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Abstract: Retrogressive thaw slumps (RTS) are considered one of the most dynamic permafrost distur-
bance features in the Arctic. Sub-meter resolution multispectral imagery acquired by very high spatial
resolution (VHSR) commercial satellite sensors offer unique capacities in capturing the morphological
dynamics of RTSs. The central goal of this study is to develop a deep learning convolutional neural
net (CNN) model (a UNet-based workflow) to automatically detect and characterize RTSs from VHSR
imagery. We aimed to understand: (1) the optimal combination of input image tile size (array size)
and the CNN network input size (resizing factor/spatial resolution) and (2) the interoperability of
the trained UNet models across heterogeneous study sites based on a limited set of training samples.
Hand annotation of RTS samples, CNN model training and testing, and interoperability analyses
were based on two study areas from high-Arctic Canada: (1) Banks Island and (2) Axel Heiberg
Island and Ellesmere Island. Our experimental results revealed the potential impact of image tile size
and the resizing factor on the detection accuracies of the UNet model. The results from the model
transferability analysis elucidate the effects on the UNet model due the variability (e.g., shape, color,
and texture) associated with the RTS training samples. Overall, study findings highlight several
key factors that we should consider when operationalizing CNN-based RTS mapping over large
geographical extents.

Keywords: Arctic; permafrost; retrogressive thaw slump; satellite images; deep learning

1. Introduction

Permafrost is defined as the Earth materials that remain at or below 0 ◦C for at least
two consecutive years [1,2]. Over 24% of the land surface of the northern hemisphere is
within the permafrost region [2,3]. The susceptibility of Arctic permafrost landscapes to
risks of anthropogenic climate change is on the rise [4–6]. A plethora of scientific studies
have voiced how the repercussions of permafrost thaw in cold permafrost areas are chal-
lenging an array of geosystem and ecosystem services. Permafrost thaw escalates the lateral
movements of biogeochemical fluxes [7–9] and alters coastal marine ecosystems [10]. It im-
pacts tundra geomorphology [11–13], vegetation [14], and hydrological functioning [15,16]
and increases the release of soil carbon to the atmosphere [17]. In addition to the nega-
tive impacts on the natural system, permafrost disturbances pose serious threats on the
human-built infrastructure and communities in the Arctic [5,18,19].

Permafrost disturbances have been observed and documented from local- to regional-
scales across the Arctic based on field and satellite observation data [13,15,20–22]. Terrain
alteration attributed to thermal erosion, thermal denudation, and thermokarst is considered
the most prominent disturbance occurring in ice-rich landscapes [23–25]. Among other
permafrost landforms, retrogressive thaw slumps (RTS, also called ground-ice slumps [26])
are recognized as one of the most active, rapid, and dramatic thermokarst landforms in the
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Arctic [27–29]. In a generic context, an RTS resembles and shares the anatomical structure
of a landslide that occurs in non-permafrost regions. The RTS process creates large open
depressions (a horseshoe- or bowl-shaped depression with a steep headwall) on hillslopes
due to soil wasting and vegetation displacement [30]. In most cases, the resulting debris
flow is terminated by a stream or a lake or the ocean.

Permafrost literature provides formal definitions for RTSs based on several criteria,
such as morphography (overall appearance), morphometry (shape and surface geometry),
formation process, underlying geology, and association of forms (Table 1). The Glossary of
permafrost and related ground-ice terms [31] defined RTS as a “slope failure mechanism
characterized by the melting of ground ice and downslope sliding and flowing of the
resulting debris”. Ref. [32] made the distinction between RTS and active layer slides based
on their formation process, while [33] identified RTS as “active geomorphological features
in permafrost terrain that consist of steep ice-rich headwall and mud flowing along a gentle
gradient”. Ref. [34] reported that RTSs typically have a small size (<10 ha, but in some
instance reaching up to ~1 km2) with a wide range of morphology and dynamics.

The areal extent, geographical distribution, and the number of RTSs have increased sig-
nificantly over the past several decades due to the warming climate [13,34–37]. Increasing
subsurface temperatures and higher precipitation have accelerated permafrost degradation,
causing decreased hillslope stability in low-Arctic permafrost regions [23,38,39]. In the high
Arctic, warmer summers are responsible for the increase in RTS occurrence [12,13].

The RTS activity poses significant implications on geomorphological, hydrological, bio-
geochemical, and ecological processes from local to regional scales [34,40]. Terrain affected
by RTSs shows increased nutrient availability, soil pH, snow pack, ground temperatures,
and active layer thickness—all of which affect plant community structure [35]. Thermal
erosion and slope disturbance processes associated with RTSs create favorable microsites
(i.e., bare, warmer, more nutrient-rich, and less vegetated) for shrub recruitment [30] and
habitats for birds and mammals [41]. The RTS activity significantly affects the geochemistry
of streams by increasing their solute load well above that of pristine streams [27], as well as
decreasing DOC concentrations downstream of slumps [42]. Accordingly, the freshwater
food-web responds through an increase in benthic production [43]. Abrupt thaws, which
RTSs present an example of, are estimated to release 40% of the mean net carbon emissions
posed by gradual thawing in long-term projections [17].

The mapping, monitoring, and documentation of abrupt permafrost thaw is crucial
to increase our spatio-temporal understanding of permafrost landscape dynamics in the
Arctic [21]. Site-scale observations provide valuable insights on the RTS process. However,
such localized observations limit our ability to gain synoptic perspectives on regional
to pan-Arctic scales [44,45]. Due to the innate dynamic nature of RTSs, remotely sensed
imagery and digital elevation data make ideal data sets for landform change analysis [46].
Early studies on RTS activity utilized aerial photography in conjunction with photogram-
metric techniques and manual image interpretation. Coarse-to-moderate-resolution satellite
sensors, such as MODIS, Landsat, SPOT, Sentinel, and SAR platforms, enable consistent
data acquisitions for mapping abrupt thaw incidents. The emergence of commercial very
high spatial resolution (VHSR) satellite sensors, such as the sensors of Maxar Inc. (IKONOS,
QuickBird, GeoEye, and WorldView-1,2, and 3) and the recently launched Planet Cubesats
have shifted the trajectory of permafrost landform mapping applications.

We conducted a literature review on previous research that utilized various type of
remote sensing data in RTS mapping and monitoring applications (Table 2). The table
includes the characteristics of Earth observation platforms, sensors, data types, study areas,
processing extents, and analysis methods. Most studies have been constrained to smaller
geographical extents and were performed using manual and/or semi-automated image
analysis techniques. A few, such as the studies by [23,24,37,47], presented large-area map-
ping efforts using coarse-resolution satellite image data (e.g., 30 m Landsat imagery). There
has been a growing tendency of utilizing VHSR satellite imagery in RTS detection based on
computer vision/artificial intelligence (AI) algorithms. For example, Ref. [34,48] utilized
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Planet and Cubesat data to map RTSs in limited geographical extents. An operational
implementation of RTS (or any other permafrost landform) mapping using VHSR imagery
at regional scales has been largely challenged by image data (big data) volume and method-
ological gaps in automated image analysis workflows. To address this challenge, we have
developed an operational-scale GeoAI pipeline (Mapping application Arctic Permafrost
Land Environment—MAPLE, [49]) that harnesses AI and high-performance computing
(HPC) resources to deploy automated mapping using tens of thousands of commercial
satellite images. The first MAPLE workflow example mapped ice-wedge polygons across
the Arctic [50,51].

Deep learning (DL) convolutional neural network (CNN) algorithms are pioneered
in and designed for everyday image analysis tasks. In comparison to everyday image
analysis, remote sensing image scene understanding deviates in multiple ways, such as
the imaging sensors and their characteristics (e.g., multiple spectral channels), coverage
and viewpoints, and the geo-objects captured by the imagery and their properties [52].
Therefore, prior to an operational scale adaptation of DLCNN algorithms, it is important to
understand the effect of input data characteristics and the key steps involved in image pre-
and post-processing on the overall performances of the DLCNN model predictions.

DLCNN-based analysis requires the partitioning of input images into manageable
sub-arrays depending on the pre-defined network input size (e.g., 256 pxl × 256 pxl or
512 pxl × 512 pxl) of the DLCNN architecture due to the array dimensions of image scene
(e.g., typical satellite image scene has dimensions of 40,000 pxl × 40,000 pxl) and limitation
of graphics processing unit (GPU) memory. Resizing image tiles is required when the
network input size is smaller than the input image tile. This is particularly true in transfer
learning, in which we must stay with the pre-defined network input size of the architecture
to gain the advantage of pre-trained weights of the neurons. However, the resizing process
could potentially degrade the amount of information (e.g., spectral, spatial, and textural
details) needed to accurately describe the target of interest. The image tiling process could
affect the extent of the target of interest embedded in a single image tile. For instance,
if the target of interest (e.g., an RTS) is significantly larger than the input network size,
the DLCNN model will struggle to learn the contextual information that describes the
spatial association between the target of interest and its surrounding. Unlike in everyday
objects (e.g., car, traffic sign, flower), semantics (higher-level meanings) of geo-objects are
not necessarily pivoted to the properties (e.g., color, size, texture) of the object itself but
are organized into multiple spatial scales [53,54]. Another important aspect to consider is
the interoperability of a trained DLCNN across a large area comprising varying terrain
and landcover characteristics [52]. The production of training data via manual annotation
is a time- and labor-intense process. Therefore, we always seek a limited set of training
samples that sufficiently capture the variability of the target objects.

Our overarching goal is to integrate a new workflow to the MAPLE for the automated
detection and characterization of RTSs using VHSR imagery. The specific objectives are
to understand: (1) the optimal combination of input image tile size (array size) and the
DLCNN network input size (resizing factor/spatial resolution) and (2) the interoperability
of the trained DLCNN models across heterogeneous study sites based on limited sets of
training samples.
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Table 1. Definitions, morphometric/morphological characteristics, and prevalence of retrogressive
thaw slumps.

