compelling alternative to CDM is the warm DM
(WDM) model, in which the DM particles have a signif-
icant velocity dispersion in the early Universe [17]. The
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effects of this velocity dispersion include a drastic reduc-
tion in the number of low mass DM halos. In this study
we compare simulations of these two models to deter-
mine whether persistent homology can detect differences
in the DM halo spatial distribution. In Fig. 1, we present
images of two realizations of the Copernicus Complexio
(COCO) cosmological volume [18], one simulated with
the CDM model, and the second with the WDM model
[19]. The large scale distribution of matter is nearly iden-
tical in the two images—thus WDM preserves the large
scale successes in explaining the distribution of massive
galaxies of CDM—but at smaller scales the abundance
of WDM halos is strongly suppressed relative to CDM,
and the distribution of the remaining subhalos is much
less homogeneous.

In this work, we investigate differences in the spa-
tial distribution of DM haloes as described in CDM and
WDM. The primary goal is to ascertain whether topo-
logical methods are sensitive to differences between the
models and the second goal is to interpret the differences
to determine whether topological methods have the po-
tential to discern which DM model most accurately de-
scribes the properties of our own Universe. We restrict
our analysis to the distribution of haloes, which will work
as a proof of concept. A comprehensive comparison with
observations will require a mock galaxy catalogue and we
defer this step to future work.

The persistent homology formulation of topology of-
fers a novel way to represent, visualize, and interpret
complex data by extracting homological features, which
can be used to infer properties of the underlying struc-
tures. Homological features include the decomposition
of halo distributions into clusters, filaments loops, and
voids at different scales controlled by a parameter that
is analogous to halo linking lengths—which in statistics
is known as a filtration parameter—and persistent ho-
mology in particular tracks how the number of such fea-
tures changes as the filtration parameter is increased. It
has been successfully applied to problems in astronomy
(e.g., Refs. [5, 20–27]), along with other areas of science
(e.g., Refs. Ref. [28–31]). There have been proposals for
hypothesis testing using persistent homology (e.g., Refs.
[31–35]), which we build on as we construct tests that
can detect differences between DM model predictions in
the LSS.

We investigate several test statistics to discriminate
between the CDM and WDM halo spatial distributions
that are based on persistent homology functional sum-
maries. Each functional summary is a different transfor-
mation of information to a function that approximates a
property of the topological features, and is a function of
the filtration parameter. We also consider different visu-
alizations in order to investigate detected differences.

This paper is organised as follows. We begin with back-
ground on the cosmological simulation data we use in the
analysis (§II), then we introduce persistent homology and
functional summaries of persistence diagrams that are
used in the proposed test statistics (§III). Then the hy-

pothesis testing framework is presented (§IV), followed
by the investigation of the cosmological simulation data
(§V). We end with concluding remarks (§VI).

II. COSMOLOGICAL SIMULATION DATA

This section begins with a description of the COCO
simulations, and then continues with our procedure for
selecting MW halo-analog sample regions.

A. The Copernicus Complexio (COCO)
cosmological simulations

The COCO simulation volume constitutes a high res-
olution spherical region of space with a comoving radius
of approximately 25 Mpc; the full (low-resolution) simu-
lation volume is a periodic box 100 Mpc on a side.1 The
numerical integration of the gravitational forces begins at
redshift 127. The cosmological parameters are consistent
with the 7-year results from the WMAP satellites: mat-
ter density Ω0 = 0.272, dark energy density ΩΛ = 0.728,
Ωb = 0.04455, Hubble parameter h0 = 0.704, spec-
tral index ns = 0.967, and power spectrum normaliza-
tion σ8 = 0.81. The mass of the simulation particle is
1.135 × 105 M⊙. DM halos and subhalos were identi-
fied using the SUBFIND algorithm [36], and the smallest
permitted number of particles to identfy a subhalo is 20
particles. Our definition of halo mass is the total mass
bound gravitationally to each halo as determined by the
halo finder.

Two copies of this volume were run, the first apply-
ing CDM [18] and the second WDM [19]. Both simula-
tions use the same initial phases, and differ in that the
WDM simulation had wave amplitudes rescaled using the
transfer function of a 3.3 keV thermal relic DM particle,
with the relic mass chosen to be in agreement with the
Lyman-α forest constraints of Ref. [37]. This results in
the suppression of structure on the scale of dwarf galax-
ies. These large-scale structure similarities between the
WDM and CDM data due to the same initial phases are
shown in Fig. 1. One issue peculiar to WDM simulations
is the spurious numerical fragmentation of filaments into
halos; these so-called spurious subhalos are identified and
removed from the halo catalog using the algorithm de-
scribed in Ref. [38].

B. Milky Way-analog DM halos and their
associated halo samples

Given that we intend to use future work to compare
the models with observations of galaxies around our own

1 All distances are in comoving Mpc.
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(a) COCO-CDM (b) COCO-WDM

FIG. 1: Illustration of the DM distributions in the COCO-CDM (a) and COCO-WDM (b) simulations. Each image
is a slice through the simulation of 23 Mpc on a side with an image depth of 10 Mpc. The image intensity encodes
the DM column density and the image color indicates velocity dispersion. Eight of the 77 volumes used in this study
(see §II B) are included in this slice, and their locations are indicated as follows. The MW-analog halo on which each
volume is centered is enclosed by a green circle, and the full extent of the analysis volume (a radius 3 Mpc) is shown

with a white circle. Note that the apparent overlap of the white circles in this projection does not imply that the
volumes overlap: there can still be considerable separation between the volumes in the depth direction. See §II for

details on the COCO data.

