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1 INTRODUCTION

1.1 The Lusztig–Vogan bijection

Let 𝕜 be an algebraically closed field, and let 𝐺𝕜 be a connected reductive algebraic group over 𝕜.
Assume that the characteristic of 𝕜 is “pretty good” for 𝐺𝕜 (see Section 2 for the definition). Let
𝐗+ be the set of dominant weights for 𝐺𝕜, and let𝕜 denote its nilpotent cone. Let

Ω𝕜 ∶=

{
(𝒪,)

|||||
𝒪 ⊂𝕜 is a nilpotent orbit, and

 is an irreducible 𝐺𝕜-equivariant vector bundle on 𝒪

}

≅ {(𝑥, 𝑉) ∣ 𝑥 ∈𝕜 and 𝑉 ∈ 𝖨𝗋𝗋(𝑍𝐺𝕜(𝑥))}∕(𝐺𝕜-conjugacy).

In the second line above,𝑍𝐺𝕜(𝑥) ⊂ 𝐺𝕜 is the stabilizer of 𝑥 for the adjoint action, and 𝖨𝗋𝗋(𝑍𝐺𝕜(𝑥)) is
the set of isomorphism classes of irreducible 𝑍𝐺𝕜(𝑥)-representations. The Lusztig–Vogan bijection
for 𝐺𝕜 is a certain natural bijection

𝐗+
∼
↔ Ω𝕜. (1.1)

For 𝕜 = ℂ, the existence of this bijection was conjectured independently by Lusztig [33, Section
10.8] and, in a rather different framework, by Vogan [47, Lecture 8]. Its existence was proved in
[1] for 𝐺ℂ = GL𝑛(ℂ) and in [14] for arbitrary 𝐺ℂ. In positive characteristic, the existence of the
bijection is a consequence of [3, Theorem 6.2] (cf. [14, Corollaries 3 and 4]).
This bijection is much better understood in the case 𝕜 = ℂ. For instance, in this case the

bijection was described explicitly in [2] in the case 𝐺ℂ = GL𝑛(ℂ). Moreover, it was proved by
Bezrukavnikov that this bijection is compatible with Lusztig’s bijection between two-sided cells
in affine Weyl groups and nilpotent orbits [33], in the sense that the first component of the pair
attached to a dominant weight 𝜆 is the orbit attached to the cell containing the minimal length
representative in the double coset of 𝜆 for the finite Weyl group.† On the other hand, essentially
nothing is known about the bijection in the case when char(𝕜) > 0.

1.2 Independence of 𝕜: orbits

The goal of this paper is to show that the bijection (1.1) is “independent of 𝕜.” To make sense of
this statement, we must first explain how to identify the various sets Ω𝕜 as 𝕜 varies. (Of course,
the left-hand side of Equation (1.1) depends only on the root datum.) This requires working with
an integral version of our group. Let 𝕆 be a complete discrete valuation ring with residue field
𝔽 (algebraically closed, of characteristic 𝑝 > 0) and fraction field 𝕂 (of characteristic 0). Let 𝐺 be
a split connected reductive group over 𝕆, and assume that 𝑝 is pretty good for 𝐺. We choose an
algebraic closure 𝕂 of 𝕂, and denote by 𝐺𝔽, resp. 𝐺𝕂, the base change of 𝐺 to 𝔽, resp. 𝕂.

† This fact is not emphasized very explicitly in Bezrukavnikov’s paper. In fact it follows from the agreement of the bijection

constructed in [14] with another such bijection, constructed using different methods in [15], and for which this property

is obvious from construction. This agreement is justified in [17, Remark 6].
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As a first step, the Bala–Carter theorem parametrizes nilpotent orbits using only information
from the root datum of 𝐺, so it gives us a canonical bijection

{nilpotent orbits for 𝐺
𝕂
}
∼
�→ {nilpotent orbits for 𝐺𝔽}, (1.2)

which will be denoted 𝖡𝖢.
As a first compatibility property, one may wonder whether the nilpotent orbits 𝒪𝕂

𝜆
and 𝒪𝔽

𝜆
attached to a dominant weight 𝜆 by the Lusztig–Vogan bijections for 𝐺𝔽 and 𝐺𝕂 match under
this bijection. We prove that this fact indeed holds.

Theorem 1.1. For any 𝜆 ∈ 𝐗+, we have 𝒪𝔽
𝜆
= 𝖡𝖢(𝒪𝕂

𝜆
).

1.3 Independence of 𝕜: representations of stabilizers

To go further in the comparison of the bijections, we must compare representations of centraliz-
ers of nilpotent elements over the two fields. To do this, we will work with McNinch’s notion of
balanced nilpotent sections, which are certain well-behaved nilpotent elements in the Lie algebra
of 𝐺 (over 𝕆). We denote by 𝑥 such a section, and by 𝑥𝔽, 𝑥𝕂 the nilpotent elements in the Lie
algebras of 𝐺𝔽 and 𝐺𝕂 obtained from 𝑥. We will also denote by 𝑍𝐺(𝑥) the centralizer of 𝑥 in 𝐺;
then the base change 𝑍𝐺(𝑥)𝔽 of 𝑍𝐺(𝑥) to 𝔽 is the scheme-theoretic centralizer of 𝑥𝔽 in 𝐺𝔽 and the
base change 𝑍𝐺(𝑥)𝕂 of 𝑍𝐺(𝑥) to 𝕂 is the scheme-theoretic centralizer of 𝑥𝕂 in 𝐺𝕂.
The second author has shown [25] that 𝑍𝐺(𝑥) is a smooth group scheme over 𝕆. In the com-

panion paper [8], we study the representation theory of disconnected reductive groups, and we
use this study here to establish the following result.

Proposition 1.2. Let 𝑥 be a balanced nilpotent section. There exists a canonical isomorphism of

Grothendieck groups

𝑑 ∶ 𝖪(𝑍𝐺(𝑥)𝕂)
∼
→ 𝖪(𝑍𝐺(𝑥)𝔽).

Moreover, the change-of-basis matrix relating the basis indexed by 𝖨𝗋𝗋(𝑍𝐺(𝑥)𝕂) to that indexed by

𝖨𝗋𝗋(𝑍𝐺(𝑥)𝔽) is upper-triangular, so there exists a canonical bijection

𝖨𝗋𝗋(𝑍𝐺(𝑥)𝕂)
∼
↔ 𝖨𝗋𝗋(𝑍𝐺(𝑥)𝔽).

Implicit in this statement is the assertion that 𝖨𝗋𝗋(𝑍𝐺(𝑥)𝕂) and 𝖨𝗋𝗋(𝑍𝐺(𝑥)𝔽) are (partially)
ordered, so that “upper-triangular”makes sense; in fact, the results of [8] show that the category of
representations of the reductive quotient of𝑍𝐺(𝑥)𝔽 admits a natural highest-weight structure. The
map 𝑑 in Proposition 1.2 is a “decomposition map” in the sense of Serre [41]; it sends irreducible
𝑍𝐺(𝑥)𝕂-modules to “Weyl modules” (i.e., standard objects) for 𝑍𝐺(𝑥)𝔽.
Since balanced nilpotent sections exist for each nilpotent 𝐺𝔽-orbit by results of McNinch [37],

combining Equation (1.2) and Proposition 1.2, we obtain a canonical bijection

Ω
𝕂

∼
↔ Ω𝔽. (1.3)

The main result of the paper is the following.
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Theorem 1.3. Let𝐺 be a split connected reductive group over𝕆. The following diagram commutes:

Note that this result in particular subsumes Theorem 1.1.

1.4 Modular reduction

To prove Theorem 1.3, we must dig into the construction of the bijection (1.1). This involves the
notion of perverse-coherent sheaves on the nilpotent cones 

𝕂
and 𝔽 of 𝐺𝕂 and 𝐺𝔽. To com-

pare the two, we again need some intermediary that lives over 𝕆. It may be possible to work
directly with “perverse-coherent sheaves” on an 𝕆-form of the nilpotent cone, but this presents
certain technical challenges, and this is not the approach we take in the present paper. Instead,

we work with the closely related notion of exotic sheaves on the Springer resolution ̃ , in part
because the foundations needed to define and study them over 𝕆 are already available [18], and
also because the structure of the corresponding t-structure is much more rigid than that of the
perverse-coherent t-structure (in fact it is defined by an exceptional sequence, and its heart is a
highest weight category).
The technique of using sheaves with coefficients in a local ring is quite classical in the setting

of constructible sheaves. Here we have to work with coherent sheaves, and even though this tech-
nique also makes sense in this context, it turns out to be much harder to use. In particular, there
is no elementary analogue over 𝕆 of the “stratification by 𝐺-orbits” for

𝕂
or𝔽. One can study

the (coherent) pullback of a complex of coherent sheaves to a point in the nilpotent cone, but this
operation is not exact, so it is more difficult to use. To overcome this difficulty, we introduce and
work with “integral versions” of Slodowy slices, which might be of independent interest.

1.5 Reduced standard objects

By definition, the closure of the orbit attached to 𝜆 by the Lusztig–Vogan bijection is the support
of a certain simple perverse-coherent sheaf on the nilpotent cone. Every such simple object is
a quotient of a certain “standard” object—but this is not useful for studying supports, because
all standard objects have full support in the nilpotent cone. Instead, we need to construct some
“smaller” objects which still surject onto our simple perverse-coherent sheaves. These objects,
which we call “reduced standard objects,” are obtained by “modular reduction” from the corre-
sponding simple perverse-coherent sheaf over 𝕂. (The idea of such a construction goes back at
least to work of Cline–Parshall–Scott [21].) These objects are different from the corresponding
simple perverse-coherent sheaf, but as a step towards Theorem 1.3 we prove that the support of

the reduced standard object associated with 𝜆 is 𝖡𝖢(𝒪𝕂
𝜆
).
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1.6 Motivation

Our main motivation for considering the problem studied in the present paper comes from the
Humphreys conjecture on support varieties of indecomposable tilting modules for 𝐺𝔽 [27]. This
conjecture predicts that these support varieties are closures of nilpotent 𝐺𝔽-orbits determined
by Lusztig’s bijection between two-sided cells and nilpotent orbits. This conjecture was proved in
type𝐀 by the second author [24], and in [7], adapting some constructions of Bezrukavnikov (in the
analogous setting of quantum groups at a root of unity) we proved it in large characteristic (with-
out an explicit bound); however outside of type 𝐀 this conjecture is still open for “reasonable”
prime characteristics.† A priori, to a dominant weight 𝜆 one can attach two nilpotent 𝐺𝔽-orbits
which could describe support varieties of tilting modules with a highest weight attached to 𝜆:

either 𝒪𝔽
𝜆
or 𝖡𝖢(𝒪𝕂

𝜆
). The orbit that appears “naturally” in this problem (at least via the methods

of [7]) is𝒪𝔽
𝜆
, but the one used by Humphreys is 𝖡𝖢(𝒪𝕂

𝜆
). This distinction did not cause any trouble

in [7] because for other reasons we had to restrict to large characteristics, but it would play a role
in any attempt to prove this conjecture for smaller characteristics. Theorem 1.1 shows that these
orbits coincide, thus solving this discrepancy.
In [9] we propose some conjectures‡ which aim at putting the Humphreys conjecture in a

larger picture, in a hope of clarifying its significance. These conjectures involve only the orbits
𝒪𝔽
𝜆
, and their compatibility with the Humphreys conjecture is guaranteed by the results of the

present paper.

1.7 Contents of the paper

We begin in Section 2 with generalities on reductive groups, the nilpotent cone, and the Springer
resolution. This section also reviews the construction of the Lusztig–Vogan bijection (1.1) in terms
of simple perverse-coherent sheaves. In Section 3, we introduce and study an 𝕆-analogue of a
Slodowy slice to a nilpotent orbit. This will serve as an important technical tool later in the paper.
In Section 4, we define the exotic t-structure and record some of its basic properties. (This

construction builds on general results on exceptional collections defined over complete discrete
valuation rings, proved in Appendix A.) As an application, in Section 5, we use exotic sheaves
to define a new class of perverse-coherent sheaves over 𝔽, called reduced standard objects. The
main result of Section 5 is a kind of first approximation to Theorem 1.1: it asserts that the sup-
ports of reduced standard objects correspond via Equation (1.2) to nilpotent orbits arising from
the Lusztig–Vogan bijection for 𝕂. Finally, in Section 6 we prove Theorem 1.3.

1.8 Convention

At various points in the paper we consider certain schemes and affine group schemes that could
be defined over various base rings. To avoid confusion we use subscripts to specify the base ring of
schemes. (However, we do not use subscripts for morphisms, since the ring under consideration

†After this paper appeared in preprint form, a proof of the relative version of the Humphreys conjecture for 𝑝 larger than

the Coxeter number was obtained by the first two authors [6].

‡ Some of these conjectures have now been proved in [6].
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is always clear from context.) In order to avoid notational clutter, we will sometimes affix a single
subscript 𝕜 to some constructions like products or categories of equivariant coherent sheaves,
writing, for example, 𝖢𝗈𝗁𝐺(𝑋)𝕜 instead of 𝖢𝗈𝗁

𝐺𝕜(𝑋𝕜).

2 NOTATION AND PRELIMINARIES

2.1 Reductive groups

Let𝕆 be a complete discrete valuation ring with residue field 𝔽, and denote by 𝕂 the fraction field
of 𝕆. We assume throughout that 𝔽 is algebraically closed, of characteristic 𝑝 > 0, and that 𝕂 has
characteristic 0. We also fix an algebraic closure 𝕂 of 𝕂.
Let 𝐺 be a split connected reductive group over 𝕆, and let 𝑇 ⊂ 𝐺 be a split maximal torus.

This group corresponds to some root datum (𝐗,𝐗∨, 𝑅, 𝑅∨), where 𝐗 is the character lattice of 𝑇,
and 𝐗∨ is the cocharacter lattice. Let𝑊 be the Weyl group of 𝑅 (or of 𝐺), and let 𝑤0 ∈ 𝑊 be its
longest element.
Choose, once and for all, a positive subsystem 𝑅+ ⊂ 𝑅. Let 𝐵 ⊂ 𝐺 be the subgroup generated by

the maximal torus 𝑇 and by the root subgroups corresponding to the negative roots. Denote the
Lie algebras of 𝐺, 𝐵, and 𝑇 by 𝔤, 𝔟, and 𝔱, respectively. As an 𝕆-module, 𝔟 decomposes as

𝔟 = 𝔱 ⊕ 𝔫 where 𝔫 =
⨁
𝛼∈−𝑅+

𝔤𝛼.

We set

𝐺𝔽 ∶= Spec(𝔽) ×Spec(𝕆) 𝐺, 𝐺𝕂 ∶= Spec(𝕂) ×Spec(𝕆) 𝐺, 𝐺𝕂 ∶= Spec(𝕂) ×Spec(𝕆) 𝐺.

Their Lie algebras can be described as

𝔤𝔽 = 𝔽⊗𝕆 𝔤, 𝔤𝕂 = 𝕂⊗𝕆 𝔤, 𝔤𝕂 = 𝕂⊗𝕆 𝔤

respectively, see, for example, ref. [40, Section 2.1] for details. Similar notation is used for the
groups or Lie algebras obtained from 𝐵 or 𝑇 by change of scalars.
We assume throughout the paper that 𝑝 is pretty good for 𝐺 in the sense of [26, Definition 2.11].

This means that 𝑝 is good for 𝐺, and in addition, the abelian groups 𝐗∕ℤ𝑅 and 𝐗∨∕ℤ𝑅∨ have no
𝑝-torsion. By [26, Theorem 5.2], this assumption is equivalent to requiring 𝐺𝔽 to be standard in
the sense of [39, Section 4]. The following fact is probably known to experts.

Lemma 2.1. There is a 𝐺-invariant perfect pairing (−,−) ∶ 𝔤 × 𝔤 → 𝕆.

Proof. The analogous claim for 𝔤𝔽 is proved in [38, Proposition 12] (see also [39, Remark 4.4]).
Let us briefly review how this proof goes. (In this paragraph only, we let 𝐺 denote a connected
reductive group over 𝔽.). One first treats the easy case in which 𝐺 is of the form

𝐺 = 𝑆 × 𝐻 where

⎧⎪⎨⎪⎩

𝑆 is a torus, and

𝐻 is a semisimple, simply-connected group

for which 𝑝 is very good.

(2.1)
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Next, according to [26, Theorem 5.2], any connected reductive group over 𝔽 for which 𝑝 is pretty
good can be obtained from a group as in Equation (2.1) by a finite sequence of the following
operations:

(1) Replace 𝐺 by a Levi subgroup 𝐺′.
(2) Replace 𝐺 by a group 𝐺′ such that there is a separable isogeny 𝐺 → 𝐺′ or 𝐺′ → 𝐺.
(3) Replace 𝐺 by a group 𝐺′ such that 𝐺 is isomorphic to a product 𝑆 × 𝐺′ with 𝑆 a torus.

To finish the proof, one shows that in each of these three operations, if the Lie algebra of𝐺 admits
an invariant nondegenerate bilinear form, then the same holds for 𝐺′.
We now return to the setting of the lemma, inwhich𝐺 is a split reductive group over𝕆. Observe

that each of the three operations above also makes sense in the context of split reductive groups
over 𝕆. (For Equation (2), we require that the base change to 𝔽 is separable.) Since isomorphism
classes of split reductive groups over 𝔽 and𝕆 correspond via base change, we can therefore follow
the same strategy as above, starting with the easy case in Equation (2.1).
Step 0. Proof for 𝐺 of the form (2.1). In this case 𝐺 is the product of a torus and a number of

quasisimple, simply connected groups. It is enough to treat these factors separately. Any perfect
pairing on the Lie algebra of the torus factor 𝑆 is 𝑆- (and hence 𝐺-) invariant. Now let 𝐻1 be a
quasisimple direct factor of 𝐻, and let 𝔥1 be its Lie algebra. If 𝐻1 is of exceptional type, then it
follows from [44, Sections 4.8 and 4.9] that the Killing form on 𝔥1 is a perfect pairing. If 𝐻1 is
of classical type, then it admits a “defining representation” 𝐻1 → 𝐺𝐿𝑛(𝕆). Consider the induced
map

𝜌 ∶ 𝔥1 → 𝔤𝔩𝑛(𝕆)

and equip 𝔥1 with the pairing (𝑋, 𝑌) ↦ tr(𝜌(𝑋)𝜌(𝑌)). This pairing induces nondegenerate pair-
ings over both 𝕂 and 𝔽 (see [44, Section 1.5.3] and [32, Corollary 2.5.8 and Proposition 2.5.10]), so
it must be a perfect pairing over 𝕆.
Step 1. If the lemma holds for 𝐺, it holds for any Levi subgroup of 𝐺. Let 𝐺′ be a Levi subgroup of

𝐺 containing 𝑇. Then 𝐺′ is the centralizer of a subtorus 𝑆 ⊂ 𝑇: namely, 𝑆 is the subtorus whose
cocharacter lattice is the sublattice of 𝐗∨ consisting of elements annihilated by all roots of 𝐺′.
Under the adjoint action of 𝑆 on 𝔤, the latter decomposes as

𝔤 =
⨁
𝜆∈𝑋∗(𝑆)

𝔤𝜆,

where 𝑋∗(𝑆) is the character lattice of 𝑆 (a quotient of 𝐗). Any 𝐺-invariant perfect pairing on 𝔤
restricts to a perfect pairing 𝔤𝜆 × 𝔤−𝜆 → 𝕆. In particular, it gives a 𝐺

′-invariant perfect pairing
𝔤0 × 𝔤0 → 𝕆. Since 𝔤0 is the Lie algebra of 𝐺

′, we are done.
Step 2. If the lemmaholds for𝐺, it holds for any group related to𝐺 by a central isogenywhose reduc-

tion modulo 𝑝 is separable. Suppose we have a central isogeny 𝐺 → 𝐺′ whose reduction modulo
𝑝 is separable. Then the corresponding map on Lie algebras 𝔤𝔽 → 𝔤

′
𝔽
is an isomorphism. Since

𝔤𝕂 → 𝔤
′
𝕂
is also an isomorphism, we conclude that 𝔤 → 𝔤′ is an isomorphism. Any invariant per-

fect pairing on 𝔤 can be transferred to 𝔤′ via this isomorphism. The same reasoning applies if we
have a central isogeny in the opposite direction, 𝐺′ → 𝐺.
Step 3. If the lemma holds for 𝐺 = 𝑆 × 𝐺′, where 𝑆 is a split torus and 𝐺′ is split reductive, then

then it holds for𝐺′. Let 𝔰′ and 𝔤′ denote the Lie algebras of 𝑆 and𝐺′, respectively. The existence of a
𝐺-invariant perfect pairing on 𝔤 implies that there is a 𝐺-equivariant (and hence 𝐺′-equivariant)
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isomorphism between 𝔤 ≅ 𝔰 ⊕ 𝔤′ and 𝔤∗ ≅ 𝔰∗ ⊕ (𝔤′)∗. (Here 𝔤∗ = Hom𝕆(𝔤,𝕆).) Now, 𝔰 and 𝔰
∗

are both trivial 𝐺′-modules that are isomorphic as 𝕆-modules. They are therefore isomorphic as
𝐺′-modules.
In the category of𝐺′-modules that are finitely generated over𝕆, the endomorphism ring of any

object is a finitely generated𝕆-module. Since𝕆 is a complete local ring, it follows that every such
endomorphism ring is semiperfect, by [31, Example 23.3]. Then, by [20, Theorem A.1], the Krull–
Schmidt theorem holds in this category. Since we have 𝐺′-equivariant isomorphisms 𝔰 ⊕ 𝔤′ ≅
𝔰∗ ⊕ (𝔤′)∗ and 𝔰 ≅ 𝔰∗, we conclude that there is a 𝐺′-equivariant isomorphism 𝔤′ ≅ (𝔤′)∗. This is
equivalent to the existence of a 𝐺′-invariant perfect pairing on 𝔤′. □

Remark 2.2.

(1) In Step 3 of the preceding proof, the invariant perfect pairing on 𝔤′ is not obtained by restrict-
ing the invariant pairing on 𝔤. Indeed, in general, the restriction to 𝔤′ of a perfect pairing on
𝔤may fail to be perfect.

(2) In many examples, one can find a symmetric 𝐺-invariant perfect pairing (cf. [36, Remark 4]),
but we do not know if this holds for all reductive groups. The difficulty lies essentially in the
lack of an explicit construction in Step 3 of the preceding proof. We thank G. McNinch for
helpful comments on this point.

Lemma 2.3. There exists a central isogeny 𝜎 ∶ 𝐺 → 𝐺 such that the following conditions hold:

(1) The derived subgroup of 𝐺 is simply connected.
(2) 𝑝 is pretty good for 𝐺, that is, the quotient of the cocharacter lattice of a maximal torus of 𝐺 by

the root lattice has no 𝑝-torsion.

(3) The map 𝜎 ∶ 𝐺𝔽 → 𝐺𝔽 is separable.

Moreover, 𝜎 identifies the Lie algebra of 𝐺 with 𝔤.

Proof. Consider the torsion subgroup (𝐗∨∕ℤ𝑅∨)tors ⊂ 𝐗
∨∕ℤ𝑅∨. Choose a complement 𝐹, so that

𝐗∨∕ℤ𝑅∨ ≅ (𝐗∨∕ℤ𝑅∨)tors ⊕𝐹. Thus, 𝐹 is a maximal free summand of 𝐗
∨∕ℤ𝑅∨. Let 𝐗̃∨ ⊂ 𝐗∨ be

the preimage of 𝐹 under the quotient map 𝐗∨ → 𝐗∨∕ℤ𝑅∨.
Let 𝐗̃ = Homℤ(𝐗̃

∨,ℤ). The group 𝐗 is naturally identified with a subgroup of 𝐗̃. The quadru-
ple (𝐗̃, 𝐗̃∨, 𝑅, 𝑅∨) is a root datum. Let 𝐺 be the corresponding split reductive group over 𝕆. The
obvious morphism of root data gives rise to a central isogeny 𝐺 → 𝐺. Because 𝐗̃∨∕ℤ𝑅∨ is torsion-
free, the derived subgroup of 𝐺 is simply connected. Since 𝑝 does not divide the order of the finite
group 𝐗̃∕𝐗 (which is isomorphic to (𝐗∨∕ℤ𝑅∨)tors), the map 𝜎 ∶ 𝐺𝔽 → 𝐺𝔽 is separable.
For the last assertion, let 𝔤̃ be the Lie algebra of𝐺. Since the inducedmaps 𝔤̃𝕂 → 𝔤𝕂 and 𝔤̃𝔽 → 𝔤𝔽

are isomorphisms, the map 𝔤̃ → 𝔤 is as well. □

2.2 The Springer resolution

Let

̃ = 𝐺 ×𝐵 𝔫.
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The group 𝐺 acts on this scheme in the obvious way, so we may consider the bounded derived
category

𝐷b𝖢𝗈𝗁𝐺(̃ )

of 𝐺-equivariant coherent sheaves on ̃ .

Lemma 2.4. There exists a 𝐺-equivariant isomorphism ̃ ≅ 𝐺 ×𝐵 (𝔤∕𝔟)∗.

