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Abstract

Let G be a reductive algebraic group over an alge-
braically closed field k of pretty good characteristic. The
Lusztig-Vogan bijection is a bijection between the set
of dominant weights for G and the set of irreducible
G-equivariant vector bundles on nilpotent orbits, con-
jectured by Lusztig and Vogan independently, and
constructed in full generality by Bezrukavnikov. In char-
acteristic 0, this bijection is related to the theory of
2-sided cells in the affine Weyl group, and plays a key
role in the proof of the Humphreys conjecture on sup-
port varieties of tilting modules for quantum groups at
a root of unity. In this paper, we prove that the Lusztig—
Vogan bijection is (in a way made precise in the body of
the paper) independent of the characteristic of k. This
allows us to extend all of its known properties from
the characteristic-0 setting to the general case. We also
expect this result to be a step towards a proof of the
Humphreys conjecture on support varieties of tilting
modules for reductive groups in positive characteristic.
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1 | INTRODUCTION
1.1 | The Lusztig—-Vogan bijection
Let k be an algebraically closed field, and let G, be a connected reductive algebraic group over k.

Assume that the characteristic of k is “pretty good” for G, (see Section 2 for the definition). Let
X* be the set of dominant weights for G, and let N, denote its nilpotent cone. Let

Q = {(@,V)

={(x,V) | x € Ny and V € Irr(Z;, (x))}/(Gj-conjugacy).

O C N, is a nilpotent orbit, and }

V is an irreducible G, -equivariant vector bundle on ©

In the second line above, Zg, (x) C G, is the stabilizer of x for the adjoint action, and Irr(Zg, (x)) is
the set of isomorphism classes of irreducible Z _(x)-representations. The Lusztig-Vogan bijection
for Gy is a certain natural bijection

Xt S Q,. (1.1)

For k = C, the existence of this bijection was conjectured independently by Lusztig [33, Section
10.8] and, in a rather different framework, by Vogan [47, Lecture 8]. Its existence was proved in
[1] for G = GL,(C) and in [14] for arbitrary G.. In positive characteristic, the existence of the
bijection is a consequence of [3, Theorem 6.2] (cf. [14, Corollaries 3 and 4]).

This bijection is much better understood in the case k = C. For instance, in this case the
bijection was described explicitly in [2] in the case G = GL,(C). Moreover, it was proved by
Bezrukavnikov that this bijection is compatible with Lusztig’s bijection between two-sided cells
in affine Weyl groups and nilpotent orbits [33], in the sense that the first component of the pair
attached to a dominant weight A is the orbit attached to the cell containing the minimal length
representative in the double coset of A for the finite Weyl group.” On the other hand, essentially
nothing is known about the bijection in the case when char(k) > 0.

1.2 | Independence of k: orbits

The goal of this paper is to show that the bijection (1.1) is “independent of k.” To make sense of
this statement, we must first explain how to identify the various sets Q, as k varies. (Of course,
the left-hand side of Equation (1.1) depends only on the root datum.) This requires working with
an integral version of our group. Let O be a complete discrete valuation ring with residue field
[ (algebraically closed, of characteristic p > 0) and fraction field K (of characteristic 0). Let G be
a split connected reductive group over O, and assume that p is pretty good for G. We choose an
algebraic closure K of K, and denote by G, resp. Gy, the base change of G to I, resp. K.

T This fact is not emphasized very explicitly in Bezrukavnikov’s paper. In fact it follows from the agreement of the bijection
constructed in [14] with another such bijection, constructed using different methods in [15], and for which this property
is obvious from construction. This agreement is justified in [17, Remark 6].



INTEGRAL EXOTIC SHEAVES AND THE MODULAR LUSZTIG-VOGAN BIJECTION | 3

As a first step, the Bala—Carter theorem parametrizes nilpotent orbits using only information
from the root datum of G, so it gives us a canonical bijection

{nilpotent orbits for Gi;} N {nilpotent orbits for G}, 1.2)

which will be denoted BC. _

As a first compatibility property, one may wonder whether the nilpotent orbits @/”f and @le
attached to a dominant weight 4 by the Lusztig-Vogan bijections for G and G match under
this bijection. We prove that this fact indeed holds.

Theorem 1.1. Forany 2 € X*, we have @E = BC(@)IK).

1.3 | Independence of k: representations of stabilizers

To go further in the comparison of the bijections, we must compare representations of centraliz-
ers of nilpotent elements over the two fields. To do this, we will work with McNinch’s notion of
balanced nilpotent sections, which are certain well-behaved nilpotent elements in the Lie algebra
of G (over O). We denote by x such a section, and by x, x;- the nilpotent elements in the Lie
algebras of Gy and Gy obtained from x. We will also denote by Z;(x) the centralizer of x in G;
then the base change Z;(x); of Z;(x) to F is the scheme-theoretic centralizer of x; in G and the
base change Z;(x);- of Z5(x) to KK is the scheme-theoretic centralizer of Xicin Gy

The second author has shown [25] that Z;(x) is a smooth group scheme over O. In the com-
panion paper [8], we study the representation theory of disconnected reductive groups, and we
use this study here to establish the following result.

Proposition 1.2. Let x be a balanced nilpotent section. There exists a canonical isomorphism of
Grothendieck groups

d : K(Zg(x)z) = K(Zg(x)p).

Moreover, the change-of-basis matrix relating the basis indexed by Irr(Z;(x);) to that indexed by
Irr(Z;(x)p) is upper-triangular, so there exists a canonical bijection

Ir(Zg(x)g) < Irr(Zg(x);).

Implicit in this statement is the assertion that Irr(Z;(x);) and Irr(Z;(x)g) are (partially)
ordered, so that “upper-triangular” makes sense; in fact, the results of [8] show that the category of
representations of the reductive quotient of Z;(x); admits a natural highest-weight structure. The
map d in Proposition 1.2 is a “decomposition map” in the sense of Serre [41]; it sends irreducible
Z;(x)--modules to “Weyl modules” (i.e., standard objects) for Zg(x).

Since balanced nilpotent sections exist for each nilpotent Gg-orbit by results of McNinch [37],
combining Equation (1.2) and Proposition 1.2, we obtain a canonical bijection

Q- & Q. (1.3)

The main result of the paper is the following.
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Theorem 1.3. Let G be a split connected reductive group over Q. The following diagram commutes:

Lusztig-Vogan bijection (1.1) for G

~

K
X+ @(1.3)
~ Qf.

Lusztig-Vogan bijection (1.1) for G¢

Note that this result in particular subsumes Theorem 1.1.

1.4 | Modular reduction

To prove Theorem 1.3, we must dig into the construction of the bijection (1.1). This involves the
notion of perverse-coherent sheaves on the nilpotent cones N and N of G- and Gg. To com-
pare the two, we again need some intermediary that lives over O. It may be possible to work
directly with “perverse-coherent sheaves” on an O-form of the nilpotent cone, but this presents
certain technical challenges, and this is not the approach we take in the present paper. Instead,
we work with the closely related notion of exotic sheaves on the Springer resolution N , in part
because the foundations needed to define and study them over O are already available [18], and
also because the structure of the corresponding t-structure is much more rigid than that of the
perverse-coherent t-structure (in fact it is defined by an exceptional sequence, and its heart is a
highest weight category).

The technique of using sheaves with coefficients in a local ring is quite classical in the setting
of constructible sheaves. Here we have to work with coherent sheaves, and even though this tech-
nique also makes sense in this context, it turns out to be much harder to use. In particular, there
is no elementary analogue over O of the “stratification by G-orbits” for Nz or M. One can study
the (coherent) pullback of a complex of coherent sheaves to a point in the nilpotent cone, but this
operation is not exact, so it is more difficult to use. To overcome this difficulty, we introduce and
work with “integral versions” of Slodowy slices, which might be of independent interest.

1.5 | Reduced standard objects

By definition, the closure of the orbit attached to 1 by the Lusztig-Vogan bijection is the support
of a certain simple perverse-coherent sheaf on the nilpotent cone. Every such simple object is
a quotient of a certain “standard” object—but this is not useful for studying supports, because
all standard objects have full support in the nilpotent cone. Instead, we need to construct some
“smaller” objects which still surject onto our simple perverse-coherent sheaves. These objects,
which we call “reduced standard objects,” are obtained by “modular reduction” from the corre-
sponding simple perverse-coherent sheaf over K. (The idea of such a construction goes back at
least to work of Cline-Parshall-Scott [21].) These objects are different from the corresponding
simple perverse-coherent sheaf, but as a step towards Theorem 1.3 we prove that the support of
the reduced standard object associated with 4 is BC(@/”f).
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1.6 | Motivation

Our main motivation for considering the problem studied in the present paper comes from the
Humphreys conjecture on support varieties of indecomposable tilting modules for G [27]. This
conjecture predicts that these support varieties are closures of nilpotent Gp-orbits determined
by Lusztig’s bijection between two-sided cells and nilpotent orbits. This conjecture was proved in
type A by the second author [24], and in [7], adapting some constructions of Bezrukavnikov (in the
analogous setting of quantum groups at a root of unity) we proved it in large characteristic (with-
out an explicit bound); however outside of type A this conjecture is still open for “reasonable”
prime characteristics.” A priori, to a dominant weight A one can attach two nilpotent Gg-orbits
which could describe support varieties of tilting modules with a highest weight attached to A:
either @E or BC(@/“f). The orbit that appears “naturally” in this problem (at least via the methods

of [7])is OF, but the one used by Humphreys is BC(@/”f). This distinction did not cause any trouble
in [7] because for other reasons we had to restrict to large characteristics, but it would play a role
in any attempt to prove this conjecture for smaller characteristics. Theorem 1.1 shows that these
orbits coincide, thus solving this discrepancy.

In [9] we propose some conjectures® which aim at putting the Humphreys conjecture in a
larger picture, in a hope of clarifying its significance. These conjectures involve only the orbits
@ﬁf, and their compatibility with the Humphreys conjecture is guaranteed by the results of the
present paper.

1.7 | Contents of the paper

We begin in Section 2 with generalities on reductive groups, the nilpotent cone, and the Springer
resolution. This section also reviews the construction of the Lusztig-Vogan bijection (1.1) in terms
of simple perverse-coherent sheaves. In Section 3, we introduce and study an O-analogue of a
Slodowy slice to a nilpotent orbit. This will serve as an important technical tool later in the paper.