MW, we identify MW-analog halos and their surround-
ing regions in the two simulations. The criteria for our
MW-analog halos were that they must be located within
21 Mpc of the center of the simulation2 and have a
mass in the range [0.5, 2] × 1012 M⊙. We also required
that there be no other halo with a mass greater than
0.5 × 1012 M⊙ within 0.7 Mpc. This procedure resulted
in 77 MW-analog DM halos in each of the COCO CDM
and WDM simulations; for each MW-analog DM halo in
the WDM data, there is a matching MW-analog DM halo
in the CDM.

We now discuss our selection of halos in the vicinity of
the 77 MW halo-analogs. In both CDM and WDM re-
alizations we identify halos that are within 3 Mpc of the
MW-analog3. For the WDM case we include all halos
in the 3 Mpc region. However, CDM forms hundreds of
times more halos than WDM in our resolved mass range.
If we were to include all CDM halos, the abundance dif-
ference would dominate our statistical results. Therefore,
the CDM samples were downsampled to match the num-
ber of DM halos in the corresponding WDM sample. The

2 The central high-resolution sphere of COCO extends out to
about 25 Mpc.

3 Objects with ∼0.2 Mpc of each analog are typically referred to as
‘subhalos’ that orbit within the analog ‘host halo.’ In this study
we refer to all bound DM objects simply as ‘halos’ and include
all of them in our analysis, not drawing any distinction between
‘subhalos’ and other classes of object.

downsampling was accomplished by selecting the most
massive DM halos from each of the CDM samples. An
example of one of the MW-analog DM halo neighbor-
hoods from COCO-CDM and COCO-WDM is displayed
in Fig. 2.

The two sets of samples for the CDM and WDM data
are defined as

Yc = {Yc,1, . . . ,Yc,77},Yw = {Yw,1, . . . ,Yw,77} (1)

where Yc and Yw represent the set of 77 CDM and 77
WDM samples, respectively. Each Yk,i ∈ R

ni×3 for
k = c, w and i = 1, . . . , 77 where ni indicates the number
of DM halos in sample i; an individual DM halo in simu-
lation k of sample i is indicated by Yk,i,j for j = 1, . . . , ni.

III. TOPOLOGICAL DATA ANALYSIS
METHODS FOR QUANTIFYING LSS

Homology is one way to study the features of topo-
logical spaces (e.g., manifolds); specifically, the multi-
dimensional “holes” in the space (e.g., connected com-
ponents, loops, voids). Persistent homology studies the
spatial structure of a parameterized family of topological
spaces that keeps track of the so-called births and deaths
of homological features as a topological space changes
with a filtration parameter. In particular, we focus on
point cloud data, where each point can represent some
unit of mass or an object (e.g., a point may represent
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(b) WDM

FIG. 2: A MW-analog DM halo neighborhood sample for (a) the COCO-CDM data and (b) the COCO-WDM data.
The red triangles indicate the MW-analog DM halo that was selected along with the other DM halos that are within 3

Mpc from it.

a center of a DM halo). In this section, we provide a
brief overview of the necessary concepts; however, see,
e.g., Refs. [39–41] for a more thorough introduction to
algebraic and computational topology. The homological
features that are tracked in the filtration have cosmo-
logical interpretations in dimensions zero, one, and two.
Before providing more details about persistent homol-
ogy, we explain the interpretation of different dimensional
holes with respect to the distribution of DM halos.
a. Clusters A connected component, or zeroth-

dimensional homology feature (H0), is a maximal sub-
space of a topological space that cannot be covered by
two disjoint open sets; that is, a connected component
is a whole piece of the space. For example, under some
assumptions on the topological space, a connected com-
ponent is a cluster of data points.4 In cosmology, the con-
nected components represent clusters of halos or galax-
ies. Persistent homology tracks the appearance of new
connected components and the merging of distinct com-
ponents.
b. Filaments and Loops A loop, or one-dimensional

homology feature (H1), provides information about the
connectivity of data. As the filtration parameter in-
creases, nearby connected components can merge to-
gether in such a way that a loop or cycle is formed.
For DM halos, this would appear as filaments of halos
joined together in a loop.
c. Cosmological Voids A void, or two-dimensional

homology feature (H2), represents the boundary of three-
dimensional empty regions within the topological space
(e.g., the boundary of a football). In cosmology, these are

4 There is no clear or established relationship between the defini-
tion of homological clusters and galaxy clusters. In this paper,
the term ‘cluster’ is only used for the homology definition.

the thin walls surrounding the low-density regions that
are typically referred to as cosmological voids.

A. Persistent homology

Persistent homology is a framework for computing
describing the homology of a data set at different scales.
Given a data set, one defines a filtration (that is, a
sequence of nested topological spaces) of intermediate
structures, on which the homology is computed at differ-
ent values of the filtration parameter. Homology group
generators Homological features (specifically, the
homology generators) are tracked as they form and
die merge as the filtration parameter changes. Vari-
ous methods can be used in order to transform a dis-
crete point set into a connected topological space. For
example, simplicial complexes (see below) such as the
Vietoris–Rips complex (VR complex) can be used, or a
function can be defined over the domain of the data us-
ing an empirical distance function or a kernel density
estimate (KDE) of the point cloud.