Reference Description Morphology/Morphometry Prevalence

[31]

A slope failure mechanism characterized by the
melting of groundice, and downslope sliding and

flowing of the resulting debris. Retrogressive thaw
slumps consist of a steep headwall that retreats in

a retrogressive fashion due to thawing and that
slides down the face of the headwall and flows

away.

A steep headwall that retreats
in a retrogressive fashion.
Debris flow formed by the

mixture of thawed sediment
and meltwater

Slumps are common in
ice-rich glaciolacustrine

sediments and fine-grained
diamictons.

[33]

Active geomorphological features in permafrost
terrain.

They consist of steep ice-rich headwall and a
mudflow of a gentle gradient.

Banks of northern rivers

[55] A type of backwasting thermokarst common along
arctic coasts characterized by massive ground ice.

[56]

Comprise a steep headwall and footslope of lower
gradient. Thawing turns ice-rich permafrost into a
mud slurry that falls to the base of the exposure to

form the scar area.

[35] Consists of a headwall of exposed ground ice and
a foot slope of viscous, thawed sediments Several hectares in size

[57] Dynamic thermokarst features in ice-rich
permafrost terrain.

Along the shorelines of lakes
and rivers, coastlines and

hillslopes

[13]

Horseshoe or cusp-shaped mass wasting features
consisting of an ablating headwall of ice-rich

permafrost that feeds downslope flows of
fluidized sediment.

Headwall

[58]

Thermokarst landforms resulting from the
thawing of ice-rich permafrost. Triggering

mechanisms including lateral stream erosion and
active layer detachments are responsible for RTSs.

[34]
Typical landforms related to processes of rapidly

thawing and degrading hillslope permafrost.
Occurred due to mass-wasting processes.

Typically have a small size
(<10 ha, with a few exceptions

reaching up to ~1 km2), as
well as a wide range of

appearances and dynamics

Regions with massive
amounts of buried ice, as

preserved in the moraines of
former glaciations

or regions with thick
syngenetic ice-wedges in
yedoma permafrost or icy

epigenetic permafrost

[47]

RTS are abrupt permafrost disturbances that result
from slope failure after thawing of ice-rich

permafrost. Fluvial processes, thermo-erosion or
mass wasting following heavy precipitation events

and the exposure of ice-rich permafrost

RTSs vary in size, ranging
from under 0.15 ha to mega
slumps of 52 ha and more

Ice-rich yedoma regions or
formerly glaciated areas that

still contain
permafrost-preserved buried

glacial ice
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Table 2. A selected list of literature related to retrogressive thaw slump mapping using remote
sensing data.

Reference Study Area Data Mode Resolution Analysis Comment

[59]

Dome Wallis wellsite,
King Christian Island,
Chevron Parker river,
wellsite, Banks Island

in Canada

Aerial
photographs Optical -

general
discussion

about terrain
disturbances

[60] Russian Arctic region

Field
observations

and aerial
imagery

Optical - Manual image
interpretation

related to
ground ice and
relief evolution

[61]
Fosheim peninsula,

Ellesmere Island,
NWT in Canada

SPOT
Panchromatic Optical 10 m

Manual
comparison.

Image
enhancement

using histogram
stretching,

16 sites

[62]
Eureka, Ellesmere
Island, Nunavut in

Canada

Topographic
maps. Aerial
photographs

and field
measurements

Optical - Area of
1887 km2

[55]

Herschel island,
Yukon territory;
Mackenzie delta
region, NWT, in

Canada

RADARSAT-1,
SAR, SPOT Optical 5–10 m collection of

abstracts

[55] Herschel Island in
Canada

IKONOS
satellite
imagery

Optical 1 m

Differential
global

positioning
system surveys

and stereo-
photogrammetric

methods

Data from 1952,
1970, 2004

[63] Herschel Island in
Canada

IKONOS
satellite
imagery

Optical 2 m DEM Photogrammetric
processing

Data from 1952,
1970, 2000

[64]
Mackenzie delta
region, NWT, in

Canada
Aerial imagery Optical

1:40,000
1:54,000
1:30,000

Manual Area of
3739 km2

[65] Mayo, central Yukon
in Canada

Aerial imagery
and ground

surveys
Optical - - Three thaw

slumps

[56]
tundra uplands east

of the Mackenzie
Delta in Canada

Aerial imagery
and ground

surveys
Optical - Area of

3370 km2

[66]

Kavik Plateau;
Richardson

Mountains NWT in
Canada

Aerial imagery Optical - Manual Data from
1950–2004

[67] Herschel Island in
Canada

TerraSAR-X,
RADARSAT-2

and
ALOS-PALSAR

Microwave Automated Area of 108 km2

Years 2007–2011
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Table 2. Cont.

Reference Study Area Data Mode Resolution Analysis Comment

[57]
Richardson

Mountains, NWT, in
Canada

Landsat
TM/ETM
imagery

Optical 30 m

Automated;
Tasseled Cap

brightness,
wetness and

greenness indices

Area pf
18,000 km2

Data from
1985–2011

[68]
Fosheim Peninsula of
northern Ellesmere
Island in Canada

SPOT imagery Optical 10 m Manual

[23]
Peel Plateau,

northwestern NWT
in Canada

SPOT imagery Optical 10 m

Manual (least one
trained observer
and one expert

reviewer)

1,274,625 km2

Data from
2005–2010

[69]

Richardson
Mountains and Peel
Plateau region, NWT

in Canada

Landsat
TM/ETM
imagery

Optical 30 m
Automated;

Tasseled Cap (TC)
trend analysis

Data from
1990–2010

[70] Yukon Coast in
Canada

high-resolution
satellite

imagery (?);
Aerial imagery;

LiDAR

Optical,
LiDAR

Data from
1952–1972 and

1972–2011

[71]

Yukon Coastal Plain
in Canada;

Bykovsky Peninsula
in Russia

TanDEM-X Microwave 30 cm vertical Area of 238 km
Data from 2011

[72]

The Stony Creek and
Vittrekwa River

watersheds of the
Peel Plateau in

Canada

Samples
collected by
on-foot and
helicopter

Area of
3000 km2

[28] Noatak valley in
Alaska Aerial imagery Optical 4–7 cm digital

photogrammetry
Area of

2900 km2

[13]

Eureka Sound
Lowlands, Ellesmere

and Axel Heiberg
Islands in Canada

Worldview-1,
Worldview-2,
Worldview-3,
Arctic DEM

Optical 1 m Manual

30-year record
from 1989

to2018 of field
observation;
2011–2018 of
field/VHSR

mapping

[73] Qinghai-Tibet
Plateau. China

Gaofen-1.
WorldView-1,

SPOT-5 satellite
imagery

Optical 2.0 m, 0.5 m,
2.5 m

manual
interpretation

Data from 2008
to 2017

[25] NWT, Canada TanDEM-X Microwave Data from 2011

[58] Tibetan Plateau,
China

PlanetScope
imagery Optical 3 m

Automated;
Siamese neural

network

Data from
2017–2018

[74] Tibetan Plateau,
China

PlanetScope
imagery Optical 3 m

Automated;
Deep learning

CNNs
(DeepLabV3+)

Area of
5200 km2

Data from year
2018
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Table 2. Cont.

Reference Study Area Data Mode Resolution Analysis Comment

[75]

Ymala, Gydan,
Taymyr, Chukotka in

Russia; Noalak in
Alaska; Peel,

Tuktoyaktuk, Banks,
Elsmere in Canada

TanDEM-X Microwave

Area of
220,000 km2

Data from
2010–2017

[25] NWT, Canada TanDEM-X Microwave Data from
2011–2017

[29]
Mackenzie River

Delta and on Banks
Island in Canada

TanDEM-X Microwave

[48] Tibetan Plateau,
China

PlanetScope
imagery Optical 3 m

Deep learning
CNNs

(DeepLabV3+)

[34]

Lena River, Horton
Delta, Herschel
Island, Kolguev

Island, Tuktoyaktuk
Peninsula, Banks
Island in Canada

PlanetScope
imagery,

ArcticDEM and
multi-temporal

Landsat
Tasseled Cap

Trend data

Optical 3 m optical and
2 m ArcticDEM

automated;
(UNet, UNet++,

DeepLabv3)
Area of 100 km2

[48]
Beiluhe region,

Tibetan plateau in
China

Cubesat
imagery Optical 3 m siamese neural

network

[47] High latitudes of
Siberia in Russia,

Landsat and
Sentinel-2

images: time
series;

Rapideye,
Planetscope

imagery

Optical 30 m, 5 m, 3 m LandTrendr
algorithm

Area of
8.1 × 106 km2

Data from
2001–2019

2. Methods
2.1. Study Area and Image Data

We selected two study areas: (1) Banks Island (~3700 km2), Northwest Territories, and
(2) Axel Heiberg Island and Ellesmere Island (~4000 km2), Nunavut, Canada (Figure 1),
to produce hand-annotated RTS samples, to train/validate/test the deep learning models,
and to investigate the interoperability of the trained deep learning model across the two
study sites.
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and mean annual precipitation measured at Sachs Harbor, Banks Island, are −12.8 °C and 
152 mm, respectively [12], and are −19.7 °C and 68 mm, respectively, measured at the 
Eureka Weather Station on Ellesmere Island [76].  

Both Banks Island and ESL are entirely within the zone of continuous permafrost, 
where the thickness exceeds 500 m and has medium-to-high ground ice contents in the 
upper 10 to 20 m [77]. Both regions contain extensive ice-wedge polygon coverage and 
have long been subject to thermokarst activity. On Banks Island, common thermokarst 
features include thermokarst lakes and RTS [78]. In the ESL, RTSs are common [13], as 
well as active layer detachment slides [79]. Both Banks Island and the ESL have 
experienced a widespread increase in RTS initialization and activity linked to increasing 
summer air temperatures within the last decade [12,13]. 