In Section 4, we define the exotic t-structure and record some of its basic properties. (This
construction builds on general results on exceptional collections defined over complete discrete
valuation rings, proved in Appendix A.) As an application, in Section 5, we use exotic sheaves
to define a new class of perverse-coherent sheaves over F, called reduced standard objects. The
main result of Section 5 is a kind of first approximation to Theorem 1.1: it asserts that the sup-
ports of reduced standard objects correspond via Equation (1.2) to nilpotent orbits arising from
the Lusztig-Vogan bijection for K. Finally, in Section 6 we prove Theorem 1.3.

1.8 | Convention
At various points in the paper we consider certain schemes and affine group schemes that could

be defined over various base rings. To avoid confusion we use subscripts to specify the base ring of
schemes. (However, we do not use subscripts for morphisms, since the ring under consideration

T After this paper appeared in preprint form, a proof of the relative version of the Humphreys conjecture for p larger than
the Coxeter number was obtained by the first two authors [6].

#Some of these conjectures have now been proved in [6].
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is always clear from context.) In order to avoid notational clutter, we will sometimes affix a single
subscript k to some constructions like products or categories of equivariant coherent sheaves,
writing, for example, Coh®(X), instead of Coh®(X)).

2 | NOTATION AND PRELIMINARIES
2.1 | Reductive groups

Let O be a complete discrete valuation ring with residue field F, and denote by K the fraction field
of 0. We assume throughout that F is algebraically closed, of characteristic p > 0, and that K has
characteristic 0. We also fix an algebraic closure K of .

Let G be a split connected reductive group over O, and let T C G be a split maximal torus.
This group corresponds to some root datum (X, X", R, RV), where X is the character lattice of T,
and XV is the cocharacter lattice. Let W be the Weyl group of R (or of G), and let w, € W be its
longest element.

Choose, once and for all, a positive subsystem Rt C R. Let B C G be the subgroup generated by
the maximal torus T and by the root subgroups corresponding to the negative roots. Denote the
Lie algebras of G, B, and T by g, b, and t, respectively. As an O-module, b decomposes as

b=tdn where n = @ga.

ae—R*
‘We set
Gy := Spec(F) Xspec(0) OG> Gy 1= Spec(K) Xspec(o) G» Gig 1= Spec(R) Xspec(a) G-
Their Lie algebras can be described as
6 =F®pg og=K®gg, 9K=K®®9

respectively, see, for example, ref. [40, Section 2.1] for details. Similar notation is used for the
groups or Lie algebras obtained from B or T by change of scalars.

We assume throughout the paper that p is pretty good for G in the sense of [26, Definition 2.11].
This means that p is good for G, and in addition, the abelian groups X/ZR and X" /ZR" have no
p-torsion. By [26, Theorem 5.2], this assumption is equivalent to requiring Gy to be standard in
the sense of [39, Section 4]. The following fact is probably known to experts.

Lemma 2.1. There is a G-invariant perfect pairing (—,—) : g X g — O.

Proof. The analogous claim for g is proved in [38, Proposition 12] (see also [39, Remark 4.4]).
Let us briefly review how this proof goes. (In this paragraph only, we let G denote a connected
reductive group over [F.). One first treats the easy case in which G is of the form

S is a torus, and
G=SxXH where H is a semisimple, simply-connected group 21
for which p is very good.
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Next, according to [26, Theorem 5.2], any connected reductive group over F for which p is pretty
good can be obtained from a group as in Equation (2.1) by a finite sequence of the following
operations:

(1) Replace G by a Levi subgroup G’.
(2) Replace G by a group G’ such that there is a separable isogeny G — G’ or G’ — G.
(3) Replace G by a group G’ such that G is isomorphic to a product S x G’ with S a torus.

To finish the proof, one shows that in each of these three operations, if the Lie algebra of G admits
an invariant nondegenerate bilinear form, then the same holds for G'.

We now return to the setting of the lemma, in which G is a split reductive group over O. Observe
that each of the three operations above also makes sense in the context of split reductive groups
over Q. (For Equation (2), we require that the base change to [ is separable.) Since isomorphism
classes of split reductive groups over F and O correspond via base change, we can therefore follow
the same strategy as above, starting with the easy case in Equation (2.1).

Step 0. Proof for G of the form (2.1). In this case G is the product of a torus and a number of
quasisimple, simply connected groups. It is enough to treat these factors separately. Any perfect
pairing on the Lie algebra of the torus factor S is S- (and hence G-) invariant. Now let H; be a
quasisimple direct factor of H, and let §; be its Lie algebra. If H, is of exceptional type, then it
follows from [44, Sections 4.8 and 4.9] that the Killing form on ¥, is a perfect pairing. If H; is
of classical type, then it admits a “defining representation” H; — GL,(0). Consider the induced
map

p:h —al,(0)

and equip b, with the pairing (X,Y) — tr(o(X)p(Y)). This pairing induces nondegenerate pair-
ings over both K and [ (see [44, Section 1.5.3] and [32, Corollary 2.5.8 and Proposition 2.5.10]), so
it must be a perfect pairing over O.

Step 1. If the lemma holds for G, it holds for any Levi subgroup of G. Let G’ be a Levi subgroup of
G containing T. Then G’ is the centralizer of a subtorus S C T: namely, S is the subtorus whose
cocharacter lattice is the sublattice of XV consisting of elements annihilated by all roots of G'.
Under the adjoint action of S on g, the latter decomposes as

4= @ ar

AEX*(S)

where X*(S) is the character lattice of S (a quotient of X). Any G-invariant perfect pairing on g
restricts to a perfect pairing g; X g_; — O. In particular, it gives a G’-invariant perfect pairing
gy X gy — O. Since g, is the Lie algebra of G/, we are done.

Step 2. If the lemma holds for G, it holds for any group related to G by a central isogeny whose reduc-
tion modulo p is separable. Suppose we have a central isogeny G — G’ whose reduction modulo
p is separable. Then the corresponding map on Lie algebras g — g is an isomorphism. Since
gk — g, is also an isomorphism, we conclude that g — ¢’ is an isomorphism. Any invariant per-
fect pairing on g can be transferred to ¢’ via this isomorphism. The same reasoning applies if we
have a central isogeny in the opposite direction, G’ — G.

Step 3. If the lemma holds for G = S X G', where S is a split torus and G’ is split reductive, then
then it holds for G'. Let 8’ and ¢’ denote the Lie algebras of S and G’, respectively. The existence of a
G-invariant perfect pairing on g implies that there is a G-equivariant (and hence G’-equivariant)
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isomorphism between g = 8 @ ¢’ and g* = 8* @ (¢')*. (Here ¢* = Hom(g, 0).) Now, 8 and 8*
are both trivial G’-modules that are isomorphic as @-modules. They are therefore isomorphic as
G’-modules.

In the category of G’-modules that are finitely generated over O, the endomorphism ring of any
object is a finitely generated O@-module. Since O is a complete local ring, it follows that every such
endomorphism ring is semiperfect, by [31, Example 23.3]. Then, by [20, Theorem A.1], the Krull-
Schmidt theorem holds in this category. Since we have G’-equivariant isomorphisms & @ ¢’
8* @ (¢')* and 8 =~ 8*, we conclude that there is a G'-equivariant isomorphism ¢’ 2 (¢')*. This is
equivalent to the existence of a G’-invariant perfect pairing on g’. O

Remark 2.2.

(1) In Step 3 of the preceding proof, the invariant perfect pairing on ¢’ is not obtained by restrict-
ing the invariant pairing on g. Indeed, in general, the restriction to ¢’ of a perfect pairing on
g may fail to be perfect.

(2) In many examples, one can find a symmetric G-invariant perfect pairing (cf. [36, Remark 4]),
but we do not know if this holds for all reductive groups. The difficulty lies essentially in the
lack of an explicit construction in Step 3 of the preceding proof. We thank G. McNinch for
helpful comments on this point.

Lemma 2.3. There exists a central isogeny o : G — G such that the following conditions hold:

(1) The derived subgroup of G is simply connected.

(2) p is pretty good for G, that is, the quotient of the cocharacter lattice of a maximal torus of G by
the root lattice has no p-torsion.

(3) Themap o : G — Gy is separable.

Moreover, o identifies the Lie algebra of G with g.

Proof. Consider the torsion subgroup (X /ZR"),,.s C XV /ZR". Choose a complement F, so that
XV /ZRY = (XV/ZR")ys ® F. Thus, F is a maximal free summand of X" /ZR". Let XY C X" be
the preimage of F under the quotient map XV — XV /ZRV.

Let X = Hom, (X", Z). The group X is naturally identified with a subgroup of X. The quadru-
ple (X,X",R,RY) is a root datum. Let G be the corresponding split reductive group over O. The
obvious morphism of root data gives rise to a central isogeny G — G. Because X" /ZR" is torsion-
free, the derived subgroup of G is simply connected. Since p does not divide the order of the finite
group X /X (which is isomorphic to (X /ZR"),.,s), the map o : Gy — G is separable.

For the last assertion, let § be the Lie algebra of G. Since the induced maps gk — gk andgr — g
are isomorphisms, the map g — g is as well. O

2.2 | The Springer resolution

Let



INTEGRAL EXOTIC SHEAVES AND THE MODULAR LUSZTIG-VOGAN BIJECTION | 9

The group G acts on this scheme in the obvious way, so we may consider the bounded derived
category

DPCoh®(N)
of G-equivariant coherent sheaves on N.
Lemma 2.4. There exists a G-equivariant isomorphism N =G x5 (g/b)*.

Proof. Choose a G-equivariant perfect pairing (—,—) : g X ¢ — O as in Lemma 2.1. This induces
a B-equivariant isomorphism n — (g/b)*. 1

Let
7N > i}
be the map given by 7(g, x) = Ad(g¢)(x). This map is proper, and gives rise to a functor
#, : DPCoh%(N') — DPCoh%(g).