In this work, we use a VR complex to construct the
filtration (discussed below). As an illustration, sup-
pose points are randomly sampled on three loops
as displayed in Fig. 3a. The data points on their
own do not form any loops (i.e., H1 features), but
from observing the data one may conjecture that
that the underlying topological space has three
loops. With persistent homology using the VR
complex, each data point becomes the center of
a ball with a radius t. The radius, t, is the pa-
rameter that determines a filtration as it increases
from t = 0 to t = ∞. In Fig. 3a, the radius is t = 0.5
and some of the balls intersect and, therefore, be-
come connected. As t increases, more balls inter-
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sect and eventually in the joined complex a loop
forms as in Fig. 3b. The scale at which the loop
forms and eventually gets filled in is tracked as
the birth and death times of the features, and its
persistence is the difference between the death
and birth times (i.e., t-radius values at birth and
death). A higher persistence means that feature
survived longer in the filtration.

The birth and death times of all detected fea-
tures are captured in a persistence diagram such
as the one displayed in Fig. 3c. Features that
last longer in the filtration are further from the
diagonal line, y=x. If instead of the data used
in Fig. 3 that were sampled on three circles, we
considered data points randomly scattered in the
same 2D window, there could still be H1 features
that form and die, but they may not persist as
long in the filtration. In this section we provide
more background on persistent homology includ-
ing key concepts. Next, we introduce some key
components of persistent homology.

a. Simplicial complexes Simplicial complexes
are the intermediate structures that are used to
compute the homology of data on different scales.
For our 3D halo data, the simplices we use are zero-
simplices (vertices), one-simplices (edges), two-simplices
(triangles), and three-simplices (tetrahedrons). More
generally, a A geometric k-simplex is the convex hull
of k + 1 affinely independent points. A face of a sim-
plex is another simplex obtained by removing zero or
more points (e.g., a triangle has seven faces: itself, three
edges, and the three vertices). An abstract simplicial
complex, K, is defined as a finite set of simplices such that
(i) if σ ∈ K, then every face of σ is also in K, and (ii) if
σ1, σ2 ∈ K, then either σ1 ∩ σ2 ∈ K or σ1 ∩ σ2 = ∅. In
this work, we use simplicial complexes to represent topo-
logical spaces, as they are the standard input to code to
compute homology.

b. Filtrations A filtration is a sequence of
nested topological spaces. To use persistent
homology, the input is not just one simplicial
complex, but a whole filtration or sequence of
topological spaces (represented as simplicial com-
plexes). In our setting, as the radius t increases,
the simplicial complex grows to include more seg-
ments, triangles, and tetrahedra, but any simpli-
cial complex that existed for a smaller value of t
is also included in the larger simplicial complex.
Consider the following more formal description.
Given dataset y1, y2, . . . , yn ∈ Y ⊆ R

3, one common way
to create a simplicial complex is to choose some t ∈ R

such that t ≥ 0 and replace each yi ∈ Y with a ball of
diameter t. The Vietoris–Rips complex at scale t (the
t-VR complex) is created by representing each of these
balls as a vertex, and creating a k-simplex anytime there
are k + 1 balls that pairwise intersect. Specifically:

V Rt(S) = {σ ⊆ S | d(x, z) ≤ t, ∀x, z ∈ σ, } (2)

where d(·, ·) is the Euclidean distance [41, 42]. That
is, V Rt(S) is a simplicial complex containing the vertex
set S, edges between all the vertices that are separated
by at most t, and triangles for sets of three vertices that
have pairwise distances of at most t.

We obtain the VR filtration by increasing t from 0 to ∞
(recall that here, t is referred to as the filtration param-
eter).5 Note that V Rt1(S) is a subset of V Rt2(S) (i.e.,
V Rt1(S) ⊆ V Rt2(S)) for t1 ≤ t2. Sometimes, for the
right selection of t and a dense enough sample, we can re-
cover the underlying true homology of Y (see, e.g., Ref.
[43]); however, using the whole sequence of complexes,
we can recover information about Y with more relaxed
sampling conditions.

To derive the persistent homology for a VR filtration,
the homology of V Rt(S) is computed as t changes. If t
is initialized at 0, then only the data points contribute
to the homology. In our setting, this generally im-
plies that at t = 0, each data point will represent
an H0 feature and no higher dimensional homo-
logical features exist yet. The evolving topological
space is characterized by its homology as t increases to-
ward ∞. For a Y ⊆ R

3, the persistent homology would
then track the connected components (H0), loops (H1),
and voids (H2) that appear and disappear in the VR fil-
tration. As was discussed previously, A an example
of a VR filtration with a 2two-dimensional domain is
presented in Fig. 3: Figures 3a and 3b display the data
points with balls of diameter t = 0.5 and 1, respectively,
along with the one- and two-simplices of the correspond-
ing VR complex. Fig. 3c shows the persistence diagram
for the data points using the VR filtration, which is dis-
cussed next.
c. Tracking Homology Generators The birth and

death times of the homology group generators are dis-
played in a persistence diagram. These times corre-
spond to values of the filtration parameter, which is
the diameter of the balls t when considering a VR fil-
tration. Suppose a filtration is defined over some data
points y1, y2, . . . , yn ∈ Y ⊆ R

3, then a persistence dia-
gram, D, can be written as a multiset of points:

D = {(rj , bj , dj) : j = 1, . . . , |D|} ∪ ∆ (3)

where (rj , bj , dj) are the homology group dimension, the
birth time, and the death time, respectively, of feature
j, |D| indicates the number of homology group genera-
tors with dj > bj , and ∆ represents a set of points on
the diagonal (birth time = death time) with infinite mul-
tiplicity (which is included for mathematical rea-
sons). The persistence diagram is a nice summary be-
cause small changes in the input data Y will result in
only small changes in the diagram [44, 45], making the
diagrams stable summaries of the data.