We manually annotated RTSs from Worldview-02 (WV-02) imagery that were 
acquired during the summer time between the years 2010 and 2015 (Banks Island) and 
2011 and 2020 (ESL) (Table 3). We utilized 120 WV02 images from both study areas for the 
final model predictions. All of the pre-processed (i.e., pansharpened and orthorectified) 
satellite images were provided by the Polar Geospatial Center at the University of 
Minnesota. 

Table 3. General characteristics of the satellite imagery utilized in hand-annotation. 

Study Area 
Image Acquisition 

Years 
# of Images Sensor Spatial Resolution (m) Spectral Bands 

Radiometric 
Depth 

Banks Island 2010–2015 12 
WV02 0.5 Blue, Green, Red, Near-infrared 16 bit 

ESL 2011–2020 14 

Figure 1. Inset map shows the geographical setting of the study area. Enlarged views shown in (a,b)
depict the areas of interest from Banks Island and the Eureka Sound Lowlands (Axel Heiberg and
Ellesmere Islands), respectively. The red hollow box shows the total area mapped using the UNet
deep learning model.

Banks Island is the westernmost island, whereas Ellesmere Island and Axel Heiberg
Island are the two northernmost islands in the Canadian Arctic Archipelago. The study
area (Figures 1b and 2) encompassing southeastern Axel Heiberg Island and west central
Ellesmere Island (Fosheim Peninsula) is known as, and will henceforth be termed in the
manuscript, as the Eureka Sound Lowlands (ESL). Mean annual air temperature and mean
annual precipitation measured at Sachs Harbor, Banks Island, are −12.8 ◦C and 152 mm,
respectively [12], and are −19.7 ◦C and 68 mm, respectively, measured at the Eureka
Weather Station on Ellesmere Island [76].
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Figure 2. Field photos showing RTS activity in Ellesmere Island (left) and Axel Heiberg Island (right)
acquired in years 2018 and 2016, respectively.

Both Banks Island and ESL are entirely within the zone of continuous permafrost,
where the thickness exceeds 500 m and has medium-to-high ground ice contents in the
upper 10 to 20 m [77]. Both regions contain extensive ice-wedge polygon coverage and
have long been subject to thermokarst activity. On Banks Island, common thermokarst
features include thermokarst lakes and RTS [78]. In the ESL, RTSs are common [13], as well
as active layer detachment slides [79]. Both Banks Island and the ESL have experienced
a widespread increase in RTS initialization and activity linked to increasing summer air
temperatures within the last decade [12,13].
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We manually annotated RTSs from Worldview-02 (WV-02) imagery that were acquired
during the summer time between the years 2010 and 2015 (Banks Island) and 2011 and 2020
(ESL) (Table 3). We utilized 120 WV02 images from both study areas for the final model
predictions. All of the pre-processed (i.e., pansharpened and orthorectified) satellite images
were provided by the Polar Geospatial Center at the University of Minnesota.

Table 3. General characteristics of the satellite imagery utilized in hand-annotation.

Study Area Image Acquisition
Years # of Images Sensor Spatial

Resolution (m) Spectral Bands Radiometric
Depth

Banks Island 2010–2015 12
WV02 0.5 Blue, Green, Red,

Near-infrared
16 bit

ESL 2011–2020 14

2.2. Training Data Production

We tasked three analysts in the manual RTS annotation process. One analyst inspected
the accuracy of the hand-annotations produced by the other two. To maintain the consis-
tency in the on-screen digitizing process, we asked analysts to adhere to a fixed visual scale.
Based on a series of visual inspections across multiple images and varying sizes of RTSs, we
found that scale of 1:2000 provides sufficient visual cues and context to accurately delineate
the RTS boundaries. In order to minimize bias coming from color artefacts and to empha-
size the RTS from the background, we visualized the imagery as false color composites
(green (band 1), red (band 2), near-infrared (band 3)). Generally, false color composites offer
a greater level of spectral details to the visual analyst to detect and delineate the targets
of interest accurately. Based on the feedback from the permafrost experts and following
the formal definition of RTS (Table 1), the boundary delineation was executed as much
as possible to reflect a meaningful link between image elements (e.g., color, shape, tone,
texture, context) and in situ morphometric/morphological characteristics of RTSs (e.g.,
headwall, banks, toe, etc.). We produced 475 RTS training samples from each of the study
areas (Table 4).

Table 4. Summary statistics of the hand-annotated RTS training samples from Banks Island and the
Eureka Sound Lowlands.

Study Area No. of Samples Mean Area (ha) Mean Length
Major Axis (m)

Mean Width of
Minor Axis (m)

Banks Island 475 13.7 187.3 91.1

ESL 475 9.9 150.6 79.9

2.3. Retrogressive Thaw Slump Modelling Framework

Our experimental design (Figure 3) aims to answer three research questions: (1) Does
image tile size affect RTS prediction accuracies and DLCNN model performances? (2) Does
network input size (image resolution) affect RTS prediction accuracies and DLCNN model
performances? Finally, (3) What is the degree of interoperability of trained DLCNN models
across heterogeneous landscapes? The former two fall under Objective 1, and the latter
falls under Objective 2.



Remote Sens. 2022, 14, 4132 10 of 40Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 39 
 

 

 
Figure 3. A simplified schematic of the overall experimental design. 

In order to refrain from any terminological ambiguities, here onwards we will use 
the term image scene to refer to an entire satellite image (generally covers 20 km × 20 km 
on the ground or 40,000 pxl × 40,000 pxl multidimensional array with four spectral 
channels), and the term image tile will refer to a subsetted array obtained by tilling the 
image scene according to predefined tile dimensions (i.e., image tile size). The array size 
that the DLCNN architecture is designed to admit is referred as the network input size. For 
simplicity, we will express the array sizes without the notation of ‘pxl’.  

To address Objective-1, we partitioned the training image scenes from Banks Island 
and the ESL into three cohorts of image tile sizes as follows: (1) 2048 × 2048 (~spatial extent: 
1 km × 1 km), (2) 1024 × 1024 (~spatial extent: 500 m × 500 m), and (3) 512 × 512 (~spatial 
extent: 250 m × 250 m). The resulting image tiles from each cohort were grouped into 
DLCNN model training, validation, and testing with the split rule of 80:10:10, 
respectively. We tasked this procedure separately on the hand-annotated samples from 
Banks Island and the ESL and on the combined hand-annotated samples from both Banks 
Island and the ESL (see middle panel of Figure 3). The network input size was set to three 
array sizes as 1024 × 1024, 512 × 512, and 256 × 256. 

As seen on Figure 3, the arrows (represented as blue, purple, and orange) moving 
from image tiles to network inputs indicate different model implementation scenarios. For 
instance, the blue arrow represents the scenario of an image scene that has been 
partitioned into larger image tiles with the dimension of 2048 × 2048. This tile size was 
then introduced to the DLCNN model via three network input sizes (1024 × 1024, 512 × 
512, and 256 × 256). In order to fit the image tile into the network, each path went through 
the image-resizing process. In a similar fashion, image tile sizes of 1024 × 1024 and 512 × 
512 were introduced to the network. Some of the pathways involved array resizing, 
whereas others did not. For instance, an image tile of 1024 × 1024 can be directly 
introduced to the network without the resizing operation (see Figure 3).  

To improve the clarity of the multiple scenarios involved in the analysis, we have 
illustrated the pathways associated with image tile size and network input size by taking 
image tile size of 2048 × 2048 as an example in Figure 4. It depicts a 2048 × 2048 image tile 
that is channeled through two pathways: 

(1) Image tile size (spatial footprint) is unchanged while the network input size (pixel 
resolution) is changed to maintain the spatial extent (see Figure 4b–d); 

(2) Image tile size (spatial footprint) is changed while the network input size (pixel 
resolution) is unchanged (Figure 4e,f) . 

Figure 3. A simplified schematic of the overall experimental design.

In order to refrain from any terminological ambiguities, here onwards we will use the
term image scene to refer to an entire satellite image (generally covers 20 km × 20 km on
the ground or 40,000 pxl × 40,000 pxl multidimensional array with four spectral channels),
and the term image tile will refer to a subsetted array obtained by tilling the image scene
according to predefined tile dimensions (i.e., image tile size). The array size that the
DLCNN architecture is designed to admit is referred as the network input size. For simplicity,
we will express the array sizes without the notation of ‘pxl’.

To address Objective-1, we partitioned the training image scenes from Banks Island
and the ESL into three cohorts of image tile sizes as follows: (1) 2048 × 2048 (~spatial extent:
1 km × 1 km), (2) 1024 × 1024 (~spatial extent: 500 m × 500 m), and (3) 512 × 512 (~spatial
extent: 250 m × 250 m). The resulting image tiles from each cohort were grouped into
DLCNN model training, validation, and testing with the split rule of 80:10:10, respectively.
We tasked this procedure separately on the hand-annotated samples from Banks Island
and the ESL and on the combined hand-annotated samples from both Banks Island and the
ESL (see middle panel of Figure 3). The network input size was set to three array sizes as
1024 × 1024, 512 × 512, and 256 × 256.

As seen on Figure 3, the arrows (represented as blue, purple, and orange) moving
from image tiles to network inputs indicate different model implementation scenarios. For
instance, the blue arrow represents the scenario of an image scene that has been partitioned
into larger image tiles with the dimension of 2048 × 2048. This tile size was then introduced
to the DLCNN model via three network input sizes (1024 × 1024, 512 × 512, and 256 × 256).
In order to fit the image tile into the network, each path went through the image-resizing
process. In a similar fashion, image tile sizes of 1024 × 1024 and 512 × 512 were introduced
to the network. Some of the pathways involved array resizing, whereas others did not. For
instance, an image tile of 1024 × 1024 can be directly introduced to the network without
the resizing operation (see Figure 3).