There is also an obvious map p : NG /B. Any B-representation that is finitely generated over
O gives rise to a G-equivariant coherent sheaf on G/B (see, for instance, [28, Sections 1.5.8 and
1.5.9]). In particular, any 1 € X defines a B-module structure on the free rank-1 O-module. The
corresponding (invertible) sheaf on G /B will be denoted Og /5(4), and we set

O ) 1= p*Og ().

We denote by N, s N, K, and FK the schemes obtained from N by change of scalars from
0 to F, K, or K, respectively. We can then consider the corresponding derived categories of
coherent sheaves DPCoh®(N')g, D°Coh®(N'), and DPCoh® (N )i and the functors 7,. The

change-of-scalars functors for coherent sheaves on N will be denoted by
F(—) : D*Coh®(N") — DPCoh® (N,
K(=) : D°Coh®(N') — DPCoh®(N)y,
K(-) : D’Coh®(N") — D°Coh®(N ).

These functors commute with the functors 7., in the sense that there exist canonical isomor-
phisms of functors

Lok, Kof,~7,okK. (2.2)

14
Bl

Fof, =7, oF, Ko7

IR

*

2.3 | The nilpotent cone and perverse-coherent sheaves

In this subsection we fix k € {F, K}, and let NV, i denote the variety of nilpotent elements in g.
(There are subtleties involved in finding the correct definition of the nilpotent scheme over O. We
will not address those here, and we will work with the nilpotent variety only over an algebraically
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closed field, where the results of [29] are available.) There are maps
E:F[F_)N‘[F’ F:FK_)NK’

both given by 77(g, x) = Ad(g)(x). Note that for k € {F, K} the map 7 defined in Section 2.2 factors
as 7t =i o 7, wherei : N, & g, is the inclusion map.
The bounded derived category of G, -equivariant coherent sheaves on N, will be denoted by

D°Coh®(N),.
Since 7 is proper, it gives rise to a functor
7, : DPCoh®(N), — DPCoh®(N),.
For A € X, set
AEC([I«) 1= n*Oﬁ(wol) and VEC(H«) 1= n*Oﬁ(/l). (2.3)
Let © C N, be a G, -orbit. We define the star of this orbit to be the open subvariety

St(0) = U 0. (2.4)
0’ C N, aG,-orbit
6c6’

Leti, : O < St(0) be the embedding of © as a (reduced) closed subscheme of its star.
The category D°Coh®(N), is equipped with a remarkable t-structure called the perverse-
coherent t-structure. Its heart is denoted by

PCoh(N),,

and objects in the heart are called perverse-coherent sheaves. We will not recall the definition
of the perverse-coherent t-structure in detail here, but we will review some of its key properties
below, following refs. 3, 4, 12, 14].

Remark 2.5. The results on perverse-coherent sheaves in [3, 4] are stated under the assump-
tion that Gy has a simply connected derived subgroup. However, using the separable isogeny
from Lemma 2.3, it is straightforward to transfer these results to arbitrary groups in pretty
good characteristic.

Recall the definition of the support supp(F) of a complex F of coherent sheaves on a scheme,
see, for example, ref. [7, Section 4.1] for references; this support is a closed subset of the underlying
topological space of the given scheme. We will also consider the order < on X such that 4 < u iff
1 — A is a sum of positive roots. Finally, as in Section 1.1 we set

6 C N, is a nilpotent orbit, and
Qk L= (@’ v) . . . . . .
V is an irreducible G, -equivariant vector bundle on 0
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Then the following properties hold:

(1) The perverse-coherent t-structure is bounded, and every object in the heart PCoh(N), has
finite length.

(2) If 0 C N is an orbit that is open in the support of 7 € PCoh(N),,, then H'(F)|gs) vanishes
fori # % codim 0.

(3) The objects AX(k) and V2°(k) lie in PCoh(N). Moreover,

k ifA=yu,
Hom(AP(), VR = { © M4 T
0 otherwise.

(4) Fixanonzeromapc; : Aic(k) - V;’C(k), and set
£ = im(c; 1 AY (k) = V().

Then Egc(k) is a simple object in PCoh(N'). Moreover, every simple object is isomorphic
to EEC(U«) for a unique 4 € X%, and each composition factor of the kernel of the surjection
A% (k) » £5°(k), resp. of the cokernel of the embedding £5°(k) < V}"(k), is of the form £} (k)
with u < A.

(5) Let © C N, be anilpotent orbit, and let V be an irreducible G, -equivariant vector bundle on
0. There is unique simple perverse-coherent sheaf

1¢(0,V)

that is characterized by the following properties: it is supported on 6, and

1 .
H3 ©dmO 7, V))lswo) = ip. V. Moreover, every simple object is isomorphic to ZC(0, V)
for a unique pair (0,V) € Q.

Here, items (1), (2), and (5) come from the general theory of perverse-coherent sheaves: see
[12, Section 4.2], as well as [3, Section 4.5]. Items (3) and (4) come from [3, Proposition 6.1 and
Theorem 6.2] (see also [14, Corollary 3]). In view of item (3), the map c; in item (4) is unique up
to scalar.

Note that items (4) and (5) give two different classifications of the simple objects in PCoh(N'),:
one is parametrized by X*, and the other by Q,.

Definition 2.6. Let k € {F, K}. The Lusztig-Vogan bijection for G, is the bijection
Xt S0,
determined by the following condition: 1 € X* corresponds to (6, V) € Q, if Eic(k) ~IC(0,V).
One can also interpret the Lusztig—Vogan bijection from a slightly different point of view if one

chooses, for any G,-orbit © C W, a representative x, € 0. Let us denote by Zg, (x4) the central-
izer of x4, and by dekd(x@) its reductive quotient (i.e., the quotient of Zg (x,) by its unipotent

radical). Our assumptions imply that the natural morphism G, /Z, (x) = Oisan isomorphism
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of varieties (see, e.g. [39, Proposition 4.2]); hence pullback along the embedding {x,} & O defines
an equivalence of categories

G ~
Coh™«(0) — Rep(Zg, (x4)),
where Rep(Z, (x,)) is the category of finite-dimensional Zg; (x)-representations. In particu-
lar, we deduce a bijection between the sets of simple objects in these two categories. Since every
irreducible Z (x,)-module factors through the quotient map Zg (x,) — Zg’d(x@), we obtain a
3

bijection between the set of isomorphism classes of irreducible G -equivariant vector bundles on
0 and the set of isomorphism classes of simple Zéid(x@)-modules. Thus, Q, gets identified with

the set
= {(@, L)

and the Lusztig-Vogan bijection for G, can be thought of as a bijection

6 C N is a nilpotent orbit, and }

L is an irreducible Zéid(x@)-module

X" Q. (2.5)

The image of A € X* under this bijection will be denoted (O}, L%).

2.4 | Graded versions

We will denote by G,,, the multiplicative group over O, and by (G, ) and (G, )i its base change to
F and KK respectively. Then G, acts on g by z - x = z~2x. This makes the coordinate ring O(g) into
a graded ring concentrated in even, nonnegatlve degrees. This G,,-action preserves n C g, and it
induces a G,-action on N The G,,-actions on N and on g commute with the actions of G. The
map 7 : N > g is G X G,,-equivariant, so one may consider the functor

. : DPCoh®*Gm(N') — DPCoh®*n(g).

Similar remarks apply to the F- and K-versions of these spaces. Moreover, we also have
change-of-scalars functors F : D°Coh®*®m(g) — DPCoh®*®m(g). and K : DPCoh®*®m(g) —
DPCoh®*Gm(g)-—, and they commute with 7, as in Equation (2.2). For k € {F, K}, the (G,,),-action
on g, preserves N, so we also have functors

7, © DPCoh®Cm(N), — DPCoh®Cm(A),.
We write F — F(1) for the autoequivalence of any of these categories that twists the G-
equivariant structure by the tautological character of G,,. In the G,-equivariant setting, we modify

Equation (2.3) to include a normalization of the (G, ), -action, as follows: we set

A1) 1= w0 (Wed)(Ey2)  and V() 1= 7, O7H(A) (=8, ),
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where &, is the length of a minimal element v of the Weyl group such that vA € —X*. (See [4,
Section 2.3].)

The definition of the perverse-coherent t-structure carries over to the (G, ), -equivariant setting.
The heart of the resulting t-structure is denoted by

PCoh®m(A), € D°Coh®Cm(N),.

This category is stable under (1). Properties (1) and (2) from Section 2.3 remain true as stated for
PCoh®m(AN"),, but the remaining properties must be modified as follows:

(3) The objects AX(k) and V°(k) lie in PCoh®n (A'),.. Moreover,

k ifl=uandk =0,
0 otherwise.

Hom(AP (), VS ()(k)) {

(4) Fix anonzeromap c; : AP (k) - V*“(k), and set
pci v 2
Egc([k) =im(c; : AEC(U() - VEC(H«)).

Then Egc(k) is a simple object in PCoh(N),.. Moreover, every simple object is isomorphic to
Egc(k)(k) for a unique pair (1, k) € X* x Z, and each composition factor of the kernel of the
surjection Aic(k) > Cic(k), resp. of the cokernel of the embedding Egc(k) SN Vﬁc(k), is of the
form £} (k)(m) with 4 < A.

(5) Let 6 C N, be a nilpotent orbit, and let ¥ be an irreducible (G X G,,),-equivariant vector
bundle on 0. There is a unique simple perverse-coherent sheaf

1¢(0,V)

that is characterized by the following properties: it is supported on 6, and

H3 codimO (7, V))lswo) = ip. V. Moreover, every simple object is isomorphic to ZC(0, V)
for a unique pair (0, V).

See Section 2.3 for references to [3, 12, 14] for these statements (see also Remark 2.5). Note that in
part(5), the simple objects are parametrized not by Q, , but instead by the larger set Qf“‘ consisting
of pairs (0, V) where V is a (G X G,,),-equivariant vector bundle, rather than a G-equivariant
vector bundle. Comparing parts (4) and (5), we see that there is a graded Lusztig-Vogan bijection

XtxZ Q.