5 In practice, the maximum filtration value t we consider corre-
spond to the largest scales encompassed by a given galaxy/halo
catalog.
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base as

Λpr,j
(t) =



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t− bj t ∈ [bj ,
dj+bj

2 ]

dj − t t ∈ [
dj+bj

2 , dj ]

0 otherwise,

(4)

where t ∈ [tmin, tmax]. The persistence landscape is then
defined as the following collection of functions

λDr
(k, t) = kmax

pr,j∈D̃r,

Λpr,j
(t), t ∈ [tmin, tmax], k = 1, . . . , nr,

(5)
where kmax is the k-th largest value. An example of
a persistence landscape function is displayed in Fig. 4.
Rather than working with each k of λDr

(k, t) individu-
ally, a subset of the landscape layers can be concatenated
to a long vector as

Fland(I, r, t) = ⊕k∈IλDr
(k, t), (6)

where I is the index set of the included landscape layers.
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FIG. 4: A persistence diagram (a) along with its
landscape functions and a weighted silhouette (b) for an
arbitrary homology dimension r. The dotted pink curve

is the weighted silhouette function with tuning
parameter p = 1; the other four curves correspond to

landscape functions λDr
(k, t) for k = 1, . . . , 4.

b. Weighted Silhouette Functions Rather than
working with each k of λDr

(k, t) from Equation (5)
individually, weighted silhouette functions provide a
way of combining the information in the collection of
landscape functions. Silhouettes are weighted averages
of the individual functions for homology dimension r
defined as

Fsil(r, t | p) =

∑nr

j=1 |dr,j − br,j |
pΛpr,j

(t)
∑nr

j=1 |dr,j − br,j |p
, (7)

where the |dr,j − br,j |
p act as weights that can give more

emphasis or less emphasis to features with longer life-
times depending on the user-specified parameter p. The
form of these weights are suggested in Ref. [51]. An ex-
ample of a weighted silhouette function is provided in
Fig. 4b. More details and theoretical properties of land-
scapes and silhouettes can be found in Ref. [51].

c. Betti and Euler Characteristic Functions
The rth Betti number is the rank of the rth ho-
mology group (that is, the number of homologi-
cal features of dimension r). The Euler characteris-
tic (EC) is a topological invariant and can be defined as
the alternating sum of the Betti numbers. rank of
the homology groups, where the rank of the rth
homology group is the rth Betti number. As the
persistent homology filtration parameter t changes and
new features are born or old ones die, the Betti num-
bers and EC changes, allowing for the definition of Betti
functions and an EC function. The Betti functions can
be defined as

Fbetti(r, t) = |{(r, bj , dj) : bj ≤ t, dj > t}|, (8)

which indicates the number of dimension r homology
group generators that persist in the filtration at time t.
The only non-trivial homology groups for data in R

3 are
in dimensions 0, 1, and 2; thus, the Euler characteristic
equation we use is

Fec(t) =

2∑

r=0

(−1)rFbetti(r, t). (9)

Betti and EC functions have been used in applications
[e.g., 23, 25, 52–56] and some of their theoretical proper-
ties have been explored [e.g., 35, 57–60]. Before these
recent uses of EC and Betti functions, the EC
and a related concept genus were put forward as
a new method for characterizing the topology of
the Universe. Here, these statistics were used as
a measure of the connectivity of the matter dis-
tribution in the Universe (e.g., Refs. [61–65]).

There are a number of other summary functions of per-
sistence diagrams that have been defined [e.g., 34, 66, 67].
For a general discussion of summary functions of per-
sistence diagrams, including some theoretical properties,
see Ref. [31].
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IV. METHODS: TOPOLOGICAL HYPOTHESIS
TESTS FOR LSS

A primary goal in this work is to develop a framework
that can inferentially discriminate between different real-
izations of web-like geometric data structures such as the
Cosmic Web. Our TDA-based framework allows for ex-
tracting information, encoded in large-scale galaxy/halo
distribution, that goes beyond methods commonly used
in cosmology N-point clustering statistics. The motiva-
tion is to detect differences between the DM halo spatial
distributions (i.e., 3-manifolds) evolved in cosmological
simulations where initial conditions were set to be either
that of CDM or WDM-type. In this section we present a
hypothesis testing framework using test statistics derived
from the summaries of persistence diagrams presented in
§III B. These topological hypothesis tests build on the
work outlined in Ref. [31], including their notation.

The proposed hypothesis tests rely on permutation
methods to compute the p-values. We adopt this
methodology because the distributions of the test
statistics based on the functional summaries of
the persistence diagrams are unknown. (The per-
mutation tests are described below). There have
been exist some results based on the central limit
theorem results for summary functions of persistence
diagrams (e.g., Betti functions) and persistent homology-
based hypothesis tests statistics using asymptotic theory
(e.g., Refs. [35, 58, 68]), but they generally assume
the data were drawn from a homogeneous Poisson
point process. These results, however, generally
assume the data were drawn from a homogenous
Poisson point process. Both the large and small-scale
halo/galaxy distribution in the Universe cannot be de-
scribed by a homogeneous Poisson process. Owing to the
nature of initial conditions (i.e., an adiabatic Gaussian
random field) and the gravitational instability (a mech-
anism responsible for the growth and evolution of the
cosmic structures) halos spatial distribution is clustered
with non-Gaussian features on small (non-linear) scales.
Naturally, also the COCO DM simulations provide halo
samples which are not close to resembling homogeneous
Poisson point processes, which is discussed in Appendix
§A. Furthermore, as we present below, the WDM and
CDM samples are not independent of one another due to
the cosmological simulation design: it is therefore neces-
sary to use matched-pairs hypothesis tests.