Proof. Choose a 𝐺-equivariant perfect pairing (−,−) ∶ 𝔤 × 𝔤 → 𝕆 as in Lemma 2.1. This induces

a 𝐵-equivariant isomorphism 𝔫
∼
�→ (𝔤∕𝔟)∗. □

Let

𝜋̃ ∶ ̃ → 𝔤

be the map given by 𝜋̃(g , 𝑥) = Ad(g)(𝑥). This map is proper, and gives rise to a functor

𝜋̃∗ ∶ 𝐷
b𝖢𝗈𝗁𝐺(̃ ) → 𝐷b𝖢𝗈𝗁𝐺(𝔤).

There is also an obvious map 𝑝 ∶ ̃ → 𝐺∕𝐵. Any 𝐵-representation that is finitely generated over
𝕆 gives rise to a 𝐺-equivariant coherent sheaf on 𝐺∕𝐵 (see, for instance, [28, Sections 1.5.8 and
1.5.9]). In particular, any 𝜆 ∈ 𝐗 defines a 𝐵-module structure on the free rank-1 𝕆-module. The
corresponding (invertible) sheaf on 𝐺∕𝐵 will be denoted 𝐺∕𝐵(𝜆), and we set


̃
(𝜆) ∶= 𝑝∗𝐺∕𝐵(𝜆).

We denote by ̃𝔽, ̃𝕂, and ̃
𝕂
the schemes obtained from ̃ by change of scalars from

𝕆 to 𝔽, 𝕂, or 𝕂, respectively. We can then consider the corresponding derived categories of

coherent sheaves 𝐷b𝖢𝗈𝗁𝐺(̃ )𝔽, 𝐷
b𝖢𝗈𝗁𝐺(̃ )𝕂 and 𝐷b𝖢𝗈𝗁𝐺(̃ )

𝕂
, and the functors 𝜋̃∗. The

change-of-scalars functors for coherent sheaves on ̃ will be denoted by

𝔽(−) ∶ 𝐷b𝖢𝗈𝗁𝐺(̃ ) → 𝐷b𝖢𝗈𝗁𝐺(̃ )𝔽,

𝕂(−) ∶ 𝐷b𝖢𝗈𝗁𝐺(̃ ) → 𝐷b𝖢𝗈𝗁𝐺(̃ )𝕂,

𝕂(−) ∶ 𝐷b𝖢𝗈𝗁𝐺(̃ ) → 𝐷b𝖢𝗈𝗁𝐺(̃ )
𝕂
.

These functors commute with the functors 𝜋̃∗, in the sense that there exist canonical isomor-
phisms of functors

𝔽 ◦ 𝜋̃∗ ≅ 𝜋̃∗ ◦ 𝔽, 𝕂 ◦ 𝜋̃∗ ≅ 𝜋̃∗ ◦ 𝕂, 𝕂 ◦ 𝜋̃∗ ≅ 𝜋̃∗ ◦ 𝕂. (2.2)

2.3 The nilpotent cone and perverse-coherent sheaves

In this subsection we fix 𝕜 ∈ {𝔽,𝕂}, and let 𝕜 denote the variety of nilpotent elements in 𝔤𝕜.
(There are subtleties involved in finding the correct definition of the nilpotent scheme over𝕆. We
will not address those here, and we will work with the nilpotent variety only over an algebraically
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closed field, where the results of [29] are available.) There are maps

𝜋 ∶ ̃𝔽 →𝔽, 𝜋 ∶ ̃
𝕂
→

𝕂
,

both given by 𝜋(g , 𝑥) = Ad(g)(𝑥). Note that for 𝕜 ∈ {𝔽,𝕂} the map 𝜋̃ defined in Section 2.2 factors
as 𝜋̃ = 𝑖 ◦ 𝜋, where 𝑖 ∶𝕜 ↪ 𝔤𝕜 is the inclusion map.
The bounded derived category of 𝐺𝕜-equivariant coherent sheaves on𝕜 will be denoted by

𝐷b𝖢𝗈𝗁𝐺( )𝕜.

Since 𝜋 is proper, it gives rise to a functor

𝜋∗ ∶ 𝐷
b𝖢𝗈𝗁𝐺(̃ )𝕜 → 𝐷

b𝖢𝗈𝗁𝐺( )𝕜.

For 𝜆 ∈ 𝐗+, set

Δ
pc
𝜆
(𝕜) ∶= 𝜋∗̃

(𝑤0𝜆) and ∇
pc
𝜆
(𝕜) ∶= 𝜋∗̃

(𝜆). (2.3)

Let 𝒪 ⊂𝕜 be a 𝐺𝕜-orbit. We define the star of this orbit to be the open subvariety

St(𝒪) =
⋃

𝒪′ ⊂𝕜 a 𝐺𝕜-orbit

𝒪⊂𝒪′

𝒪′. (2.4)

Let 𝑖𝒪 ∶ 𝒪 ↪ St(𝒪) be the embedding of 𝒪 as a (reduced) closed subscheme of its star.
The category 𝐷b𝖢𝗈𝗁𝐺( )𝕜 is equipped with a remarkable t-structure called the perverse-

coherent t-structure. Its heart is denoted by

𝖯𝖢𝗈𝗁( )𝕜,

and objects in the heart are called perverse-coherent sheaves. We will not recall the definition
of the perverse-coherent t-structure in detail here, but we will review some of its key properties
below, following refs. [3, 4, 12, 14].

Remark 2.5. The results on perverse-coherent sheaves in [3, 4] are stated under the assump-
tion that 𝐺𝔽 has a simply connected derived subgroup. However, using the separable isogeny
from Lemma 2.3, it is straightforward to transfer these results to arbitrary groups in pretty
good characteristic.

Recall the definition of the support supp() of a complex  of coherent sheaves on a scheme,
see, for example, ref. [7, Section 4.1] for references; this support is a closed subset of the underlying
topological space of the given scheme. We will also consider the order ≤ on 𝐗 such that 𝜆 < 𝜇 iff
𝜇 − 𝜆 is a sum of positive roots. Finally, as in Section 1.1 we set

Ω𝕜 ∶=

{
(𝒪,)

|||||
𝒪 ⊂𝕜 is a nilpotent orbit, and

 is an irreducible 𝐺𝕜-equivariant vector bundle on 𝒪

}
.
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Then the following properties hold:

(1) The perverse-coherent t-structure is bounded, and every object in the heart 𝖯𝖢𝗈𝗁( )𝕜 has
finite length.

(2) If 𝒪 ⊂ is an orbit that is open in the support of  ∈ 𝖯𝖢𝗈𝗁( )𝕜, then 𝖧
𝑖()|St(𝒪) vanishes

for 𝑖 ≠ 1

2
codim𝒪.

(3) The objects Δpc
𝜆
(𝕜) and ∇pc

𝜆
(𝕜) lie in 𝖯𝖢𝗈𝗁( ). Moreover,

Hom(Δ
pc
𝜆
(𝕜), ∇

pc
𝜇 (𝕜)) ≅

{
𝕜 if 𝜆 = 𝜇,

0 otherwise.

(4) Fix a nonzero map 𝑐𝜆 ∶ Δ
pc
𝜆
(𝕜) → ∇

pc
𝜆
(𝕜), and set


pc
𝜆
(𝕜) = im(𝑐𝜆 ∶ Δ

pc
𝜆
(𝕜) → ∇

pc
𝜆
(𝕜)).

Then 
pc
𝜆
(𝕜) is a simple object in 𝖯𝖢𝗈𝗁( ). Moreover, every simple object is isomorphic

to 
pc
𝜆
(𝕜) for a unique 𝜆 ∈ 𝐗+, and each composition factor of the kernel of the surjection

Δ
pc
𝜆
(𝕜) ↠ 

pc
𝜆
(𝕜), resp. of the cokernel of the embeddingpc

𝜆
(𝕜) ↪ ∇

pc
𝜆
(𝕜), is of the form

pc
𝜇 (𝕜)

with 𝜇 < 𝜆.
(5) Let 𝒪 ⊂𝕜 be a nilpotent orbit, and let  be an irreducible 𝐺𝕜-equivariant vector bundle on

𝒪. There is unique simple perverse-coherent sheaf

(𝒪,)

that is characterized by the following properties: it is supported on 𝒪, and

𝖧
1
2
codim𝒪((𝒪,))|St(𝒪) ≅ 𝑖𝒪∗ . Moreover, every simple object is isomorphic to (𝒪,)

for a unique pair (𝒪,) ∈ Ω𝕜.

Here, items (1), (2), and (5) come from the general theory of perverse-coherent sheaves: see
[12, Section 4.2], as well as [3, Section 4.5]. Items (3) and (4) come from [3, Proposition 6.1 and
Theorem 6.2] (see also [14, Corollary 3]). In view of item (3), the map 𝑐𝜆 in item (4) is unique up
to scalar.
Note that items (4) and (5) give two different classifications of the simple objects in 𝖯𝖢𝗈𝗁( )𝕜:

one is parametrized by 𝐗+, and the other by Ω𝕜.

Definition 2.6. Let 𝕜 ∈ {𝔽,𝕂}. The Lusztig–Vogan bijection for 𝐺𝕜 is the bijection

𝐗+
∼
↔ Ω𝕜

determined by the following condition: 𝜆 ∈ 𝐗+ corresponds to (𝒪,) ∈ Ω𝕜 if 
pc
𝜆
(𝕜) ≅ (𝒪,).

One can also interpret the Lusztig–Vogan bijection from a slightly different point of view if one
chooses, for any 𝐺𝕜-orbit 𝒪 ⊂𝕜, a representative 𝑥𝒪 ∈ 𝒪. Let us denote by 𝑍𝐺𝕜(𝑥𝒪) the central-

izer of 𝑥𝒪 , and by 𝑍
red
𝐺𝕜
(𝑥𝒪) its reductive quotient (i.e., the quotient of 𝑍𝐺𝕜(𝑥𝒪) by its unipotent

radical). Our assumptions imply that the natural morphism 𝐺𝕜∕𝑍𝐺𝕜(𝑥𝒪)
∼
�→ 𝒪 is an isomorphism
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of varieties (see, e.g. [39, Proposition 4.2]); hence pullback along the embedding {𝑥𝒪} ↪ 𝒪 defines
an equivalence of categories

𝖢𝗈𝗁𝐺𝕜(𝒪)
∼
�→ 𝖱𝖾𝗉(𝑍𝐺𝕜(𝑥𝒪)),

where 𝖱𝖾𝗉(𝑍𝐺𝕜(𝑥𝒪)) is the category of finite-dimensional 𝑍𝐺𝕜(𝑥𝒪)-representations. In particu-
lar, we deduce a bijection between the sets of simple objects in these two categories. Since every
irreducible 𝑍𝐺𝕜(𝑥𝒪)-module factors through the quotient map 𝑍𝐺𝕜(𝑥𝒪) → 𝑍

red
𝐺𝕜
(𝑥𝒪), we obtain a

bijection between the set of isomorphism classes of irreducible 𝐺𝕜-equivariant vector bundles on
𝒪 and the set of isomorphism classes of simple 𝑍red

𝐺𝕜
(𝑥𝒪)-modules. Thus, Ω𝕜 gets identified with

the set

Ω′𝕜 ∶=

{
(𝒪, 𝐿)

||||||
𝒪 ⊂ is a nilpotent orbit, and

𝐿 is an irreducible 𝑍red
𝐺𝕜
(𝑥𝒪)-module

}
,

and the Lusztig–Vogan bijection for 𝐺𝕜 can be thought of as a bijection

𝐗+
∼
↔ Ω′𝕜. (2.5)

The image of 𝜆 ∈ 𝐗+ under this bijection will be denoted (𝒪𝕜
𝜆
, 𝐿𝕜
𝜆
).

2.4 Graded versions

Wewill denote by 𝔾m the multiplicative group over𝕆, and by (𝔾m)𝔽 and (𝔾m)𝕂 its base change to

𝔽 and𝕂 respectively. Then 𝔾m acts on 𝔤 by 𝑧 ⋅ 𝑥 = 𝑧
−2𝑥. This makes the coordinate ring(𝔤) into

a graded ring concentrated in even, nonnegative degrees. This 𝔾m-action preserves 𝔫 ⊂ 𝔤, and it

induces a 𝔾m-action on ̃ . The 𝔾m-actions on ̃ and on 𝔤 commute with the actions of 𝐺. The

map 𝜋̃ ∶ ̃ → 𝔤 is 𝐺 × 𝔾m-equivariant, so one may consider the functor

𝜋̃∗ ∶ 𝐷
b𝖢𝗈𝗁𝐺×𝔾m(̃ ) → 𝐷b𝖢𝗈𝗁𝐺×𝔾m(𝔤).

Similar remarks apply to the 𝔽- and 𝕂-versions of these spaces. Moreover, we also have
change-of-scalars functors 𝔽 ∶ 𝐷b𝖢𝗈𝗁𝐺×𝔾m(𝔤) → 𝐷b𝖢𝗈𝗁𝐺×𝔾m(𝔤)𝔽 and 𝕂 ∶ 𝐷b𝖢𝗈𝗁𝐺×𝔾m(𝔤) →
𝐷b𝖢𝗈𝗁𝐺×𝔾m(𝔤)

𝕂
, and they commute with 𝜋̃∗ as in Equation (2.2). For 𝕜 ∈ {𝔽,𝕂}, the (𝔾m)𝕜-action

on 𝔤𝕜 preserves𝕜, so we also have functors

𝜋∗ ∶ 𝐷
b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝕜 → 𝐷

b𝖢𝗈𝗁𝐺×𝔾m( )𝕜.

We write  ↦ ⟨1⟩ for the autoequivalence of any of these categories that twists the 𝔾m-
equivariant structure by the tautological character of𝔾m. In the𝔾m-equivariant setting,wemodify
Equation (2.3) to include a normalization of the (𝔾m)𝕜-action, as follows: we set

Δ
pc
𝜆
(𝕜) ∶= 𝜋∗̃

(𝑤0𝜆)⟨𝛿𝑤0𝜆⟩ and ∇
pc
𝜆
(𝕜) ∶= 𝜋∗̃

(𝜆)⟨−𝛿𝑤0𝜆⟩,
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where 𝛿𝜆 is the length of a minimal element 𝑣 of the Weyl group such that 𝑣𝜆 ∈ −𝐗
+. (See [4,

Section 2.3].)
The definition of the perverse-coherent t-structure carries over to the (𝔾m)𝕜-equivariant setting.

The heart of the resulting t-structure is denoted by

𝖯𝖢𝗈𝗁𝔾m( )𝕜 ⊂ 𝐷
b𝖢𝗈𝗁𝐺×𝔾m( )𝕜.

This category is stable under ⟨1⟩. Properties (1) and (2) from Section 2.3 remain true as stated for
𝖯𝖢𝗈𝗁𝔾m( )𝕜, but the remaining properties must be modified as follows:

(3) The objects Δpc
𝜆
(𝕜) and ∇pc

𝜆
(𝕜) lie in 𝖯𝖢𝗈𝗁𝔾m( )𝕜. Moreover,

Hom(Δ
pc
𝜆
(𝕜), ∇

pc
𝜇 (𝕜)⟨𝑘⟩) ≅

{
𝕜 if 𝜆 = 𝜇 and 𝑘 = 0,

0 otherwise.

(4) Fix a nonzero map 𝑐𝜆 ∶ Δ
pc
𝜆
(𝕜) → ∇

pc
𝜆
(𝕜), and set


pc
𝜆
(𝕜) = im(𝑐𝜆 ∶ Δ

pc
𝜆
(𝕜) → ∇

pc
𝜆
(𝕜)).

Then 
pc
𝜆
(𝕜) is a simple object in 𝖯𝖢𝗈𝗁( )𝕜. Moreover, every simple object is isomorphic to


pc
𝜆
(𝕜)⟨𝑘⟩ for a unique pair (𝜆, 𝑘) ∈ 𝐗+ × ℤ, and each composition factor of the kernel of the

surjection Δpc
𝜆
(𝕜) ↠ 

pc
𝜆
(𝕜), resp. of the cokernel of the embedding pc

𝜆
(𝕜) ↪ ∇

pc
𝜆
(𝕜), is of the

form 
pc
𝜇 (𝕜)⟨𝑚⟩ with 𝜇 < 𝜆.

(5) Let 𝒪 ⊂𝕜 be a nilpotent orbit, and let  be an irreducible (𝐺 × 𝔾m)𝕜-equivariant vector
bundle on 𝒪. There is a unique simple perverse-coherent sheaf

(𝒪,)

that is characterized by the following properties: it is supported on 𝒪, and

𝖧
1
2
codim𝒪((𝒪,))|St(𝒪) ≅ 𝑖𝒪∗ . Moreover, every simple object is isomorphic to (𝒪,)

for a unique pair (𝒪,).

See Section 2.3 for references to [3, 12, 14] for these statements (see also Remark 2.5). Note that in
part (5), the simple objects are parametrized not byΩ𝕜, but instead by the larger setΩ

𝔾m
𝕜

consisting
of pairs (𝒪,) where  is a (𝐺 × 𝔾m)𝕜-equivariant vector bundle, rather than a 𝐺-equivariant
vector bundle. Comparing parts (4) and (5), we see that there is a graded Lusztig–Vogan bijection

𝐗+ × ℤ
∼
↔ Ω

𝔾m
𝕜
.

The extra𝔾m-action is crucial for some applications, but for most of this paper, we will work with-
out this 𝔾m-action. (One exception is the proof of Proposition 5.2, where the 𝔾m-action plays an
important role.) However, there is no loss in doing so: as explained in [5, Section 3], the graded
Lusztig–Vogan bijection is completely determined by the ordinary (ungraded) Lusztig–Vogan
bijection. In particular, the main theorem of this paper implies that the graded Lusztig–Vogan
bijection is also independent of 𝕜.
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3 BALANCED NILPOTENT SECTIONS AND ASSOCIATED
SLODOWY SLICES

3.1 Balanced nilpotent sections and their centralizers

Elements of 𝔤 are in a canonical bijection with the 𝕆-points of the 𝕆-scheme 𝔤. Following [37],
such points will be called sections. Any section 𝑥 ∈ 𝔤, considered as a morphism Spec(𝕆) → 𝔤,
determines by base change an 𝔽-point 𝑥𝔽 of 𝔤𝔽 (in other words, an element of the 𝔽-vector space
𝔤𝔽) and a 𝕂-point 𝑥𝕂 of 𝔤𝕂 (in other words, an element of the 𝕂-vector space 𝔤𝕂). The image of 𝑥𝕂
in 𝔤

𝕂
will be denoted 𝑥

𝕂
.

We will denote by

𝑍𝐺(𝑥), 𝑍𝐺(𝑥)𝔽, 𝑍𝐺(𝑥)𝕂, 𝑍𝐺(𝑥)𝕂

the scheme-theoretic centralizer of 𝑥 in 𝐺, of 𝑥𝔽 in 𝐺𝔽, of 𝑥𝕂 in 𝐺𝕂, and of 𝑥𝕂 in 𝐺𝕂, respectively.
We then have canonical identifications

𝑍𝐺(𝑥)𝔽 = Spec(𝔽) ×Spec(𝕆) 𝑍𝐺(𝑥),

𝑍𝐺(𝑥)𝕂 = Spec(𝕂) ×Spec(𝕆) 𝑍𝐺(𝑥),

𝑍𝐺(𝑥)𝕂 = Spec(𝕂) ×Spec(𝕆) 𝑍𝐺(𝑥).

Note also that if we set

𝔷𝔤(𝑥)𝔽 ∶= {𝑦 ∈ 𝔤𝔽 ∣ [𝑥𝔽, 𝑦] = 0},

𝔷𝔤(𝑥)𝕂 ∶= {𝑦 ∈ 𝔤𝕂 ∣ [𝑥𝕂, 𝑦] = 0},

𝔷𝔤(𝑥)𝕂 ∶= {𝑦 ∈ 𝔤𝕂 ∣ [𝑥𝕂, 𝑦] = 0}

then by [28, Equation (7)] we have

Lie(𝑍𝐺(𝑥)𝔽) = 𝔷𝔤(𝑥)𝔽, Lie(𝑍𝐺(𝑥)𝕂) = 𝔷𝔤(𝑥)𝕂, Lie(𝑍𝐺(𝑥)𝕂) = 𝔷𝔤(𝑥)𝕂. (3.1)

Finally, by [39, Proposition 4.2],𝑍𝐺(𝑥)𝔽 is a smooth group scheme. (Of course,𝑍𝐺(𝑥)𝕂 and𝑍𝐺(𝑥)𝕂
are also smooth.)
Following [37, Definition 1.4.1], a section 𝑥 will be called balanced if

dim(𝑍𝐺(𝑥)𝔽) = dim(𝑍𝐺(𝑥)𝕂).

(The remarks above show that our terminology is indeed compatible with that in [37].) On
the other hand, a section 𝑥 will be called nilpotent if 𝑥𝕂 is a nilpotent element in 𝔤𝕂. By [37,
Lemma 3.2.1], if 𝑥 is nilpotent then 𝑥𝔽 is a nilpotent element in 𝔤𝔽. The sections which we will be
mostly interested in are the balanced nilpotent sections.
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Remark 3.1. By invariance of the dimension under field extensions (see, e.g. [23, Proposition 5.38])
we have dim(𝑍𝐺(𝑥)𝕂) = dim(𝑍𝐺(𝑥)𝕂). Hence the “balanced” condition can also be stated purely
in terms of algebraically closed fields by requiring that dim(𝑍𝐺(𝑥)𝔽) = dim(𝑍𝐺(𝑥)𝕂).

We refer, for example, to [37,Definition 3.3.1] or [29,Definition 5.3] for the definition of a cochar-
acter associated with a nilpotent element. Recall also that under our assumptions there exists a
canonical bijection from the set of nilpotent 𝐺

𝕂
-orbits in 𝔤

𝕂
to the set of nilpotent 𝐺𝔽-orbits in

𝔤𝔽, see [7, Section 4.1] for references. This bijection will be called the Bala–Carter bijection, and
denoted 𝖡𝖢. It satisfies dim(𝒪) = dim(𝖡𝖢(𝒪)) for any 𝐺

𝕂
-orbit 𝒪. By work of Spaltenstein (see

again [7, Section 4.1] for references), it is known also that 𝖡𝖢 is a bijection of posets, for the orders
given by inclusions of closures of nilpotent orbits.
The main properties of balanced nilpotent sections from [37, Theorem 3.4.5] that we will need

are summarized in the following theorem.

Theorem 3.2 (McNinch). If 𝑦 ∈ 𝔤𝔽 is a nilpotent element, then there exists a balanced nilpotent
section 𝑥 and a cocharacter 𝜑 ∶ 𝔾m → 𝐺 such that

(1) 𝑦 = 𝑥𝔽;
(2) Spec(𝔽) ×Spec(𝕆) 𝜑 is a cocharacter associated with 𝑥𝔽;

(3) Spec(𝕂) ×Spec(𝕆) 𝜑 is a cocharacter associated with 𝑥𝕂;
(4) 𝖡𝖢(𝐺

𝕂
⋅ 𝑥
𝕂
) = 𝐺𝔽 ⋅ 𝑥𝔽.

The other important property we will use is the following.

Theorem 3.3. Let 𝑥 ∈ 𝔤 be a balanced nilpotent section. Then the𝕆-group scheme 𝑍𝐺(𝑥) is smooth

over𝕆. Moreover, the groups of connected components of the algebraic groups Spec(𝔽) ×Spec(𝕆) 𝑍𝐺(𝑥)

and Spec(𝕂) ×Spec(𝕆) 𝑍𝐺(𝑥) have the same cardinality.

Proof. These claims are proved in [25, Theorems 1.6 and 1.8]. A different argument for smoothness
is also given in Section 3.4 below. □

3.2 Integral Slodowy slices for balanced nilpotent sections

Wecontinuewith the setting of Section 3.1, and fix a balancednilpotent section𝑥 and a cocharacter
𝜑 ∶ 𝔾m → 𝐺 such that Spec(𝔽) ×Spec(𝕆) 𝜑 is a cocharacter associated with 𝑥𝔽, and Spec(𝕂) ×Spec(𝕆)
𝜑 is a cocharacter associated with 𝑥

𝕂
. Our goal is to define a “Slodowy slice” in 𝔤 attached to 𝑥.

Lemma 3.4. The 𝕆-submodule [𝑥, 𝔤] ⊂ 𝔤 is a direct summand in 𝔤.