To improve the clarity of the multiple scenarios involved in the analysis, we have
illustrated the pathways associated with image tile size and network input size by taking
image tile size of 2048 × 2048 as an example in Figure 4. It depicts a 2048 × 2048 image tile
that is channeled through two pathways:
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Figure 4. Image tile size and network input size scenarios considered in the analysis. As an example,
here are the scenarios associated with an image input tile size of 2048 × 2048: The original image
scene resolution (pixel size) is 0.5 m.

(1) Image tile size (spatial footprint) is unchanged while the network input size (pixel
resolution) is changed to maintain the spatial extent (see Figure 4b–d);

(2) Image tile size (spatial footprint) is changed while the network input size (pixel
resolution) is unchanged (Figure 4e,f).

In Figure 4, for the sake of visual clarity, we have placed the RTS object in the middle of
the image tile. As seen in Figure 4a–c, the RTS object is spatially contained within the image
tile; however, the amount of information that is needed to describe the RTS (e.g., edges,
texture, shape) degrades due to the increasing pixel size. In contrast, the other pathway
(Figure 4a,c–e) maintains a constant spatial resolution, while reducing the spatial footprint
size. This causes the RTS object to be included in multiple image tiles (see Figure 4e).
Ultimately, we compared the prediction accuracies of all the scenarios to find the optimal
combination(s) of the input image size and the network input size.

Findings of Objective-1 provided the basis for Objective-2. Objective-2 explores the
interoperability of the DLCNN model across two study sites (Figure 3). We selected the
DLCNN models that were trained based on the optimal array sizes. The trained models, M1,
M2, and M3 (see right hand panel of Figure 3), represent the best preforming models, which
were trained using hand-annotated RTS samples from Banks Island, ESL, and combined
RTS samples from both study sites, respectively. Prediction performances of all three
models were tested on both Banks Island and the ESL (Figure 3).

2.4. Deep Learning Convolutional Neural Net Architecture

Some of the DLCNN architectures are tailored towards image classification and object
detection, while others delve into semantic segmentation (also sematic object instance
segmentation) operations. In the sematic object instance segmentation, each of the objects
seen in the image are delineated and labelled individually. Among many, popular semantic
segmentation architectures include: UNet [80], DeepLab [81], SegNet [82], RefineNet [83],
and Mask-RCNN [84]. In our study design, we selected the UNet model as the central
DLCNN architecture. The UNet model is computationally efficient model. It has demon-
strated a greater success in various image analysis tasks. A detailed explanation about the
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UNet model architecture is beyond the scope of this study; thus, here we provide a brief
and simplified description.

UNet is a U-shaped, fully convolutional neural net model (Figure 5). It comprises
two routes: encoding and decoding. The encoding path is also called the analysis path or
the contracting path, and the decoding path is known as the synthesis path or expansive
path. The former shapes the typical convolution network consisting of many layers such as
convolution, Rectified linear unit (ReLU), and max pooling. The function of the encoding
path is to reduce the dimensionality of the input layers and increase the number of feature
channels. In this route, a 3 × 3 convolution is followed by a ReLU and a 2 × 2 max-pooling
that down-samples and doubles the feature channels. On the other hand, the decoding or
synthesis path functions opposite to the former one. It reduces the number of channels
and increases the spatial dimensions of the layers. The number of channels is halved in
an up-sampling process using 2 × 2 convolution at the starting of the decoding route.
Afterward, 3 × 3 convolution layers followed by ReLU are used. Skip connections are
provided in the architecture that helps in the concatenation of the corresponding feature
layer from the encoding path to recover the lost information during down-sampling in the
encoding route (Figure 5) [85]. Finally, the dimension of the layers is restored using 1 × 1
convolution to generate a pixel-wise classified predicted map.
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Figure 5. Generalized architecture of the U-Net deep learning CNN model with the backbone of
Resnet101.

To perform the model training with a limited amount of training samples, we used
the transfer leaning strategy. This was achieved by replacing the contractive path of
the generic UNet model with a backbone (ResNet 101, [86]). Inclusion of the backbone
ResNet 101, which has been trained on ImageNet data, enables the initiation of training
process based on the existing pre-trained weights. ImageNet is a very large image dataset
(14,197,122 annotated images) organized according to the semantic hierarchy of WordNet.
Overall, the transfer learning strategy reduces the model overfitting that is common in
small-sample training operations.

2.5. Model Training and Accuracy Assessment

As seen in Figures 3 and 4 and explained in Section 2.3, we conducted a series of
training scenarios to address the central research questions. Table 5 depicts the parameter
setting that was utilized in each of the scenarios. We selected optimal models based
on the training and validation loss curves. Different mini-batch sizes were selected to
accommodate GPU memory limitations. All the model training and prediction simulations
were implemented on a Linux server with the hardware configuration of Intel(R) 8-core
i7 CPU @ 3.60 GH and NVIDIA GeForce RTX 2080 with 11 GB memory. The key python
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libraries used in the image analysis pipeline included PyTorch 1.9, Segmentation-model-
pytorch, open CV, GDAL, albumentations, and scikit-learn.

Table 5. Model training parameter settings.

Training Scenario U-Net Input Size Number of Samples # of Epochs Mini Batch Size Learning Rate

Banks Island 256 × 256 475 50 16

10−4 for epochs 1 to 25
and 10−5 from epoch 26

to 50.

Bank Island 512 × 512 475 50 8

Banks Island 1024 × 1024 475 50 4

ESL 256 × 256 475 50 16

ESL 512 × 512 475 50 8

ESL 1024 × 1024 475 50 4

Combined samples 256 × 256 950 50 16

Combined samples 512 × 512 950 50 8

Combined samples 1024 × 1024 950 50 4

We employed data augmentation methods to synthetically increase the number of
training samples. We used three augmentation methods: vertical flips, horizontal flips,
and random rotations of 90 degrees. In each epoch, we applied these augmentations with
0.5 probability to the original training dataset to generate a new augmented dataset. The
Adam optimization algorithm was used [87] with Dice loss [88] in model training.

Standard accuracy metrics, such as precision, recall, F1 score, and confusion matrix,
were used to assess the model prediction accuracies on the test RTS data set. When calcu-
lating accuracy metrics, we purposely used intersection over union (IoU) of 0.8 to impose
stringent conditions on the geometrical congruency between the ground-truths (hand-
annotation) and the model predictions. We corroborated the quantitative analysis with
thorough visual inspections. This is particularly important in evaluating the segmentation
quality of RTS with respect to the hand-annotation.

2.6. Model Interoperability Analysis Using Haralick Textures

It is imperative to examine what underlying image properties cause a trained model
to fail when it is transferred from one landscape to another to detect the same geo-object.
Apart from other low-level motifs (features), image texture is considered as a powerful
image descriptor in both manual and automated detections. Texture explains the spatial
distribution of intensities within the image [89]. In addition to the high-frequency (i.e.,
edge) information, texture could serve as a strong contributor in RTS detection. A trained
DLCNN model could exhibit weak interoperability if the underlying training data are
unable to capture and explain the textural variability in the targets of interest (e.g., RTS).

To further support our model interoperability assessment, we computed thirteen
Haralick texture [90] features for the hand-annotated RTS samples from Banks Island
and the ESL. The texture measures include: (1) Angular Second Moment, (2) Contrast,
(3) Correlation, (4) Variance, (5) Inverse difference momentum, (6) Sum Average, (7) Sum
Variance, (8) Sum Entropy, (9) Entropy, (10) Difference Variance, (11) Difference Entropy
(12), and (13) Information Measure of Correlation [90].

Haralick texture measures could be correlated and redundant. Therefore, we con-
ducted a principal component analysis (PCA, [89]) to reduce the dimensionality in thirteen
texture measures. The PCA is a statistical tool, which is used to extract and express the
pattern of the data in different dimensions. It reduces the complexity of a large dataset
and summarizes the information by means of a newly formed small set of significantly
important variables known as principal components (PC). These PCs represent the sum-
mary of the original data and should account for the variances from different variables [91].
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The PCA analysis of all the Haralick textures for each Island was conducted on R software
using the function called prcomp (www.r-project.org) (accesed on 2 February 2022).

To avoid any ambiguity in texture analysis and its connection to the overall study
design, we should note the fact that Haralick textures were not used as additional input
layers in the UNet model training, validation, or prediction process. Our model training
only relied on the spectral channels of the satellite imagery. We utilized Haralick textures
to demonstrate the possible variations in RTSs that we observe in Banks Island and ESL
Use of textures in addition to spectral channels of the images for training CNN models is
beyond the scope this study.

3. Results

Summary statistics of the hand-annotated RTS samples from Banks Island (n = 475)
and the ESL (n = 475) are shown in Figure 6. Histograms of RTSs’ geometrical properties,
such as area, length (major axis), width (minor axis), and length to width ratio describe the
basic size and shape characteristics of the hand-annotated RTS samples from Banks Island
and ESL. In general, the RTS training samples from Banks Island and the ESL reported
median sizes of 7.03 ha and 4.67 ha, respectively. The RTS samples from Banks Island
showed a higher variability. A similar trend was also observed for other geometrical
properties. Statistical comparison of median values of area, length, width, and length to
width ratio between two sites showed significant differences (p-value < 0.05) (Table 6).

Table 6. Statistical comparison of basic geometry (size and shape) of hand-annotated RTS samples
from the Eureka Sound Lowlands and Banks Island using independent Wilcoxson rank sum test.
(Sample size (n) = 475).