A. Test statistic and p-value computations

For the proposed hypothesis tests, we consider two
samples of observations,

Y1 = {Y1,1, . . . , Y1,n1
}, and Y2 = {Y2,1, . . . , Y2,n2

}
(10)

where each Yj,i, i = 1, . . . , nj and j = 1, 2 is a data set
of which a persistence diagram can be computed. For

our cosmological simulation data, each Yj,i will have a
set of points in R

3, but, in general, the Yj,i’s could take
different forms; for example, each Yj,i could be an im-
age of a fibrin network [31] or a brain artery tree [29].
One sample represents the COCO-CDM, and the
other sample represents the COCO-WDM data.

Each observation from Equation (10) will have a cor-
responding persistence diagram

D1 = {D1,1, . . . ,D1,n1
}, and D2 = {D2,1, . . . ,D2,n2

}.
(11)

These samples of diagrams can be used to test the hy-
potheses,

H0 : P1 = P2 vs. H1 : P1 6= P2, (12)

where P1 and P2 are the true underlying distributions of
persistence diagrams from group 1 and 2, respectively.6

Given two samples of persistence diagrams, there are
a number of possible ways to derive test statistics; we
consider the functional versions of persistence diagrams
presented in §III B as test statistics. These functional
summaries can be understood as a map between the space
of persistence diagrams, P, to the space of functions, F ,
defined as F : P −→ F . Therefore, the diagrams from
above can be used to define the collection of functional
summaries with j = 1, 2 as

Fj = {Fj,1 = F(Dj,1), . . . , Fj,nj
= F(Dj,nj

)}. (13)

A test statistic for the two-sample hypothesis test
of Equation (12) can be derived using estimates of
functional summaries. Letting Fj,i = F(Dj,i), i =
1, . . . , nj , and j = 1, 2 (see Equation (13)), the mean
functional summaries are defined as

F̄j(t) = n−1
j

nj∑

i=1

Fj,i(t). (14)

Then our test statistic for the different functional sum-
maries is based on the following distance between mean
functional summaries,

d(F̄1, F̄2) =

∫

T

|F̄1(t) − F̄2(t)|dt, (15)

where T defines the domain of the functions. Note that
the T is related to the range of values of the filtration
parameter, which depends on the functional summary.
For example, for the Euler characteristic function, the
T covers the range of the filtration parameter, but for
the landscape and silhouette functions it represents the
range of a transformed filtration parameter since the per-
sistence diagram is rotated.

6 Probability measures can be theoretically defined on a space of
persistence diagrams (with a Wasserstein metric) as presented in
Ref. [69].
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a. Matched-Pairs Permutation Test. Since the dis-
tributions of the test statistics of Equation (15) for the
different functional summaries we consider are unknown,
the p-values for the two-sample hypothesis tests can be
computed using the usual permutation testing frame-
work. The general procedure is to randomly assign the
n1 + n2 functional summaries into two groups, because
this random assignment is consistent with the null hy-
pothesis (H0) from Equation (12) where the two groups
follow the same distribution. In other words, because
the null hypothesis states that the two samples
were drawn from the same distribution of persis-
tence diagrams, when we take the null hypothe-
sis as true it should not matter to which group,
1 or 2, that a given sample is assigned. We can
then create a number of random group assign-
ment permutations. For each Using the random
group assignments, the, a new mean functional sum-
maries are summary is estimated for each group

using Equation (14), F̃
(l)
1 and F̃

(l)
2 , which are used to

compute the distance d(F̃
(l)
1 , F̃

(l)
2 ) from Equation (15),

for l = 1, . . . , nl random permutations [31]. The result-
ing (approximate) permutation p-value can then be com-
puted as

pperm = n−1
l

nl∑

l=1

I(d(F̃
(l)
1 , F̃

(l)
2 ) ≥ d(F̄1, F̄2)), (16)

where I(A) is an indicator function that takes the value
1 if A is true and 0 if A is false.
In summary, a standard permutation p-value is

computed by assuming the null hypothesis is true
(i.e., assuming no difference between the distribu-
tions of the two samples of persistence diagrams),
and randomly permuting the group assignments a
number of times. For each random permutation,
a test statistic is computed from Equation (15).
The collection of all these test statistics provides
an approximation of the distribution of the test
statistic when the null hypothesis is true. Then a
p-value is computed by comparing the observed
test statistic (i.e., the test statistic using the orig-
inal groupings for the two samples), and estimat-
ing the probability of observing the test statistic
that we did or one further in the tail of the null
distribution. As usual, a small p-value is evidence
against the null hypothesis.

When the two sets of samples are independent, the
above permutation p-value is reasonable. However, as
explained in §II, the CDM and WDM COCO data, Yc

and Yw, are not independent due to the initial con-
ditions of the simulations. Instead, the samples Yc,i

and Yw,i for i = 1, . . . , 77 have a similar spatial struc-
ture which should be accounted for in the computation
of the permutation p-values. Therefore, we consider a
matched-pairs version of the permutation p-values. The
matched-pairs approach to hypothesis testing is
common in settings where there is a clear con-

nection between individual samples in two groups
(e.g., studies carried out on monozygotic twins,
pre- and post-assessments on participants that
were randomly assigned treatments and each par-
ticipant is matched with themselves). In our set-
ting with CDM and WDM data, the matching is
necessary because of the same initial conditions
used in each run of the COCO simulation.