Proof. Consider the right exact sequence of𝕆-modules 𝔤
ad(𝑥)
�����→ 𝔤 → 𝔤∕[𝑥, 𝔤] → 0. After tensoring

with 𝔽 or𝕂, one obtains analogous right exact sequences over those fields. In particular, we have

dim 𝔽⊗𝕆 (𝔤∕[𝑥, 𝔤]) = dim𝔤𝔽 − rank(ad(𝑥𝔽)) = dim 𝔷𝔤(𝑥)𝔽,

dim𝕂⊗𝕆 (𝔤∕[𝑥, 𝔤]) = dim𝔤𝕂 − rank(ad(𝑥𝕂)) = dim 𝔷𝔤(𝑥)𝕂.
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Since 𝑍𝐺(𝑥)𝔽 and 𝑍𝐺(𝑥)𝕂 are smooth (so that their dimension coincides with that of their Lie
algebra), and since 𝑥 is balanced, using Equation (3.1) we see that these dimensions are equal.
Therefore, 𝔤∕[𝑥, 𝔤] is a torsion-free 𝕆-module, and the lemma follows. □

We now consider the𝔾m-action on 𝔤 determined by 𝜑 via the adjoint action. Then 𝑥 has weight
2 for this action (because this is true by assumption over 𝕂), and the submodule [𝑥, 𝔤] ⊂ 𝔤 is
𝔾m-stable.We fix a𝔾m-stable complement𝑀 ⊂ 𝔤 for this submodule (which exists by Lemma3.4).

Lemma 3.5. All the 𝔾m-weights on𝑀 are nonpositive.

Proof. It is sufficient to prove a similar claim for the (𝔾m)𝕂-weights on 𝕂⊗𝕆 𝑀. Now by

assumption Spec(𝕂) ×Spec(𝕆) 𝜑 is a cocharacter of 𝐺𝕂 associated with 𝑥𝕂. By [29, Lemma 5.7 and
Proposition 5.8], we see that [𝑥

𝕂
, 𝔤
𝕂
] contains all the (𝔾m)𝕂-weight spaces of 𝔤𝕂 of positive weight,

which implies our claim. □

We set

𝑥 ∶= 𝑥 +𝑀 ⊂ 𝔤.

(Contrary to what the notation might suggest, this scheme depends not only on 𝑥, but of course
also on 𝜑 and 𝑀.) If we define a 𝔾m-action on 𝔤 via 𝑧 ⋅ 𝑦 = 𝑧

−2𝜑(𝑧) ⋅ 𝑦, then 𝑥 is a 𝔾m-stable
closed subscheme of 𝔤, and in view of Lemma 3.5 the weights of 𝔾m on (𝑥) are nonnegative,
the weight-0 subspace consisting of the constants 𝕆 ⊂ (𝑥). We will also denote by

𝑎𝑥 ∶ 𝐺 ×Spec(𝕆) 𝑥 → 𝔤

the morphism induced by the adjoint action.

3.3 Some properties of Slodowy slices over fields

We continue with the setting of Section 3.2, and let 𝕜 be either 𝔽 or 𝕂. We will consider the affine
subspace

𝕜𝑥 ∶= 𝑥𝕜 + (𝕜⊗𝕆 𝑀) ⊂ 𝔤𝕜

(which is a variant of the Slodowy slices constructed in [43]). This variety is endowed with an
action of (𝔾m)𝕜 (induced by the 𝔾m-action on 𝑥 considered above) which contracts it to {𝑥𝕜}. We
will denote by 𝑎𝕜𝑥 ∶ 𝐺𝕜 × 𝕜𝑥 → 𝔤𝕜 the base change of 𝑎𝑥 to 𝕜, that is, the morphism induced by
the adjoint action.

Proposition 3.6. The morphism 𝑎𝕜𝑥 is smooth (and hence, in particular, flat).

Proof. We observe that the differential of 𝑎𝕜𝑥 at the point (1, 𝑥𝕜) identifies with the morphism
𝔤𝕜 × (𝕜⊗𝕆 𝑀) → 𝔤𝕜 sending (𝑦, 𝑦

′) to [𝑥𝕜, 𝑦] + 𝑦
′. This differential is surjective since 𝕜⊗𝕆 𝑀 is

a complement to [𝑥𝕜, 𝔤𝕜] in 𝔤𝕜, which proves that 𝑎
𝕜
𝑥 is smooth at (1, 𝑥𝕜). Since the locus of points
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of 𝐺𝕜 × 𝕜𝑥 where this map is smooth is open, and stable under the (𝐺 × 𝔾m)𝕜-action defined by
(g , 𝑧) ⋅ (ℎ, 𝑦) = (gℎ𝜑(𝑧)−1, 𝑧−2𝜑(𝑧) ⋅ 𝑦), this locus must then be the whole of 𝐺𝕜 × 𝕜𝑥 . □

Since 𝑎𝕜𝑥 is flat, it is open (see, e.g. [23, Theorem 14.33]). Let

𝑉𝕜𝑥 ∶= (𝑎
𝕜
𝑥)(𝐺𝕜 × 𝕜𝑥)

be its image (an open subset of 𝔤𝕜).

Lemma 3.7. The following square is Cartesian, where the vertical maps are the closed embeddings

and the horizontal maps are induced by the adjoint action:

Proof. By smoothness of 𝑎𝕜𝑥 (see Proposition 3.6), the fiber product (𝐺𝕜 × 𝕜𝑥) ×𝑉𝕜𝑥 (𝐺𝕜 ⋅ 𝑥𝕜) is
smooth over 𝐺𝕜 ⋅ 𝑥𝕜, and hence a smooth variety, of dimension dim(𝐺𝕜). By 𝐺𝕜-equivariance, we
have

(𝐺𝕜 × 𝕜𝑥) ×𝑉𝕜𝑥 (𝐺𝕜 ⋅ 𝑥𝕜) = 𝐺𝕜 ×
(
𝕜𝑥 ∩ (𝐺𝕜 ⋅ 𝑥𝕜)

)
,

where on the right-hand side we consider the scheme-theoretic intersection. (This follows,
e.g., from [43, Lemma4 on p. 26] applied to the composition (𝐺𝕜 × 𝕜𝑥) ×𝑉𝕜𝑥 (𝐺𝕜 ⋅ 𝑥𝕜) → 𝐺𝕜 × 𝕜𝑥 →

𝐺𝕜, where the second map is the projection.) It follows in particular that the right-hand side is
smooth. Since the projection

𝐺𝕜 ×
(
𝕜𝑥 ∩ (𝐺𝕜 ⋅ 𝑥𝕜)

)
→ 𝕜𝑥 ∩ (𝐺𝕜 ⋅ 𝑥𝕜)

is smooth, using [45, Tag 02K5] we deduce that 𝕜𝑥 ∩ (𝐺𝕜 ⋅ 𝑥𝕜) is smooth and of dimension
0, and hence a disjoint union of points. On the other hand this variety admits a (𝔾m)𝕜-
action which contracts it to 𝑥𝕜; we deduce that 

𝕜
𝑥 ∩ (𝐺𝕜 ⋅ 𝑥𝕜) = {𝑥𝕜}, which implies the desired

identification. □

Corollary 3.8. In the following diagram, every square is Cartesian:

The vertical maps between the top two rows are smooth and surjective. The vertical maps between the

bottom two rows are open embeddings.
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Proof. If a nilpotent orbit𝒪′ intersects𝑉𝕜𝑥, then it must contain an element in
𝕜
𝑥 . Since the (𝔾m)𝕜-

action is contacting to 𝑥, and preserves the nilpotent orbits (as follows from [29, Lemma 2.10]),
this implies that 𝑥𝕜 ∈ 𝒪′, so that 𝒪′ ⊂ St(𝐺𝕜 ⋅ 𝑥𝕜). Conversely, if 𝒪

′ contains 𝑥𝕜 in its closure,
then it must intersect the open subset 𝑉𝕜𝑥, hence be contained in it. We have finally proved that
𝑉𝕜𝑥 ∩𝕜 = St(𝐺𝕜 ⋅ 𝑥𝕜), that is, that the bottom square is Cartesian. Since the square formed by
the second and third schemes on the first line and the bottom line is Cartesian by definition, this
implies that the upper right square is Cartesian. Then, using the same argument and Lemma 3.7,
we deduce that the upper left square is Cartesian.
The claim about smoothness is then clear from the smoothness of 𝑎𝕜𝑥 (see Proposition 3.6), and

the final claim follows from the definitions. □

3.4 Smoothness of centralizers

In this subsection we sketch a different proof of the smoothness claim in Theorem 3.3. No details
of this proof will be used in the rest of the paper. We first remark that the smoothness of 𝑍𝐺(𝑥)
follows easily once we know that this group scheme is flat over 𝕆; see [25, Lemma 1.5] for details.
By Theorem 3.2, there exists a cocharacter 𝜑 ∶ 𝔾m → 𝐺 such that Spec(𝔽) × 𝜑 is associated with

𝑥𝔽 and Spec(𝕂) × 𝜑 is associated with 𝑥𝕂. Then we can consider an “integral Slodowy slice” 𝑥 as
constructed in Section 3.2. By a variant of [40, Lemma 4.1.1] (for discrete valuation rings instead of
localizations ofℤ) one can deduce from Proposition 3.6 (in the case 𝕜 = 𝔽) that 𝑎𝑥 is flat. Hence to
conclude it suffices to prove that the following diagram is Cartesian, where the horizontal maps
are induced by the adjoint action and the vertical maps are the closed embeddings:

However, it follows from Lemma 3.7 that the base change of this diagram to 𝕂 is Cartesian. Since
the 𝕆-scheme (𝐺 × 𝑥) ×𝔤 {𝑥} is flat by flatness of 𝑎𝑥, this implies that the composition

(𝐺 × 𝑥) ×𝔤 {𝑥} → 𝐺 × 𝑥 → 𝑥

(where the second map is the projection) factors through the embedding {𝑥} ↪ 𝑥. Hence we
have

(𝐺 × 𝑥) ×𝔤 {𝑥} = (𝐺 × {𝑥}) ×𝔤 {𝑥} = 𝑍𝐺(𝑥),

which finishes the proof.

4 INTEGRAL EXOTIC SHEAVES

In this section, we will work with the category 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) (cf., Section 2.4), rather than

𝐷b𝖢𝗈𝗁𝐺(̃ ), mainly because we anticipate that this may be useful for future applications. How-
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ever, the 𝔾m-action plays almost no role in any of the arguments. Appropriate analogues of the

statements in this section hold for 𝐷b𝖢𝗈𝗁𝐺(̃ ), and we will use these versions elsewhere in
the paper.
The goal of this section is to construct a t-structure on𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) (as well as on the 𝔽- and

𝕂-versions), called the exotic t-structure, using the machinery from Appendix A. In the case of
field coefficients, this t-structure has been extensively studied in the literature [4, 11, 16, 34], but
over 𝕆, some of the statements in this section are new.

4.1 Passage to a group with simply connected derived subgroup

In the arguments below, we will need some results from refs. [18, 34] that only apply to groups
with a simply connected derived subgroup. To accommodate these results, for the remainder of
this section, we fix a central isogeny

𝜎 ∶ 𝐺 → 𝐺

as in Lemma 2.3. Let 𝑇 ⊂ 𝐵 ⊂ 𝐺 be the maximal torus and the Borel subgroup obtained as the
preimages of 𝑇 and 𝐵 along 𝜎. According to Lemma 2.3, 𝜎 lets us identify the Lie algebra of𝐺 with
𝔤. This yields an identification of their Springer resolutions as well, as the obvious map

𝐺 ×𝐵 𝔫 → 𝐺 ×𝐵 𝔫

is an isomorphism. We may thus speak of both 𝐺- and 𝐺-equivariant sheaves on ̃ , and there is
an obvious functor

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) → 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ). (4.1)

Any 𝐺-invariant perfect pairing on 𝔤 is also 𝐺-invariant, so the isomorphism in Lemma 2.4 is also
compatible with passage from𝐺 to𝐺. The results we need from refs. [18, 34] are usually applicable

to 𝐺 × 𝔾m-equivariant sheaves on 𝐺 ×
𝐵 (𝔤∕𝔟)∗, and hence to 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ). In order to extract

useful information in 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ), we need to understand the functor (4.1).
Let 𝐗̃ be the character lattice of 𝑇 (cf., the proof of Lemma 2.3). This group contains 𝐗 as a

subgroup. The quotient 𝐗̃∕𝐗 is finite and of order coprime to 𝑝. Let 𝐹 be the kernel of 𝜎 ∶ 𝐺 → 𝐺.
This is a diagonalizable smooth finite group scheme whose character group is identified with
𝐗̃∕𝐗.
Note that any coherent sheaf ∈ 𝖢𝗈𝗁𝐺×𝔾m(̃ ) comes equippedwith a canonical (in particular,

functorial) decomposition

 =
⨁
𝜈∈𝐗̃∕𝐗

𝜈, (4.2)

according to the action of 𝐹. To see this decomposition more concretely, we can pass through the
“induction” equivalence

𝖢𝗈𝗁𝐺×𝔾m(̃ ) ≅ 𝖢𝗈𝗁𝐵×𝔾m(𝔫),
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and identify the right-hand side with the category of finitely generated𝐵-equivariant gradedmod-
ules over the ring (𝔫) = Sym𝕆(𝔫

∗). If we regard  as such a module, then it is in particular a
rational 𝐹-module, so it admits a canonical decomposition (4.2) as an 𝐹-module. Since 𝐹 is in the
center of 𝐵 and acts trivially on (𝔫), each summand on the right-hand side of Equation (4.2)
is stable under the actions of 𝐵 and (𝔫). In other words, the decomposition (4.2) takes place in
𝖢𝗈𝗁𝐺×𝔾m(̃ ).
For 𝜈 ∈ 𝐗̃∕𝐗, let 𝖢𝗈𝗁𝐺×𝔾m(̃ )𝜈 be the full subcategory of 𝖢𝗈𝗁𝐺×𝔾m(̃ ) consisting of objects

 that satisfy  = 𝜈. An immediate consequence of Equation (4.2) is that we have a categorical
decomposition

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) =
⨁
𝜈∈𝐗̃∕𝐗

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝜈. (4.3)

At the level of abelian categories, it is clear that the natural functor 𝖢𝗈𝗁𝐺×𝔾m(̃ ) → 𝖢𝗈𝗁𝐺×𝔾m(̃ )

is fully faithful. Its image is the subcategory 𝖢𝗈𝗁𝐺×𝔾m(̃ )0, so the decomposition above gives us
an identification

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) ≅ 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )0.

For the remainder of this section, we identify 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) with a subcategory of

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) in this way.
We conclude this subsection with two lemmas on generators for these derived categories.

Lemma 4.1. For any 𝔼 ∈ {𝕂,𝕆, 𝔽}, the category 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼 is generated as a triangulated

category by objects of the form 
̃𝔼
(𝜆)⟨𝑘⟩ with 𝜆 ∈ 𝐗 and 𝑘 ∈ ℤ.

Proof. In the case where 𝔼 is a field, this is proved in [3, Corollary 5.8] or [34, Corollary 2.7].
Here, therefore, we will only treat the case where 𝔼 = 𝕆. (However, the reader can easily
modify this argument to handle the field case as well.) As in the discussion above, we can

replace 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) with 𝐷b𝖢𝗈𝗁𝐵×𝔾m(𝔫), and we will think of objects 𝑀 ∈ 𝖢𝗈𝗁𝐵×𝔾m(𝔫) as
𝐵-equivariant graded (𝔫)-modules. From now on, all (𝔫)-modules will implicitly be assumed
to be finitely generated.
Let𝑀 ∈ 𝖢𝗈𝗁𝐵×𝔾m(𝔫). By [41, Proposition 2], there exists a (𝐵 × 𝔾m)-stable 𝕆-submodule𝑀

′ ⊂

𝑀 which is of finite type over 𝕆 and which generates𝑀 as an (𝔫)-module. Then by [41, Propo-
sition 3] there exists a (𝐵 × 𝔾m)-module𝑀

′′ which is free over 𝕆 and surjects to𝑀′; in this way
we see that𝑀 is a quotient of a (𝐵 × 𝔾m)-equivariant free (𝔫)-module, and then that𝑀 admits
a resolution

⋯→ 𝑃2 → 𝑃1 → 𝑃0 → 𝑀 → 0

where each 𝑃𝑘 is a (𝐵 × 𝔾m)-equivariant free (𝔫)-module. Since (𝔫) is isomorphic to a ring of
polynomials (in rk(𝔫) many variables) with coefficients in 𝕆, it has finite global dimension, say
𝑑. Let 𝑄 be the kernel of 𝑃𝑑−1 → 𝑃𝑑−2, and consider the exact sequence

0 → 𝑄 → 𝑃𝑑−1 →⋯→ 𝑃0 → 𝑀 → 0.
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A routine homological algebra argument shows that as a (graded) (𝔫)-module, 𝑄 must be pro-
jective. Since (𝔫) is a graded polynomial ring over a noetherian local ring, a suitable variant
of Nakayama’s lemma implies that every projective graded (𝔫)-module is free.† We have thus
shown that𝑀 admits a finite resolution by 𝐵-equivariant free graded (𝔫)-modules.
Let𝑀 be a 𝐵-equivariant free graded (𝔫)-module. We will show (by induction on the rank of

𝑀 over (𝔫)) that𝑀 admits a filtration whose subquotients are 𝐵-equivariant free graded (𝔫)-
modules of rank 1. Such objects correspond to (𝐺 × 𝔾m)-equivariant line bundles, so this claim
will prove the lemma.
Consider the quotient map𝑀 → 𝑀∕𝔫𝑀. Then𝑀∕𝔫𝑀 is a free 𝕆-module of finite rank (equal

to the rank of𝑀 as an (𝔫)-module). The quotient map admits a (𝑇 × 𝔾m)-equivariant splitting
𝑀∕𝔫𝑀 → 𝑀. Choose such a splitting, and let𝑀0 be its image. Then any𝕆-basis for𝑀0 is a(𝔫)-
basis for𝑀. As a 𝑇-representation,𝑀0 decomposes as a direct sum

𝑀0 =
⨁
𝜆∈𝐗

(𝑀0)𝜆,

where each (𝑀0)𝜆 is again a free𝕆-module of finite rank. Choose some 𝜆 such that (𝑀0)𝜆 ≠ 0, and
such that 𝜆 is minimal for this property with respect to the partial order≤ on𝐗 considered in Sec-
tion 2.3. Then choose an element 𝑣 ∈ (𝑀0)𝜆 that is part of some 𝕆-basis for (𝑀0)𝜆 consisting of
vectors homogeneouswith respect to the𝔾m-action. Then the𝕆-span𝕆 ⋅ 𝑣 is aDist(𝐵)-submodule
of 𝑀0, and hence also a 𝐵-submodule by [28, Lemma 1.7.15]. (This statement is applicable here
since 𝐵 is smooth, and hence infinitesimally flat; see [28, Section 1.10.11].) Let 𝑀′ ⊂ 𝑀 be the
(𝔫)-submodule generated by 𝑣. This is a (𝐵 × 𝔾m)-equivariant submodule of𝑀 that is free over
(𝔫) of rank 1.
Since 𝑣 is part of an (𝔫)-basis for𝑀, the quotient𝑀′′ ∶= 𝑀∕𝑀′ is again a 𝐵-equivariant free

graded (𝔫)-module (of rank lower than that of 𝑀). By induction, 𝑀′′ admits a 𝐵-equivariant
filtration whose subquotients are free over (𝔫) of rank 1, and hence so does𝑀. □

Lemma 4.2. Let 𝜈 ∈ 𝐗̃∕𝐗. For any 𝔼 ∈ {𝕂,𝕆, 𝔽}, the category 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝜈
𝔼
is generated as a

triangulated category by objects of the form 
̃𝔼
(𝜆)⟨𝑘⟩ with 𝜆 ∈ 𝐗̃, 𝜆 + 𝐗 = 𝜈, and 𝑘 ∈ ℤ.

Proof. By Lemma 4.1 applied to 𝐺, the category 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼 as a whole is generated by
the line bundles 

̃𝔼
(𝜆)⟨𝑘⟩ with 𝜆 ∈ 𝐗̃ and 𝑘 ∈ ℤ. Since each 

̃𝔼
(𝜆)⟨𝑘⟩ lies in one summand

on the right-hand side of (4.3) (namely, the summand labeled by 𝜈 = 𝜆 + 𝐗), we see that each

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝜈
𝔼
is generated by those line bundles 

̃𝔼
(𝜆)⟨𝑘⟩ that it contains. □

4.2 Exotic generators for the derived category

We will now define a new set of generators, using the extended affine braid group action
constructed in [18].
Let𝑊ext ∶= 𝑊 ⋉ 𝐗̃ be the extended affineWeyl group for𝐺. Recall that in general this group is

not a Coxeter group, but it is endowed with a natural length function and with a “Bruhat order”;

†When invoking the graded Nakayama lemma, instead of using the grading coming from the𝔾m-action, we could instead

use the grading given by a strictly dominant cocharacter of 𝑇 ⊂ 𝐵. The latter version also makes sense in the setting of

𝖢𝗈𝗁𝐺(̃ ) ≅ 𝖢𝗈𝗁𝐵(𝔫).
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see [34] for details and references. Recall also that every element𝑤 ∈ 𝑊ext determines an element
of the extended affine braid group 𝐵ext, denoted by 𝑇𝑤. The main result of [18] associates to 𝑇𝑤 a

certain autoequivalence of𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ), denoted by 𝑇𝑤 . Given 𝜆 ∈ 𝐗̃, regard it as an element
of𝑊ext, and consider its right coset for the finite Weyl group𝑊𝜆 ⊂ 𝑊ext. Let 𝑤𝜆 be the unique
element of minimal length in𝑊𝜆. Following [34, Section 3.3], for 𝔼 ∈ {𝕂,𝕆, 𝔽}, we set

∇̃ex
𝜆
(𝔼) ∶= 𝑇𝑤𝜆

(
̃𝔼
) and Δ̃ex

𝜆
(𝔼) ∶= (𝑇

𝑤−1
𝜆
)−1(̃𝔼

).

These are objects in 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼, but it can deduced from [34] that some of them lie in

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼. To explain this, we need some more notation. Let us temporarily regard 𝐗̃ as a
subset of the real vector space ℝ⊗ℤ 𝐗̃. In the latter, it makes sense to take the convex hull of any
finite set of elements. For 𝜆 ∈ 𝐗̃, we set

𝖼𝗈𝗇𝗏(𝜆) = (𝜆 + ℤ𝑅) ∩ (convex hull of𝑊 ⋅ 𝜆 in ℝ⊗ℤ 𝐗̃),

𝖼𝗈𝗇𝗏0(𝜆) = 𝖼𝗈𝗇𝗏(𝜆) ⧵ 𝑊 ⋅ 𝜆.

(Recall that 𝑅 is the root system of 𝐺.) It is well known that when 𝜆 and 𝜇 are dominant, we have
𝖼𝗈𝗇𝗏(𝜆) ⊂ 𝖼𝗈𝗇𝗏(𝜇) if and only if 𝜆 ⩽ 𝜇. As a consequence, for arbitrary 𝜆, 𝜇 ∈ 𝐗̃, we have

𝜇 ∈ 𝖼𝗈𝗇𝗏0(𝜆) ⟹ 𝜆 ∉ 𝖼𝗈𝗇𝗏(𝜇). (4.4)

Consider the preorder⪯ on 𝐗̃ given by 𝜇 ⪯ 𝜆 if 𝜇 ∈ 𝖼𝗈𝗇𝗏(𝜆). By Equation (4.4), the equivalence
classes for this preorder are precisely the𝑊-orbits in 𝐗̃. For 𝜆 ∈ 𝐗̃, let 𝐷𝖼𝗈𝗇𝗏(𝜆), resp. 𝐷𝖼𝗈𝗇𝗏0(𝜆), be

the full triangulated subcategory of 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) generated by objects of the form 
̃
(𝜇)⟨𝑘⟩

with 𝑘 ∈ ℤ and 𝜇 ∈ 𝖼𝗈𝗇𝗏(𝜆), resp. 𝜇 ∈ 𝖼𝗈𝗇𝗏0(𝜆). The categories 𝐷𝖼𝗈𝗇𝗏(𝜆) and 𝐷𝖼𝗈𝗇𝗏0(𝜆) are both
contained in a single summand of the right-hand side of Equation (4.3) (namely, the one cor-
responding to 𝜈 = 𝜆 + 𝐗). It can be deduced from [34, Lemma 3.1] (see also the proof of [34,
Proposition 3.7])† that for all 𝜆 ∈ 𝐗̃, we have

∇̃ex
𝜆
(𝔼) ≅ 

̃
(𝜆)⟨𝛿𝜆⟩ (mod 𝐷𝖼𝗈𝗇𝗏0(𝜆)), (4.5)

where 𝛿𝜆 is the length of a minimal element 𝑣 ∈ 𝑊 such that 𝑣𝜆 is dominant. In particular, this
implies that

∇̃ex
𝜆
(𝔼) ∈ 𝐷𝖼𝗈𝗇𝗏(𝜆) ⊂ 𝐷

b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝜈𝔼, where 𝜈 = 𝜆 + 𝐗.

In particular, if 𝜆 ∈ 𝐗, then ∇̃ex
𝜆
(𝔼) ∈ 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼. We will see later that similar claims hold

for Δ̃ex
𝜆
(𝔼).