Area Length Width Length to Width Ratio

p-value 0.0053 0.0009 0.0000 0.0001

Boxplots shown in Figure 7 report the comparison of thirteen Haralick texture mea-
sures (H1–H13). Table 7 depicts the statistical comparison of texture measures of RTSs
between Banks Island and the ESL. The test results of the non-parametric independent
Wilcoxon rank-sum test showed that the median values of each of the texture measures
from two study sites were significantly (p-value < 0.05) different. Based on the results from
the PCA, PC1 explained over 80% of the variability in the RTS data from both study sites
(Figure 8).

Table 7. Statistical comparison of Haralik texture features of hand-annotated RTS samples from
Eureka Sound Lowlands and Banks Island using independent Wilcoxson test. (n = 475).

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

www.r-project.org
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Figure 6. Distribution and comparison of area, width, and length parameters of the hand-annotated
RTS samples from Banks Island and the Eureka Sound Lowlands. Histograms (a,b), (d,e), and (g,h)
represent the RTS data distribution of area, length, and width, respectively, for two study sites.
Boxplots (c,f,l) depict the area, length, and width of RTS samples from two study sites. (a) Histogram
of RTS area based on hand-annotated samples from Banks Island. (b) Histogram of RTS area based
on hand-annotated samples from the Eureka Sound Lowlands. (c) RTS area comparison of hand-
annotated samples between the Eureka Sound Lowlands and Banks Island. (d) Histogram of RTS
length (major axis) based on hand-annotated samples from Banks Island. (e) Histogram of RTS
length (major axis) based on hand-annotated samples from the Eureka Sound Lowlands. (f) RTS
length comparison of hand-annotated samples between the Eureka Sound Lowlands and Banks
Island. (g) Histogram of RTS width (minor axis) based on hand-annotated samples from Banks
Island. (h) Histogram of RTS width (minor axis) based on hand-annotated samples from the Eureka
Sound Lowlands. (i) RTS width comparison of hand-annotated samples between the Eureka Sound
Lowlands and Banks Island.
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Figure 7. Boxplots (a–m) showing Haralik texture feature comparisons of hand-annotated RTS from
the Eureka Sound Lowlands and Banks Island. (a) H1(Angular second moment). (b) H2 (Contrast).
(c) H3 (Correlation). (d) H4 (Variance). (e) H5 (Inverse difference moment). (f) H6 (Sum Average).
(g) H7 (Sum Variance). (h) H8 (Sum Entropy). (i) H9 (Entropy). (j) H10 (Difference Variance). (k) H11
(Difference Entropy). (l) H12 (Information Measures of Correlation). (m) H13 (Information Measures
of Correlation).



Remote Sens. 2022, 14, 4132 17 of 40

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 39 
 

 

 

(m) 

Figure 7. Boxplots (a–m) showing Haralik texture feature comparisons of hand-annotated RTS from 
the Eureka Sound Lowlands and Banks Island. (a) H1(Angular second moment). (b) H2 (Contrast). 
(c) H3 (Correlation). (d) H4 (Variance). (e) H5 (Inverse difference moment). (f) H6 (Sum Average). 
(g) H7 (Sum Variance). (h) H8 (Sum Entropy). (i) H9 (Entropy). (j) H10 (Difference Variance). (k) 
H11 (Difference Entropy). (l) H12 (Information Measures of Correlation). (m) H13 (Information 
Measures of Correlation). 

Table 7. Statistical comparison of Haralik texture features of hand-annotated RTS samples from 
Eureka Sound Lowlands and Banks Island using independent Wilcoxson test. (n = 475). 

 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

  
(a) (b) 

 
(c) 

Figure 8. Principal Component Analysis (PCA) of Haralick texture features of RTS samples from 
Banks Island and the Eureka Sound Lowlands. Scree plots (a,b) show eigenvalues of thirteen 
textures. (c) Cluster plot of PC1 and PC2. 

82.1%

9.5%
5.6%

1.9% 0.9% 0.1% 0% 0% 0% 0%
0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Dimensions

Pe
rc

en
ta

ge
 o

f e
xp

la
in

ed
 v

ar
ia

nc
es

Scree plot

81.3%

15.1%

1.5% 1.2% 0.8% 0.1% 0% 0% 0% 0%
0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Dimensions

Pe
rc

en
ta

ge
 o

f e
xp

la
in

ed
 v

ar
ia

nc
es

Scree plot

Figure 8. Principal Component Analysis (PCA) of Haralick texture features of RTS samples from
Banks Island and the Eureka Sound Lowlands. Scree plots (a,b) show eigenvalues of thirteen textures.
(c) Cluster plot of PC1 and PC2.

We conducted the UNet model training for all the scenarios (i.e., for different image
tile sizes and network inputs sizes) across 50 epochs with the expectation of obtaining full
loss curves along with accuracy plots (F1 score). Figures 9–11 report the Dice loss curves
and F1 scores for the training from Banks Island, the ESL, and the combined RTS data from
both study sites, respectively. As seen in Dice loss plots, the divergence of the training and
validation occurred at different epochs for each of the training scenarios. We selected the
optimal UNet weight files based on the Dice loss plot divergences and the F1-score.
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Figure 9. Training (blue line) and validation (orange line) Dice loss curves based on the hand-
annotated data from Banks Island. Array sizes are shown in pixels. (a) Image tile size: 2048 × 2048,
Network input size: 1024 × 1024. (b) Image tile size: 2048 × 2048. Network input size: 512 × 512.
(c) Image tile size: 2048 × 2048. Network input size: 256 × 256. (d) Image tile size 1024 × 1024.
Network input size: 1024 × 1024. (e) Image tile size 1024 × 1024. Network input size: 512 × 512.
(f) Image tile size 1024 × 1024. Network input size: 256 × 256. (g) Image tile size 512 × 512. Network
input size: 512 × 512. (h) Image tile size: 512 × 512. Network input size: 256 × 256.
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Figure 10. Training (blue line) and validation (orange line) Dice loss curves based on the hand-
annotated data from the Eureka Sound Lowlands. Array sizes are shown in pixels. (a) Image tile
size: 2048 × 2048; Network input size: 1024 × 1024. (b) Image tile size: 2048 × 2048; Network
input size: 512 × 512. (c) Image tile size: 2048 × 2048; Network input size: 256 × 256. (d) Image
tile size: 1024 × 1024; Network input size: 1024 × 1024. (e) Image tile size: 1024 × 1024; Network
input size: 512 × 512. (f) Image tile size: 1024 × 1024; Network input size: 256 × 256. (g) Image tile
size: 512 × 512; Network input size: 512 × 512. (h) Image tile size: 512 × 512; Network input size:
256 × 256.

Figures 12–14 show the model accuracy budget associated with each of the optimal
model weight files when tested on the test RTS samples from Banks Island, the ESL, and the
combined RTS samples, respectively. Each figure represents the test accuracies associated
with three image tile sizes (2048 × 2048, 1024 × 1204, and 512 × 512) and corresponding
network inputs sizes (1024 × 1024, 5125 × 512, and 256 × 256). When analyzing the test
accuracy budget based on the RTSs from each of the study sites and the combined RTSs,
it is evident that the trained models showed the highest accuracies when they had the
combination of image tiles size of 2048 × 2048 and network input tile size of 1024 × 1204.
Confusion matrices from Banks Island (Figure 12a–c) report the highest true RTS (83%) rate
and the lowest false RTS (17%) rate when the image tile of 2048 × 2048 is resized to the
network input size of 1024 × 1024.
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Figure 11. Training (blue line) and validation (orange line) Dice loss curves based on the hand-
annotated data from the Eureka Sound Lowlands and Banks Island (combined RTS training data).
Array sizes are shown in pixels. (a) Image tile size: 2048 × 2048. Network input size: 1024 × 1024.
(b) Image tile size: 2048 × 2048. Network input size: 512 × 512. (c) Image tile size: 2048 × 2048.
Network input size: 256 × 256. (d) Image tile size: 1024 × 1024. Network input size: 1024 × 1024.
(e) Image tile size: 1024 × 1024. Network input size: 512 × 512. (f) Image tile size: 1024 × 1024.
Network input size: 256 × 256. (g) Image tile size: 512 × 512. Network input size: 512 × 512.
(h) Image tile size: 512 × 512. Network input size: 256 × 256.
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Figure 12. Model test accuracy based on the hand annotated RTS from Banks Island. (a) Image
tile size of 2048 × 2048 resized to network input sizes of 256 × 256, 512 × 512, and 1024 × 1024.
(b) Image tile size of 1024 × 1024 resized to network input sizes of 256 × 256, 512 × 512, and without
resizing as 1024 × 1024. (c) Image tile size of 512 × 512 resized to network input size of 256 × 256
and without resizing as 512 × 512. Bar charts depict accuracy measures of Precision, recall, and F1
score. Corresponding confusion matrix for each of the scenarios shown on the right.