The difference between this matched-pairs version and
the permutation test outlined above is in how the two
groups are randomly assigned for each permutation. The
matched-pairs permutation involves randomly selecting
one of the two matched samples to go into each of the
two groups (e.g., one of Yc,i or Yw,i will be randomly
assigned to group 1, and the other will be assigned to
group 2). The matched-pairs permutation p-value is then
defined in the same manner as above, as

pmatched =

nl∑

l=1

I(d(F̃
(l)
1,matched, F̃

(l)
2,matched) ≥ d(F̄1, F̄2)),

(17)

where F̃
(l)
j,matched, j = 1, 2, are the mean functional sum-

mary for permutation l using the matched-pairs ran-
dom assignment. This matched-pairs permutations p-
value computation accounts for correlations between the
COCO CDM and WDM samples by including one of the
two matched samples within each group for each permu-
tation, but randomizing which label (CDM or WDM) is
assigned.

V. INVESTIGATION OF COCO SIMULATION
DATA

In order to investigate differences between the CDM
and WDM COCO samples of MW-analog halo neigh-
borhoods described in §II B, Yc and Yw, respectively,
we carry out the two-sample hypothesis tests defined in
Equation (12) and described in the previous section. The
test statistics are based on the functional summaries of
persistence diagrams outlined in §III B, along with sev-
eral other methods discussed below. The comparison
methods include a test statistic that uses persistence di-
agrams directly (rather than a functional summary of
them) and non-TDA functional summaries that capture
second-order properties of spatial point processes. The
collective goals of the test statistics considered are (i) to
detect differences between CDM and WDM MW-analog
halo neighborhoods, and (ii) to understand and interpret
any detected differences (e.g., the distance scale at which
differences occur).

In addition to the test statistics using the functional
summaries presented in §IV, we also consider other ap-
proaches. One method is the persistence diagram-based
test (PDT) of Ref. [32] which has a test statistic defined
using distances between persistence diagrams. We also
consider two functional summaries of spatial point pro-
cesses which do not use persistence diagrams, namely
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the G-function and the two-point correlation function
(2PCF). The G-function gives the distribution function
of the nearest-neighbor distances, and 2PCF uses the
Landy-Szalay estimator [70] and is one of the most basic
and fundamental objects used to study clustering in cos-
mology [71]. These methods are described in more detail
in Appendix §B. The p-values for these additional tests
are also carried out using permutations, and we have also
adapted them to work for our matched-pairs design.7

A. Hypothesis testing results

All the hypothesis tests that use statistics derived
from persistence diagrams (including the PDT) use the
same persistence diagrams, which were computed using
a VR filtration. These computations were carried out
with Ripser [72]. P-values were computed for the test
statistics discussed previously based on 20,000 permu-
tations using the traditional and matched-pairs permu-
tation methods of §IV A. The results are displayed in
Table I. Below we discuss the resulting p-values, and in
the next section we investigate and interpret where the
differences are most pronounced.

Overall, statistically significant differences with p-
values < 0.001 are apparent between the CDM and
WDM MW-analog DM halo neighborhoods samples, and
pperm ≥ pmatched for all test statistics considered.8 Since
the two sets of samples are from different populations
(CDM vs. WDM COCO data), it is a positive result that
our proposed tests are able to detect differences. For H0

and H1, all the function-based tests had pmatched < 0.001,
and this was also the case for the G-function and 2PCF
test statistics. PDT has pperm and pmatched ≤ 0.003 for
H0, but higher p-values for H1 with pperm = 0.255 and
pmatched = 0.036. Because the PDT uses the bottleneck
distance, only one H1 feature on each of the persistence
diagrams contribute to the test statistic for each MW-
analog halo neighborhood sample, while the functional
summary-based test statistics considers all the features
on the persistence diagrams (except for the landscape
functions which only includes features that contribute to
the first 10 layers).

Aside from the silhouette function tests, the H2 p-
values are < 0.01 for both pperm and pmatched. The pperm
for the silhouette function tests are > 0.10, but then drop
below 0.01 for pmatched. The EC function test statistic,
similar to the related Betti function test statistics, has
both pperm and pmatched ≤ 0.001. For the TDA-based
test statistics, the EC, Betti, and Landscape function
test statistics appear to be best able to detect differences

7
Data and code associated with this work is available at

https://github.com/JessiCisewskiKehe/DarkMatterTDA.
8 If our test statistics were Gaussian distributed, a p-values <

0.001 would correspond to > 3σ significance.

between the CDM and WDM MW-analog halo neighbor-
hood samples for both the traditional and matched-pairs
permutation tests across the three homology dimensions
(H0, H1, H2). Tuning could be carried out for the land-
scape function tests to find which landscape function lay-
ers are most informative at detecting differences. Since
the results with the first 10 layers performed well, we did
not consider tuning for this analysis.

Given that we only have one COCO-CDM and one
COCO-WDM realization, and that we seek to evaluate
the performance of the proposed test statistics when the
null hypothesis is true, we consider bootstrap samples of
the data from the CDM data and from the WDM data.
The distribution of the p-values when the null hypothe-
sis is true should follow a uniform distribution. Details
of this simulation study and the results are presented
in Appendix §C. Overall, we find the p-values resulting
from proposed test statistics based on the functional sum-
maries of persistence diagrams under the null hypothesis
are generally consistent with uniform distributions.