†Although [34] works with field coefficients, the specific statements cited here are essentially minor variations on [18,

Lemma 1.11.3], which holds for 𝔼 = 𝕆 as well. It is left to the reader to check that the arguments we need go through for

general 𝔼.
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Lemma 4.3. For all 𝜆 ∈ 𝐗̃, we have

𝕂(∇̃ex
𝜆
(𝕆)) ≅ ∇̃ex

𝜆
(𝕂), 𝔽(∇̃ex

𝜆
(𝕆)) ≅ ∇̃ex

𝜆
(𝔽),

𝕂(Δ̃ex
𝜆
(𝕆)) ≅ Δ̃ex

𝜆
(𝕂), 𝔽(Δ̃ex

𝜆
(𝕆)) ≅ Δ̃ex

𝜆
(𝔽).

Proof. This follows from the fact that the functors 𝑇𝑤 commute with change of scalars (see [18,
Section 1.2]). □

Lemma 4.4. For any 𝔼 ∈ {𝕂,𝕆, 𝔽}, the category 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼 is generated as a triangulated

category by objects of the form ∇̃ex
𝜆
(𝔼)⟨𝑘⟩ with 𝜆 ∈ 𝐗 and 𝑘 ∈ ℤ.

Proof. By Lemma 4.1, 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) is the union of the 𝐷𝖼𝗈𝗇𝗏(𝜆) with 𝜆 ∈ 𝐗. It is therefore

enough to prove that each 𝐷𝖼𝗈𝗇𝗏(𝜆) is generated by the objects ∇̃
ex
𝜇 (𝔼)⟨𝑘⟩ with 𝜇 ∈ 𝖼𝗈𝗇𝗏(𝜆). We

will prove this by induction with respect to the preorder ⪯ on 𝜆. The base case is that in which
𝖼𝗈𝗇𝗏0(𝜆) = ∅. In this case, the claim follows from Equation (4.5).
In general, the property (4.5) means that there exists an object  and a diagram

∇̃ex
𝜆
(𝔼)

𝑓
←� 

g

�→ 
̃
(𝜆)⟨𝛿𝜆⟩

such that the cones of both 𝑓 and g lie in 𝐷𝖼𝗈𝗇𝗏0(𝜆). Next, Equation (4.4) implies that 𝖼𝗈𝗇𝗏
0(𝜆) =⋃

𝜈∈𝖼𝗈𝗇𝗏0(𝜆) 𝖼𝗈𝗇𝗏(𝜈). By induction, 𝐷𝖼𝗈𝗇𝗏0(𝜆) is therefore generated by the objects ∇̃
ex
𝜈 (𝔼)⟨𝑘⟩ with

𝜈 ∈ 𝖼𝗈𝗇𝗏0(𝜆). The diagram above then shows that the subcategory generated by the ∇̃ex𝜇 (𝔼)⟨𝑘⟩
with 𝜇 ∈ 𝖼𝗈𝗇𝗏(𝜆) contains 𝐷𝖼𝗈𝗇𝗏0(𝜆) and all the ̃

(𝑣𝜆)⟨𝑘⟩ for 𝑣 ∈ 𝑊. The result follows. □

(The preceding proof shows more generally that for any 𝜈 ∈ 𝐗̃∕𝐗, the category

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝜈
𝔼
is generated by objects of the form ∇̃ex

𝜆
(𝔼)⟨𝑘⟩ with 𝜆 + 𝐗 = 𝜈 and 𝑘 ∈ ℤ.)

4.3 Exceptional sequences

Let ⩽Bru be the Bruhat order on 𝐗̃, that is, the order defined so that 𝜆 ⩽Bru 𝜇 iff𝑤𝜆 is smaller than
𝑤𝜇 is the Bruhat order of𝑊ext. Let ⩽

′ be any refinement of ⩽Bru to a total order such that (𝐗̃,⩽
′)

is isomorphic to (ℤ⩾0,⩽), and such that

𝜆 ∈ 𝖼𝗈𝗇𝗏0(𝜇) ⟹ 𝜆 <′ 𝜇.

(This last condition makes sense by Equation (4.4).) Then the subset (𝐗,⩽′) is also isomorphic to
(ℤ⩾0,⩽),

Proposition 4.5. For 𝔼 ∈ {𝕂,𝕆, 𝔽}, the category 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼 is graded Hom-finite, the col-

lection {∇̃ex
𝜆
(𝔼)}𝜆∈𝐗 is a graded exceptional sequence (with respect to the order ⩽

′ above), and the

collection {Δ̃ex
𝜆
(𝔼)}𝜆∈𝐗 is a dual sequence.

In particular, this proposition says that Δ̃ex
𝜆
(𝔼) ∈ 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼 for any 𝜆 ∈ 𝐗.
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Proof. Using our identification of 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼 with a direct summand of 𝐷
b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼,

it is easy to see that this proposition would follow from the analogous claim in which 𝐺 and 𝐗

are replaced by 𝐺 and 𝐗̃. (Here the fact that Δ̃ex
𝜆
(𝔼) belongs to 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼 when 𝜆 ∈ 𝐗 will

follow from the fact that this object is indecomposable and admits a nonzeromorphism to ∇̃ex
𝜆
(𝔼).)

For the remainder of the proof, we work in the latter setting.
In the case where 𝔼 is a field, the claim follows from the discussion in [34, Section 2.5]. Let

us now consider the case where 𝔼 = 𝕆. First, the objects ∇̃ex
𝜆
(𝔼) generate 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼 by

Lemma 4.4. It is proved in ref. [35, Proposition 5.4] that we have

Hom(Δ̃ex
𝜆
(𝕆), ∇̃ex𝜇 (𝕆)[𝑛]⟨𝑘⟩) ≅

{
𝕆 if 𝜆 = 𝜇 and 𝑛 = 𝑘 = 0,

0 otherwise.

(More precisely, in [35] the coefficients considered are a localization of ℤ; the present setting is
completely analogous.) Similar arguments show that the collection {∇̃ex

𝜆
(𝔼)}𝜆∈𝐗̃ satisfies the con-

ditions onHom-groups that define graded exceptional sequences. Then Remark A.7 ensures that

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼 is graded Hom-finite, and Lemma A.8 tells us that the sequence {Δ̃
ex
𝜆
(𝔼)}𝜆∈𝐗̃ is

dual to {∇̃ex
𝜆
(𝔼)}𝜆∈𝐗̃. □

4.4 Exotic t-structures

In view of Proposition 4.5, using TheoremA.11 we obtain a t-structure on𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝔼, called
the exotic t-structure. The heart of this t-structure will be denoted by

𝖤𝗑𝖢𝗈𝗁𝔾m(̃ )𝔼, 𝔼 ∈ {𝕂,𝕆, 𝔽}.

In accordance with the conventions in the rest of the paper, when 𝔼 = 𝕆, we usually omit the
subscript and denote the category simply by 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ ). (Note that although we need to choose
a total order ⩽′ that refines ⩽Bru in order to invoke Theorem A.11, the resulting t-structure is
independent of that choice; see Remark A.12(2).)

Lemma 4.6. Let  , in 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝕆.

(1) The functor 𝕂(−) induces an isomorphism

𝕂⊗𝕆 Hom( ,)
∼
�→ Hom(𝕂(),𝕂()).

(2) There exists a natural short exact sequence

𝔽⊗𝕆 Hom( ,) ↪ Hom(𝔽(), 𝔽()) ↠ Tor
𝕆
1 (𝔽, Hom( ,[1]))

where the first map induced by the functor 𝔽(−).

Proof. We explain the proof of (2); the proof of (1) is similar and easier. As in [35, Proof of
Proposition 5.4], the functor 𝔽 induces an isomorphism

𝔽
𝐿
⊗𝕆 𝑅Hom( ,)

∼
�→ 𝑅Hom(𝔽(), 𝔽()).
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Applying the functor 𝔽⊗𝐿
𝕆
(−) to the truncation triangle 𝜏⩽0𝑅Hom( ,) → 𝑅Hom( ,) →

𝜏⩾1𝑅Hom( ,)
[1]
��→ and using this isomorphism we deduce a distinguished triangle

𝔽
𝐿
⊗𝕆 𝜏⩽0𝑅Hom( ,) → 𝑅Hom(𝔽(), 𝔽()) → 𝔽

𝐿
⊗𝕆 𝜏⩾1𝑅Hom( ,)

[1]
��→,

which induces an exact sequence

𝖧−1(𝔽
𝐿
⊗𝕆 𝜏⩾1𝑅Hom( ,)) → 𝖧

0(𝔽
𝐿
⊗𝕆 𝜏⩽0𝑅Hom( ,)) → Hom(𝔽(), 𝔽())

→ 𝖧0(𝔽
𝐿
⊗𝕆 𝜏⩾1𝑅Hom( ,)) → 𝖧

1(𝔽
𝐿
⊗𝕆 𝜏⩽0𝑅Hom( ,)).

in cohomology. Since the functor 𝔽⊗𝐿
𝕆
(−) is right exact the fifth term in this sequence van-

ishes, and the second one identifies with 𝔽⊗𝕆 Hom( ,). And since 𝖧𝑗(𝔽⊗𝐿
𝕆
𝑀) = 0 for

𝑗 ⩽ −2 and any 𝕆-module 𝑀, the first term vanishes and the fourth one identifies with
Tor𝕆
1
(𝔽, Hom( ,[1])). We therefore obtain the desired short exact sequence. □

Thanks to Lemmas 4.3 and 4.6, we are in the setting of Section A.5. We will invoke some results
from that section below.
In the lemma below we mention the notion of highest weight categories. For the definition

of this notion (due, in slightly different terms, to Cline–Pashall–Scott and Beı̆linson–Ginzburg–
Soergel), we refer, for example, to [8, Section 3.5].

Lemma 4.7.

(1) For any 𝔼 ∈ {𝕂,𝕆, 𝔽}, the category 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ )𝔼 is noetherian. If 𝔼 is a field, it is also artinian.

(2) For any 𝔼 ∈ {𝕂,𝕆, 𝔽}, the objects ∇̃ex
𝜆
(𝔼) and Δ̃ex

𝜆
(𝔼) lie in 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ )𝔼.

(3) When 𝔼 is a field, 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ )𝔼 is a highest-weight category.

(4) In 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ ), the objects ∇̃ex
𝜆
(𝕆) and Δ̃ex

𝜆
(𝕆) are torsion-free.

Proof.

(1) This is immediate from Theorem A.11.
(2) When 𝔼 is a field, this is proved in [34, §3.4] (see also [11, Proposition 8.5]). Suppose now that
𝔼 = 𝕆. To prove that ∇̃ex

𝜆
(𝕆) lies in the heart, it is enough to show that

Hom(∇̃ex
𝜆
(𝕆), ∇̃ex𝜇 (𝕆)[𝑛]⟨𝑘⟩) = 0

for all 𝑛 < 0 and all 𝜇 ∈ 𝐗. If this were nonzero, the same considerations as in [35, Proof of
Proposition 5.4] would tell us thatHom(∇̃ex

𝜆
(𝔽), ∇̃ex𝜇 (𝔽)[𝑛]⟨𝑘⟩) is also nonzero for some 𝑛 < 0,

contradicting the fact that ∇̃ex
𝜆
(𝔽) ∈ 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ )𝔽.

Consider now the object 𝖧0(Δ̃ex
𝜆
(𝕆)). Since 𝔽(−) is right t-exact, we have

𝖧0(𝔽(𝐻0(Δ̃ex
𝜆
(𝕆)))) ≅ 𝖧0(𝔽(Δ̃ex

𝜆
(𝕆))) ≅ 𝖧0(Δ̃ex

𝜆
(𝔽)) ≅ Δ̃ex

𝜆
(𝔽).
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In other words, after applying 𝔽(−) to the distinguished triangle

𝜏⩽−1Δ̃ex
𝜆
(𝕆) → Δ̃ex

𝜆
(𝕆) → 𝖧0(Δ̃ex

𝜆
(𝕆))

[1]
��→,

the second and third terms become isomorphic, so we must have 𝔽(𝜏⩽−1Δ̃ex
𝜆
(𝕆)) = 0. But it is

easily checked that 𝔽(−) kills no nonzero object, so 𝜏⩽−1Δ̃ex
𝜆
(𝕆) = 0, and Δ̃ex

𝜆
(𝕆) ≅ 𝖧0(Δ̃ex

𝜆
(𝕆))

belongs to 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ ), as desired.
(3) See [34, §3.5] or [11, Proposition 8.5].
(4) For ∇̃ex

𝜆
(𝕆), this follows from part (2) and Lemma A.14. For Δ̃ex

𝜆
(𝕆), this follows from

Lemma A.17(2) and the fact that 𝔽(Δ̃ex
𝜆
(𝕆)) ≅ Δ̃ex

𝜆
(𝔽) lies in 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ )𝔽. □

4.5 Simple objects and their 𝕆-versions

For each 𝜆 ∈ 𝐗, fix some map

𝑐𝜆 = 𝑐𝜆(𝕆) ∶ Δ̃
ex
𝜆
(𝕆) → ∇̃ex

𝜆
(𝕆)

that is a generator of the free 𝕆-module Hom(Δ̃ex
𝜆
(𝕆), ∇̃ex

𝜆
(𝕆)). Such a map becomes an

isomorphism after passage to the quotient category

𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝕆,⩽′𝜆∕𝐷
b𝖢𝗈𝗁𝐺×𝔾m(̃ )𝕆,<′𝜆.

We denote the base change of this map to 𝕂 or 𝔽 by 𝑐𝜆(𝕂) or 𝑐𝜆(𝔽), respectively. As in Section A.4,
we set

̃𝜆(𝔼) ∶= im(𝑐𝜆(𝔼) ∶ Δ̃
ex
𝜆
(𝔼) → ∇̃ex

𝜆
(𝔼)) for 𝔼 ∈ {𝕂,𝕆, 𝔽}

and

̃+
𝜆
(𝕆) =

the unique maximal subobject of ∇̃ex
𝜆
(𝕆) containing ̃𝜆(𝕆)

and such that ̃+
𝜆
(𝕆)∕̃𝜆(𝕆) is a torsion object.

As explained in Section A.4, if 𝔼 ∈ {𝕂, 𝔽} the objects ̃𝜆(𝔼) are simple, and the assignment
(𝜆, 𝑛) ↦ ̃𝜆(𝔼)⟨𝑛⟩ induces a bijection between𝐗 × ℤ and the set of isomorphism classes of simple

objects in 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ )𝔼.
Concerning the case 𝔼 = 𝕆, Lemma A.18 tells us that

𝕂(̃𝜆(𝕆)) ≅ 𝕂(̃
+
𝜆
(𝕆)) ≅ ̃𝜆(𝕂).

That lemma also tells us that ̃𝜆(𝕆) and ̃+
𝜆
(𝕆) are torsion-free objects. We define the reduced

standard and reduced costandard objects for ̃𝔽 by

̃ex
𝜆
(𝔽) = 𝔽(̃𝜆(𝕆)) and ̃ex

𝜆
(𝔽) = 𝔽(̃+

𝜆
(𝕆)),
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respectively. These objects belong to 𝖤𝗑𝖢𝗈𝗁𝔾m(̃ )𝔽, and there is a sequence of canonical maps

Δ̃ex
𝜆
(𝔽) ↠ ̃ex

𝜆
(𝔽) ↠ ̃𝜆(𝔽) ↪ ̃ex

𝜆
(𝔽) ↪ ∇̃ex

𝜆
(𝔽). (4.6)

Here the first (resp. fourth) morphism is obtained from the morphism Δ̃ex
𝜆
(𝕆) → ̃𝜆(𝕆),

resp. ̃+
𝜆
(𝕆) → ∇̃ex

𝜆
(𝕆) by application of the functor𝔽. The surjectivity, resp. injectivity, of thismor-

phism is checked in the proof of LemmaA.18. The second, resp. third, morphism in Equation (4.6)
is the projection to the top, resp. embedding of the socle; see again Lemma A.18. Moreover, ̃𝜆(𝔽)
is also the top of Δ̃ex

𝜆
(𝔽), resp. the socle of ∇̃ex

𝜆
(𝔽).

5 SUPPORTS OF REDUCED STANDARD OBJECTS

5.1 Reduced standard and costandard perverse-coherent sheaves

Below we will need the following fact, proved in [4, Proposition 2.6]. In this statement, 𝖽𝗈𝗆(𝜆)
denotes the unique dominant weight in the𝑊-orbit of a weight 𝜆 ∈ 𝐗.

Lemma 5.1. Let 𝕜 ∈ {𝔽,𝕂}. The functor𝜋∗ ∶ 𝐷
b𝖢𝗈𝗁𝐺(̃ )𝕜 → 𝐷

b𝖢𝗈𝗁𝐺( )𝕜 is t-exact for the exotic

and perverse-coherent t-structures. For 𝜆 ∈ 𝐗, we have

𝜋∗Δ̃
ex
𝜆
(𝕜) ≅ Δ

pc

𝖽𝗈𝗆(𝜆)
(𝕜),

𝜋∗∇̃
ex
𝜆
(𝕜) ≅ ∇

pc

𝖽𝗈𝗆(𝜆)
(𝕜),

𝜋∗̃𝜆(𝕜) =

{

pc

𝑤0(𝜆)
(𝕜) if 𝜆 ∈ −𝐗+;

0 otherwise.

We define the reduced standard and costandard objects in 𝖯𝖢𝗈𝗁( )𝕜 by setting


pc
𝜆
(𝔽) = 𝜋∗̃

ex
𝑤0𝜆
(𝔽) and 

pc
𝜆
(𝔽) = 𝜋∗̃

ex
𝑤0𝜆
(𝔽) (5.1)

for 𝜆 ∈ 𝐗+. These objects are perverse-coherent since 𝜋∗ is t-exact. Moreover, applying 𝜋∗ to the
sequence (4.6) (for the weight 𝑤0𝜆) provides a sequence of surjections and injections

Δ
pc
𝜆
(𝔽) ↠

pc
𝜆
(𝔽) ↠ 

pc
𝜆
(𝔽) ↪ 

pc
𝜆
(𝔽) ↪ ∇

pc
𝜆
(𝔽). (5.2)

5.2 Statement

In view of Theorem 3.2, there exists a collection (𝑥𝑗 ∶ 𝑗 ∈ 𝐽) of balanced nilpotent sections of 𝔤
and a collection (𝜑𝑗 ∶ 𝑗 ∈ 𝐽) of cocharacters 𝔾m → 𝐺 such that

(1) for any 𝑗 ∈ 𝐽, the cocharacter Spec(𝔽) ×Spec(𝕆) 𝜑𝑗 , resp. Spec(𝕂) ×Spec(𝕆) 𝜑𝑗 , is associated with
𝑥𝑗,𝔽, resp. 𝑥𝑗,𝕂;

(2) for any 𝑗 ∈ 𝐽 we have 𝖡𝖢(𝐺
𝕂
⋅ 𝑥𝑗,𝕂) = 𝐺𝔽 ⋅ 𝑥𝑗,𝔽;

(3) the set (𝑥𝑗,𝔽 ∶ 𝑗 ∈ 𝐽), resp. (𝑥𝑗,𝕂 ∶ 𝑗 ∈ 𝐽), is a set of representatives for the nilpotent orbits of
𝐺𝔽, resp. 𝐺𝕂.
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For 𝑗 ∈ 𝐽, we denote by 𝚤𝑗 ∶ Spec(𝕆) → 𝔤 the inclusion of the point associated with 𝑥𝑗 , and by 𝚤
𝔽
𝑗

its base change to 𝔽.
We will use the representatives (𝑥𝑗,𝔽 ∶ 𝑗 ∈ 𝐽), resp. (𝑥𝑗,𝕂 ∶ 𝑗 ∈ 𝐽), to define the Lusztig–Vogan

bijections over 𝔽 and 𝕂 as in Equation (2.5). The goal of this section is to prove the following.

Proposition 5.2. For any 𝜆 ∈ 𝐗+, we have

supp(
pc
𝜆
(𝔽)) = supp(

pc
𝜆
(𝔽)) = 𝖡𝖢(𝒪𝕂

𝜆
).

Moreover, if 𝑗 ∈ 𝐽 is such that 𝑥𝑗,𝕂 ∈ 𝒪𝕂
𝜆
, then

(1) the complexes of 𝕆-modules (𝚤𝑗)
∗𝜋̃∗̃𝜆(𝕆) and (𝚤𝑗)

∗𝜋̃∗̃
+
𝜆
(𝕆) are concentrated in degrees ⩽

1

2
codim(𝒪𝕂

𝜆
);

(2) the 𝑍𝐺(𝑥𝑗)-modules

𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝑗)

∗𝜋̃∗̃𝜆(𝕆)) and 𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝑗)

∗𝜋̃∗̃
+
𝜆
(𝕆))

are free over 𝕆, and we have isomorphisms of 𝑍𝐺(𝑥𝑗)𝕂-modules

𝕂⊗𝕆 𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝑗)

∗𝜋̃∗̃𝜆(𝕆)) ≅ 𝐿𝜆(𝕂),

𝕂⊗𝕆 𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝑗)

∗𝜋̃∗̃
+
𝜆
(𝕆)) ≅ 𝐿𝜆(𝕂)

and isomorphisms of 𝑍𝐺(𝑥𝑗)𝔽-modules

𝔽⊗𝕆 𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝑗)

∗𝜋̃∗̃𝜆(𝕆)) ≅ 𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝔽𝑗 )

∗
pc
𝜆
(𝔽)),

𝔽⊗𝕆 𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝑗)

∗𝜋̃∗̃
+
𝜆
(𝕆)) ≅ 𝖧

1
2
codim(𝒪𝕂

𝜆
)((𝚤𝔽𝑗 )

∗
pc
𝜆
(𝔽)).

5.3 Generalities on support

We start with the following general remark. Let 𝑋 be a flat noetherian 𝕆-scheme, and denote
by 𝑋𝔽 and 𝑋𝕂 its base-change to 𝔽 and 𝕂 respectively. Then we have natural “change of scalars”
functors

𝔽 ∶ 𝐷−𝖢𝗈𝗁(𝑋) → 𝐷−𝖢𝗈𝗁(𝑋𝔽), 𝕂 ∶ 𝐷−𝖢𝗈𝗁(𝑋) → 𝐷−𝖢𝗈𝗁(𝑋
𝕂
),

which can be described either as the derived functors of the functors 𝖢𝗈𝗁(𝑋) → 𝖢𝗈𝗁(𝑋𝔽) and
𝖢𝗈𝗁(𝑋) → 𝖢𝗈𝗁(𝑋

𝕂
) sending  to 𝔽⊗𝕆  and 𝕂⊗𝕆  respectively, or as the derived pullbacks

under the projection morphisms 𝑋𝔽 → 𝑋 and 𝑋𝕂 → 𝑋.
Let now 𝑥 be an𝕆-point of𝑋, and denote by 𝑥𝔽 and 𝑥𝕂 the closed points in𝑋𝔽 and𝑋𝕂 obtained

by base change.
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Lemma 5.3. For any  in 𝐷−𝖢𝗈𝗁(𝑋), we have

𝑥
𝕂
∈ supp(𝕂()) ⇒ 𝑥𝔽 ∈ supp(𝔽()).

Proof. This claim follows from the arguments in [7, Section 4.4]. (In the end, this proof boils
down to the obvious fact that if𝑀 is a finitely generated 𝕆-module such that 𝕂⊗𝕆 𝑀 ≠ 0, then
𝔽⊗𝕆 𝑀 ≠ 0.) □

Lemma 5.4. Let 𝕜 ∈ {𝔽,𝕂}, and let  ∈ 𝖯𝖢𝗈𝗁( )𝕜. Its support supp() is the union of the orbit

closures𝒪where𝒪 runs over the nilpotent𝐺𝕜-orbits such that some(𝒪,) occurs as a composition

factor of  .

Proof. We will use the various properties recalled in Section 2.3. Let 𝑍 be the union of orbit clo-
sures described above. It is immediate from property (5) that supp() ⊂ 𝑍. To prove equality, we
proceed by induction on the length of a composition series of  . If  is simple, equality holds by
property (5) again. Otherwise, choose a short exact sequence

0 →  ′ →  →  ′′ → 0

with  ′′ simple, say  ′′ = (𝒪′′, ′′). Let 𝑍′ be the set defined analogously to 𝑍 for  ′, so that
𝑍 = 𝑍′ ∪ 𝒪′′. By induction supp( ′) = 𝑍′. Property (2) of Section 2.3 implies that for every orbit

𝒪 that is open in 𝑍, at least one of 𝖧
1
2
codim𝒪( ′)|St(𝒪) or 𝖧

1
2
codim𝒪( ′′)|St(𝒪) is nonzero, and that

the cohomology sheaves vanish on St(𝒪) in all degrees other than 1
2
codim𝒪. We deduce that

𝖧
1
2
codim𝒪()|St(𝒪) ≠ 0, and hence that supp() = 𝑍. □

5.4 Proof of Proposition 5.2

We are now in a situation to prove Proposition 5.2. Note that the objectspc
𝜆
(𝔽) andpc

𝜆
(𝔽)make

sense in the (𝐺 × 𝔾m)𝔽-equivariant setting (cf., Section 2.4). Since they are also perverse-coherent,
the claims in Proposition 5.2 will follow from the following more general result. Here we denote
by 𝑍𝐺×𝔾m(𝑥𝑗) the centralizer of 𝑥𝑗 in𝐺 × 𝔾m, where𝔾m acts on 𝔤 as in Section 2.4. We also denote

by 𝑍𝐺×𝔾m(𝑥𝑗)𝔽, resp. 𝑍𝐺×𝔾m(𝑥𝑗)𝕂, the base change of this 𝕆-group scheme to 𝔽, resp. 𝕂. (The
following proof is the one point in the paper where it is crucial to work with the extra 𝔾m-action.)