Remote Sens. 2022, 14, 4132 23 of 40

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 39 
 

 

Figure 13. Model test accuracy based on the hand-annotated RTS from the Eureka Sound Lowlands. 
(a) Image tile size of 2048 x 2048 resized to network input sizes of 256 × 256, 512 × 512, and 1024 × 

(a)   

  

  

Image tile size 2048 × 2048 , 
Network input size 256 × 256 

Image tile size 2048 × 2048 , 
Network input size 512 × 512 

 

 

 Image tile size 2048 × 2048 , 
Network input size 1024 × 

1024 

 

(b)   

 

  

Image tile size 1024 × 1024 , 
Network input size 256 × 256 

Image tile size 1024 × 1024 , 
Network input size 512 × 512 

 

 

 Image tile size 1024 × 1024 , 
Network input size 1024 × 

1024 

 

(c)   

  

  

Image tile size 512 × 512 , 
Network input size 256 × 256 

Image tile size 512 × 512 , 
Network input size 512 × 512 

Figure 13. Model test accuracy based on the hand-annotated RTS from the Eureka Sound Lowlands.
(a) Image tile size of 2048 × 2048 resized to network input sizes of 256 × 256, 512 × 512, and
1024 × 1024. (b) Image tile size of 1024 × 1024 resized to network input sizes of 256 × 256, 512 × 512,
and without resizing as 1024 × 1024. (c) Image tile size of 512 × 512 resized to network input size of
256 × 256 and without resizing as 512 × 512. Bar charts depict accuracy measures of Precision, recall,
and F1 score. Corresponding confusion matrix for each of the scenarios shown on the right.
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Figure 14. Model test accuracy based on the hand-annotated RTS from both Banks Island and the
Eureka Sound Lowlands (combined RTS samples). (a) Image tile size of 2048 × 2048 resized to
network input sizes of 256 × 256, 512 × 512, and 1024 × 1024. (b) Image tile size of 1024 × 1024
resized to network input sizes of 256 × 256, 512 × 512, and without resizing as 1024 × 1024. (c) Image
tile size of 512 × 512 resized to network input size of 256 × 256 and without resizing as 512 × 512.
Bar charts depict accuracy measures of Precision, recall, and F1 score. Corresponding confusion
matrix for each of the scenarios shown on the right.
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There is a marked leap in the false positive rate of RTSs due to an increasing resizing
factor. When the image tile of 2048 × 2048 is resized to the network input tile size of
256 × 256, the false RTS rate reaches up to 30% (Figure 12a). The highest true RTS rate
(73%) was reported by the image tile size to network input size combination of 2048 × 2048.
The lowest false RTS rate (27%) was reported by the image tile size to network input size
combination of 1024 × 1024 (Figure 13). The models that were trained using the combined
RTS data (i.e., RTS samples from both Banks Island and ESL) also highlighted the impact
of image tile size and resizing factor on model prediction accuracies. The combination
2048 × 2048 to 1024 × 1024 secured the highest true RTS rate (76%).

The impact of image tile size on the UNet model performances is visible when compar-
ing the accuracy plots and confusion matrices (see Figures 13a,b, 14a,b and 15. A reduction
in the image tile size reduces the inclusion of the background (in other words, the target
dominates the image tile). This class imbalance between the target and the background
leads to higher rates of false background. For instance, as seen in Figure 14b,c, when
the image tile (512 × 512) is introduced without resizing to the network (512 × 512), the
false background rate was 3%. However, when the image tile (1024 × 1024) is introduced
without resizing to the network (1024 × 1024), the false background rate was 1%.Remote Sens. 2022, 14, x FOR PEER REVIEW 25 of 39 
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RTS detection rate of 2%. Comparatively, the B- > E pathway performed well with a true 
RTS detection rate of 26%. This explains that the model trained using RTSs from Banks 
Island show some degree of elasticity compared to the model trained using RTS samples 
from ESL. When both RTS sample sets are combined, the trained model exhibited a 
conspicuous improvement in prediction accuracies. In both the C- > E and C- > B 
pathways, the F1 score was over 0.75. When comparing the true RTS rates, the C- > E and 
C- > B pathways reported rates of 68% and 83%, respectively. Overall, the combined model 
performed well in Banks Island, exhibiting a greater degree of generalizability.  
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Figure 15. Effect of model transferability on the RTS prediction accuracy. Transferability scenarios
considered include: (1) the DLCNN model trained on the RTS data from Banks Island (B) and applied
to test data from Eureka Sound Lowlands (E), (2) the DLCNN model trained on the RTS data from
Ellesmere Island (E) and applied to test data from Banks Island (B), (3) the DLCNN model trained on
the combined RTS data and applied to Eureka Sound Lowlands (E), and (4) the DLCNN model trained
on the combined RTS data and applied to Banks Island (B). Bar charts depict accuracy measures of
Precision, recall, and F1 score. Corresponding confusion matrix for each of the scenarios shown on
the right.

Accuracy metric values and confusion matrices pertaining to the model transferability
analysis are shown in Figure 15. We used the combination of image tile size (2048 × 2048)
and network input size (1024 × 1024) in the transferability analysis. We considered four
transferability pathways:

(1) Train the UNet model based on Banks Island (B) data and test it on the RTSs from
ESL (E) (B- > E);
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(2) Train the UNet model based on ESL (E) and test it on the RTSs from Banks Island
(E- > B);

(3) Train the UNet model based combined samples (C) and test it on the RTSs from
Banks Island (C- > B);

(4) Train the UNet model using combined samples and test it on the RTSs from ESL
(C- > E).

The model transferability pathway of E- > B exhibited the lowest values for the F1 score
and for the Recall compared to the other three pathways. It reported a very low true RTS
detection rate of 2%. Comparatively, the B- > E pathway performed well with a true RTS
detection rate of 26%. This explains that the model trained using RTSs from Banks Island
show some degree of elasticity compared to the model trained using RTS samples from
ESL. When both RTS sample sets are combined, the trained model exhibited a conspicuous
improvement in prediction accuracies. In both the C- > E and C- > B pathways, the F1
score was over 0.75. When comparing the true RTS rates, the C- > E and C- > B pathways
reported rates of 68% and 83%, respectively. Overall, the combined model performed well
in Banks Island, exhibiting a greater degree of generalizability.

A set of enlarged views, along with model predictions, are shown in Figures 16–18.
These figures show the impact of image tile size and network input size on the DLCNN
model performances. In Figure 16, the input image tiles (a,e,i) of 2048 × 2048 (0.5 m
spatial resolution) are resized into three network input sizes (1024 × 1024 (b,f,j), 512 × 512
(c,g,k), and 256 × 256 (d,h,f)). In all cases, the spatial footprint of the image tile is kept
unchanged, while the spatial resolution is degraded progressively. It is evident that resizing
of 2048 × 2048 to 1024 × 1024 provided the highest geometrical congruency of the predicted
RTS object (see yellow outline) and the actual RTS seen in the image (see white arrow).
Accuracy of RTS boundary detection has decreased with respect to increasing resizing
factor (see Figure 16g,h). For smaller RTS objects, as shown in Figure 16j–i, a higher resizing
factor (e.g., 2048 × 2048 to 256 × 256) can lead to missed detections (For example, no
detections seen in Figure 16i).

A closer inspection on Figure 17 can provide further insights to understand the
relationship between the RTS object size and the resizing factor. In this case, the image
tiles of 1024 × 1024 resolution have progressively been resized to two network input sizes
(512 × 512 and 2565 × 256). For large RTS objects, the shape and geometrical congruency are
mostly intact despite the increasing resizing factor (see Figure 16f–h). Figure 18 illustrates
the model prediction results pertaining to the image tiles of 512 × 512 and 256 × 256.

Zoomed-in views shown in Figures 19–23 aim to further explain how the resizing
factor affect the DLCNN model performances. In the cases shown in Figures 21 and 22,
the spatial footprint size of the image tile is preserved. However, the spatial resolution
(0.5 m) is down-sampled to match different network input sizes. We employed the Canny
edge detection algorithm on the original image tile and the resized images to visualize
the changes in high frequency information (i.e., edges). For large, homogenous, well-
pronounced, and spatially discrete RTS objects (see Figure 21), the impact of resizing
factor is trivial. However, in the case of small-size and closely packed RTSs, the model
performances could be influenced by the degrading resolution (see Figure 20c,d). Losing
high-frequency information due to increasing the resizing factor (512 × 512 and 256 × 256)
would degrade the boundary detection and object separability. For instance, see red arrows
on the resized images and corresponding Canny edge rasters in Figure 20c,d,g,h).
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Figure 16. Example zoomed-in views of DLCNN model predictions on the test data from selected
location of Banks Island and the Eureka Sound Lowlands. Examples exhibit training and prediction
of input image tiles 2048 × 2048 (a,e,i) with resizing into 3 different network input sizes: 1024 × 1024
(b,f,j); 512 × 512 (c,g,k), and 256 × 256 (d,h,l). Outline of the predicted RTS is shown in yellow.
White arrows indicate the location of the RTS. Underlying imagery is at 0.5 m resolution as false color
composites.
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Figure 17. Example zoomed-in views of DLCNN model predictions on the test data from selected 
location of Banks Island and the Eureka Sound Lowlands. Examples exhibit training and prediction 
of input image tiles of 1024 × 1024 (a,e,i) without resizing 1024 × 1024 (b,f,j) and with resizing into 
two network input sizes: 512 × 512 (c,g,k), and 256 × 256 (d,h,l). Outline of the predicted RTS is 
shown in yellow outline. White arrows indicate the location of RTS. Underlying imagery is at 0.5 m 
resolution as false color composites. 
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Figure 17. Example zoomed-in views of DLCNN model predictions on the test data from selected
location of Banks Island and the Eureka Sound Lowlands. Examples exhibit training and prediction
of input image tiles of 1024 × 1024 (a,e,i) without resizing 1024 × 1024 (b,f,j) and with resizing into
two network input sizes: 512 × 512 (c,g,k), and 256 × 256 (d,h,l). Outline of the predicted RTS is
shown in yellow outline. White arrows indicate the location of RTS. Underlying imagery is at 0.5 m
resolution as false color composites.
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Figure 18. Example zoomed-in views of DLCNN model predictions on the test data from selected 
location of Banks Island and the Eureka Sound Lowlands. Examples show training and prediction 
of input image tiles of 512 × 512 (a,d,g) without resizing 512 × 512 (b,e,h) and with resizing into one 
network input size: 256 × 256 (c,f,i). Outline of the predicted RTS is shown in yellow outline. White 
arrows indicate the location of RTS. Underlying imagery is at 0.5 m resolution as false color 
composites. 
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Figure 18. Example zoomed-in views of DLCNN model predictions on the test data from selected
location of Banks Island and the Eureka Sound Lowlands. Examples show training and prediction
of input image tiles of 512 × 512 (a,d,g) without resizing 512 × 512 (b,e,h) and with resizing into
one network input size: 256 × 256 (c,f,i). Outline of the predicted RTS is shown in yellow outline.
White arrows indicate the location of RTS. Underlying imagery is at 0.5 m resolution as false color
composites.
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Figure 19. Exampled zoomed-in views (a–d) showing the effect of image resizing (spatial resolution 
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images are shown in (e–h). White arrows indicate the location of RTS. Underlying imagery is at 0.5 
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Resized image at 1 m resolution (1024 × 1024). (c) Resized image at 2 m resolution (512 × 512). (d) 
Resized image at 4 m resolution (256 × 256). (e) Canny edge raster at 0.5 m resolution. (f) Canny 
edge raster at 1 m resolution. (g) Canny edge raster at 2 m resolution. (h) Canny edge raster at 4 m 
resolution. 
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Figure 20. Exampled zoomed-in views (a–d) showing the effect of image resizing (spatial 
resolution degradation) on model predictions. Canny edge images of corresponding original and 
resized images are shown in (e–h). White arrows indicate the location of RTS. Underlying imagery 
is at 0.5 m resolution with false color composite. (a) Original image at 0.5 m resolution. (b) Resized 
image at 1 m resolution (1024 × 1024). (c) Resized image at 2 m resolution (512 × 512). (d) Resized 
image at 4 m resolution (256 × 256). (e) Canny edge raster at 0.5 m resolution. (f) Canny edge raster 
at 0.5 m resolution. (g) Canny edge raster at 2 m resolution. (h) Canny edge raster at 4 m resolu-
tion. 