The extra G, -action is crucial for some applications, but for most of this paper, we will work with-
out this G,,-action. (One exception is the proof of Proposition 5.2, where the G, -action plays an
important role.) However, there is no loss in doing so: as explained in [5, Section 3], the graded
Lusztig-Vogan bijection is completely determined by the ordinary (ungraded) Lusztig-Vogan
bijection. In particular, the main theorem of this paper implies that the graded Lusztig-Vogan
bijection is also independent of k.
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3 | BALANCED NILPOTENT SECTIONS AND ASSOCIATED
SLODOWY SLICES

3.1 | Balanced nilpotent sections and their centralizers

Elements of g are in a canonical bijection with the O-points of the O-scheme g. Following [37],
such points will be called sections. Any section x € g, considered as a morphism Spec(Q) — g,
determines by base change an F-point X of gy (in other words, an element of the F-vector space
gr) and a K-point x; of g (in other words, an element of the K-vector space gy ). The image of x;
in g;- will be denoted x;.

‘We will denote by

Z5(x), Zg(Op,  Zo(X)ks ZG(X)K

the scheme-theoretic centralizer of x in G, of xi in G, of xi in Gy, and of x;- in Gy, respectively.
We then have canonical identifications

Zg(x)r = Spec(F) Xgpec(ay Z(X),

Zg(x) = Spec(K) Xgpec(a) Zg(X),

Z5(0)% = Spec(k) Xspec(a) Z6(X)-
Note also that if we set

340 1={y € ¢¢ | [xp,¥] =0},

3¢k =1y € g | [x, ¥]1 =0},

30 i={y € g | [x, ] =0}

then by [28, Equation (7)] we have

Lie(Zg(x)p) = 34(x)p,  Lie(Zg(x)k) = 34(X)k,  Lie(Zg(xX)g) = 34(X)- (3.1)

Finally, by [39, Proposition 4.2], Z;(x) is a smooth group scheme. (Of course, Z;(x) and Z;(x);c
are also smooth.)
Following [37, Definition 1.4.1], a section x will be called balanced if

dim(Z;(x)g) = dim(Z5(x)).

(The remarks above show that our terminology is indeed compatible with that in [37].) On
the other hand, a section x will be called nilpotent if xj is a nilpotent element in g,. By [37,
Lemma 3.2.1], if x is nilpotent then x is a nilpotent element in gg. The sections which we will be
mostly interested in are the balanced nilpotent sections.
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Remark 3.1. By invariance of the dimension under field extensions (see, e.g. [23, Proposition 5.38])
we have dim(Z;(x);c) = dim(Z;(x)y). Hence the “balanced” condition can also be stated purely
in terms of algebraically closed fields by requiring that dim(Z;(x)g) = dim(Z5(x)5).

We refer, for example, to [37, Definition 3.3.1] or [29, Definition 5.3] for the definition of a cochar-
acter associated with a nilpotent element. Recall also that under our assumptions there exists a
canonical bijection from the set of nilpotent G-orbits in gi- to the set of nilpotent G-orbits in
gy, see [7, Section 4.1] for references. This bijection will be called the Bala-Carter bijection, and
denoted BC. It satisfies dim(0) = dim(BC(0)) for any G-orbit ©. By work of Spaltenstein (see
again [7, Section 4.1] for references), it is known also that BC is a bijection of posets, for the orders
given by inclusions of closures of nilpotent orbits.

The main properties of balanced nilpotent sections from [37, Theorem 3.4.5] that we will need
are summarized in the following theorem.

Theorem 3.2 (McNinch). If y € g; is a nilpotent element, then there exists a balanced nilpotent
section x and a cocharacter ¢ : Gy, — G such that

D y=xp

(2) Spec(F) Xspec(a) ¢ is a cocharacter associated with X;
3) Spec(K) Xspec() ¢ 1S a cocharacter associated with xi;
(4) BC(Gx; - xi0) = G - X

The other important property we will use is the following.

Theorem 3.3. Let x € g be a balanced nilpotent section. Then the O-group scheme Z;(x) is smooth
over O. Moreover, the groups of connected components of the algebraic groups Spec(F) Xspec(o) Zg(X)

and Spec(K) Xspec(0) Zg(X) have the same cardinality.

Proof. These claims are proved in [25, Theorems 1.6 and 1.8]. A different argument for smoothness
is also given in Section 3.4 below. O
3.2 | Integral Slodowy slices for balanced nilpotent sections

We continue with the setting of Section 3.1, and fix a balanced nilpotent section x and a cocharacter
¢ : Gy — G such that Spec(F) Xgpec(o) ¢ is @ cocharacter associated with xg, and Spec(K) Xgpec(o)

@ is a cocharacter associated with x;-. Our goal is to define a “Slodowy slice” in g attached to x.

Lemma 3.4. The O-submodule [x, g] C g is a direct summand in g.

. . ad(x) .
Proof. Consider the right exact sequence of O-modules g —— g — g/[x, g] — 0. After tensoring
with F or [, one obtains analogous right exact sequences over those fields. In particular, we have

dimF ®q (¢/[x, g]) = dim g¢ — rank(ad(x;)) = dim 3,(x),

dim K ®q (g/[x, g]) = dim g) — rank(ad(x)) = dim 3,(x).
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Since Z;(x)r and Z;(x)i are smooth (so that their dimension coincides with that of their Lie
algebra), and since x is balanced, using Equation (3.1) we see that these dimensions are equal.
Therefore, g/[x, g] is a torsion-free 0-module, and the lemma follows. O

‘We now consider the G,-action on g determined by ¢ via the adjoint action. Then x has weight
2 for this action (because this is true by assumption over K), and the submodule [x, g] C g is
G,,-stable. We fix a G, -stable complement M C g for this submodule (which exists by Lemma 3.4).

Lemma 3.5. All the G,-weights on M are nonpositive.

Proof. 1t is sufficient to prove a similar claim for the (Gy,);-weights on K@O M. Now by
assumption Spec(i<) Xspec(0) P 18 a cocharacter of G- associated with x;. By [29, Lemma 5.7 and

Proposition 5.8], we see that [ x;, g;-] contains all the (G, );--weight spaces of g;- of positive weight,

which implies our claim. O
We set
S, =x+M C g.
(Contrary to what the notation might suggest, this scheme depends not only on x, but of course
also on ¢ and M.) If we define a G,-action on g via z -y = z72¢(z) - y, then S, is a G,,-stable
closed subscheme of g, and in view of Lemma 3.5 the weights of G, on (S, ) are nonnegative,
the weight-0 subspace consisting of the constants O C O(S,). We will also denote by

ay - G ><Spec(@) Sx —>4g

the morphism induced by the adjoint action.

3.3 | Some properties of Slodowy slices over fields

We continue with the setting of Section 3.2, and let k be either F or K. We will consider the affine
subspace

S i=x, +(k® M) C g,

(which is a variant of the Slodowy slices constructed in [43]). This variety is endowed with an
action of (G,,), (induced by the G,,-action on S, considered above) which contracts it to {x, }. We
will denote by a¥ : G x Sk — g, the base change of a, to k, that is, the morphism induced by
the adjoint action.

Proposition 3.6. The morphism a”; is smooth (and hence, in particular, flat).
Proof. We observe that the differential of a“; at the point (1, x;) identifies with the morphism

g, X (k ®g M) — g, sending (y,y’) to [x,,y] + y'. This differential is surjective since k ® M is
a complement to [x,, g, ] in g;, which proves that a“; is smooth at (1, x; ). Since the locus of points
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of G, x Sy where this map is smooth is open, and stable under the (G X G,),-action defined by
(9,2) - (h,y) = (ghe(2)~!, z7%¢(2) - ), this locus must then be the whole of G, x S¥. O

Since a”; is flat, it is open (see, e.g. [23, Theorem 14.33]). Let
kK ._ ¢k k
Ve = (a))(Gy, X Sy)
be its image (an open subset of g, ).

Lemma 3.7. The following square is Cartesian, where the vertical maps are the closed embeddings
and the horizontal maps are induced by the adjoint action:

Gy X {xi} —> G - xi

! 0

Gy X S¥ ——— vk

Proof. By smoothness of a“; (see Proposition 3.6), the fiber product (G X Sl'j) Xy (Gy + x) is
smooth over Gy, - x;, and hence a smooth variety, of dimension dim(G, ). By G, -equivariance, we
have

where on the right-hand side we consider the scheme-theoretic intersection. (This follows,
e.g., from [43, Lemma 4 on p. 26] applied to the composition (G X 5)”(‘) Xy (Gy - x) = G X 5)”: -
Gy, where the second map is the projection.) It follows in particular that the right-hand side is
smooth. Since the projection

Gy, X (SEN (G, - x)) = SEn(Gy - x)

is smooth, using [45, Tag 02K5] we deduce that S;'j N (G - x,) is smooth and of dimension
0, and hence a disjoint union of points. On the other hand this variety admits a (G,),-
action which contracts it to x;; we deduce that S¥ N (G, - x;) = {x,}, which implies the desired
identification. O

Corollary 3.8. In the following diagram, every square is Cartesian:

Gy X {xi} —> (Gy X S¥) Xq, Niy —> Gy X Sy

| ! !

Gy - X1, ——— SUGy, - x) ———> V¥

1 !

le % (40

The vertical maps between the top two rows are smooth and surjective. The vertical maps between the
bottom two rows are open embeddings.
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Proof. If anilpotent orbit 0’ intersects V¥, then it must contain an element in S¥. Since the (G ), -
action is contacting to x, and preserves the nilpotent orbits (as follows from [29, Lemma 2.10]),
this implies that x;, € 0, so that 0’ C St(Gy, - x,). Conversely, if 0’ contains x, in its closure,
then it must intersect the open subset VEE’ hence be contained in it. We have finally proved that
VEN N, = St(G, - x,), that is, that the bottom square is Cartesian. Since the square formed by
the second and third schemes on the first line and the bottom line is Cartesian by definition, this
implies that the upper right square is Cartesian. Then, using the same argument and Lemma 3.7,
we deduce that the upper left square is Cartesian.

The claim about smoothness is then clear from the smoothness of a;k; (see Proposition 3.6), and
the final claim follows from the definitions. I

3.4 | Smoothness of centralizers

In this subsection we sketch a different proof of the smoothness claim in Theorem 3.3. No details
of this proof will be used in the rest of the paper. We first remark that the smoothness of Z;(x)
follows easily once we know that this group scheme is flat over O; see [25, Lemma 1.5] for details.