B. Interpretation of results

In this section, we explore the Betti functions in more
detail and develop other visualizations to aid in the inter-
pretation of the results in order to investigate the scales
at which the differences between the CDM and WDM
MW-analog halo neighborhood samples occur and are
significant. Since our interest is in where the test statis-
tics diverge, the mean difference function is displayed
where the signal is based on the matched data in the
CDM and WDM COCO MW-analog halo neighborhood
samples using

F̄diff(t) = n−1
s

ns∑

i=1

(Fc,i(t) − Fw,i(t)) (18)

where Fc,i(t) and Fw,i(t) are functional summaries for
CDM and WDM sample i, respectively, and ns = 77.
Additionally, 95% global confidence bands are computed
using the bootstrap approach outlined in Section 3.2 of
Ref. [31], with 1000 bootstrap samples.9

The CDM and WDM MW-analog halo neighborhood
samples’ persistence diagrams were generated using using
a VR filtration. For example, Fig. 5 displays the persis-
tence diagrams for the COCO CDM and WDM samples
of Fig. 2a and 2b, respectively. The CDM and WDM
persistence diagrams in this example share a similar pat-
tern where generally the H0 features are all connected
by around a filtration parameter value of 1, H1 features
persist longer than the H2 features across the range of

9 Note that the hypothesis tests use L1 distances between functions
(see Equation (15)) while the confidence bands are investigating
differences across the functions.
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TABLE I: COCO data results. Permutation p-values (pperm) and matched permutation p-values (pmatched) for tests
comparing the CDM and WDM MW-analog halo neighborhood samples. The p-values are rounded to three decimal

places and are based on 20,000 permutations as described in §IVA.

Test statistic Notation Homology dimension pperm pmatched

Landscape Fland(1 : 10, 0, t) 0 0 0

Silhouette Fsil(0, t | p = 0.5) 0 0.009 0

Silhouette Fsil(0, t | p = 1) 0 0.001 0

Silhouette Fsil(0, t | p = 2) 0 0 0

Betti Fbetti(0, t) 0 0.001 0

PDT TPDT(D1,·|0, D2,·|0 | ∞, 1) 0 0.003 0

Landscape Fland(1 : 10, 1, t) 1 0 0

Silhouette Fsil(1, t | p = 0.5) 1 0.009 0

Silhouette Fsil(1, t | p = 1) 1 0.007 0

Silhouette Fsil(1, t | p = 2) 1 0.014 0

Betti Fbetti(1, t) 1 0 0

PDT TPDT(D1,·|1, D2,·|1 | ∞, 1) 1 0.255 0.036

Landscape Fland(1 : 10, 2, t) 2 0 0

Silhouette Fsil(2, t | p = 0.5) 2 0.123 0.003

Silhouette Fsil(2, t | p = 1) 2 0.158 0.009

Silhouette Fsil(2, t | p = 2) 2 0.135 0.008

Betti Fbetti(2, t) 2 0.001 0

PDT TPDT(D1,·|2, D2,·|2 | ∞, 1) 2 0.009 0

Euler characteristic Fec(t) 0-2 0.001 0

G-function FG(t) N/A 0 0

2PCF F2PCF(t) N/A 0 0

birth times. The H0 feature plotted on both diagrams
at (0, 2.57) represents an H0 feature that in fact persists
indefinitely and should, technically, be plotted at a death
time of infinity.

The mean differences (WDM - CDM) of the Betti func-
tional summaries are displayed in Fig. 6 along with the
corresponding 95% confidence bands. Overall, these sum-
maries suggest that the CDM and WDM samples differ
on shorter distance scales, but then start to resemble each
other at longer distance scales in keeping with Fig. 1. Re-
call that the Betti functions count the number of features
that are persistent at the filtration parameter values (i.e.,
the x-axis) so by considering the average difference of the
Betti functions we observe at which scales the number
of features differ between the CDM and WDM. For H0,
the number of features, on average, for the CDM data is
larger than the number for the WDM for distances until
scales of around 0.4 Mpc, and then the number of WDM
features is slightly higher than the number of CDM fea-
tures until distances of ∼0.75 Mpc. The number of H1

features is greater, on average, for the WDM data over
the CDM data when t ≤ 0.13 Mpc, and then the CDM
has more H1 features until around 0.9 Mpc. A similar
pattern is observed with the H2, but the average differ-
ences between the CDM and WDM are within only two
H0 features.

While Betti functions capture the number of features
that persist across the filtration parameter values, we

defined analogous functions that instead capture the
maximum persistence (MaxPers) and average persistence
(AvePers), which are displayed in Fig. 7a and Fig. 7b,
respectively. Similar to the plots in Fig. 6, the mean
difference (CDM-WDM) of these MaxPers and AvePers
functions for the matched samples were computed. How-
ever, for Fig. 7, in order to visualize the variability in
the mean differences, pointwise error bars (± one stan-
dard error) are included. The filtration parameter grid
ranges from 0 to 2.5 Mpc with a spacing of 0.05. This is
a lower resolution than the Betti function figures, which
we adopt here in order to be able to improve the visi-
bility of the individual error bars. There are larger dif-
ferences between CDM and WDM MaxPers in H0, H1,
and H2 for t <

∼ 1.85 Mpc: generally the H0 MaxPers are
greater for WDM than CDM, the H1 MaxPers is greater
for CDM than WDM at scales <

∼1.1 Mpc when this ten-
dency switches and WDM has greater MaxPers, and the
H2 MaxPers are higher for CDM than WDM. A similar
pattern is apparent with the AvePers functions except
the H1 AvePers are similar for CDM and WDM until
scales around 1 Mpc, after which WDM generally has
greater AvePers until around 2 Mpc.