Figure 19. Exampled zoomed-in views (a–d) showing the effect of image resizing (spatial resolution
degradation) on model predictions. Canny edge images of corresponding original and resized images
are shown in (e–h). White arrows indicate the location of RTS. Underlying imagery is at 0.5 m resolution
with false color composite. (a) Original image tile (2048 × 2048) at 0.5 m resolution. (b) Resized image at
1 m resolution (1024 × 1024). (c) Resized image at 2 m resolution (512 × 512). (d) Resized image at 4 m
resolution (256 × 256). (e) Canny edge raster at 0.5 m resolution. (f) Canny edge raster at 1 m resolution.
(g) Canny edge raster at 2 m resolution. (h) Canny edge raster at 4 m resolution.
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images are shown in (e–h). White arrows indicate the location of RTS. Underlying imagery is at 0.5 
m resolution with false color composite. (a) Original image at 0.5 m resolution. (b) Resized image 
at 1 m resolution (1024 × 1024). (c) Resized image at 2 m resolution (512 × 512). (d) Resized image 
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Figure 20. Exampled zoomed-in views (a–d) showing the effect of image resizing (spatial resolution
degradation) on model predictions. Canny edge images of corresponding original and resized images
are shown in (e–h). White arrows indicate the location of RTS. Underlying imagery is at 0.5 m
resolution with false color composite. (a) Original image at 0.5 m resolution. (b) Resized image at
1 m resolution (1024 × 1024). (c) Resized image at 2 m resolution (512 × 512). (d) Resized image at
4 m resolution (256 × 256). (e) Canny edge raster at 0.5 m resolution. (f) Canny edge raster at 0.5 m
resolution. (g) Canny edge raster at 2 m resolution. (h) Canny edge raster at 4 m resolution.
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Figure 21. Fluctuation of the model-predicted RTS boundary (here zoomed into headwall of the 
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boundaries when the original image tile (2048 × 2048) is resized to match the network input sizes of 
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responding resized images are shown in (b–d). Underlying imagery are shown in false color com-
posites. (a) DLCNN model response to resizing scenario of 2048 × 2048 to 1024 × 1024 (green outline), 
2048 × 2048 to 512 × 512 (cyan outline) and 2048 × 2048 to 256 × 256 (purple outline). (b) Resized 
input image tile at 1 m resolution (1024 × 1024). (c) Resized image tile at 2 m resolution (512 × 512). 
(d) Resized image input tile at 4 m resolution (256 × 256). 

Figure 21. Fluctuation of the model-predicted RTS boundary (here zoomed into headwall of the
RTS) with respect to image resizing factor (spatial resolution degradation). (a) Model-predicted
boundaries when the original image tile (2048 × 2048) is resized to match the network input sizes
of 1024 × 1024 (green outline), 512 × 512 (cyan outline), and 256 × 256 (purple outline). Visuals
of corresponding resized images are shown in (b–d). Underlying imagery are shown in false color
composites. (a) DLCNN model response to resizing scenario of 2048 × 2048 to 1024 × 1024 (green
outline), 2048 × 2048 to 512 × 512 (cyan outline) and 2048 × 2048 to 256 × 256 (purple outline).
(b) Resized input image tile at 1 m resolution (1024 × 1024). (c) Resized image tile at 2 m resolution
(512 × 512). (d) Resized image input tile at 4 m resolution (256 × 256).
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Figure 22. Example zoomed-in views showing model transferability across study sites. (a) Original 
image from Ellesmere Island. (b) The DLCNN model trained on Banks Island’s RTS samples and 
applied to the Eureka Sound Lowlands. (c) The DLCNN model trained on combined RTS samples 
and applied to Eureka Sound Lowlands. White arrows indicate the location of RTS. Underlying 
imagery is at 0.5 m resolution as false color composites. 
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Figure 23. Example zoomed-in views capturing model transferability across study sites. (a) Original 
image from Banks Island. (b) The DLCNN model trained on Eureka Sound Lowlands’ RTS samples 
and applied to Banks Island. (c) The DLCNN model trained on combined RTS samples and applied 
to Banks Island. White arrows indicate the location of RTS. Underlying imagery is at 0.5 m resolution 
with false color composite. 

Figure 21 shows example RTSs with predicted boundaries under different resizing 
scenarios. We can observe an abrupt reduction in spatial accuracy when the input image 
tile of 2048 × 2048 is resized to match the network input size of 256 × 256 (see purple outline 
in Figure 21a). The position of the predicted headwall has shifted downslope by 
approximately 20 m (see white arrow in Figure 21a) compared to other predicted 
boundaries (see green, purple, and cyan outlines in Figure 21a).  

Example visual inspections related to model transferability analyses are shown in 
Figures 22 and 23 (ESL), and Figure 22 (Banks Island). Figure 22b shows the predicted 
RTSs (see yellow outlines) from the DLCNN model that was trained using RTS samples 
from Banks Island. This represents the transferability pathway of B- > E. Figure 22c shows 
the predicted RTSs from the model that was trained using combined RTS samples. This 
pertains to the transferability pathway of C- > E. When comparing Figure 22a,b, it is 
obvious that the model transferability is allowed but at the expense of higher false positive 
rates. The UNet model that was trained using combined RTS samples showed the best 
prediction results. This observation aligns with our quantitative assessment (see Figure 
15).  

The reverse direction (E- > B) is considered in Figure 23b. In this case, the predictions 
were made on Banks Island using the UNet model that was trained using the RTS samples 

Figure 22. Example zoomed-in views showing model transferability across study sites. (a) Original
image from Ellesmere Island. (b) The DLCNN model trained on Banks Island’s RTS samples and
applied to the Eureka Sound Lowlands. (c) The DLCNN model trained on combined RTS samples
and applied to Eureka Sound Lowlands. White arrows indicate the location of RTS. Underlying
imagery is at 0.5 m resolution as false color composites.
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Figure 23. Example zoomed-in views capturing model transferability across study sites. (a) Original
image from Banks Island. (b) The DLCNN model trained on Eureka Sound Lowlands’ RTS samples
and applied to Banks Island. (c) The DLCNN model trained on combined RTS samples and applied
to Banks Island. White arrows indicate the location of RTS. Underlying imagery is at 0.5 m resolution
with false color composite.

Figure 21 shows example RTSs with predicted boundaries under different resizing
scenarios. We can observe an abrupt reduction in spatial accuracy when the input image
tile of 2048 × 2048 is resized to match the network input size of 256 × 256 (see purple
outline in Figure 21a). The position of the predicted headwall has shifted downslope by
approximately 20 m (see white arrow in Figure 21a) compared to other predicted boundaries
(see green, purple, and cyan outlines in Figure 21a).

Example visual inspections related to model transferability analyses are shown in
Figures 22 and 23 (ESL), and Figure 22 (Banks Island). Figure 22b shows the predicted RTSs
(see yellow outlines) from the DLCNN model that was trained using RTS samples from
Banks Island. This represents the transferability pathway of B- > E. Figure 22c shows the
predicted RTSs from the model that was trained using combined RTS samples. This pertains
to the transferability pathway of C- > E. When comparing Figure 22a,b, it is obvious that
the model transferability is allowed but at the expense of higher false positive rates. The
UNet model that was trained using combined RTS samples showed the best prediction
results. This observation aligns with our quantitative assessment (see Figure 15).
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The reverse direction (E- > B) is considered in Figure 23b. In this case, the predictions
were made on Banks Island using the UNet model that was trained using the RTS samples
from ESL. Interestingly, despite the crisp appearance and the large size of the RTSs (see
white arrows on Figure 23a), the model was unable to make at least a single prediction.
This example further reinforces our quantitative results on model transferability analysis
(Figure 15). Figure 20c shows an accurate detection of RTSs when the model was trained
using combined RTS data (C- > E).