By Theorem 3.2, there exists a cocharacter ¢ : G,, — G such that Spec(F) X ¢ is associated with
x; and Spec(K) x ¢ is associated with Xic- Then we can consider an “integral Slodowy slice” S, as
constructed in Section 3.2. By a variant of [40, Lemma 4.1.1] (for discrete valuation rings instead of
localizations of Z) one can deduce from Proposition 3.6 (in the case k = F) that a, is flat. Hence to
conclude it suffices to prove that the following diagram is Cartesian, where the horizontal maps
are induced by the adjoint action and the vertical maps are the closed embeddings:

Z5(x) x {x} — {x}

{ !

GXS, —> g

However, it follows from Lemma 3.7 that the base change of this diagram to K is Cartesian. Since
the O-scheme (G X S,.) Xq {x} is flat by flatness of a,, this implies that the composition

(GXS) X {x}>GXS, =S,

(where the second map is the projection) factors through the embedding {x} & S,. Hence we
have

(G X Sy) Xg {x} = (G x {x}) Xy {x} = Z5(x),

which finishes the proof.

4 | INTEGRAL EXOTIC SHEAVES

In this section, we will work with the category DbCthXGm(F ) (cf., Section 2.4), rather than
DPCoh® (W), mainly because we anticipate that this may be useful for future applications. How-
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ever, the G,-action plays almost no role in any of the arguments. Appropriate analogues of the
statements in this section hold for DbCth(ﬁ ), and we will use these versions elsewhere in
the paper. .

The goal of this section is to construct a t-structure on DPCoh®*®m(N) (as well as on the F- and
[K-versions), called the exotic t-structure, using the machinery from Appendix A. In the case of
field coefficients, this t-structure has been extensively studied in the literature [4, 11, 16, 34], but
over O, some of the statements in this section are new.

4.1 | Passage to a group with simply connected derived subgroup

In the arguments below, we will need some results from refs. [18, 34] that only apply to groups
with a simply connected derived subgroup. To accommodate these results, for the remainder of
this section, we fix a central isogeny

c:G->G

as in Lemma 2.3. Let T € B C G be the maximal torus and the Borel subgroup obtained as the
preimages of T and B along . According to Lemma 2.3, o lets us identify the Lie algebra of G with
g. This yields an identification of their Springer resolutions as well, as the obvious map

CxPn-GxEn

is an isomorphism. We may thus speak of both G- and G-equivariant sheaves on N , and there is
an obvious functor

DPCoh®Cm(N) — DPCoh®Cm(N). (4.1)

Any G-invariant perfect pairing on g is also G-invariant, so the isomorphism in Lemma 2.4 is also
compatible with passage from G to G. The results we need from refs. [18, 34] are usually applicable
to G x G, -equivariant sheaves on G xB (¢/b)*, and hence to DbCthXGm(F ). In order to extract
useful information in DPCoh®®m (), we need to understand the functor (4.1).

Let X be the character lattice of T (cf., the proof of Lemma 2.3). This group contains X as a
subgroup. The quotient X /X is finite and of order coprime to p. Let F be the kernel of o : G — G.
This is a diagonalizable smooth finite group scheme whose character group is identified with
X/X. -

Note that any coherent sheaf 7 € Coh®*®m(N') comes equipped with a canonical (in particular,
functorial) decomposition

F = @ 7:'7/, 4.2)

according to the action of F. To see this decomposition more concretely, we can pass through the
“induction” equivalence

Coh®*Cm(N') = CohP*ém (1),
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and identify the right-hand side with the category of finitely generated B-equivariant graded mod-
ules over the ring O(n) = Symg(n*). If we regard F as such a module, then it is in particular a
rational F-module, so it admits a canonical decomposition (4.2) as an F-module. Since F is in the
center of B and acts trivially on O(n), each summand on the right-hand side of Equation (4.2)
is stable under the actions of B and O(n). In other words, the decomposition (4.2) takes place in
Coh®*Cm(N). o o

For v € X/X, let Coh®®m(N')” be the full subcategory of Coh®*®m(N’) consisting of objects
F that satisfy F = F”. An immediate consequence of Equation (4.2) is that we have a categorical
decomposition

DPCoh®Cm(N) = ) DPCoh®Cm(N)”. (4.3)
veX/X

At the level of abelian categories, it is clear that thg natural functor Coh®*€m (;\7 )— CohC*Cm (ﬁ )
is fully faithful. Its image is the subcategory Coh®®m(N)°, so the decomposition above gives us
an identification

DPCoh®*Gm (') & DPCoh®*Cm(N)°.

For the remainder of this section, we identify D°Coh®¢m(N) with a subcategory of
DPCoh®*Cm(N') in this way.
We conclude this subsection with two lemmas on generators for these derived categories.

Lemma 4.1. For any E € {K, O, F}, the category DPCoh®*®m (A7)[E is generated as a triangulated
category by objects of the form O AXk)withd € Xand k € Z.
E

Proof. In the case where E is a field, this is proved in [3, Corollary 5.8] or [34, Corollary 2.7].
Here, therefore, we will only treat the case where E = O. (However, the reader can easily
modify this argument to handle the field case as well.) As in the discussion above, we can
replace DPCoh®*Sm (') with DPCohB*Cm(n), and we will think of objects M € CohP*®m(n) as
B-equivariant graded O(n)-modules. From now on, all @(n)-modules will implicitly be assumed
to be finitely generated.

Let M € Coh®*®m(n). By [41, Proposition 2], there exists a (B X G,,,)-stable O-submodule M’ C
M which is of finite type over O and which generates M as an O(n)-module. Then by [41, Propo-
sition 3] there exists a (B X G,,)-module M" which is free over O and surjects to M’; in this way
we see that M is a quotient of a (B X G,,,)-equivariant free @O(n)-module, and then that M admits
a resolution

5P sPlsPPSs M-S0
where each P¥ is a (B x G,,,)-equivariant free @O(n)-module. Since O(n) is isomorphic to a ring of
polynomials (in rk(n) many variables) with coefficients in O, it has finite global dimension, say

d. Let Q be the kernel of P4~1 — P9-2 and consider the exact sequence

0—>Q—>Pd_1—>---—>P0—>M—>O,



INTEGRAL EXOTIC SHEAVES AND THE MODULAR LUSZTIG-VOGAN BIJECTION | 21

A routine homological algebra argument shows that as a (graded) @(n)-module, Q must be pro-
jective. Since O(n) is a graded polynomial ring over a noetherian local ring, a suitable variant
of Nakayama’s lemma implies that every projective graded ®(n)-module is free.” We have thus
shown that M admits a finite resolution by B-equivariant free graded ©(n)-modules.

Let M be a B-equivariant free graded @(n)-module. We will show (by induction on the rank of
M over O(n)) that M admits a filtration whose subquotients are B-equivariant free graded O(n)-
modules of rank 1. Such objects correspond to (G X G,,)-equivariant line bundles, so this claim
will prove the lemma.

Consider the quotient map M — M /nM. Then M /nM is a free O-module of finite rank (equal
to the rank of M as an @(n)-module). The quotient map admits a (T X G,,)-equivariant splitting
M /nM — M. Choose such a splitting, and let M, be its image. Then any O-basis for M, is a O(n)-
basis for M. As a T-representation, M, decomposes as a direct sum

M, = PM,);,

1eX

where each (M), is again a free O-module of finite rank. Choose some 4 such that (M,)); # 0, and
such that 4 is minimal for this property with respect to the partial order < on X considered in Sec-
tion 2.3. Then choose an element v € (M,)); that is part of some O-basis for (M), consisting of
vectors homogeneous with respect to the G, -action. Then the O-span O - v is a Dist(B)-submodule
of M,,, and hence also a B-submodule by [28, Lemma 1.7.15]. (This statement is applicable here
since B is smooth, and hence infinitesimally flat; see [28, Section 1.10.11].) Let M’ C M be the
O(n)-submodule generated by v. This is a (B X G,,)-equivariant submodule of M that is free over
O(n) of rank 1.

Since v is part of an @(n)-basis for M, the quotient M" := M /M’ is again a B-equivariant free
graded @(n)-module (of rank lower than that of M). By induction, M admits a B-equivariant
filtration whose subquotients are free over O(n) of rank 1, and hence so does M. O

Lemma 4.2. Letv € X/X. For any E € {K, O, F}, the category DPCohC*Em (F ); is generated as a
triangulated category by objects of the form (9J\~/ AXkywithAeX A+X=v,andk € Z.
E

Proof. By Lemma 4.1 applied to G, the category DbCthXGm(JV )e as a whole is generated by
the line bundles (9A7[E (A)(k) with 1 € X and k € Z. Since each OW[E (A)(k) lies in one summand
on the right-hand side of (4.3) (namely, the summand labeled by v = 4 + X), we see that each
DPCohC*Cm (F )¢ 1s generated by those line bundles OFE (1)(k) that it contains. O

4.2 | Exotic generators for the derived category

We will now define a new set of generators, using the extended affine braid group action
constructed in [18].

Let W, := W X X be the extended affine Weyl group for G. Recall that in general this group is
not a Coxeter group, but it is endowed with a natural length function and with a “Bruhat order”;

TWhen invoking the graded Nakayama lemma, instead of using the grading coming from the G,,-action, we could instead
use the grading given by a strictly dominant cocharacter of T C B. The latter version also makes sense in the setting of
Coh®(N') = Coh®(n).
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see [34] for details and references. Recall also that every element w € W, determines an element

of the extended affine braid group By, denoted by T,,. The main result of [18] associates to T, a
certain autoequivalence of D?Coh®*®m(A/), denoted by Jr,-Givenl € X, regard it as an element
of W, and consider its right coset for the finite Weyl group WA C W,,. Let w; be the unique

ext:

element of minimal length in WA. Following [34, Section 3.3], for E € {K, 0, F}, we set

VI®) = Jp, ©F)  and  ARE) =T, )n(OF).

These are objects in DPCoh®*Gm(AN)¢, but it can deduced from [34] that some of them lie in
DPCohC*Cm (F )e- To explain this, we need some more notation. Let us temporarily regard Xasa
subset of the real vector space R ®, X. In the latter, it makes sense to take the convex hull of any
finite set of elements. For 1 € X, we set

conv(1) = (A + ZR) N (convex hull of W - 1in R ® , X),

conv’(1) = conv(d) \ W - A.