Basic spatial point process summary functions, such
as the 2PCF, are commonly employed tools in cosmolog-
ical large-scale structure study. To quantify the degree
to which our persistence diagrams provide new informa-
tion over these standard statistics, we calculate and show
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FIG. 5: Persistence diagrams for the MW-analog halo
neighborhood sample for (a) the CDM data of Fig. 2a,

and (b) the WDM data of Fig. 2b.

mean difference functions for the G-functions and 2PCFs
in Fig. 8a and Fig. 8b, respectively. The plotted data in-
dicate that the WDM functions take, on average, greater
values than the CDM variants for t <

∼ 0.5 Mpc. This
result points toward a similar direction as what we ob-
served with the differences in the H0 Betti function mean
differences displayed in Fig. 6a. This is not surprising
since the H0 Betti functions, the G-functions, and the
2PCFs have different ways of assessing the closeness of
the halos within the samples. However, the H1 and H2

Betti functions, together with the MaxPers and AvePers
methods, appear to detect differences between the CDM
and WDM at different scales, suggesting that they pro-
vide distinct information from the spatial point process
functions. In particular, the H1 and H2 functions sug-
gest that as the halos become connected (i.e., the death
of H0 features), the CDM and WDM models are forming
loops and voids (i.e., H1 and H2 features, respectively)
in different ways. Also, the MaxPers and AvePers of the
H0 features differ between the CDM and WDM data on
different scales than those of the H0 Betti functions.

VI. CONCLUSION

The LSS contains valuable information about the com-
position, and evolution, and the physical nature of the
Universe. TDA tools such as persistent homology pro-
vide a novel opportunity to extract this information from
cosmological data. While TDA-based approaches have
been applied in various fields of statistical studies, its
application to cosmological data and analysis is still in
its infancy. In this paper, we introduced a hypothesis
testing framework built on persistent homology that ex-
tends the work of Ref. [31] in order to compare topologi-
cal summaries of MW-analog halo neighborhoods (3 Mpc
spheres) evolved under two different DM models: CDM
and WDM (WDM thermal relic mass: 3.3 keV). Next, we
have assessed the sensitivity and robustness of this frame-
work in the context of differentiating between CDM and
WDM variants. The proposed collection of test statistics
based on persistence diagrams uses summaries that were
recently proposed in the literature [23, 31, 33, 49–51],
and are easier to work with than the original persistence
diagrams. The results of the persistence diagram-based
functional summaries were compared to two spatial point
process functional summaries (G-functions and 2PCF)
and test statistics that use persistence diagrams directly
(PDT) [32].

We showed empirically that such a framework is able
to infer differences between CDM and WDM, and in-
vestigated the scales at which differences occur. While
most of the test statistics were able to detect statisti-
cally significant differences with pmatched ≤ 0.009 for all
tests considered except the PDT for H1 (§V A, especially
Table I), the persistent homology-based functional sum-
maries appear to detect differences between the CDM
and WDM data on different scales from the spatial point
process functional summaries (§V B).

Our results imply that the homology properties of clus-
tered CDM and WDM haloes distributions are very dif-
ferent on small scales. CDM haloes are distributed across
a larger number of clusters (homology dimension 0) than
WDM haloes, especially at the ∼ 80 kpc filtration scale
(Fig. 6a), although the clusters that form in WDM are
more persistent on average (Fig. 7b). The 80 kpc scale is
also where the two process functions return the biggest
difference between the models—in both cases an excess of
clustering in CDM relative to WDM—plus the filtration
scale at which WDM features more loops (homology di-
mension 1) than CDM. We thus build a picture in which
CDM rapidly builds up a large number of small clusters,
whereas WDM builds a smaller number of clusters, many
of which will be rapidly converted into loops.

This picture is consistent with the formation of haloes
in and around cosmological filaments. In CDM, the dis-
tribution of filaments extends to near arbitrarily small
scales and fills much of configuration space, whereas the
WDM cutoff restricts WDM haloes to lie along large fil-
aments and so their spatial distribution is much more
constrained. Therefore, the dispersed CDM haloes form









16

ST/K00042X/1, STFC capital grants ST/H008519/1
and ST/K00087X/1, STFC DiRAC Operations grant
ST/K003267/1 and Durham University. DiRAC is part
of the National E-Infrastructure. This project has also
benefited from numerical computations performed at the
Interdisciplinary Center for Mathematical and Compu-
tational Modeling (ICM) University of Warsaw under

grants #no GB79-7, GA67-17 and G63-3. JCK and BTF
acknowledge support from NSF under Grant Numbers
DMS 2038556 and 1854336. WAH and PD acknowl-
edge the support from the Polish National Science Cen-
ter within research projects no. 2018/31/G/ST9/03388,
2020/39/B/ST9/03494. MRL acknowledges support by
a Grant of Excellence from the Icelandic Research Fund
(grant number 206930).

[1] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. White,
The evolution of large-scale structure in a universe dom-
inated by cold dark matter, The Astrophysical Journal
292, 371 (1985).

[2] P. Bull, Y. Akrami, J. Adamek, T. Baker, E. Bellini,
J. B. Jimenez, E. Bentivegna, S. Camera, S. Clesse, J. H.
Davis, et al., Beyond ΛCDM: Problems, solutions, and
the road ahead, Physics of the Dark Universe 12, 56
(2016).

[3] J. S. Bullock and M. Boylan-Kolchin, Small-scale chal-
lenges to the ΛCDM paradigm, Annual Review of As-
tronomy and Astrophysics 55, 343 (2017).

[4] L. Perivolaropoulos and F. Skara, Challenges for ΛCDM:
An update, arXiv preprint arXiv:2105.05208 (2021).

[5] R. van de Weygaert, G. Vegter, H. Edelsbrunner, B. J. T.
Jones, P. Pranav, C. Park, W. A. Hellwing, B. Eldering,
N. Kruithof, E. G. P. P. Bos, J. Hidding, J. Feldbrugge,
E. ten Have, M. van Engelen, M. Caroli, and M. Teil-
laud, Alpha, Betti and the Megaparsec Universe: On the
Topology of the Cosmic Web, in Lecture Notes in Com-
puter Science, Vol. 6970 (Springer, 2011) pp. 60–101.
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