Based on the finding from our analyses; (1) image tile size and network input size and
(2) model transferability, we applied the final UNet model over two study areas to map
RTSs. In the prediction mode, we used 2048 × 2048 as the image tile size and 1024 × 1024
as the network input size. Figures 24 and 25 depict the summarized RTS area for Banks
Island and the ESL, respectively. For the sake of representation purposes, we have overlain
a hexagonal grid (cell size of 100 ha) and calculated the detected RTS area in each hexagon.
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Figure 25. Retrogressive thaw slump (RTS) map for the Eureka Sound Lowlands based on the 
predictions of the optimal DLCNN model that was trained based on combined hand-annotated 
samples and optimal image tile size and network input size. The size of the map symbol (red circle) 
is proportional to the area (in ha) of the RTS falling inside a hexagonal grid. Each grid cell covers 
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4. Discussion 

Figure 24. Retrogressive thaw slump (RTS) map for Banks Island based on the predictions of the
optimal DLCNN model that was trained based on combined hand-annotated samples and optimal
image tile size and network input size. The size of the map symbol (red circle) is proportional to the
area (in ha) of the RTS falling inside a hexagonal grid. Each grid cell covers 100 ha. Yellow shading
on zoomed-in views indicates detected RTS.
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Figure 25. Retrogressive thaw slump (RTS) map for the Eureka Sound Lowlands based on the
predictions of the optimal DLCNN model that was trained based on combined hand-annotated
samples and optimal image tile size and network input size. The size of the map symbol (red circle)
is proportional to the area (in ha) of the RTS falling inside a hexagonal grid. Each grid cell covers
100 ha. Yellow shading on zoomed-in views indicates detected RTS.
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4. Discussion

As seen in our quantitative assessments and visual inspections, when the RTS object is
substantially larger than the image tile size, the model learns features from the object itself
but overlooks the contextual information. Thus, when deciding the image tile size in an
operational image analysis pipeline, one should be conversant to the size distribution of
the geo-object of interest rather pursuing an arbitrary array size or solely relying on the
pre-defined CNN network input size. It is also important to consider the spatial continuity
of the geo-object of interest; for instance, ice-wedge polygons typically represent a repeated
pattern on the ground [92,93], while RTSs stand out as discrete landform units from the
surrounding landscape.

A moderate level of resizing causes the homogenization of image pixels. It reduces
the intra-class variability of VHSR imagery [94,95]. The resizing process also benefits the
inclusion of additional contextual information while maintaining the spatial footprint size.
The F1 scores from multiple simulation scenarios consistently elected the resizing of the
image tile size of 2048 × 2048 into network input size of 1024 × 1024 as the best setting for
the model predictions. Our results demonstrate the importance of maintaining the optimal
spatial footprint, which captures sufficient contextual information to increase the hetero-
geneity between the object of interest and its surrounding. Another angle to explain the
interdependence of object size, image tile size, and network input size is the class imbalance
between the background and the foreground. Both scenarios of background-dominated im-
age tiles and object-dominated image tiles cause class imbalances and negatively influence
the model’s performance.

Our findings captured the model response to the spatial resolution variations in the
input imagery. Image tile resizing mimics multiple spatial resolutions. The low spatial
resolution images help the DLCNN to capture more global feature representations, but
the finer features can be lost. Our findings clearly demonstrate the deterioration in model
predictions in response to the decreasing spatial resolution. When the spatial resolution is
degraded to the 4 m resolution, the detection rate was immediately reduced. This is due to
the dilution of small RTSs with the background. The boundaries of large objects showed
high spatial errors due the lack of high-frequency (edge) information. High-resolution
images allow the model to learn and capture finer details but overlook the global features
due to the increasing spectral heterogeneity of pixels.

We should realize the fact that there is always a trade-off between spatial resolution
of the imagery and the level of abstraction that we pursued to achieve in a mapping
application [96,97]. If the goal is to track the temporal migration of the RTS’s headwall
(or monitoring the changes happening to the overall RTS anatomy), one must pay close
attention to the spatial resolution of the underlying imagery. Otherwise, proceeding
calculations could be error-prone. If the goal is to enumerate the presence or absence of an
RTS over a large area, the impact of spatial resolution might be trivial. The selection of the
optimal input image resolution is therefore vital in the successful adaptation of DLCNNs
in RTS mapping.

Our experimental design contained an array of model training scenarios. The learning
rate is one of the most sensitive hyper-parameters. Using decay learning rate will help to
reduce the effects of overfitting when training the network [98]. We utilized learning rate
decay to avoid overfitting during training. Another important hyper-parameter is the batch
size, since it controls the accuracy of the estimate of the error gradient when training CNNs.
Ref. [99] suggest that it is beneficial to increase the mini-batch size rather than decaying
the learning rate in training. This was evident when we tried to train 2048 images with
a 2048 network size. In this case, we had to set the mini-batch size to 1 due to the GPU’s
memory constraints. This resulted in the overfitting of the model with extremely high
accuracies for the training dataset and low accuracies for the validation data set. In contrast,
too-large batch sizes can decrease the generalization of the model [100,101]. Therefore, we
selected mini-batch sizes of 4 to 16 in the training schedule to avoid under-/over-fitting of
the model.
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The performance of DLCNNs largely depend on the quantity, quality, and accuracy of
the training data samples. If the hand-annotated samples are unable to capture variability
in the target object itself (e.g., RTS) and as well as its surroundings (e.g., microtopography,
vegetation, geology, etc.), the transferability of the DLCNN model across different land-
scapes as well as image data inputs can be difficult. Results from the model transferability
experiment elucidate the impact of spectral, spatial, and textural variations of RTS samples
on the robustness of the DLCNN model.

In addition to the results from the geometry-based analysis of RTSs (size and basic
shape), comparative results from the Haralick texture features of RTSs and the background
terrain exhibit useful information to explain the question of why certain transferability
pathways favored over the others. It is evident that the mean difference of the textural
features between the RTS and the background is significantly higher in the ESL than those
of Banks Island. Results from the principal component analysis further suggested the
greater dispersion of image texture in the hand-annotated RTS data from the ESL. This
explains why the model became brittle when migrating from the ESL to Banks Island.

In general, RTS objects (or the exposed ground) carry similar spectral characteristics
regardless of the terrain conditions. In the absence of (or sparse) vegetation in the high
Arctic, spectral contrast between the foreground and the background could be subtle.
However, landform objects could own distinct spectral characteristics. Thus, in the model
training process, inclusion of pre-mined texture features in addition to the spectral channels
could improve the accuracy of RTS recognition. This could further help in lowering the
effort on additional training data production to capture landscape variability.

The quality of training data can largely influence the accuracy (as well as the meaning-
fulness) of model predictions. It is particularly crucial in remote sensing image analysis.
Annotation is a human-driven process. Delineation of landforms at large and RTS in
specific could be a challenging task as it depends on the expertise of the analyst, the scale
at which the image is analyzed, and the properties of the image data. Accurate boundary
delineation of an RTS by a novice could be substantially different than a domain expert.
In the context of RTS mapping, it is true that we pursue an abrupt discontinuity in the
terrain based on the visual cues primarily associated with the edge information. In other
words, one could delineate the boundary of an RTS in the absence of color information.
Headwalls are key feature of RTSs, and it these be the most powerful visual cues used in
the annotation process. However, continuity of the RTS downslope is rather ill-defined
unless the toe area has a terminal object, such as a lake, a river, or the coast. In the absence
of a terminal object, we must make a decision on where to stop the annotation and close the
polygon. This cutoff point is subjective and domain-knowledge-dependent. Early stopping
of the RTS outlining process (without further moving downslope from the headwall) would
prevent the inclusion of crucial anatomical features of RTSs.

When we closely inspected RTS annotations from other studies, it was evident that the
annotation process lacks formality and consistency. Among many, some of the important
questions arising in the annotation process include: Should annotation include debris flow?
deposition area? If those should be included, how far away from the headwall should they
be? In some instances, debris flow is more extensive than the RTS itself. The taxonomy of
RTSs based on the age/structure/function is another aspect to consider in the annotation
process. The study scope was not to formalize the domain knowledge of RTS or construct
ontologies. However, our careful literature survey on RTS definitions would spur the
interest for a critical discussion on the semantics of RTS and the execution of a knowledge
formalization process.

5. Conclusions

Operational scale mapping of landforms, particularly in Arctic permafrost landscapes
that extend over millions of square kilometers, require sophisticated image analysis algo-
rithms. Owing to the inherent differences in array size, multiple spectral channels, and
scene complexity of very high spatial resolution satellite imagery coupled with landscape



Remote Sens. 2022, 14, 4132 36 of 40

variability and unique semantics embedded with geo-objects, it is important to understand
the opportunities and the challenges associated with deep learning convolutional neu-
ral net (DLCNN) algorithms pertaining to the characteristics of input image data, target
object(s), and the automated classification problem in hand. In this study, centering on
retrogressive thaw slumps (RTSs) as the model landform object and sub-meter resolution
satellite imagery as the input data stream, we systematically investigated a set of candidate
factors that decide the DLCNN model performances and the interoperability of the model
across heterogenous landscapes. Our results demonstrated the impact of image tile size,
network input size, and resizing ratio (spatial resolution) on the DLCNN model prediction
accuracies. It was found that maintaining optimal array sizes for the input image tile
and the CNN network are critical for the accurate delineation of the RTS boundary. A
representative training data set should account the spectral, spatial, textural, and contextual
variabilities of RTSs across different permafrost-region landscapes. Our results clearly
demonstrated that the robustness of the CNN model is largely pivoted to the underlying
training data. Thus, the model transferability (or the generalizability) is a vital aspect to
consider when operationalizing CNN-based RTS mapping over large geographical extents.
The current study focuses on one DLCNN architecture (UNet). In future research, we aim
to compare the performances of different DCLNN architectures and their robustness in
RTS mapping tasks.
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