(Recall that R is the root system of G.) It is well known that when A and y are dominant, we have
conv(1) C conv(u) if and only if A < u. As a consequence, for arbitrary 1, u € X, we have

u € conv’(1) - A & conv(w). (4.4)

Consider the preorder < on X given by 1 < 1 if u € conv(1). By Equation (4.4), the equivalence
classes for this preorder are precisely the W-orbits in X. For 1 € X, let Deonv(a)s T€SP- Deonyo(ay, be
the full triangulated subcategory of DbCthXGm(F ) generated by objects of the form OF(,u)(k)
with k € Z and u € conv(1), resp. u € conv’(1). The categories Dconv(ay @nd Degnyo(zy are both
contained in a single summand of the right-hand side of Equation (4.3) (namely, the one cor-
responding to v = 4 + X). It can be deduced from [34, Lemma 3.1] (see also the proof of [34,
Proposition 3.7])" that for all 1 € X, we have

6jzlx([E) = Oﬁ(ﬂ»xaA) (mod Dconvo(/l))’ (4.5)

where §, is the length of a minimal element v € W such that vA is dominant. In particular, this
implies that

ﬁjx([E) € Deony(a) C DPCoh®Cm (N2, wherev =1+X.

In particular, if A € X, then ﬁix([E) € DPCoh®*Cm (F )e- We will see later that similar claims hold
for AS*(E).

 Although [34] works with field coefficients, the specific statements cited here are essentially minor variations on [18,
Lemma 1.11.3], which holds for E = O as well. It is left to the reader to check that the arguments we need go through for
general E.
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Lemma 4.3. Forall 1 € X, we have

K(V(0)) = V(K), FVE(0)) = Vi (F),
K& (0)) = A%(K), F(AT(0)) = A (F).

Proof. This follows from the fact that the functors J, commute with change of scalars (see [18,
Section 1.2]). O

Lemma 4.4. For any E € {K, O, F}, the category DPCoh®*®m (FJ\7 ) is generated as a triangulated
category by objects of the form V/el"([E)(k) withl € Xand k € Z

Proof. By Lemma 4.1, DPCoh%Gn(A) is the union of the Deony(zy With 4 € X. Tt is therefore
enough to prove that each D, is generated by the objects ﬁi"([E)(k) with ¢ € conv(1). We
will prove this by induction with respect to the preorder < on A. The base case is that in which
conv’(1) = @. In this case, the claim follows from Equation (4.5).

In general, the property (4.5) means that there exists an object 7 and a diagram

V| L7 L o-6))

such that the cones of both f and g lie in D¢,0(;). Next, Equation (4.4) implies that conv’(1) =
Uveconvo( 1) conv(v). By induction, Dcyqp0(z) is therefore generated by the objects VI*(E)(k) with
v € conv’(1). The diagram above then shows that the subcategory generated by the ﬁfj‘([E)(k)
with u € conv(4) contains D¢,\0(z) and all the O =(vA)(k) for v € W. The result follows. O

(The preceding proof shows more generally that for any v e X/X, the category
DPCoh®*Cm(N )¢ is generated by objects of the form ?/elx([E)(k) withA1+X =vandk € Z.)
4.3 | Exceptional sequences
Let <g,, be the Bruhat order on X, that is, the order defined so that A <, u iff w; is smaller than
w, is the Bruhat order of W,,,. Let <’ be any refinement of <p,,, to a total order such that ()~(, <N
is isomorphic to (Z,, <), and such that

A € conv®(w) = A<

(This last condition makes sense by Equation (4.4).) Then the subset (X, <’) is also isomorphic to
(2305 <)’

Proposition 4.5. For E € {K, O, F}, the category DPCohC*Cm (N )i is graded Hom-finite, the col-

lection {ﬁjx([E)},leX is a graded exceptional sequence (with respect to the order <’ above), and the
collection {ij([E)} 1ex 1S a dual sequence.

In particular, this proposition says that ij([E) € D°Coh®*Cm (ﬁ )g forany 1 € X.
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Proof. Using our identification of DPCoh®*6m (F ) with a direct summand of DPCoh®*6m (ﬁ )
it is easy to see that this proposition would follow from the analogous claim in which G and X
are replaced by G and X. (Here the fact that Zflx([E) belongs to DPCoh®*Cm (F )g when 4 € X will
follow from the fact that this object is indecomposable and admits a nonzero morphism to ﬁjx([E).)
For the remainder of the proof, we work in the latter setting.

In the case where E is a field, the claim follows from the discussion in [34, Section 23]. Let
us now consider the case where E = O. First, the objects ﬁjx([E) generate DPCoh®*Cm (N ) by
Lemma 4.4. It is proved in ref. [35, Proposition 5.4] that we have

Hom(&$*(0), V5 (0)[n](k)) = {@’ HA=pandn =k=0

0 otherwise.
(More precisely, in [35] the coefficients considered are a localization of Z; the present setting is
completely analogous.) Similar arguments show that the collection {?j"([E)} 1% satisfies the con-
ditions on Hom-groups that define graded exceptional sequences. Then Remark A.7 ensures that
DPCoh%®m(N)g is graded Hom-finite, and Lemma A8 tells us that the sequence {AS*(E)}; g is

dual to {V(E)}) - O
4.4 | Exotic t-structures

In view of Proposition 4.5, using Theorem A.11 we obtain a t-structure on DPCoh®*®m (F ). called
the exotic t-structure. The heart of this t-structure will be denoted by

ExCoh®n(N)g,  E€e{K,0,F.
In accordance with the conventions in the rest of the > paper, when E = O, we usually omit the
subscript and denote the category simply by ExCoh®m (N'). (Note that although we need to choose
a total order <’ that refines <p,, in order to invoke Theorem A.11, the resulting t-structure is

independent of that choice; see Remark A.12(2).)

Lemma4.6. Let F,Gin DbCthXGm(F)@.

(1) The functor K(—) induces an isomorphism
K ®, Hom(F, ) — Hom(K(F), K(G)).
(2) There exists a natural short exact sequence

F ®¢ Hom(F,G) & Hom(F(F), F(G)) - Tor}'(F, Hom(F, G[1]))
where the first map induced by the functor F(—).

Proof. We explain the proof of (2); the proof of (1) is similar and easier. As in [35, Proof of
Proposition 5.4], the functor F induces an isomorphism

F é@, RHom(F, ) — R Hom(F(F), F(C)).
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Applying the functor F ®é (=) to the truncation triangle 7R Hom(F,G) - RHom(F,G) —

1
7,1R Hom(F, G) ﬂ» and using this isomorphism we deduce a distinguished triangle

L L
F ®¢ 7R Hom(F, ) — R Hom(F(F), F(G)) — F ® 7, R Hom(F, G) >,

which induces an exact sequence

L L
H™'(F ®¢ 75, R Hom(F, G)) - H(F ® ToR Hom(F, G)) - Hom(F(F), F(G))
L L
— H(F ® 75, RHom(F, §)) — H'(F ®, 7R Hom(F, G)).

in cohomology. Since the functor F ®g (—) is right exact the fifth term in this sequence van-
ishes, and the second one identifies with F ®; Hom(F, (). And since H/(F ®5 M) =0 for
Jj<—2 and any O-module M, the first term vanishes and the fourth one identifies with
Tor?([F, Hom(F, ¢[1])). We therefore obtain the desired short exact sequence. O

Thanks to Lemmas 4.3 and 4.6, we are in the setting of Section A.5. We will invoke some results
from that section below.

In the lemma below we mention the notion of highest weight categories. For the definition
of this notion (due, in slightly different terms, to Cline-Pashall-Scott and Beilinson-Ginzburg-
Soergel), we refer, for example, to [8, Section 3.5].

Lemma 4.7.

(1) ForanyE € {K, O, F}, the category ExCoh®m (F ) is noetherian. IfE is a field, it is also artinian.
(2) ForanyE € {K, O, F}, the objects ﬁ;"([E) and ij([E) lie in ExCoh®m (AN)g.

(3) When E is a field, ExCoh®n (}\7 ) is a highest-weight category.

(4) In ExCoh®m(N"), the objects ﬁj"(@) and Zj"(@) are torsion-free.

Proof.

(1) This is immediate from Theorem A.11.
(2) When E is a field, this is proved in [34, §3.4] (see also [11, Proposition 8.5]). Suppose now that
E = O. To prove that Vj’f‘(@) lies in the heart, it is enough to show that

Hom(V§*(0), VE{(@)[n](k)) = 0

for all n < 0 and all 4 € X. If this were nonzero, the same considerations as in [35, Proof of
Proposition 5.4] would tell us that Hom(Vj"([F), V;X([F)[n](k)) is also nonzero for some n < 0,

contradicting the fact that ?/elx([F) € ExCoh®m (JV )
Consider now the object HO(ZEX(G))). Since F(—) is right t-exact, we have

HOF(HO(BS(0))) 2 HUFES(0)) = HOES () = BX(P).
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In other words, after applying F(—) to the distinguished triangle

<—177ex A ex 0/ Aex 1l
T AA (®) - A/l (O)) - H (A/l (®)) -,

the second and third terms become isomorphic, so we must have [F(TS‘IZEX(@))) = 0. Butitis
easily checked that F(—) kills no nonzero object, so TS_lzj" (0) =0,and K/elx (0) = HO(ZE" (0))

belongs to ExCoh®m (ﬁ ), as desired.
(3) See[34, §3.5] or [11, Proposition 8.5].
(4) For Vj"(@), this follows from part (2) and Lemma A.14. For Zj"(@), this follows from

Lemma A.17(2) and the fact that [F(ZEX(G))) ~ ZEX([F) lies in ExCthm(F )E- O

4.5 | Simple objects and their O-versions
For each 4 € X, fix some map
¢; = ¢1(0) : A%(0) - VE*(0)

that is a generator of the free O-module Hom(ZjX((UJ), ?3"(@)). Such a map becomes an
isomorphism after passage to the quotient category

DPCoh®Cm(N)g <17 /DPCoh®Cm(N)g ;.