Proposition 5.5. Let  ∈ 𝐷b𝖢𝗈𝗁𝐺×𝔾m(̃ ) be an object such that both 𝜋∗𝕂() and 𝜋∗𝔽() are

perverse-coherent sheaves, and such that there is a nilpotent 𝐺
𝕂
-orbit 𝒪 with supp(𝜋∗𝕂()) = 𝒪.

Then

supp(𝜋∗𝔽()) = 𝖡𝖢(𝒪).

If moreover 𝕂() ≅ (𝒪,) for some simple (𝐺 × 𝔾m)𝕂-equivariant vector bundle  on 𝒪, and

if 𝑗 ∈ 𝐽 is such that 𝑥𝑗,𝕂 ∈ 𝒪, then the complex (𝚤𝑗)
∗𝜋̃∗ is concentrated in degrees ⩽ 1

2
codim(𝒪),

its cohomology in degree 1
2
codim(𝒪) is free over 𝕆, and we have an isomorphism of 𝑍𝐺×𝔾m(𝑥𝑗)𝕂-
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modules

𝕂⊗𝕆 𝖧
1
2
codim(𝒪)((𝚤𝑗)

∗𝜋̃∗) ≅ 𝖧
0(𝑢∗), (5.3)

where 𝑢 ∶ {𝑥𝑗,𝕂} ↪ 𝒪 is the embedding, and an isomorphism of 𝑍𝐺×𝔾m(𝑥𝑗)𝔽-modules

𝔽⊗𝕆 𝖧
1
2
codim(𝒪)((𝚤𝑗)

∗𝜋̃∗) ≅ 𝖧
1
2
codim(𝒪)((𝚤𝔽𝑗 )

∗𝜋̃∗𝔽()). (5.4)

Proof. Let us first show that supp(𝜋∗𝔽()) ⊃ 𝖡𝖢(𝒪). It is enough to show that supp(𝜋̃∗𝔽()) ⊃

𝖡𝖢(𝒪). This follows from Lemma 5.3 using 𝑋 = 𝔤.
For the opposite containment, let 𝒪′ be a nilpotent 𝐺𝔽-orbit that is open in supp(𝜋∗𝔽()). For

brevity, let 𝑑 = 1
2
codim𝒪′. Let 𝑘 ∈ 𝐽 be such that 𝑥𝑘,𝔽 ∈ 𝒪′, and consider an integral Slodowy

slice  as constructed in Section 3.2 (for the balanced nilpotent section 𝑥𝑘 and the cocharacter

𝜑𝑘). Let 𝑎 ∶ 𝐺 ×  → 𝔤 be the action map, and let 𝑎𝕂 ∶ 𝐺
𝕂
× 𝕂 → 𝔤

𝕂
, resp. 𝑎𝔽 ∶ 𝐺𝔽 × 𝔽 → 𝔤𝔽,

be its base change to 𝕂, resp. to 𝔽. We will make use of the natural induction equivalence

𝜃 ∶ 𝐷b𝖢𝗈𝗁𝐺×𝔾m(𝐺 × ) ≅ 𝐷b𝖢𝗈𝗁𝔾m(), (5.5)

as well as the corresponding equivalences 𝜃𝔽 and 𝜃𝕂. (Here, 𝔾m acts on 𝐺 ×  and  as in
Section 3.)
By property (2) from Section 2.3, we know that (𝜋∗𝔽())|St(𝒪′)[𝑑] is a coherent sheaf (i.e., a

complex whose cohomology is concentrated in degree 0) supported on 𝒪′. From the diagram in
Corollary 3.8 and the flat base change theorem (which is applicable thanks to Proposition 3.6),
we conclude that (𝑎𝔽)∗𝜋̃∗𝔽()[𝑑] is a coherent sheaf on 𝐺𝔽 × 𝔽 supported (set-theoretically) on
𝐺𝔽 × {𝑥𝑘,𝔽}, and hence, after passing through Equation (5.5), that the object

𝜃𝔽(𝑎
𝔽)∗𝜋̃∗𝔽()[𝑑] ≅ 𝔽

𝐿
⊗𝕆 (𝜃𝑎

∗𝜋̃∗)[𝑑]

is a coherent sheaf supported (set-theoretically) on 𝑥𝑘,𝔽.
Let  = 𝜃𝑎∗𝜋̃∗[𝑑] ∈ 𝐷

b𝖢𝗈𝗁𝔾m(). This can be thought of as a complex of finitely gener-
ated graded ()-modules. In particular, each graded component of this complex is bounded
and finitely generated over 𝕆. Recall a bounded complex of finitely generated 𝕆-modules 𝑀
is isomorphic to a free 𝕆-module (considered as a complex concentrated in degree 0) iff we
have 𝖧≠0(𝔽⊗𝐿

𝕆
𝑀) = 0. The previous paragraph tells us that 𝖧≠0(𝔽⊗𝐿

𝕆
) = 0, so  belongs to

𝖢𝗈𝗁𝔾m(), and is free as an𝕆-module. It follows that𝕂⊗𝕆  is nonzero. Retracing the steps in the
previous paragraph, we find that (𝜋∗𝕂())|St(𝒪′′) ≠ 0, where𝒪′′ ∶= 𝐺𝕂 ⋅ 𝑥𝑘,𝕂 is the orbit such that
𝖡𝖢(𝒪′′) = 𝒪′. It follows that 𝒪′′ = 𝒪, i.e., that 𝒪′ = 𝖡𝖢(𝒪), and then that supp(𝔽()) = 𝖡𝖢(𝒪).
Suppose now that 𝜋∗𝕂() = (𝒪,) for some  as in the statement, and that 𝑘 = 𝑗. Let 𝑉 be

the (simple)𝑍𝐺×𝔾m(𝑥𝑗)𝕂-representation corresponding to . Recall that there is an isomorphism

𝑍𝐺×𝔾m(𝑥𝑗) ≅ 𝔾m ⋉ 𝑍𝐺(𝑥𝑗), (5.6)

where 𝔾m acts on 𝑍𝐺(𝑥𝑗) by conjugation via the cocharacter 𝜑𝑗 (see, for instance, [5, Equa-
tion (2.6)]). Moreover, the induced action of (𝔾m)𝕂 on the reductive quotient of 𝑍𝐺(𝑥𝑗)𝕂 is trivial,
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so the copy of (𝔾m)𝕂 on the base change to 𝕂 of the right-hand side of Equation (5.6) acts on the
irreducible representation 𝑉 by a single character.
Let 𝑡 ∶ {𝑥𝑗} ↪  be the inclusion map, and let 𝑡

𝕂
, resp. 𝑡𝔽, be its base change to 𝕂, resp. 𝔽. In

the notation of the statement of the proposition, we have

𝑉 = 𝖧0(𝑢∗). (5.7)

By property (5) from Section 2.3, our assumption implies that

𝕂⊗𝕆  = 𝜃
𝕂
(𝑎𝕂)∗𝜋̃∗𝕂()[𝑑] ≅ 𝑡𝕂∗𝑉.

It is easily checked that the (𝔾m)𝕂-action on the left-hand side coming from Equation (5.5) is
identified with the (𝔾m)𝕂-action on right-hand side coming from Equation (5.6). In particular,

the graded (𝕂)-module 𝕂⊗𝕆  is concentrated in a single grading degree. Therefore,  is also
concentrated in a single grading degree, so it is supported scheme-theoretically on 𝑥𝑗: there is a
free 𝕆-module 𝑉𝕆 such that  ≅ 𝑡∗𝑉𝕆, and such that

𝑉 ≅ 𝕂⊗𝕆 𝑉𝕆. (5.8)

Since the inclusion map 𝚤𝑗 factors as

{𝑥𝑗}
𝑡
�→  ↪ 𝐺 × 

𝑎
�→ 𝔤,

we see that

(𝚤𝑗)
∗𝜋̃∗ ≅ 𝑡

∗ ≅ 𝑡∗𝑡∗𝑉𝕆[−𝑑].

This object has cohomology only in degrees ⩽ 𝑑, and its cohomology in degree 𝑑 is identified with
𝑉𝕆. In view of Equations (5.7) and (5.8), we deduce Equation (5.3). Similarly we have

(𝚤𝔽𝑗 )
∗𝜋̃∗𝔽() ≅ 𝑡

∗
𝔽𝔽() ≅ 𝑡

∗
𝔽𝑡𝔽∗(𝔽⊗𝕆 𝑉𝕆)[−𝑑],

which implies Equation (5.4).We leave it to the reader to check that the isomorphisms constructed
in this way are 𝑍𝐺×𝔾m(𝑥𝑗)𝕂-equivariant and 𝑍𝐺×𝔾m(𝑥𝑗)𝔽-equivariant respectively. □

Remark 5.6.

(1) In the setting of Proposition 5.5, since 𝜋∗𝔽() is a perverse-coherent sheaf whose support

is 𝖡𝖢(𝒪), its restriction to St(𝖡𝖢(𝒪)) is a coherent sheaf placed in degree 1
2
codim(𝒪), and

supported on an infinitesimal neighborhood of 𝒪′ ∶= 𝖡𝖢(𝒪). We claim that this coherent
sheaf is in fact supported scheme-theoretically on 𝒪′ (so that it coincides with the vector

bundle associated with the module 𝖧
1
2
codim(𝒪)((𝚤𝔽

𝑗
)∗𝜋̃∗𝔽())). Indeed, if  is the image of

𝑎𝔽, we have  ∩𝔽 = St(𝒪
′) (see Corollary 3.8). Therefore, it suffices to show that the

coherent sheaf 𝜋̃∗𝔽()| [ 12 codim(𝒪′)] is supported scheme-theoretically on 𝒪′. Now the

map 𝑎𝔽 ∶ 𝐺𝔽 × 𝔽 →  is flat and surjective, and hence faithfully flat. Our proof shows that
(𝑎𝔽)∗𝜋̃∗𝔽()| [ 12 codim(𝒪′)] is supported on 𝐺𝔽 × {𝑥𝑗,𝔽}, which implies our claim.
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(2) Under the identification provided by Equation (5.6), the (𝔾m)𝔽- or (𝔾m)𝕂-action on the
unipotent radical of 𝑍𝐺(𝑥𝑗)𝔽 or 𝑍𝐺(𝑥𝑗)𝕂 is contracting (see [29, Proposition 5.8] and [5,
Section 2]). Since 𝔾m acts on the module 𝑉𝕆 constructed later in the proof with a single
weight, the unipotent radical must act trivially on the resulting (𝔾m ⋉ 𝑍𝐺(𝑥𝑗))𝔽- or (𝔾m ⋉

𝑍𝐺(𝑥𝑗))𝕂-representation. In particular, in Proposition 5.2, the 𝑍𝐺(𝑥𝑗)𝔽-modules

𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝔽𝑗 )

∗
pc
𝜆
(𝔽)) and 𝖧

1
2
codim(𝒪𝕂

𝜆
)((𝚤𝔽𝑗 )

∗
pc
𝜆
(𝔽))

factor throughmodules for the reductive quotient of 𝑍𝐺(𝑥𝑗)𝔽. (See [25, Section 4.2] for similar
arguments in a more general context.)

6 AGREEMENT OF THE LUSZTIG–VOGAN BIJECTIONS

6.1 Overview

Our goal in this section is to compare the Lusztig–Vogan bijections for𝐺
𝕂
and𝐺𝔽. Tomake sense of

such a comparison, one first needs to construct a bijection between the setsΩ
𝕂
andΩ𝔽 introduced

in Section 2.3, which will occupy the first half of the section.
Recall that after choosing a representative for each nilpotent orbit over 𝕂, resp. over 𝔽, the set

Ω
𝕂
, resp. Ω𝔽, gets identifies with a set denoted Ω

′

𝕂
, resp. Ω′

𝔽
(see again Section 2.3). To construct

our bijection Ω
𝕂

∼
↔ Ω𝔽, we will make a coherent choice for these representatives, then construct

a bijection between the associated sets Ω′
𝕂
and Ω′

𝔽
.

More specifically, recall that we have fixed in Section 5.2 balanced nilpotent sections (𝑥𝑗 ∶

𝑗 ∈ 𝐽), which provide in particular (by base change to 𝔽 and 𝕂) representatives (𝑥𝑗,𝔽 ∶ 𝑗 ∈ 𝐽)
and (𝑥𝑗,𝕂 ∶ 𝑗 ∈ 𝐽) for the nilpotent orbits of 𝐺𝔽 and 𝐺𝕂 respectively. Using these choices of rep-

resentatives we obtain sets Ω′
𝔽
and Ω′

𝕂
. As explained above, we want to construct a bijection

Ω′
𝕂

∼
�→ Ω′𝔽 (6.1)

which “extends” the Bala–Carter bijection from Section 3.1, in the sense that the first component
of the image of a pair (𝒪, 𝑉) will be 𝖡𝖢(𝒪). Since 𝖡𝖢(𝐺

𝕂
⋅ 𝑥𝑗,𝕂) = 𝐺𝔽 ⋅ 𝑥𝑗,𝔽 (see Theorem 3.2),

constructing such a bijection is equivalent to constructing, for any 𝑗 ∈ 𝐽, a bijection

𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)𝕂)
∼
�→ 𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)𝔽) (6.2)

between the sets of isomorphism classes of simple modules for 𝑍𝐺(𝑥𝑗)𝕂 and 𝑍𝐺(𝑥𝑗)𝔽. The
construction of this bijection is explained (after some preliminaries) in Section 6.3 below.

6.2 Representation theory of centralizers

Wenow fix some 𝑗 ∈ 𝐽. The construction of Section (6.2) will involve replacing𝕂 by a finite exten-
sion 𝕂′ ⊂ 𝕂. Note that in this setting, if we let 𝕆′ be the integral closure of 𝕆 in 𝕂′, then 𝕆′ is a
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complete discrete valuation ring, which is finite (and free) as an𝕆-module, and has 𝕂′ as fraction
field (see [42, Chapter II, Proposition 3]). In particular, since we assume that 𝔽 is algebraically
closed, the residue field of 𝕆′ must still be 𝔽. Of course, replacing 𝕆 by 𝕆′ does not change the
field𝕂 either. For such datum,wewill denote by𝑍𝐺(𝑥𝑗)𝕆′ and𝑍𝐺(𝑥𝑗)𝕂′ the base changes of𝑍𝐺(𝑥𝑗)
to 𝕆′ and 𝕂′ respectively.
Let 𝑍𝐺(𝑥𝑗)

red

𝕂
and 𝑍𝐺(𝑥𝑗)

red
𝔽

be the reductive quotients of 𝑍𝐺(𝑥𝑗)𝕂 and 𝑍𝐺(𝑥𝑗)𝔽 (i.e., the quo-

tients of these groups by their unipotent radical). Because 𝑝 is assumed to be pretty good, it does
not divide the order of the finite group 𝑍(𝐺𝔽)∕𝑍(𝐺𝔽)

◦ (which is equal to the order of the torsion
part of 𝐗∕ℤ𝑅). Therefore, by [10, Lemma 6.2], we have

𝑝 ∤ |𝑍𝐺(𝑥𝑗)𝔽∕𝑍𝐺(𝑥𝑗)◦𝔽| = |𝑍𝐺(𝑥𝑗)red𝔽 ∕𝑍𝐺(𝑥𝑗)red,◦𝔽
|, (6.3)

Next, since 𝕂′ is a perfect field, the unipotent radical of 𝑍𝐺(𝑥𝑗)𝕂 is defined over 𝕂′, so that

𝑍𝐺(𝑥𝑗)
red

𝕂
has a natural 𝕂′-form 𝑍𝐺(𝑥𝑗)

red
𝕂′
, which is a connected reductive 𝕂′-group. Moreover,

for 𝕜 ∈ {𝔽,𝕂′,𝕂} the pullback functor induces a bijection

𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)
red
𝕜 )

∼
�→ 𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)𝕜) (6.4)

between the corresponding sets of isomorphism classes of simple modules. Below we will simply
identify these two sets via this bijection.
Let 𝕜 be either 𝔽 or 𝕂. Then 𝑍𝐺(𝑥𝑗)

red
𝕜

is a possibly disconnected reductive group over 𝕜. The
representation theory of such groups is studied in the companion paper [8]; in particular, these
results provide a combinatorial description of 𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)

red
𝕜
).Wewill not need to go into the details

of this description. Indeed, we essentially just need one key fact from that paper: according to [8,
Theorem 3.7], thanks to Equation (6.3), the category 𝖱𝖾𝗉(𝑍𝐺(𝑥𝑗)

red
𝔽
) admits a natural structure of

highest weight category.
In practice this means that the set 𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)

red
𝔽
) carries a partial order⪯𝑗 (defined explicitly in

[8, §3.1]), and that for each simple object 𝐿 we have a “standard object” Δ(𝐿) and a “costandard
object” ∇(𝐿) with maps Δ(𝐿) ↠ 𝐿 ↪ ∇(𝐿) such that all the composition factors of the kernel,
resp. cokernel, of the first, resp. second, map are strictly smaller than 𝐿 for the order ⪯𝑗 .

6.3 Identification of simple modules

For 𝕜 ∈ {𝔽,𝕂′,𝕂} we will denote by 𝖪(𝑍𝐺(𝑥𝑗)𝕜) the Grothendieck group of the category of
finite-dimensional algebraic representations of 𝑍𝐺(𝑥𝑗)𝕜. This group is a free ℤ-module, with a
basis consisting of the classes of simple representations. Recall that, since 𝑍𝐺(𝑥𝑗)𝕆′ is flat (see
Theorem 3.3), one has a canonical “decomposition map”

𝑑𝑍𝐺(𝑥𝑗)𝕆′ ∶ 𝖪(𝑍𝐺(𝑥𝑗)𝕂′) → 𝖪(𝑍𝐺(𝑥𝑗)𝔽),

see [41, Theorem 2]. This map is compatible with field extensions (for 𝕂′) in the obvious sense.
The construction of Equation (6.2) will be given by the following result, which will be proved

in Section 6.5 below.

Proposition 6.1. There exists a finite extension 𝕂0 ⊂ 𝕂 of 𝕂 such that if 𝕂
′ contains 𝕂0 then
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(1) the functor sending a 𝑍𝐺(𝑥𝑗)𝕂′ -module 𝑉 to 𝕂⊗𝕂′ 𝑉 (with its natural 𝑍𝐺(𝑥𝑗)𝕂-module

structure) induces a bijection

𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)𝕂′)
∼
�→ 𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)𝕂);

(2) 𝑑𝑍𝐺(𝑥𝑗)𝕆′ is an isomorphism;

(3) for any simple 𝑍𝐺(𝑥𝑗)𝕂-module𝑉, there exists a unique simple 𝑍𝐺(𝑥𝑗)𝔽-module𝑉
′ such that the

image under 𝑑𝑍𝐺(𝑥𝑗)𝕆′ of the simple 𝑍𝐺(𝑥𝑗)𝕂′ -module corresponding to 𝑉 (under the bijection

of (1)) is the class of Δ(𝑉′); in particular, 𝑉′ is the unique simple module whose class appears

with nonzero coefficient in this image and is maximal for this property (with respect to the order

⪯𝑗);

(4) the map 𝑉 ↦ 𝑉′ (with 𝑉, 𝑉′ as in (3)) is a bijection

𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)𝕂)
∼
�→ 𝖨𝗋𝗋(𝑍𝐺(𝑥𝑗)𝔽).

Gluing the bijections (6.2) over all 𝑗 ∈ 𝐽, we deduce the sought-after bijection (6.1), and hence
finally a bijection

Ω
𝕂

∼
�→ Ω𝔽. (6.5)

The construction of this bijection involves a choice of balanced nilpotent sections. We will see in
Theorem 6.4 that the bijection is in fact independent of this choice.

6.4 A Levi factor

We continue with the setting of Sections 6.2 and 6.3. Proposition 6.1 will be deduced from the
results of [8, Section 4]. But, since that paper considers reductive groups over 𝕆′, we will need
to consider some “nice” 𝕆′-group scheme which specializes over 𝔽 to 𝑍𝐺(𝑥𝑗)

red
𝔽
, and over 𝕂 to

𝑍𝐺(𝑥𝑗)
red

𝕂
. (Note that there exists no notion of “reductive quotient” over 𝕆.) This group scheme

will be constructed as a kind of “Levi factor” in 𝑍𝐺(𝑥𝑗).

More precisely, recall thatwe have also chosen some cocharacter𝜑𝑗.Wewill denote by𝑍
Levi
𝐺
(𝑥𝑗)

the centralizer in 𝑍𝐺(𝑥𝑗) of 𝜑𝑗 , and by 𝑍
Levi
𝐺
(𝑥𝑗)𝕜 its base-change to 𝕜 (for 𝕜 ∈ {𝔽,𝕆

′,𝕂′,𝕂}). For

𝕜 ∈ {𝔽,𝕂′,𝕂}, it is well known that𝑍Levi
𝐺
(𝑥𝑗)𝕜 is a Levi factor of𝑍𝐺(𝑥𝑗)𝕜; in other words the restric-

tion to this subgroup of the quotient morphism 𝑍𝐺(𝑥𝑗)𝕜 → 𝑍𝐺(𝑥𝑗)
red
𝕜

is an isomorphism (see, e.g.
[37, Proposition 3.2.2]).

Lemma 6.2. The 𝕆-group scheme 𝑍Levi
𝐺
(𝑥𝑗) is smooth.

Proof. Consider the semidirect product𝑍𝐺(𝑥𝑗)⋊ 𝔾m, where𝔾m acts on 𝑍𝐺(𝑥𝑗) by conjugation via
𝜑𝑗 . Then the centralizer in 𝑍𝐺(𝑥𝑗)⋊ 𝔾m of the subgroup {1}⋊ 𝔾m is smooth by [22, Example 11,

Corollary 5.3]. On the other hand, it is easy to check that this centralizer coincideswith𝑍Levi
𝐺
(𝑥𝑗) ×

𝔾m. Hence the latter group scheme is smooth. Using [45, Tag 02K5], we deduce that 𝑍
Levi
𝐺
(𝑥𝑗) is

smooth. □
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For 𝕜 ∈ {𝔽,𝕂}, the projection 𝑍𝐺(𝑥𝑗)𝕜 → 𝑍𝐺(𝑥𝑗)
red
𝕜

induces a bijection between the groups of

connected components of 𝑍𝐺(𝑥𝑗)𝕜 and 𝑍𝐺(𝑥𝑗)
red
𝕜
. Hence the same is true for the embedding

𝑍Levi
𝐺
(𝑥𝑗)𝕜 → 𝑍𝐺(𝑥𝑗)𝕜. In view of Theorem 3.3, it follows that the groups of connected components

of 𝑍Levi
𝐺
(𝑥𝑗)𝔽 and 𝑍

Levi
𝐺
(𝑥𝑗)𝕂 have the same cardinality, which we will denote by𝑚.

The decomposition of 𝑍Levi
𝐺
(𝑥𝑗)𝕂 into connected components defines a decomposition of the

coordinate ring

(𝑍Levi𝐺 (𝑥𝑗)𝕂) =

𝑚⨁
𝑖=1

(𝑍Levi𝐺 (𝑥𝑗)𝕂)𝜖𝑖

where (𝜖1, … , 𝜖𝑚) are mutually orthogonal idempotents. Let 𝕂0 ⊂ 𝕂 be a finite extension of 𝕂
such that all of these elements belong to 𝕂0 ⊗𝕆 (𝑍Levi

𝐺
(𝑥𝑗)). From now on we will assume that

𝕂′ contains 𝕂0, and let as above 𝕆
′ be the integral closure of 𝕆 in 𝕂′.

Denote by 𝑍Levi
𝐺
(𝑥𝑗)𝕆′ the base change of 𝑍

Levi
𝐺
(𝑥𝑗) to 𝕆

′. The arguments in [25, Section 3.3]

show that each 𝜖𝑖 belongs to(𝑍
Levi
𝐺
(𝑥𝑗)𝕆′). Then it is not difficult to check that the𝕆

′-submodule⨁𝑚
𝑖=1 𝕆

′ ⋅ 𝜖𝑖 ⊂ (𝑍Levi
𝐺
(𝑥𝑗)𝕆′) is a Hopf subalgebra, and that it defines a constant finite 𝕆

′-group

scheme 𝐴𝑗 , endowed with a morphism𝜛𝑗 ∶ 𝑍𝐺(𝑥𝑗)
Levi
𝕆′
→ 𝐴𝑗 . Moreover, the base change of this

morphism to 𝔽, resp.𝕂, identifies with the projection from𝑍Levi
𝐺
(𝑥𝑗)𝔽, resp.𝑍

Levi
𝐺
(𝑥𝑗)𝕂, to its group

of connected components. (See [25, Section 3.4] for details.)