We denote the base change of this map to K or F by c; (I) or ¢, (F), respectively. As in Section A.4,
we set

L(B) :=im(cy(E) : A%(E) » VE*(E))  forE € {K,0,F}
and

() the unique maximal subobject of ﬁj"(@) containing C 2(0)
4 B and such that Ej{(@) /L ,(0) is a torsion object.

As explained in Section A.4, if E € {,F} the objects £,(E) are simple, and the assignment
A,n) e~ L 1(E)(n) induces a bijection between X X Z and the set of isomorphism classes of simple
objects in ExCthm(ﬁ)[E.

Concerning the case E = O, Lemma A.18 tells us that

K(£(0)) = K(£}(0)) = £;(K).

That lemma also tells us that £ 2(0) and EI(@) are torsion-free objects. We define the reduced

standard and reduced costandard objects for N, F by

WEF) = F(L£(0))  and  Y§*(F) = F(L; (0)),
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respectively. These objects belong to ExCoh®m (F )r» and there is a sequence of canonical maps
A (F) » WEX(F) » L;(F) & Y*(F) & VE(F). (4.6)

Here the first (resp. fourth) morphism is obtained from the morphism Zi"(@) >LC 2(0),
resp. E}L (0) - ﬁj"(@) by application of the functor F. The surjectivity, resp. injectivity, of this mor-
phism is checked in the proof of Lemma A.18. The second, resp. third, morphism in Equation (4.6)
is the projection to the top, resp. embedding of the socle; see again Lemma A.18. Moreover, £, (F)
is also the top of ij([F), resp. the socle of ﬁjx([F).

5 | SUPPORTS OF REDUCED STANDARD OBJECTS
5.1 | Reduced standard and costandard perverse-coherent sheaves

Below we will need the following fact, proved in [4, Proposition 2.6]. In this statement, dom(4)
denotes the unique dominant weight in the W-orbit of a weight 1 € X.

Lemma5.1. Letk € {F, K}. The functorr, : DbCth(F)[k — DPCoh®(WN), is t-exact for the exotic
and perverse-coherent t-structures. For A € X, we have

Aex ~ APC
AT ) = A0, _ £’ (k) ifAe—-X*;
ﬂ*El(k) = wo(l)

vex ~ yP¢

otherwise.

We define the reduced standard and costandard objects in PCoh(N),, by setting
WiEE) =2, W (F)  and Vi) = Y5 (F) (1)

for 2 € X*. These objects are perverse-coherent since 7, is t-exact. Moreover, applying 7, to the
sequence (4.6) (for the weight w,4) provides a sequence of surjections and injections

AY(F) » WE(F) » LY(F) = YY) = V(). (5.2)

5.2 | Statement

In view of Theorem 3.2, there exists a collection (x; : j € J) of balanced nilpotent sections of g
and a collection (¢; : j € J) of cocharacters G, — G such that

(1) forany j € J, the cocharacter Spec(F) X ., resp. Spec(K) x ., is associated with
Yy J p Spec(0) ¢_] JUN Y Spec(0) ¢J
Xj s TESP. X; 03
(2) for any j € J we have BC(G; - xj,K) =Gp - Xjp;
(3) theset (x iriJ€J ), resp. (x I j €J),is a set of representatives for the nilpotent orbits of
G, resp. G
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For j € J, we denote by 1; : Spec(0) — g the inclusion of the point associated with x;, and by l[jF
its base change to F.
We will use the representatives (x;; : j € J), resp. (x & j €J), to define the Lusztig-Vogan

bijections over F and K as in Equation (2.5). The goal of this section is to prove the following.

Proposition 5.2. Forany A € X*, we have

supp(WE*(F)) = supp(V}°(F)) = BC(6Y).

Moreover, if j € J is such that x K € @K, then

(1) the complexes of O-modules (1,)*7,L,(0) and (1,)*7%,LT(0) are concentrated in degrees <
P j7 A j/ 8
% codim(@}"f);
2) theZG(xj)-modules

1 X = - 1 . K- ~
H2 im0y 7,£,(0) and  H2 ™) 7, E5(0))
are free over O, and we have isomorphisms of Z (X )i--modules
— 1 . < ~ J—
K ®® H:2 COdlm(@F)((lj)*ﬁ*[:/l(@)) ™ L/I(K),
— 1 : K ~ —
K ®p HZ im0y 7, £1(0) = LK)
and isomorphisms of Z;(x ;)r-modules
1. 0ok ~ L codim(0K
F ®o H2 MO0 7, L,(0)) = H2 UMDy W),

[T ~ L codim(0K
F® H2 M) 7, £ (0)) = H2 MO0y VP (F)).

5.3 | Generalities on support

We start with the following general remark. Let X be a flat noetherian O-scheme, and denote
by X and X5 its base-change to F and K respectively. Then we have natural “change of scalars”
functors

F : D~Coh(X) - D™ Coh(X), K : D~Coh(X) — D~ Coh(Xy),

which can be described either as the derived functors of the functors Coh(X) — Coh(X}) and
Coh(X) — Coh(Xj) sending F to F ®¢ 7 and K ® F respectively, or as the derived pullbacks
under the projection morphisms X — X and X;- — X.

Let now x be an O-point of X, and denote by x; and x;- the closed points in X and X;- obtained
by base change.
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Lemma 5.3. Forany F in D~ Coh(X), we have
xz € supp(K(F)) = x; € supp(F(F)).

Proof. This claim follows from the arguments in [7, Section 4.4]. (In the end, this proof boils
down to the obvious fact that if M is a finitely generated O-module such that K ®, M # 0, then
F®qM #0.) ]

Lemma 5.4. Let k € {F, K}, and let F € PCoh(N"),. Its support supp(F) is the union of the orbit
closures O where O runs over the nilpotent G -orbits such that some IC(O, V) occurs as a composition
factor of F.

Proof. We will use the various properties recalled in Section 2.3. Let Z be the union of orbit clo-
sures described above. It is immediate from property (5) that supp(F) C Z. To prove equality, we
proceed by induction on the length of a composition series of . If F is simple, equality holds by
property (5) again. Otherwise, choose a short exact sequence

0-F >F->F">0

with 7" simple, say /' = IC(0",V"). Let Z' be the set defined analogously to Z for 7, so that
Z = Z' u 0”. By induction supp(F’) = Z’. Property (2) of Section 2.3 implies that for every orbit

1 1
O that is open in Z, at least one of H2 )si(oy or H2

the cohomology sheaves vanish on St(0) in all degrees other than %codim ©. We deduce that

{3 codim @(F)|St(@) # 0, and hence that supp(F) = Z. O

codim @(F/ codim @(

F"")lsy(o) is nonzero, and that

5.4 | Proof of Proposition 5.2

We are now in a situation to prove Proposition 5.2. Note that the objects yfc(l]:) and WEC([F) make
sense in the (G X G, )p-equivariant setting (cf., Section 2.4). Since they are also perverse-coherent,
the claims in Proposition 5.2 will follow from the following more general result. Here we denote
by Zgy, (x;) the centralizer of x; in G X Gy, where Gy, acts on g as in Section 2.4. We also denote
by Zgye, (X)), 1€8P. Zgy (X)), the base change of this O-group scheme to F, resp. K. (The
following proof is the one point in the paper where it is crucial to work with the extra G,,-action.)

Proposition 5.5. Let F € D°Coh®*®m (FJ\7) be an object such that both ﬂ*K(F) and ,F(F) are
perverse-coherent sheaves, and such that there is a nilpotent Gi-orbit O with supp(7, K(F)) = O.
Then

supp(x,F(F)) = BC(O).

If moreover K(F) = 1¢(0,V) for some simple (G X Gy, )i--equivariant vector bundle V on 0, and
if j €J is such that x iK€ O, then the complex (1;)* 7, F is concentrated in degrees < % codim(0),

its cohomology in degree % codim(0) is free over O, and we have an isomorphism of Zgyq_(x;)i-
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modules
K ® H2 4Oy 2, ) = K V), (53)

where u : {x}.K} < O is the embedding, and an isomorphism of Zgyg_(x;)g-modules
1 . 1 .
F®q H2 ™) 7, F) 2 H2 O (@) 7, F(F)). (5.4)

Proof. Let us first show that supp(z,.F(F)) D BC(0). 1t is enough to show that supp(7,F(F)) D
m. This follows from Lemma 5.3 using X = g.

For the opposite containment, let @' be a nilpotent Gg-orbit that is open in supp(z,F(F)). For
brevity, let d = %codim 0'. Let k € J be such that x; € 0’, and consider an integral Slodowy
slice S as constructed in Section 3.2 (for the balanced nilpotent section x; and the cocharacter
o). Leta : G XS — gbe the action map, and let a* : Gy X sk o gi. resp. a” 1 G x ST - g,
be its base change to K, resp. to F. We will make use of the natural induction equivalence

© : D°Coh®*Cn(G x S) = D’Coh®n(S), (5.5)

as well as the corresponding equivalences 6z and 6. (Here, G, acts on GX S and S as in
Section 3.)

By property (2) from Section 2.3, we know that (7, [F(F))ISt(@/)[d] is a coherent sheaf (i.e., a
complex whose cohomology is concentrated in degree 0) supported on ¢’. From the diagram in
Corollary 3.8 and the flat base change theorem (which is applicable thanks to Proposition 3.6),
we conclude that (a®)*7,F(F)[d] is a coherent sheaf on G X S* supported (set-theoretically) on
G X {xy s}, and hence, after passing through Equation (5.5), that the object

Op(a")* 7, F(F)[d] = F é@ (Ba*7,F)[d]

is a coherent sheaf supported (set-theoretically) on x; .