Lemma 6.3. The kernel 𝑍Levi
𝐺
(𝑥𝑗)

◦

𝕆′
of𝜛 is a reductive group scheme over𝕆′, and the morphism𝜛

identifies 𝐴𝑗 with the quotient 𝑍
Levi
𝐺
(𝑥𝑗)𝕆′∕𝑍

Levi
𝐺
(𝑥𝑗)

◦

𝕆′
.

Proof. First we note that (𝑍Levi
𝐺
(𝑥𝑗)

◦

𝕆′
) is a direct summand of (𝑍Levi

𝐺
(𝑥𝑗)𝕆′) as an 𝕆

′-module,
and hence is flat over 𝕆′. Thus our group scheme is flat.
Let now 𝐀𝑗 be the finite group associated with 𝐴𝑗 . Then the arguments in the proof of [8,

Lemma4.2] show that themorphism𝑍Levi
𝐺
(𝑥𝑗)𝕆′(𝕆

′) → 𝐀𝑗 defined by𝜛 is surjective.We choose a

section𝐀𝑗 → 𝑍
Levi
𝐺
(𝑥𝑗)𝕆′(𝕆

′) of thismorphism, and denote by 𝜄 ∶ 𝐴𝑗 → 𝑍
Levi
𝐺
(𝑥𝑗)𝕆′ the associated

scheme morphism.
The same arguments as in [8, Lemma 4.3] show that the natural morphism of 𝕆′-schemes

𝐴𝑗 × 𝑍
Levi
𝐺
(𝑥𝑗)

◦

𝕆′
→ 𝑍Levi

𝐺
(𝑥𝑗)𝕆′ is an isomorphism. It follows that𝑍

Levi
𝐺
(𝑥𝑗)

◦

𝕆′
is a smooth𝕆′-group

scheme whose base changes to 𝔽 and 𝕂 are connected reductive algebraic groups; in other words
𝑍Levi
𝐺
(𝑥𝑗)

◦

𝕆′
is a reductive group scheme over 𝕆′.

The final claim in the statement is also clear from these arguments. □

6.5 Proof of Proposition 6.1

We consider the setting of Section 6.4, and define 𝕂0 as in Section 6.4. We will prove that if 𝕂
′

contains 𝕂0, then Properties (1)–(4) hold.
Property (1) is in fact true for any 𝕂′ (regardless of whether it contains 𝕂0 or not): arguing as

in [41, Section 3.6], this property simply follows from the fact that any simple 𝑍𝐺(𝑥𝑗)𝕂-modules
admits a 𝕂′-form, which follows from Proposition 5.2. (This property can also be deduced from
the general results of [8] under the assumption that 𝕂′ contains 𝕂0; see [8, Section 4.5].)
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In order to prove (2)–(4), we consider theGrothendieck groups𝖪(𝑍Levi
𝐺
(𝑥𝑗)𝕂′) and𝖪(𝑍

Levi
𝐺
(𝑥𝑗)𝔽)

of the categories of finite-dimensional algebraic 𝑍Levi
𝐺
(𝑥𝑗)𝕂′ -modules and 𝑍

Levi
𝐺
(𝑥𝑗)𝔽-modules

respectively. Since these subgroups are Levi factors in𝑍𝐺(𝑥𝑗)𝕂′ and𝑍𝐺(𝑥𝑗)𝔽 respectively, pullback
induces isomorphisms

𝖪(𝑍Levi𝐺 (𝑥𝑗)𝕂′)
∼
�→ 𝖪(𝑍𝐺(𝑥𝑗)𝕂′), 𝖪(𝑍

Levi
𝐺 (𝑥𝑗)𝔽)

∼
�→ 𝖪(𝑍𝐺(𝑥𝑗)𝔽). (6.6)

Moreover, since 𝑍Levi
𝐺
(𝑥𝑗)𝕆′ is smooth (see Lemma 6.2), we have a corresponding decomposition

map 𝑑𝑍Levi
𝐺
(𝑥𝑗)𝕆′

, and going back to the definition of this map we see that the diagram

commutes.
Now the results of [8, Section 4] can be applied to the 𝕆′-group scheme 𝑍Levi

𝐺
(𝑥𝑗)𝕆′ thanks

to Lemma 6.3. With this in mind, Property (2) is an application of [8, Theorem 4.4], and
Properties (3)–(4) follow from [8, Lemma 4.7].

6.6 Statement

Having explained the construction of Equation (6.1), we can at last state the main result of this
paper.

Theorem 6.4. The following diagram commutes, where the diagonal arrows are the Lusztig–Vogan

bijections for 𝐺
𝕂
and 𝐺𝔽:

Recall that the construction of Equation (6.5) involves the choice of a set (𝑥𝑗 ∶ 𝑗 ∈ 𝐽) of balanced
nilpotent sections. Theorem 6.4 evidently implies that Equation (6.5) is in fact independent of
these choices.
With respect to these choices, Theorem 6.4 is equivalent to the assertion that for any 𝜆 ∈ 𝐗+

we have

(1) 𝒪𝔽
𝜆
= 𝖡𝖢(𝒪𝕂

𝜆
);

(2) if 𝑗 ∈ 𝐽 is such that 𝒪𝔽
𝜆
= 𝐺𝔽 ⋅ 𝑥𝑗,𝔽 (or equivalently such that 𝒪

𝕂
𝜆
= 𝐺

𝕂
⋅ 𝑥𝑗,𝕂), then the simple

𝑍𝐺(𝑥𝑗)𝔽-module 𝐿
𝔽
𝜆
corresponds to the simple 𝑍𝐺(𝑥𝑗)𝕂-module 𝐿

𝕂
𝜆
under the bijection (6.2).
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Concerning (1), we note that by definition we have

supp(
pc
𝜆
(𝔽)) = 𝒪𝔽

𝜆
.

On the other hand, in Proposition 5.2 we have proved that

supp(
pc
𝜆
(𝔽)) = 𝖡𝖢(𝒪𝕂

𝜆
).

Now we have a surjection
pc
𝜆
(𝔽) ↠ 

pc
𝜆
(𝔽) (see Equation (5.2)), so using Lemma 5.4 we deduce

that

𝒪𝔽
𝜆
⊂ 𝖡𝖢(𝒪𝕂

𝜆
). (6.7)

Hence all that remains to be proved to obtain (1) is the opposite containment.

6.7 Simple modules for centralizers

In this subsection again we fix some 𝑗 ∈ 𝐽, and set

𝐗+
𝑗
∶= {𝜆 ∈ 𝐗+ ∣ 𝒪𝕂

𝜆
= 𝐺

𝕂
⋅ 𝑥𝑗,𝕂}.

Then the Lusztig–Vogan bijection for 𝐺
𝕂
induces a bijection between 𝐗+

𝑗
and the set of

isomorphism classes of simple modules for the centralizer 𝑍𝐺(𝑥𝑗)𝕂, sending 𝜆 to 𝐿
𝕂
𝜆
.

Proposition 6.5. Assume that for any 𝜆 ∈ 𝐗+
𝑗
we have𝒪𝔽

𝜆
= 𝐺𝔽 ⋅ 𝑥𝑗,𝔽. Then the assignment 𝜆 ↦ 𝐿

𝔽
𝜆

induces a bijection between 𝐗+
𝑗
and the set of isomorphism classes of simple modules for 𝑍𝐺(𝑥𝑗)𝔽.

Moreover the following commutes:

Proof. Under our assumption, each 𝐿𝔽
𝜆
is indeed a simple 𝑍𝐺(𝑥𝑗)𝔽-module, and our assignment is

injective because it is obtained by restricting the Lusztig–Vogan bijection for 𝐺𝔽. What remains to
be proved is surjectivity (and the commutativity of the diagram).
Let us choose a finite extension 𝕂′ of 𝕂 as in Proposition 6.1. If we denote by 𝑀𝜆 the

𝑍𝐺(𝑥𝑗)𝔽-module 𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝔽
𝑗
)∗

pc
𝜆
(𝔽)), then Proposition 5.2 implies that the image under the

decomposition map 𝑑𝑍𝐺(𝑥𝑗)𝕆′ of the class of the simple 𝑍𝐺(𝑥𝑗)𝕂′ -module corresponding to 𝐿
𝕂
𝜆

under the bijection of Proposition 6.1(1) is [𝑀𝜆]. Using Proposition 6.1(2)–(3), we deduce that the
classes ([𝑀𝜆] ∶ 𝜆 ∈ 𝐗

+
𝑗
) form aℤ-basis of 𝖪(𝑍𝐺(𝑥𝑗)𝔽), and moreover that for any 𝜆 ∈ 𝐗

+
𝑗
the class

[𝑀𝜆] coincideswith the class of the standard𝑍𝐺(𝑥𝑗)
red
𝔽
-modulewhose top is the image of 𝐿𝕂

𝜆
under

Equation (6.2).
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On the other hand, the isomorphism classes of simple 𝑍𝐺(𝑥𝑗)𝔽-modules also form a basis of
𝖪(𝑍𝐺(𝑥𝑗)𝔽), and the classes ([𝐿

𝔽
𝜆
] ∶ 𝜆 ∈ 𝐗+

𝑗
) form a subfamily of this basis.Moreover, sincepc

𝜆
(𝔽)

is a quotient ofΔpc
𝜆
(𝔽) (see Equation (5.2)), the composition factors of the kernel of the surjection


pc
𝜆
(𝔽) ↠ 

pc
𝜆
(𝔽) are of the form 

pc
𝜇 (𝔽) with 𝜇 < 𝜆 (see Property (4) in Section 2.3). The support

of these composition factors is contained in 𝒪𝔽
𝜆
(by Proposition 5.2 and our assumption), so that

𝖧
1
2
codim(𝒪𝕂

𝜆
)+1((𝚤𝔽

𝑗
)∗) = 0. Hence we have an exact sequence

𝖧
1
2
codim(𝒪𝕂

𝜆
)((𝚤𝔽𝑗 )

∗) → 𝑀𝜆 → 𝐿
𝔽
𝜆
→ 0.

In particular, [𝑀𝜆] has coefficient 1 on [𝐿
𝔽
𝜆
] and, for 𝜇 ∈ 𝐗+

𝑗
⧵ {𝜆}, if the coefficient of [𝑀𝜆] on [𝐿

𝔽
𝜇]

is nonzero, then 𝜇 < 𝜆.
If now 𝑉 is a 𝑍𝐺(𝑥𝑗)𝔽-module, there exist coefficients (𝑎𝜆 ∶ 𝜆 ∈ 𝐗

+
𝑗
) in ℤ (almost all zero) such

that

[𝑉] =
∑
𝜆∈𝐗+

𝑗

𝑎𝜆 ⋅ [𝑀𝜆].

If 𝜆 ismaximal among the elements such that 𝑎𝜆 ≠ 0, then the remarks above show that the coeffi-
cient of [𝑉] on [𝐿𝔽

𝜆
] (in the basis consisting of classes of simples modules) is 𝑎𝜆, and thus nonzero.

If we assume that 𝑉 is simple, this implies that 𝑉 ≅ 𝐿𝔽
𝜆
, which concludes the proof of surjectivity.

Finally, since𝐿𝔽
𝜆
is a composition factor of𝑀𝜆, the remarks above show that it is smaller than the

image of 𝐿𝕂
𝜆
under Equation (6.2) (with respect to the order⪯𝑗). Then a straightforward induction

argument (with respect to this order) implies that these modules are in fact isomorphic. □

6.8 Proof of Theorem 6.4

In view of Proposition 6.5, all that remains to be proved is that the inclusion (6.7) is an equal-

ity. First we observe that if 𝒪𝕂
𝜆
is the zero orbit, then 𝖡𝖢(𝒪𝕂

𝜆
) is also the zero orbit, so that the

inclusion (6.7) must be an equality.
Let now 𝒪 ⊂

𝕂
be an orbit, and assume the claim is known for any 𝜇 ∈ 𝐗+ such that 𝒪𝕂𝜇 ⊂

𝒪 ⧵ 𝒪. Then if 𝜆 ∈ 𝐗+ is such that 𝒪𝕂
𝜆
= 𝒪 and if the embedding supp(pc

𝜆
(𝔽)) ⊂ supp(

pc
𝜆
(𝔽))

is strict, then there exists some orbit 𝒪′ ⊂ 𝒪 ⧵ 𝒪 such that 𝒪𝔽
𝜆
= 𝖡𝖢(𝒪′). If 𝑗 ∈ 𝐽 is such that

𝑥𝑗,𝕂 ∈ 𝒪′, then 𝐿𝔽
𝜆
is a simple 𝑍𝐺(𝑥𝑗)𝔽-module, which cannot be isomorphic to any 𝐿𝔽𝜇 with

𝜇 ∈ 𝐗+
𝑗
(because the Lusztig–Vogan bijection is a bijection). But there exists no such module by

Proposition 6.5 applied to this choice of 𝑗. (This proposition is applicable thanks to our induction
hypothesis.)

6.9 Complement: identification of𝑴𝝀

Let 𝜆 ∈ 𝐗+
𝑗
, and recall the 𝑍𝐺(𝑥𝑗)𝔽-module𝑀𝜆 introduced in the proof of Proposition 6.5. In the

course of this proof we observed that the class of𝑀𝜆 is the class of a standard 𝑍𝐺(𝑥𝑗)
red
𝔽
-module,

which can now be identified with Δ(𝐿𝔽
𝜆
) thanks to Theorem 6.4.
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In this subsection we note that one can say more about this module.

Proposition 6.6. For any 𝑗 ∈ 𝐽 and 𝜆 ∈ 𝐗+
𝑗
, there exists an isomorphism of 𝑍𝐺(𝑥𝑗)𝔽-modules

Δ(𝐿𝔽
𝜆
)
∼
�→ 𝑀𝜆.

Remark 6.7. Recall that the module𝑀𝜆 in Proposition 6.6 was defined in terms of the perverse-
coherent sheafpc

𝜆
(𝔽). If one starts withpc

𝜆
(𝔽) instead, the reasoning below can be used to show

that the resulting 𝑍𝐺(𝑥𝑗)𝔽-module is isomorphic to ∇(𝐿
𝔽
𝜆
).

Proof. To fix notation, we set 𝒪 = 𝒪𝔽
𝜆
.

As seen in the course of the proof of Proposition 6.5, there exists a surjection𝑀𝜆 ↠ 𝐿
𝔽
𝜆
. Our first

observation is that in fact 𝐿𝕜
𝜆
is the top of𝑀𝜆.

For this, let 𝑗 ∶ St(𝒪) ↪𝔽 be the inclusion, and recall from [12, Section 4] that there is a fully
faithful functor 𝑗!∗ ∶ 𝖯𝖢𝗈𝗁(St(𝒪)) → 𝖯𝖢𝗈𝗁(𝔽) whose image is the full subcategory consisting of
objects with no nontrivial subobject or quotient supported on𝔽 ⧵ St(𝒪). Let 𝑖𝒪 ∶ 𝒪 ↪ St(𝒪) be
the embedding of 𝒪 as a reduced closed subscheme of St(𝒪). For any vector bundle  on 𝒪, we
have (𝒪,) = 𝑗!∗𝑖𝒪∗ .
Since pc

𝜆
(𝔽) is the top of pc

𝜆
(𝔽), it is clear that pc

𝜆
(𝔽) has no nonzero quotient supported

on𝔽 ⧵ St(𝒪). Let  be the unique maximal subobject ofpc
𝜆
(𝔽) supported on𝔽 ⧵ St(𝒪). Then

the cokernel of  ↪
pc
𝜆
(𝔽) must lie in the essential image of 𝑗!∗; in fact, it is identified with

𝑗!∗(
pc
𝜆
(𝔽)|St(𝒪)). According to Remark 5.6(1),pc𝜆 (𝔽)|St(𝒪) is supported scheme-theoretically on

𝒪. We therefore have a short exact sequence

0 →  →
pc
𝜆
(𝔽) → (𝒪,𝜆) → 0,

where𝜆 is the vector bundle on 𝒪 corresponding to𝑀𝜆. Now, let 𝑉 be the top of𝑀𝜆, and let 
be the corresponding vector bundle. The quotient map𝜆 →  gives rise to map (𝒪,𝜆) →

(𝒪,). Here, (𝒪,) is a semisimple perverse-coherent sheaf. The map is nonzero on every
summand, so it is surjective. Composing with

pc
𝜆
(𝔽) → (𝒪,𝜆), we find that (𝒪,) is a

semisimple quotient of pc
𝜆
(𝔽). But since the latter has a simple top, we must have (𝒪,) ≅


pc
𝜆
(𝔽), hence 𝑉 ≅ 𝐿𝔽

𝜆
.

Let 𝒞 be the Serre subcategory of the category of finite-dimensional algebraic 𝑍𝐺(𝑥𝑗)
red
𝔽
-

modules generated by the simple objects which are smaller than 𝐿𝔽
𝜆
(with respect to ⪯𝑗). Since

[𝑀𝜆] = [Δ(𝐿
𝔽
𝜆
)], every composition factor of𝑀𝜆 satisfies this condition, so in viewofRemark 5.6(2)

we have𝑀𝜆 ∈ 𝒞. On the other hand, by the general theory of highest-weight categories, the stan-
dard objectΔ(𝐿𝔽

𝜆
) also belongs to𝒞, and is the projective cover of 𝐿𝔽

𝜆
in this subcategory. Therefore,

there exists a map Δ(𝐿𝔽
𝜆
) → 𝑀𝜆 whose composition with the surjection𝑀𝜆 ↠ 𝐿

𝔽
𝜆
is surjective. It

follows that this map is surjective. Since 𝑀𝜆 and Δ(𝐿
𝔽
𝜆
) have the same number of composition

factors (because they have the same class in 𝖪-theory), it must be an isomorphism. □

APPENDIX A: EXCEPTIONAL SEQUENCESWITH COEFFICIENTS IN A COMPLETE

LOCAL PRINCIPAL IDEAL DOMAIN

Let𝔼 be a complete local principal ideal domain (i.e., either a field or a complete discrete valuation
ring), and let 𝜛 be a generator of its unique maximal ideal. Let  be an 𝔼-linear triangulated
category. Throughout this section, we impose the following assumptions on  :
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∙  is equippedwith a Tate twist, that is, an autoequivalence of triangulated categories ⟨1⟩ ∶  →
 .
∙  is graded Hom-finite, that is, for any two objects 𝑋,𝑌 ∈  , the 𝔼-module

⨁
𝑘∈ℤ

Hom(𝑋,𝑌⟨𝑘⟩)

is a finitely generated 𝔼-module.

Note that the second assumption implies that no nonzero power of ⟨1⟩ is the identity functor, and
that no nonzero object is isomorphic to a Tate twist of itself.
In the case when 𝔼 is a field, there exists a well-known theory of (graded) exceptional sequences

in such triangulated categories, exposed, for example, in refs. [14, 16] building in particular on
constructions of Bondal–Kapranov [19]. One important feature of this construction is that it allows
the construction of a t-structure on  using the recollement formalism of [13]. Our aim in this
appendix is to extend this theory to the setting when 𝔼 is a general ring as above. This extension
does not require new ideas, but only some care in dealing with new technical difficulties.

A.1 Noetherian t-structures and recollement

We begin by studying triangulated categories generated by a single object. For field coefficients,
the following statement can be found in [14, Corollary 1]. Recall that an abelian category is said
to be noetherian if every object in it is noetherian, that is, if every object satisfies the ascending
chain condition on subobjects.

Proposition A.1. Let  be a 𝔼-linear triangulated category equipped with a Tate twist ⟨1⟩ ∶  →
 . Assume that  is graded Hom-finite, and that there exists an object 𝑁 ∈  with the following

properties:

(1)  is generated (as a triangulated category) by objects of the form𝑁⟨𝑘⟩.
(2) We have

Hom(𝑁,𝑁[𝑛]⟨𝑘⟩) =
⎧
⎪⎨⎪⎩

0 if 𝑛 < 0, or if 𝑛 = 0 and 𝑘 ≠ 0,

𝔼 if 𝑛 = 𝑘 = 0,

a free 𝔼-module if 𝑛 = 1 (for any 𝑘 ∈ ℤ).

(A.1)

Define an object 𝑁̄ as follows:

𝑁̄ =

{
cone(𝑁

𝜛⋅id
����→ 𝑁) if 𝔼 is not a field,

0 otherwise.

Finally, let𝒜 ⊂  be the smallest full subcategory that is closedunder extensions (in particular, under

finite direct sums) and contains the objects

0, 𝑁⟨𝑘⟩, 𝑁̄⟨𝑘⟩ for all 𝑘 ∈ ℤ. (A.2)

Then𝒜 is the heart of a bounded t-structure ( ⩽0,  ⩾0) on  , given by

 ⩽0 =
the subcategory generated under extensions by objects of the form

𝑁[𝑛]⟨𝑘⟩ with 𝑛 ⩾ 0 and 𝑘 ∈ ℤ, ,
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 ⩾0 =
the subcategory generated under extensions by objects of the form

𝑁[𝑛]⟨𝑘⟩ and 𝑁̄[𝑛]⟨𝑘⟩ with 𝑛 ⩽ 0 and 𝑘 ∈ ℤ. .

Moreover,𝒜 is a noetherian category. If 𝔼 is a field, it is also artinian.

Proof. We will prove this in the case where 𝔼 is not a field. The field case is considerably easier;
the appropriate modifications are left to the reader.
We will make extensive use of the “∗” operation from [13, Section 1.3.9]. Recall that this oper-

ation is associative, see [13, Lemme 1.3.10]. Let 𝒜1 be the full subcategory of  consisting of the
objects listed in Equation (A.2). We also set

𝒜𝑘 = 𝒜1 ∗ ⋯ ∗ 𝒜1
⏟⎴⎴⎴⏟⎴⎴⎴⏟

𝑘 factors

.

By definition, we have𝒜 =
⋃
𝑘⩾1𝒜

𝑘.
Step 1. The cone of any nonzero morphism𝑁 → 𝑁 lies in𝒜. Any suchmorphism is a scalar mul-

tiple of the identity by assumption. After composing with an automorphism of𝑁 (multiplication
by a suitable unit in 𝔼), wemay assume that themorphism ismultiplication by𝜛𝑘 for some 𝑘 ⩾ 0.
We will now prove the claim by induction on 𝑘. For 𝑘 = 0, it is trivial. For 𝑘 ⩾ 1, we claim more
precisely that

cone(𝜛𝑘) ∈ 𝑁̄ ∗ ⋯ ∗ 𝑁̄
⏟⎴⎴⏟⎴⎴⏟
𝑘 factors

⊂ 𝒜. (A.3)

For 𝑘 = 1, this holds by definition. For 𝑘 ⩾ 2, factor the map as

𝑁
𝜛𝑘−1

�����→ 𝑁
𝜛
��→ 𝑁.

The octahedral axiom shows that cone(𝜛𝑘) ∈ cone(𝜛𝑘−1) ∗ cone(𝜛), and then Equation (A.3)
follows by induction.
Step 2. Calculations ofHom-groups among objects of𝒜1. We will compute variousHom-spaces

involving the objects in Equation (A.2). Note that Hom(𝑁,𝑁⟨𝑘⟩) has been described in the
assumptions of the proposition.
We begin with Hom(𝑁, 𝑁̄⟨𝑘⟩). We have an exact sequence

⋯ → Hom(𝑁,𝑁⟨𝑘⟩) 𝜛��→ Hom(𝑁,𝑁⟨𝑘⟩) → Hom(𝑁, 𝑁̄⟨𝑘⟩)
→ Hom(𝑁,𝑁[1]⟨𝑘⟩) 𝜛��→ Hom(𝑁,𝑁[1]⟨𝑘⟩) → ⋯ .

SinceHom(𝑁,𝑁[1]⟨𝑘⟩) is a free𝔼-module, themap between the fourth and fifth terms is injective.
It follows that

Hom(𝑁, 𝑁̄⟨𝑘⟩) ≅
{
𝔼∕𝜛 if 𝑘 = 0,

0 if 𝑘 ≠ 0.
(A.4)
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Next, we determine Hom(𝑁̄,𝑁[𝑛]⟨𝑘⟩) for 𝑛 ∈ {0, 1}. We have an exact sequence

⋯→ Hom(𝑁,𝑁[𝑛 − 1]⟨𝑘⟩) 𝜛��→ Hom(𝑁,𝑁[𝑛 − 1]⟨𝑘⟩)

→ Hom(𝑁̄,𝑁[𝑛]⟨𝑘⟩) → Hom(𝑁,𝑁[𝑛]⟨𝑘⟩) 𝜛��→ Hom(𝑁,𝑁[𝑛]⟨𝑘⟩) →⋯ . (A.5)

When 𝑛 = 0, the first two terms vanish by assumption, so Hom(𝑁̄,𝑁⟨𝑘⟩) is the kernel of
multiplication by𝜛 on Hom(𝑁,𝑁⟨𝑘⟩). We conclude that

Hom(𝑁̄,𝑁⟨𝑘⟩) = 0 for all 𝑘 ∈ ℤ. (A.6)

On the other hand, when 𝑛 = 1, both maps labeled 𝜛 in Equation (A.5) are injective, so
Hom(𝑁̄,𝑁[1]⟨𝑘⟩) is the cokernel of the first such map. We conclude that

Hom(𝑁̄,𝑁[1]⟨𝑘⟩) ≅
{
𝔼∕𝜛 if 𝑘 = 0,

0 if 𝑘 ≠ 0.
(A.7)

Finally, let us compute Hom(𝑁̄, 𝑁̄⟨𝑘⟩). Consider the sequence

⋯ → Hom(𝑁̄,𝑁⟨𝑘⟩) → Hom(𝑁̄, 𝑁̄⟨𝑘⟩)
→ Hom(𝑁̄,𝑁[1]⟨𝑘⟩) 𝜛��→ Hom(𝑁̄,𝑁[1]⟨𝑘⟩) →⋯ .

Using Equations (A.6) and (A.7), we see that the first term always vanishes, and that the map on
the second line is zero. Therefore, Hom(𝑁̄, 𝑁̄⟨𝑘⟩) ≅ Hom(𝑁̄,𝑁[1]⟨𝑘⟩), so

Hom(𝑁̄, 𝑁̄⟨𝑘⟩) ≅
{
𝔼∕𝜛 if 𝑘 = 0,

0 if 𝑘 ≠ 0.
(A.8)

Step 3. We have𝒜1 ∗ (𝒜1[1]) ⊂ (𝒜1[1]) ∗ 𝒜. An object 𝐶 belongs to𝒜1 ∗ (𝒜1[1]) if and only
if it occurs in a distinguished triangle 𝑋 → 𝐶 → 𝑌[1] →with 𝑋,𝑌 ∈ 𝒜1. In other words, 𝐶 is the
cone of some map 𝑓 ∶ 𝑌 → 𝑋 in 𝒜1. Let us consider all the possibilities for 𝑋 and 𝑌, and show
that in each case, 𝐶 lies in (𝒜1[1]) ∗ 𝒜:

(1) If 𝑓 = 0, then 𝐶 ≅ 𝑋 ⊕ 𝑌[1], so the claim is clear. In particular, this applies if either 𝑋 or 𝑌 is
0.

(2) Suppose𝑋 = 𝑁⟨𝑚⟩ and𝑌 = 𝑁⟨𝑘⟩. If𝑚 ≠ 𝑘, then 𝑓 = 0, and we are done. If𝑚 = 𝑘, the claim
follows from Step 1.

(3) Suppose 𝑋 = 𝑁̄⟨𝑚⟩ and 𝑌 = 𝑁⟨𝑘⟩. If 𝑚 ≠ 𝑘, then by Equation (A.4) we have 𝑓 = 0, and we
are done. Suppose now that𝑚 = 𝑘. In this case,Hom(𝑌,𝑋) ≅ 𝔼∕𝜛 is a field, so if𝑓 is nonzero,
then it must be the composition of the canonical map𝑁⟨𝑚⟩→ 𝑁̄⟨𝑚⟩with an automorphism
of 𝑁̄⟨𝑚⟩. By the definition of 𝑁̄, the cone of the canonical map 𝑁⟨𝑚⟩→ 𝑁̄⟨𝑚⟩ is 𝑁[1]⟨𝑚⟩.

(4) Suppose 𝑋 = 𝑁⟨𝑚⟩ and 𝑌 = 𝑁̄⟨𝑘⟩. By (A.6), 𝑓 = 0.
(5) Suppose 𝑋 = 𝑁̄⟨𝑚⟩ and 𝑌 = 𝑁̄⟨𝑘⟩. If 𝑚 ≠ 𝑘, then by Equation (A.8) we have 𝑓 = 0, and we

are done. Suppose now that𝑚 = 𝑘. SinceHom(𝑌,𝑋) ≅ 𝔼∕𝜛 is a field, any nonzeromorphism
𝑌 → 𝑋 is an isomorphism. The claim follows.
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Step 4. We have 𝒜 ∗ (𝒜1[1]) ⊂ (𝒜1[1]) ∗ 𝒜. It is enough to show that 𝒜𝑘 ∗ (𝒜1[1]) ⊂

(𝒜1[1]) ∗ 𝒜 for all 𝑘 ⩾ 1. We proceed by induction on 𝑘. The case where 𝑘 = 1 has been done
in Step 3. For 𝑘 > 1, we have

𝒜𝑘 ∗ (𝒜1[1]) = 𝒜1 ∗ (𝒜𝑘−1 ∗ (𝒜1[1])) ⊂ (𝒜1 ∗ (𝒜1[1])) ∗ 𝒜

⊂ (𝒜1[1]) ∗ 𝒜 ∗ 𝒜 ⊂ (𝒜1[1]) ∗ 𝒜.

Here the first inclusion uses the induction hypothesis, and the second one the result of Step 3.
Step 5. We have 𝒜 ∗ (𝒜[1]) ⊂ (𝒜[1]) ∗ 𝒜. Again, it is enough to show that 𝒜 ∗ (𝒜𝑘[1]) ⊂

(𝒜𝑘[1]) ∗ 𝒜 for all 𝑘 ⩾ 1. For 𝑘 = 1, this has been done in Step 4. For 𝑘 > 1, we have

𝒜 ∗ (𝒜𝑘[1]) = (𝒜 ∗ (𝒜𝑘−1[1])) ∗ 𝒜1[1] ⊂ (𝒜𝑘−1[1]) ∗ (𝒜 ∗ (𝒜1[1]))

⊂ 𝒜𝑘−1[1] ∗ (𝒜1[1]) ∗ 𝒜 = (𝒜𝑘[1]) ∗ 𝒜,

as desired.
Step 6. The category 𝒜 is the heart of a bounded t-structure on  as claimed in the statement of

the proposition. In [13, Section 1.2.3], the authors define the notion of admissible morphisms with
respect to a full subcategory. The precise definition of this notionwill not be important for us, since
according to [13, Section 1.3.11(ii)] the statement proved in Step 5 is equivalent to the assertion that
every morphism in𝒜 is admissible (with respect to 𝒜). According to [13, Proposition 1.2.4], this
implies that 𝒜 is an admissible abelian subcategory of  in the sense of [13, Définition 1.2.5].
Finally, since 𝑁 generates  , applying [13, Proposition 1.3.13] we obtain that 𝒜 is the heart of a
(unique) 𝑡-structure on  .
An explicit description of this t-structure appears in the paragraph preceding [13, Proposi-

tion 1.3.13]:  ⩽0 and  ⩾0 are the categories generated under extensions by 𝒜[𝑛] with 𝑛 ⩾ 0 and
𝑛 ⩽ 0, respectively. Of course, we may replace𝒜 by𝒜1. For  ⩾0, the resulting description is as in
the statement of the present proposition. For  ⩽0, we may further omit 𝑁̄ from the description,
since 𝑁̄ ∈ 𝑁 ∗ 𝑁[1].
Step 7. Every object𝑀 ∈ 𝒜 admits a filtration 0 = 𝑀0 ⊂ 𝑀1 ⊂⋯ ⊂ 𝑀𝑛 = 𝑀 such that each sub-

quotient𝑀𝑖∕𝑀𝑖−1 is isomorphic to either 𝑁⟨𝑘⟩ or 𝑁̄⟨𝑘⟩ for some 𝑘 ∈ ℤ. This is just a restatement
of the fact that𝒜 is generated under extensions by the objects𝑁⟨𝑘⟩ and 𝑁̄⟨𝑘⟩, translated into the
language of abelian categories.
Step 8. Let𝑀 be a nonzero subobject of𝑁. Then𝑀 contains a subobject isomorphic to𝑁. Choose

a filtration of𝑀 as in Step 7. The first step in this filtration,𝑀1, is a subobject of𝑀 and of 𝑁 that
is isomorphic to some 𝑁⟨𝑘⟩ or 𝑁̄⟨𝑘⟩. But by Equations (A.1) and (A.6), we must have𝑀1 ≅ 𝑁.
Step 9. The category 𝒜 is noetherian. In view of Step 7, it is enough to prove that the objects 𝑁

and 𝑁̄ are noetherian. We actually claim that 𝑁̄ is a simple object. To prove this, it is enough to
show that any nonzero map 𝑌 → 𝑁̄ in𝒜 is surjective. Suppose first that 𝑌 = 𝑁⟨𝑘⟩ or 𝑌 = 𝑁̄⟨𝑘⟩.
If 𝑘 ≠ 0, there is no nonzero map 𝑌 → 𝑁̄; if 𝑘 = 0, we saw in Step 3 that the cone of any nonzero
map 𝑌 → 𝑁̄ lies in 𝒜[1], so the map is surjective. For general 𝑌 ∈ 𝒜, the claim then follows by
induction on the length of the filtration from Step 7.
It remains to show that 𝑁 is noetherian. Suppose we have an ascending chain of subobjects

𝑀1 ⊂ 𝑀2 ⊂⋯ in𝑁. By Step 8,𝑀1 contains a subobject𝑄 that is isomorphic to𝑁. The composition
of the inclusionmaps𝑄 ↪ 𝑀1 ↪ 𝑁may be identified with𝜛𝑘 ∶ 𝑁 → 𝑁 for some 𝑘 ⩾ 0. To show
that our ascending chain is eventually constant, it is enough to show that the chain of subobjects
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𝑀1∕𝑄 ⊂ 𝑀2∕𝑄 ⊂⋯ in cok(𝜛𝑘 ∶ 𝑁 → 𝑁) is eventually constant. The cokernel of𝜛𝑘 ∶ 𝑁 → 𝑁 is
described in Equation (A.3): it is a finite extension of simple objects, so it is noetherian. □

Remark A.2. In the setting of Proposition A.1, suppose we assume in addition that
Hom(𝑁,𝑁[1]⟨𝑘⟩) = 0 and thatHom(𝑁,𝑁[2]⟨𝑘⟩) is a free 𝔼-module (for all 𝑘 ∈ ℤ). One can then
show that 𝑁 is a projective object in𝒜, and that the functor

⨁
𝑘∈ℤ

Hom(𝑁⟨−𝑘⟩, −) ∶ 𝒜 → 𝔼-𝗀𝗆𝗈𝖽

is an equivalence of categories, where 𝔼-𝗀𝗆𝗈𝖽 is the category of finitely generated graded
𝔼-modules.

The following fact is probably well-known, but we could not find a reference, so we include a
proof.

Lemma A.3. Let 𝐹 ,  , and 𝑈 be triangulated categories, and suppose we have a recollement

diagram

Suppose 𝐹 and 𝑈 are equipped with t-structures, and let𝒜𝐹 and𝒜𝑈 be their hearts, respectively.

Let 𝒜 be the heart of the t-structure on  obtained by recollement. If 𝒜𝐹 and 𝒜𝑈 are noetherian

categories, then𝒜 is as well.

Proof. As explained in [13, Section 1.4.17.1], the functor 𝜄 identifies𝒜𝐹 with a Serre subcategory of
𝒜. In particular, any object of𝒜 that is in the image of𝒜𝐹 is noetherian.
Let 𝑋 ∈ 𝒜. We will show that 𝑋 is noetherian. By [13, Proposition 1.4.17(ii)], we have a right

exact sequence

𝐻0(ΠLΠ(𝑋)) → 𝑋 → 𝐻0(𝜄𝜄L(𝑋)) → 0.

As explained above, the last object is noetherian, so it is enough to prove that 𝐻0(ΠLΠ(𝑋)) is
noetherian. Apply [13, Proposition 1.4.17(ii)] again to obtain a left exact sequence

0 → 𝐻0(𝜄𝜄R𝐻0(ΠLΠ(𝑋))) → 𝐻0(ΠLΠ(𝑋)) → 𝐻0(ΠRΠ𝐻0(ΠLΠ(𝑋))).

Here, the first term is noetherian. Since Π is t-exact, and Π ◦ ΠL ≅ id, the last term can be
identified with 𝐻0(ΠRΠ(𝑋)). We have reduced the problem to showing that the image of
𝐻0(ΠLΠ(𝑋)) → 𝐻0(ΠRΠ(𝑋)) is noetherian. More generally, we will show that for any 𝑌 ∈ 𝒜𝑈 ,
the image of the natural map

𝐻0(ΠL𝑌) → 𝐻0(ΠR𝑌)

is noetherian. Following [13, Définition 1.4.22], we denote this image by Π!∗(𝑌).
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Let𝑍1 ⊂ 𝑍2 ⊂⋯ be an ascending chain of subobjects ofΠ!∗(𝑌). ThenΠ(𝑍1) ⊂ Π(𝑍2) ⊂ ⋯ is an
ascending chain of subobjects of𝑌 ∈ 𝒜𝑈 . Since𝑌 is noetherian, this chain is eventually constant:
there is a subobject 𝑌′ ⊂ 𝑌 such thatΠ(𝑍𝑘) = 𝑌

′ for all 𝑘 ≫ 0. By discarding finitely many terms
from the beginning of our sequence, we may assume that Π(𝑍𝑘) = 𝑌

′ for all 𝑘 ⩾ 1.
By adjunction, for each 𝑘, we have a map

𝐻0(ΠL𝑌′) → 𝑍𝑘. (A.9)

According to [13, Proposition 1.4.17(i)], the image of this map has no nonzero quotient in 𝒜𝐹 .
On the other hand, 𝑍𝑘, as a subobject of Π!∗(𝑌), has no nonzero subobject in 𝒜𝐹 , and hence
neither does the image of Equation (A.9). By [13, Corollary 1.4.25], we conclude that the image of
Equation (A.9) is canonically identified with Π!∗(𝑌

′).
Let 𝑍′

𝑘
= 𝑍𝑘∕Π!∗(𝑌

′). To prove that 𝑍1 ⊂ 𝑍2 ⊂⋯ is eventually constant, it is enough to show
that

𝑍′1 ⊂ 𝑍
′
2 ⊂⋯ ⊂ Π!∗(𝑌)∕Π!∗(𝑌

′)

is eventually constant. By construction, we have Π(𝑍′
𝑘
) ≅ 𝑌′∕𝑌′ = 0, so each 𝑍′

𝑘
lies in (the

essential image of) 𝒜𝐹 . By adjunction, the inclusion map 𝑍
′
𝑘
→ Π!∗(𝑌)∕Π!∗(𝑌

′) factors through
𝐻0(𝜄𝜄R(Π!∗(𝑌)∕Π!∗(𝑌

′))). Denote the latter object by 𝑌′′, and rewrite the chain of subobjects as

𝑍′1 ⊂ 𝑍
′
2 ⊂ ⋯ ⊂ 𝑌′′.

Since 𝑌′′ ∈ 𝒜𝐹 , it is noetherian, and this chain of subobjects is eventually constant. □

A.2 Exceptional sequences and their duals

The following notion is themain focus of this appendix. We continue to assume that  is 𝔼-linear,
equipped with a Tate twist, and that it is graded Hom-finite.

Definition A.4. Let (𝐼,⩽) be an ordered set that is isomorphic to a subset of (ℤ⩾0,⩽). An 𝔼-
linear graded exceptional sequence in  is a collection of objects {∇𝑖}𝑖∈𝐼 such that the following
conditions hold:

(1) If 𝑖 < 𝑗, then Hom(∇𝑖 , ∇𝑗[𝑛]⟨𝑘⟩) = 0 for all 𝑛, 𝑘 ∈ ℤ.
(2) We have Hom(∇𝑖 , ∇𝑖[𝑛]⟨𝑘⟩) = 0 unless 𝑛 = 𝑘 = 0, and End(∇𝑖) ≅ 𝔼.
(3) The collection of objects {∇𝑖⟨𝑘⟩}𝑖∈𝐼,𝑘∈ℤ generates  as a triangulated category.

There is an ungraded variant of this notion as well (applicable to categories without a Tate
twist), obtained by simply omitting all mentions of ⟨𝑘⟩ from the three axioms. All the results in
this section are stated in the graded case, but the corresponding statements in the ungraded case
also hold (with the same proofs).
Given a graded exceptional sequence {∇𝑖}𝑖∈𝐼 in  and an element 𝑖 ∈ 𝐼, we let

<𝑖 , resp. ⩽𝑖

denote the full triangulated subcategory of  generated by the objects of the form ∇𝑗⟨𝑘⟩ with
𝑘 ∈ ℤ and 𝑗 < 𝑖, resp. 𝑗 ⩽ 𝑖. Let

Π𝑖 ∶ ⩽𝑖 → ⩽𝑖∕<𝑖
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be the Verdier quotient functor. It is clear that the quotient category ⩽𝑖∕<𝑖 is generated by the
objects of the form Π𝑖(∇𝑖)⟨𝑘⟩.

Definition A.5. Let {∇𝑖}𝑖∈𝐼 be a graded exceptional sequence in  , and let {Δ𝑖}𝑖∈𝐼 be another
collection of objects indexed by 𝐼. The set {Δ𝑖}𝑖∈𝐼 is said to be a dual sequence to {∇𝑖}𝑖∈𝐼 if for each
𝑖 ∈ 𝐼, we have

(1) If 𝑖 < 𝑗, then Hom(Δ𝑗 , ∇𝑖[𝑛]⟨𝑘⟩) = 0 for all 𝑛, 𝑘 ∈ ℤ.
(2) For each 𝑖 ∈ 𝐼, we have Δ𝑖 ∈ ⩽𝑖 and Π𝑖(Δ𝑖) ≅ Π𝑖(∇𝑖).

The exceptional sequence {∇𝑖}𝑖∈𝐼 is said to be dualizable if there exists some dual sequence to it.
(It is easily seen using Lemma A.6 below that a dual sequence is unique if it exists, which justifies
the terminology.)

Lemma A.6. Let {∇𝑖}𝑖∈𝐼 be a graded exceptional sequence, and let {Δ𝑖}𝑖∈𝐼 be a dual sequence.

(1) If 𝑋 ∈ <𝑖 thenHom(𝑋,∇𝑖[𝑛]⟨𝑘⟩) = 0 andHom(Δ𝑖[𝑛]⟨𝑘⟩, 𝑋) = 0 for all 𝑛, 𝑘 ∈ ℤ.
(2) For all 𝑋 ∈ ⩽𝑖 , the natural maps

Hom(𝑋,∇𝑖[𝑛]⟨𝑘⟩) → Hom(Π𝑖(𝑋), Π𝑖(∇𝑖)[𝑛]⟨𝑘⟩),
Hom(Δ𝑖[𝑛]⟨𝑘⟩, 𝑋) → Hom(Π𝑖(Δ𝑖)[𝑛]⟨𝑘⟩, Π𝑖(𝑋))

are isomorphisms for all 𝑛, 𝑘 ∈ ℤ.

(3) If 𝑖 ≠ 𝑗, we haveHom(Δ𝑖 , ∇𝑗[𝑛]⟨𝑘⟩) = 0 for all 𝑛, 𝑘 ∈ ℤ.
(4) For all 𝑖 ∈ ℤ, there are natural isomorphisms

Hom(∇𝑖 , ∇𝑖[𝑛]⟨𝑘⟩) ≅ Hom(Δ𝑖 , Δ𝑖[𝑛]⟨𝑘⟩) ≅ Hom(Δ𝑖 , ∇𝑖[𝑛]⟨𝑘⟩)

≅ Hom(Π𝑖(∇𝑖), Π𝑖(∇𝑖)[𝑛]⟨𝑘⟩) ≅
{
𝔼 if 𝑛 = 𝑘 = 0,

0 otherwise.

Proof.

(1) It is enough to check this when 𝑋 belongs to some class of objects that generate <𝑖 . For
instance, it is enough to prove it in the case where𝑋 = ∇𝑗⟨𝑚⟩ for some 𝑗 < 𝑖. In this case, the
claim holds by definition.

(2) This follows from part (1) by [46, Proposition 2.3.3(a), parts (iii) and (v)].
(3) If 𝑖 > 𝑗, this holds by definition. If 𝑖 < 𝑗, then Δ𝑖 ∈ <𝑗 , so this follows from part (1).
(4) IdentifyΠ𝑖(Δ𝑖)withΠ𝑖(∇𝑖). Part (2) tells us that each of the first threeHom-spaces is naturally

isomorphic to the fourth one. The spaceHom(∇𝑖 , ∇𝑖[𝑛]⟨𝑘⟩) is as described by definition. □

Remark A.7. In this appendix we assume throughout that the category  is graded Hom-finite.
However, if we are given a sequence {∇𝑖}𝑖∈𝐼 of objects in a triangulated category  (assumed
only 𝔼-linear and equipped with a Tate twist) satisfying the properties in Definition A.4 and
a sequence {Δ𝑖}𝑖∈𝐼 of objects satisfying the conditions of Definition A.5, then  automatically
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satisfies a stronger finiteness property; namely, for any objects 𝑋,𝑌 the 𝔼-module

⨁
𝑛,𝑚∈ℤ

Hom (𝑋, 𝑌⟨𝑚⟩[𝑛])

is finitely generated. In fact, Lemma A.6(3)–(4) (whose proof does not involve the “graded
Hom-finite” condition) shows that this condition holds when 𝑋 = Δ𝑖 and 𝑌 = ∇𝑗; the gen-
eral case follows since the collections {∇𝑖⟨𝑘⟩}𝑖∈𝐼,𝑘∈ℤ and {Δ𝑖⟨𝑘⟩}𝑖∈𝐼,𝑘∈ℤ both generate  as a
triangulated category.

Note that the proof of the first isomorphism inLemmaA.6(2) does not involve the dual sequence
in any way; it holds even if the exceptional sequence is not assumed to be dualizable.

LemmaA.8. Let {∇𝑖}𝑖∈𝐼 be a graded exceptional sequence in  , and let {Δ𝑖}𝑖∈𝐼 be another sequence

of objects in  . This sequence is a dual sequence to {∇𝑖}𝑖∈𝐼 if and only if we have

Hom(Δ𝑖 , ∇𝑗[𝑛]⟨𝑘⟩) ≅
{
𝔼 if 𝑖 = 𝑗 and 𝑛 = 𝑘 = 0,

0 otherwise.

Proof. If {Δ𝑖}𝑖∈𝐼 is a dual sequence, the Hom-groups are as described by parts (3) and (4) of
Lemma A.6.
For the opposite implication, the first condition inDefinitionA.5 holds by assumption; we need

only prove the second condition. For each 𝑖 ∈ 𝐼, there exists some 𝑗 such that Δ𝑖 ∈ ⩽𝑗 . Assume
that 𝑗 is minimal with respect to this property, that is, that Δ𝑖 ∉ <𝑗 . If 𝑗 < 𝑖, our assumptions
would imply thatHom(Δ𝑖 , 𝑋) = 0 for all 𝑋 ∈ ⩽𝑗 , which is absurd. We therefore have 𝑗 ⩾ 𝑖. Since
Δ𝑖 ∉ <𝑗 , wemust haveΠ𝑗(Δ𝑖) ≠ 0. Since the quotient category ⩽𝑗∕<𝑗 is generated by the objects
Π𝑗(∇𝑗)⟨𝑘⟩, we must have

Hom(Π𝑗(Δ𝑖), Π𝑗(∇𝑗)[𝑛]⟨𝑘⟩) ≠ 0

for some integers 𝑛, 𝑘 ∈ ℤ. As noted above, we may use the first isomorphism in Lemma A.6(2)
even without the assumption that {∇𝑖}𝑖∈𝐼 is dualizable. That isomorphism tells us that

Hom(Δ𝑖 , ∇𝑗[𝑛]⟨𝑘⟩) ≠ 0.

We therefore have 𝑗 = 𝑖, that is, Δ𝑖 ∈ ⩽𝑖 .
Next, choose amap 𝑐 ∶ Δ𝑖 → ∇𝑖 corresponding to a generator of the free𝔼-moduleHom(Δ𝑖 , ∇𝑖).

Let Â be the cone of this map, and consider the long exact sequence

⋯ → Hom(∇𝑖 , ∇𝑖[𝑛 − 1]⟨𝑘⟩) → Hom(Δ𝑖 , ∇𝑖[𝑛 − 1]⟨𝑘⟩) →
Hom(Â,∇𝑖[𝑛]⟨𝑘⟩) → Hom(∇𝑖 , ∇𝑖[𝑛]⟨𝑘⟩) → Hom(Δ𝑖 , ∇𝑖[𝑛]⟨𝑘⟩) → ⋯ .

If 𝑘 ≠ 0, or if 𝑛 ≠ 0, 1, then the first, second, fourth, and fifth terms vanish, soHom(Â,∇𝑖[𝑛]⟨𝑘⟩) =
0 as well. If 𝑘 = 0 and 𝑛 = 0, the first two terms vanish, and the last two terms are isomorphic (the
map between them sends id ∈ Hom(∇𝑖 , ∇𝑖) to the generator 𝑐 ∈ Hom(Δ𝑖 , ∇𝑖)), so Hom(Â,∇𝑖) =
0. If 𝑘 = 0 and 𝑛 = 1, similar reasoning with the first two terms yields Hom(Â,∇𝑖[1]) = 0.
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We have shown that Hom(Â,∇𝑖[𝑛]⟨𝑘⟩) = 0 for all 𝑛, 𝑘 ∈ ℤ. By construction, Â ∈ ⩽𝑖 . Apply
Lemma A.6(2) again to conclude that Hom(Π𝑖(Â), Π𝑖(∇𝑖)[𝑛]⟨𝑘⟩) = 0 for all 𝑛, 𝑘 ∈ ℤ. It follows
that Π𝑖(Â) = 0, and hence that 𝑐 ∶ Δ𝑖 → ∇𝑖 becomes an isomorphism in ⩽𝑖∕<𝑖 , as desired. □

RemarkA.9. Lemma A.8 implies that the property of being dualizable, and the dual sequence, do
not depend on the order on 𝐼; that is, if a collection of objects parametrized by a set 𝐼 is exceptional
for two different orders ≤ and ⪯ on 𝐼, then it is dualizable as a sequence parametrized by (𝐼,⩽) iff
it is dualizable as a sequence parametrized by (𝐼, ⪯), and in this case the dual sequences agree.

A.3 The t-structure associated with an exceptional collection

Proposition A.10. Let {∇𝑖}𝑖∈𝐼 be a dualizable graded exceptional sequence in  . For each 𝑖 ∈ 𝐼,

the quotient functorΠ𝑖 ∶ ⩽𝑖 → ⩽𝑖∕<𝑖 and the inclusion functor 𝜄𝑖 ∶ <𝑖 → ⩽𝑖 both admit left and

right adjoints. Together, these functors give a recollement diagram

Proof. For brevity, in the proof we will omit the subscript “𝑖” from the names of the various
functors in the diagram above.
Step 1. The functorΠ admits a right adjointΠR . Let  ∇

𝑖
⊂ ⩽𝑖 be the full triangulated subcategory

generated by the objects of the form ∇𝑖⟨𝑘⟩ with 𝑘 ∈ ℤ. We claim that the functor

Π| ∇
𝑖
∶  ∇𝑖 → ⩽𝑖∕<𝑖

is an equivalence of categories. Indeed, Lemma A.6(2) implies that this functor is fully faithful,
and since ⩽𝑖∕<𝑖 is generated by the objects Π(∇𝑖)⟨𝑘⟩, it is also essentially surjective.
Let ΠR denote the composition

⩽𝑖∕<𝑖

(Π|
 ∇
𝑖
)−1

��������→  ∇𝑖
inclusion
��������→ ⩽𝑖 .

Lemma A.6(2) again implies that for any 𝑋 ∈ ⩽𝑖 and 𝑌 ∈  ∇
𝑖
, the map

Hom(𝑋,𝑌) → Hom(Π(𝑋),Π(𝑌)) (A.10)

is an isomorphism. Now let 𝑌′ = Π(𝑌). Then Equation (A.10) can be rewritten as a natural
isomorphism

Hom(𝑋,ΠR(𝑌′)) ≅ Hom(Π(𝑋), 𝑌′),

so ΠR is right adjoint to Π.
Step 2. The functorΠ admits a left adjointΠL. This is very similar to Step 1. Let  Δ

𝑖
⊂ ⩽𝑖 be the

full subcategory generated by objects of the form Δ𝑖⟨𝑘⟩ with 𝑘 ∈ ℤ, and then define ΠL to be the
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composition

⩽𝑖∕<𝑖

(Π|
 Δ
𝑖
)−1

��������→  Δ𝑖
inclusion
��������→ ⩽𝑖 .

We omit further details.
Step 3. For 𝑋 ∈ ⩽𝑖∕<𝑖 , the adjunction maps Π(Π

R(𝑋)) → 𝑋 and 𝑋 → Π(ΠL(𝑋)) are isomor-

phisms. This is immediate from the construction of ΠR and ΠL.
Step 4. The functor 𝜄 admits a right adjoint 𝜄R . Moreover, for any 𝑋 ∈ ⩽𝑖 , there is a functorial

distinguished triangle

𝜄𝜄R(𝑋) → 𝑋 → ΠRΠ(𝑋)
[1]
��→,

where the first two maps are adjunction maps. Complete the adjunction map 𝑋 → ΠRΠ(𝑋) to a
distinguished triangle 𝑋′ → 𝑋 → ΠRΠ(𝑋) →, and then apply Π:

Π(𝑋′) → Π(𝑋) → Π(ΠR(Π(𝑋)))
[1]
��→ .

Step 3 implies that Π(𝑋) → Π(ΠR(Π(𝑋))) is an isomorphism, so Π(𝑋′) = 0. We conclude that 𝑋′

lies in <𝑖 . We may rewrite it as 𝑋
′ = 𝜄(𝑋′). By adjunction, we have

Hom(𝜄(𝑋′), ΠRΠ(𝑋)[−1]) = 0.

Then [13, Proposition 1.1.9] (see also [13, Corollary 1.1.10]) implies that the triangle 𝜄(𝑋′) → 𝑋 →

ΠRΠ(𝑋)
[1]
��→ is functorial in𝑋. In particular, there is a functor 𝜄R ∶ ⩽𝑖 → <𝑖 such that𝑋

′ = 𝜄R(𝑋).
Now let 𝑌 ∈ <𝑖 , and apply Hom(𝜄𝑌,−) to our distinguished triangle 𝜄𝜄R(𝑋) → 𝑋 →

ΠRΠ(𝑋) →. We obtain the long exact sequence

⋯ → Hom(𝜄𝑌,ΠRΠ(𝑋)[−1]) → Hom(𝜄𝑌, 𝜄𝜄R(𝑋)) → Hom(𝜄𝑌, 𝑋)

→ Hom(𝜄𝑌,ΠRΠ(𝑋)) → ⋯ .

The first and last terms vanish, so the middle two are naturally isomorphic. This shows that 𝜄R is
right adjoint to 𝜄.
Step 5. The functor 𝜄 admits a right adjoint 𝜄L. Moreover, for any 𝑋 ∈ ⩽𝑖 , there is a functorial

distinguished triangle

ΠLΠ(𝑋) → 𝑋 → 𝜄𝜄L(𝑋)
[1]
��→,

where the first twomaps are adjunctionmaps. This is very similar to Step 4 and is left to the reader.
Step 6. For 𝑋 ∈ <𝑖 , the adjunction maps 𝑋 → 𝜄

R 𝜄(𝑋) and 𝜄L𝜄(𝑋) → 𝑋 are isomorphisms. For the
first claim, it is enough to prove that 𝜄(𝑋) → 𝜄𝜄R 𝜄(𝑋) is an isomorphism. Since the composition
𝜄(𝑋) → 𝜄𝜄R 𝜄(𝑋) → 𝜄(𝑋) is the identity map, we may instead show that 𝜄𝜄R 𝜄(𝑋) → 𝜄(𝑋) is an isomor-
phism. For this, we apply the distinguished triangle from Step 4 and use the observation that
Π𝜄(𝑋) = 0. The proof of the second claim is similar.
We have now checked all the conditions in [13, Section 1.4.3], so the proof is complete. □
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Theorem A.11. Let  be an 𝔼-linear triangulated category with a Tate twist. Assume that  is

graded Hom-finite, and that it is equipped with a dualizable graded exceptional sequence {∇𝑖}𝑖∈𝐼 .

For each 𝑖 ∈ 𝐼, let

∇̄𝑖 =

{
cone(∇𝑖

𝜛⋅𝑖𝑑
����→ ∇𝑖) if 𝔼 is not a field,

0 if 𝔼 is a field.

Then the categories ( ⩽0,  ⩾0) given by

 ⩽0 =
the subcategory generated under extensions by objects of the form

Δ𝑗[𝑛]⟨𝑘⟩ with 𝑗 ∈ 𝐼, 𝑛 ⩾ 0, and 𝑘 ∈ ℤ,

 ⩾0 =
the subcategory generated under extensions by objects of the form

∇𝑗[𝑛]⟨𝑘⟩ and ∇̄𝑗[𝑛]⟨𝑘⟩ with 𝑗 ∈ 𝐼, 𝑛 ⩾ 0 and 𝑘 ∈ ℤ.

form a t-structure on  . The heart 𝒜 =  ⩽0 ∩  ⩾0 of this t-structure is noetherian. If 𝔼 is a field,

then𝒜 is both noetherian and artinian.

Proof. Given 𝑖 ∈ 𝐼, let  ⩽0
⩽𝑖

and  ⩾0
⩽𝑖

be defined as above, but allowing only Δ𝑗 , ∇𝑗 , and ∇̄𝑗 with
𝑗 ⩽ 𝑖.
We will first show that ( ⩽0

⩽𝑖
,  ⩾0
⩽𝑖
) is a t-structure on ⩽𝑖 whose heart is noetherian. We proceed

by induction on 𝑖. If 𝑖 is the minimal element of 𝐼, the claim holds by Proposition A.1. Suppose
now that 𝑖 is not minimal. The claim holds for ( ⩽0

<𝑖
,  ⩾0
<𝑖
) by induction. We can also equip the

quotient category ⩽𝑖∕<𝑖 with a t-structure by Proposition A.1, using 𝑁 = Π𝑖(Δ𝑖) ≅ Π𝑖(∇𝑖). That
proposition tells us that the heart is noetherian; if 𝔼 is a field, it is also artinian.
By recollement, the following categories give a t-structure on ⩽𝑖:

′ ⩽0
⩽𝑖
= {𝑋 ∈ ⩽𝑖 ∣ 𝜄

L
𝑖
(𝑋) ∈  ⩽0

<𝑖
and Π(𝑋) ∈ (⩽𝑖∕<𝑖)

⩽0},

′ ⩾0
⩽𝑖
= {𝑋 ∈ ⩽𝑖 ∣ 𝜄

R
𝑖
(𝑋) ∈  ⩾0

<𝑖
and Π(𝑋) ∈ (⩽𝑖∕<𝑖)

⩾0}.

By Lemma A.3, the heart of (′ ⩽0
⩽𝑖
,′  ⩾0
⩽𝑖
) is noetherian (and artinian if 𝔼 is a field). It remains to

prove that ′ ⩽0
⩽𝑖
=  ⩽0

⩽𝑖
and ′ ⩾0

⩽𝑖
=  ⩾0

⩽𝑖
. If 𝑋 ∈ ′ ⩽0

⩽𝑖
, consider the distinguished triangle

𝜄𝑖 𝜄
L
𝑖 (𝑋) → 𝑋 → Π

L
𝑖 Π(𝑋) → .

The first term clearly lies in  ⩽0
⩽𝑖
. The explicit construction ofΠL

𝑖
in PropositionA.10 shows that the

last term does as well.We conclude that ′ ⩽0
⩽𝑖
⊂  ⩽0

⩽𝑖
. For the opposite containment, it is enough to

check that Δ𝑗 ∈
′ ⩽0
⩽𝑖

for all 𝑗 ⩽ 𝑖. This is clear if 𝑗 < 𝑖, and it again follows from the construction

in Proposition A.10 for 𝑗 = 𝑖. The proof that ′ ⩾0
⩽𝑖
=  ⩾0

⩽𝑖
is similar and will be omitted.

By construction, we have

 ⩽0 =
⋃
𝑖∈𝐼

 ⩽0
⩽𝑖

and  ⩾0 =
⋃
𝑖∈𝐼

 ⩾0
⩽𝑖
.
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Since every object of  belongs to some ⩽𝑖 , it is easy to see that (
⩽0,  ⩾0) is indeed a t-structure.

Its heart is a union of noetherian abelian categories, so it is noetherian (and, similarly, also artinian
if 𝔼 is a field). □

Remark A.12.

(1) For the applications in the present paper, the t-structures arising from TheoremA.11 have the
following important additional property: the Δ𝑖 and∇𝑖 lie in the heart. In the case where 𝔼 is
a field, it is well known that this implies that the heart is a highest weight category.

(2) It is clear from construction that the t-structure considered in Theorem A.11 does not depend
on the order ≤ on 𝐼.

A.4 Special objects in the heart

By adjunction, the isomorphism Π𝑖(Δ𝑖) ≅ Π𝑖(∇𝑖) gives rise to a canonical map Δ𝑖 → ∇𝑖 . Let

𝐿𝑖 = im(𝐻
0(Δ𝑖) → 𝐻

0(∇𝑖)). (A.11)

In the case where 𝔼 is a field, [13, Proposition 1.4.26] tells us that up to Tate twist, the 𝐿𝑖 are
precisely the simple objects of𝒜.
In the case where 𝔼 is a complete discrete valuation ring, recall that an object 𝑋 in an 𝔼-linear

abelian category is said to be torsion if𝜛𝑛 ⋅ id𝑋 = 0 for some 𝑛 ⩾ 1, and torsion-free if𝜛 ⋅ id𝑋 is
injective. Note that if 𝑋 is torsion-free, then for any other object 𝑌, Hom(𝑌,𝑋) is a torsion-free
𝔼-module.

Lemma A.13. Assume that 𝔼 is a field. Then 𝐻0(Δ𝑖) has a simple head, and 𝐻
0(∇𝑖) has a simple

socle (both isomorphic to 𝐿𝑖).

This is a standard fact in the theory of recollement. For a proof, see [30, Proposition 2.28].

LemmaA.14. Assume that𝔼 is a complete discrete valuation ring. For each 𝑖 ∈ 𝐼, the objects𝐻0(∇𝑖)

and 𝐿𝑖 are torsion-free.

Proof. Both∇𝑖 and ∇̄𝑖 lie in 
⩾0, so the long exact sequence in cohomology associatedwith the tri-

angle∇𝑖
𝜛
��→ ∇𝑖 → ∇̄𝑖

[1]
��→ shows that𝜛 ⋅ id ∶ 𝐻0(∇𝑖) → 𝐻

0(∇𝑖) is injective. Since 𝐿𝑖 is a subobject
of a torsion-free object, it is torsion-free as well. □

Lemma A.15. Assume that 𝔼 is a complete discrete valuation ring. For each 𝑖, there is a unique

maximal subobject 𝐿+
𝑖
⊂ 𝐻0(∇𝑖) that contains 𝐿𝑖 , and such that 𝐿

+
𝑖
∕𝐿𝑖 is torsion. Moreover, 𝐿

+
𝑖
and

𝐻0(∇𝑖)∕𝐿
+
𝑖
are both torsion-free.

Proof. Since𝒜 is noetherian, the existence of 𝐿+
𝑖
is a consequence of the following observation: if

𝑀,𝑀′ ⊂ 𝐻0(∇𝑖) are two subobjects that both contain 𝐿𝑖 and such that𝑀∕𝐿𝑖 and𝑀
′∕𝐿𝑖 are both

torsion, then (𝑀 +𝑀′)∕𝐿𝑖 is again torsion.
Since 𝐿+

𝑖
is a subobject of a torsion-free object, it is torsion-free. If𝐻0(∇𝑖)∕𝐿

+
𝑖
were not torsion-

free, it would have a nonzero torsion subobject𝑀. The preimage of𝑀 in𝐻0(∇𝑖)would enjoy the
defining properties of 𝐿+

𝑖
, contradicting the maximality of 𝐿+

𝑖
. □
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A.5 Change of scalars

Let𝕆 be a complete discrete valuation ring, with fraction field 𝕂 and residue field 𝔽. Assume that
we are given the following:

(1) a graded Hom-finite 𝕆-linear triangulated category 𝕆 with a graded exceptional sequence
{∇𝕆
𝑖
}𝑖∈𝐼 and with a dual sequence {Δ

𝕆
𝑖
}𝑖∈𝐼 ;

(2) a graded Hom-finite 𝕂-linear triangulated category 𝕂, and a triangulated functor 𝕂(−) ∶
𝕆 → 𝕂 which induces an isomorphism

𝕂⊗𝕆 Hom(𝑋,𝑌) ≅ Hom(𝕂(𝑋),𝕂(𝑌))

for all 𝑋,𝑌 ∈ 𝕆;
(3) a gradedHom-finite𝔽-linear triangulated category 𝔽, and a triangulated functor𝔽(−) ∶ 𝕆 →

𝔽 such that for all 𝑋,𝑌 ∈ 𝕆, there is a natural short exact sequence

𝔽⊗𝕆 Hom(𝑋,𝑌) ↪ Hom(𝔽(𝑋), 𝔽(𝑌)) ↠ Tor
𝕆
1 (𝔽, Hom(𝑋,𝑌[1])) (A.12)

where the first map induced by the functor 𝔽(−).

To this, we add the following assumption:

(4) For 𝕜 ∈ {𝕂, 𝔽}, the sequence {𝕜(∇𝕆
𝑖
)}𝑖∈𝐼 is a graded exceptional sequence in 𝕜.

Lemma A.16. For 𝕜 ∈ {𝕂, 𝔽}, let

∇𝕜𝑖 ∶= 𝕜(∇
𝕆
𝑖 ) and Δ𝕜𝑖 ∶= 𝕜(Δ

𝕆
𝑖 ).

Then {Δ𝕜
𝑖
}𝑖∈𝐼 is a dual sequence to {∇

𝕜
𝑖
}.

Proof. The fact that Δ𝕜
𝑖
∈ 𝕜,⩽𝑖 and that Hom(Δ

𝕜
𝑖
, ∇𝕜
𝑗
[𝑛]⟨𝑘⟩) = 0 for 𝑖 > 𝑗 follow from the corre-

sponding facts over𝕆. Next, note that 𝕜(−) induces a functor of quotient categories 𝕆,⩽𝑖∕𝕆,<𝑖 →
𝕜,⩽𝑖∕𝕜,<𝑖 .We then deduce the fact thatΠ𝑖(Δ

𝕜
𝑖
) ≅ Π𝑖(∇

𝕜
𝑖
) from the commutativity of the following

diagram:

□

Thanks to Lemma A.16, each of 𝕆, 𝕂, and 𝔽 is equipped with a t-structure provided by
Theorem A.11. Denote their hearts by𝒜𝕆,𝒜𝕂, and𝒜𝔽, respectively.

Lemma A.17.

(1) The functor𝕂(−) ∶ 𝕆 → 𝕂 is t-exact. For𝑋 ∈ 𝒜𝕆, we have𝕂(𝑋) = 0 if and only if𝑋 is torsion.

(2) The functor 𝔽(−) ∶ 𝕆 → 𝔽 is right t-exact. For 𝑋 ∈ 𝒜𝕆, we have 𝐻
𝑖(𝔽(𝑋)) = 0 for all 𝑖 ⩽ −2.

Moreover, 𝔽(𝑋) ∈ 𝒜𝔽 if and only if 𝑋 is torsion-free.
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Proof. The t-exactness properties of 𝕂(−) and 𝔽(−) follow immediately from their behavior on
the exceptional sequence and its dual, combined with the description of the t-structures from
Theorem A.11.
Next, let 𝑋 ∈ 𝒜𝕆, and consider the map 𝕆 ⋅ id → End(𝑋). If 𝑋 is torsion, then after we tensor

with𝕂, we get the zeromap𝕂 ⋅ id → 𝕂⊗End(𝑋) ≅ End(𝕂(𝑋)). That is, the identity map of𝕂(𝑋)
is zero, so 𝕂(𝑋) = 0. Conversely, if 𝑋 is not torsion, the map 𝕆 ⋅ id → End(𝑋) is injective, and
hence so is 𝕂 ⋅ id → End(𝕂(𝑋)). Since End(𝕂(𝑋)) ≠ 0, we have 𝕂(𝑋) ≠ 0.
To show that 𝐻𝑖(𝔽(𝑋)) = 0 for 𝑖 ⩽ −2, or equivalently that 𝔽(𝑋) ∈  ⩾−1, it is enough to

show that Hom(Δ𝔽
𝑖
[𝑛]⟨𝑘⟩, 𝔽(𝑋)) = 0 for 𝑛 ⩾ 2. This follows from (A.12) and the fact that

Hom(Δ𝕆
𝑖
[𝑛]⟨𝑘⟩, 𝑋) = 0 for 𝑛 ⩾ 1.

Finally, if 𝑋 is torsion-free, then Hom(Δ𝕆
𝑖
⟨𝑘⟩, 𝑋) ≅ Hom(𝐻0(Δ𝕆

𝑖
)⟨𝑘⟩, 𝑋) is a torsion-free

𝕆-module, so Tor𝕆
1
(𝔽, Hom(Δ𝕆

𝑖
[1]⟨𝑘⟩, 𝑋[1])) = 0. We see from Equation (A.12) then that

Hom(Δ𝔽
𝑖
[1]⟨𝑘⟩, 𝔽(𝑋)) = 0, so 𝔽(𝑋) ∈ 𝒜𝔽. Conversely, if 𝑋 is not torsion-free, then it has

a nonzero torsion subobject 𝑋′ ⊂ 𝑋. Moreover, Hom(𝑋′, 𝑋) is a torsion 𝕆-module, so
Tor𝕆
1
(𝔽, Hom(𝑋′[1], 𝑋[1])) ≠ 0. In this case, Equation (A.12) shows thatHom(𝔽(𝑋′)[1], 𝔽(𝑋)) ≠ 0,

which implies that𝐻−1(𝔽(𝑋)) ≠ 0. □

To distinguish the various versions of Equation (A.11), we now include the coefficient ring in
the notation, as follows:

𝐿𝑖(𝕂) ∈ 𝒜𝕂, 𝐿𝑖(𝕆), 𝐿
+
𝑖
(𝕆) ∈ 𝒜𝕆, 𝐿𝑖(𝔽) ∈ 𝒜𝔽.

Lemma A.18.

(1) For all 𝑖 ∈ 𝐼, we have

𝕂(𝐿𝑖(𝕆)) ≅ 𝕂(𝐿
+
𝑖
(𝕆)) ≅ 𝐿𝑖(𝕂).

(2) The objects 𝔽(𝐿𝑖(𝕆)) and 𝔽(𝐿
+
𝑖
(𝕆)) lie in 𝒜𝔽. Moreover, 𝔽(𝐿𝑖(𝕆)) has a simple head, and

𝔽(𝐿+
𝑖
(𝕆)) has a simple socle, both isomorphic to 𝐿𝑖(𝔽).

Proof.

(1) Since𝕂(−) is t-exact, it commutes with𝐻0, and it takes the image of a morphism in𝒜𝕆 to the
image of the corresponding morphism in 𝒜𝕂. It follows immediately that 𝕂(𝐿𝑖(𝕆)) ≅ 𝐿𝑖(𝕂).
Next, we have a short exact sequence 0 → 𝐿𝑖(𝕆) → 𝐿

+
𝑖
(𝕆) → 𝑇 → 0, where 𝑇 is a torsion

object. Since 𝕂(𝑇) = 0 by Lemma A.17(1), we conclude that 𝕂(𝐿𝑖(𝕆)) ≅ 𝕂(𝐿
+
𝑖
(𝕆)).

(2) The first assertion follows from the fact that 𝐿𝑖(𝕆) and 𝐿
+
𝑖
(𝕆) are both torsion-free (see Lem-

mas A.14 and A.15) and Lemma A.17(2). By definition, 𝐿𝑖(𝕆) is a quotient of 𝐻
0(Δ𝕆
𝑖
). Since

𝔽(−) is right t-exact, we have an induced surjective map

𝐻0(𝔽(𝐻0(Δ𝕆𝑖 ))) → 𝔽(𝐿𝑖(𝕆)).

The right t-exactness of 𝔽(−) also implies that 𝐻0(𝔽(𝐻0(Δ𝕆
𝑖
))) ≅ 𝐻0(𝔽(Δ𝕆

𝑖
)) ≅ 𝐻0(Δ𝔽

𝑖
). That

is, 𝔽(𝐿𝑖(𝕆)) is a quotient of 𝐻
0(Δ𝔽
𝑖
). Since the latter has a simple head (isomorphic to 𝐿𝑖(𝔽)),

so does the former.



54 ACHAR et al.

Next, we claim that 𝔽(𝐻0(∇𝕆
𝑖
)) is a subobject of 𝐻0(∇𝔽

𝑖
). (Note that this lies in𝒜𝔽 because

𝐻0(∇𝕆
𝑖
) is torsion-free by Lemma A.14, see Lemma A.17(2).) Indeed, consider the truncation

distinguished triangle 𝐻0(∇𝕆
𝑖
) → ∇𝕆

𝑖
→ 𝜏⩾1∇𝕆

𝑖
→. Apply 𝔽(−) to obtain the triangle

𝔽(𝐻0(∇𝕆𝑖 )) → ∇
𝔽
𝑖 → 𝔽(𝜏

⩾1∇𝕆𝑖 ) → .

Lemma A.17(2) implies that the third term lies in  ⩾0
𝔽
. Therefore, the long exact sequence in

cohomology shows that we have an injective map 𝔽(𝐻0(∇𝕆
𝑖
)) → 𝐻0(∇𝔽

𝑖
).

Finally, consider the short exact sequence

0 → 𝐿+
𝑖
(𝕆) → 𝐻0(∇𝕆𝑖 ) → 𝐻

0(∇𝕆𝑖 )∕𝐿
+
𝑖
(𝕆) → 0.

We have seen in Lemma A.15 that all three terms are torsion-free, so applying 𝔽 yields a short
exact sequence in𝒜𝔽. In particular, 𝔽(𝐿

+
𝑖
(𝕆)) is a subobject of 𝔽(𝐻0(∇𝕆

𝑖
)), and hence (by the

previous paragraph) of 𝐻0(∇𝔽
𝑖
). Since the latter has a simple socle (isomorphic to 𝐿𝑖(𝔽)), so

does 𝔽(𝐿+
𝑖
(𝕆)). □
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