Let G = 8a*7,F[d] € D’Coh®n(S). This can be thought of as a complex of finitely gener-
ated graded O(S)-modules. In particular, each graded component of this complex is bounded
and finitely generated over O. Recall a bounded complex of finitely generated O-modules M
is isomorphic to a free O-module (considered as a complex concentrated in degree 0) iff we
have H**(F @5 M) = 0. The previous paragraph tells us that H*(F ®; ) = 0, so G belongs to
Coh®m(8), and is free as an O-module. It follows that K ®o Gisnonzero. Retracing the steps in the

previous paragraph, we find that (n*K(F))|St(@n) # 0,where 0" := Gi; - x, - is the orbit such that

BC(0") = 0'. 1t follows that 6" = 0, i.e., that ©' = BC(0), and then that supp(F(F)) = BC(0).
Suppose now that 7, K(F) = IC(0, V) for some V as in the statement, and that k = j. Let V be
the (simple) Z,_(x;)-representation corresponding to V. Recall that there is an isomorphism

Zoxon () 2 G X Z6(x)), (56)

where G, acts on Z;(x;) by conjugation via the cocharacter ¢; (see, for instance, [5, Equa-
tion (2.6)]). Moreover, the induced action of (G, );- on the reductive quotient of Z;(x )i is trivial,
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so the copy of (G, );c on the base change to K of the right-hand side of Equation (5.6) acts on the
irreducible representation V' by a single character.

Lett : {x j} < S be the inclusion map, and let b, Tesp. t, be its base change to K, resp. F. In
the notation of the statement of the proposition, we have

V = H@W*y). (5.7)
By property (5) from Section 2.3, our assumption implies that

K ®; € = 0(a" )7, K(F)ld] = ., V.

It is easily checked that the (G, );--action on the left-hand side coming from Equation (5.5) is
identified with the (Gy,);c-action on right-hand side coming from Equation (5.6). In particular,

the graded O(S¥)-module K ®o G is concentrated in a single grading degree. Therefore, G is also
concentrated in a single grading degree, so it is supported scheme-theoretically on x;: there is a
free O-module V such that G = ¢V, and such that

VaK®g Vo (5.8)

Since the inclusion map 1; factors as

t
X}-> S GxSSy,
we see that
) AF 2" G2t Vol[—d].

This object has cohomology only in degrees < d, and its cohomology in degree d is identified with
V. In view of Equations (5.7) and (5.8), we deduce Equation (5.3). Similarly we have

WY 7F(F) = tEF(Q) = tit:,(F ® Vo),

which implies Equation (5.4). We leave it to the reader to check that the isomorphisms constructed
in this way are Zg,_(x;)c-equivariant and Zg,¢_(x;)p-equivariant respectively. O

Remark 5.6.

(1) In the setting of Proposition 5.5, since 7, F(F) is a perverse-coherent sheaf whose support
is BC(0), its restriction to St(BC(0)) is a coherent sheaf placed in degree %codim(@), and
supported on an infinitesimal neighborhood of 6’ := BC(6). We claim that this coherent
sheaf is in fact supported scheme-theoretically on ¢’ (so that it coincides with the vector
bundle associated with the module H3 COdim(@)((l[jF)*ﬁ'*IF(F))). Indeed, if U is the image of
a®, we have U n N = St(0") (see Corollary 3.8). Therefore, it suffices to show that the
coherent sheaf ﬁ'*[F(F)|U[% codim(©")] is supported scheme-theoretically on 6’. Now the

map a¥ : Gy X S¥ — U is flat and surjective, and hence faithfully flat. Our proof shows that
(ab)*#, [F(F)lv[% codim(0")] is supported on G X {x; ¢}, which implies our claim.
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(2) Under the identification provided by Equation (5.6), the (Gy,)g- or (Gp,)-action on the
unipotent radical of Z;(x;)r or Zg(x;) is contracting (see [29, Proposition 5.8] and [5,
Section 2]). Since G,, acts on the module V; constructed later in the proof with a single
weight, the unipotent radical must act trivially on the resulting (G, X Zg(x;))¢- or (G, X
Z;(x))ic-representation. In particular, in Proposition 5.2, the Z;(x;)r-modules

L codim(65) L codim(65) /s
H2 codlm(@/1 )((l;F) WEC([F)) and H3 codlm(@/1 )((I;F) y/ll)c([F))

factor through modules for the reductive quotient of Z;(x ;). (See [25, Section 4.2] for similar
arguments in a more general context.)

6 | AGREEMENT OF THE LUSZTIG-VOGAN BIJECTIONS
6.1 | Overview

Our goal in this section is to compare the Lusztig-Vogan bijections for G;- and Gy.. To make sense of
such a comparison, one first needs to construct a bijection between the sets Q;- and Q introduced
in Section 2.3, which will occupy the first half of the section.

Recall that after choosing a representative for each nilpotent orbit over K, resp. over F, the set
Qg resp. Qp, gets identifies with a set denoted QgK’ resp. Q[’F (see again Section 2.3). To construct

our bijection Q- & Qp, we will make a coherent choice for these representatives, then construct
a bijection between the associated sets Q?K and Q.

More specifically, recall that we have fixed in Section 5.2 balanced nilpotent sections (x; :
J €J), which provide in particular (by base change to F and K) representatives (x;p : j €J)
and (xj’K : j €J) for the nilpotent orbits of Gy and Gi respectively. Using these choices of rep-
resentatives we obtain sets QﬁF and Q%. As explained above, we want to construct a bijection

Q?K — Q (6.1)
which “extends” the Bala—Carter bijection from Section 3.1, in the sense that the first component

of the image of a pair (0, V) will be BC(0). Since BC(G;; - x j,K) = Gy - X (see Theorem 3.2),
constructing such a bijection is equivalent to constructing, for any j € J, a bijection

Irr(Z (%)) — Irr(Zg(x)e) (6.2)
between the sets of isomorphism classes of simple modules for ZG(xj)K and ZG(xj)[F. The
construction of this bijection is explained (after some preliminaries) in Section 6.3 below.

6.2 | Representation theory of centralizers

We now fix some j € J. The construction of Section (6.2) will involve replacing K by a finite exten-
sion K’ C KK. Note that in this setting, if we let O’ be the integral closure of O in K’, then 0’ is a
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complete discrete valuation ring, which is finite (and free) as an O-module, and has K’ as fraction
field (see [42, Chapter II, Proposition 3]). In particular, since we assume that [ is algebraically
closed, the residue field of O’ must still be F. Of course, replacing O by O’ does not change the
field K either. For such datum, we will denote by Zs(x j Jor and Z;(x )i the base changes of Z; (x j)
to O’ and K’ respectively.

Let Z5(x j)gd and Z;(x j)fFed be the reductive quotients of Z;(x j)K and Z;(x j)[F (i.e., the quo-
tients of these groups by their unipotent radical). Because p is assumed to be pretty good, it does
not divide the order of the finite group Z(G)/Z(G)° (which is equal to the order of the torsion
part of X/ZR). Therefore, by [10, Lemma 6.2], we have

P H1Zo(x))e/Zo(x)2] = 1Z6(x ) Z (x )i, (6.3)

Next, since K’ is a perfect field, the unipotent radical of ZG(xj)K is defined over K’, so that

Zo(x j)gd has a natural K’-form Z;(x j)fKe,d, which is a connected reductive K’-group. Moreover,

for k € {F, K/, K} the pullback functor induces a bijection
Irr(Zg (x i) = Irr(Zg(x),.) (6.4)

between the corresponding sets of isomorphism classes of simple modules. Below we will simply
identify these two sets via this bijection.

Let k be either F or K. Then Z;(x j)fd is a possibly disconnected reductive group over k. The
representation theory of such groups is studied in the companion paper [8]; in particular, these
results provide a combinatorial description of Irr(Z;(x j )ied). We will not need to go into the details
of this description. Indeed, we essentially just need one key fact from that paper: according to [8,
Theorem 3.7], thanks to Equation (6.3), the category Rep(Z;(x; )fFed) admits a natural structure of
highest weight category.

In practice this means that the set Irr(Z;(x; )fFed) carries a partial order <; (defined explicitly in
[8, §3.1]), and that for each simple object L we have a “standard object” A(L) and a “costandard
object” V(L) with maps A(L) »» L & V(L) such that all the composition factors of the kernel,
resp. cokernel, of the first, resp. second, map are strictly smaller than L for the order <;.

6.3 | Identification of simple modules

For k € {F,k/,K} we will denote by K(Zg(x;),) the Grothendieck group of the category of
finite-dimensional algebraic representations of Z;(x;),. This group is a free Z-module, with a
basis consisting of the classes of simple representations. Recall that, since Z;(x j)@, is flat (see
Theorem 3.3), one has a canonical “decomposition map”

ng(xj)@/ : K(ZG(XJ)K’) - K(ZG(xj)F)s
see [41, Theorem 2]. This map is compatible with field extensions (for K’) in the obvious sense.
The construction of Equation (6.2) will be given by the following result, which will be proved

in Section 6.5 below.

Proposition 6.1. There exists a finite extension K, C K of K such that if K’ contains K, then
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(1) the functor sending a ZG(xj)K/—module V to K@Kl V (with its natural ZG(xj)K—module
structure) induces a bijection

Irr(Zg(x)r) = Irr(Zg(x)0);

2) dZG(xj)@/ is an isomorphism;

(3) forany simple Z;(x j Yic-module V, there exists a unique simple Z;(x j )g-module V' such that the
image under dZG(xj)@/ of the simple Z(x ;)s-module corresponding to V' (under the bijection
of (1) is the class of A(V"); in particular, V' is the unique simple module whose class appears
with nonzero coefficient in this image and is maximal for this property (with respect to the order
=< j);

(4) themapV — V' (with V, V' asin (3)) is a bijection

Irr(ZG(xj)K) = Irr(ZG(xj)[F).

Gluing the bijections (6.2) over all j € J, we deduce the sought-after bijection (6.1), and hence
finally a bijection

Qr — Q. (6.5)

The construction of this bijection involves a choice of balanced nilpotent sections. We will see in
Theorem 6.4 that the bijection is in fact independent of this choice.

6.4 | A Levifactor

We continue with the setting of Sections 6.2 and 6.3. Proposition 6.1 will be deduced from the
results of [8, Section 4]. But, since that paper considers reductive groups over O', we will need
to consider some “nice” Q’-group scheme which specializes over F to Z;(x j)red, and over K to
Zg(x; )gd. (Note that there exists no notion of “reductive quotient” over O.) This group scheme
will be constructed as a kind of “Levi factor” in Z;(x;).

More precisely, recall that we have also chosen some cocharacter ¢ ;. We will denote by Zée"i(x i)
the centralizer in Z;(x j) of j» and by Zée"i(x j)k its base-change to k (for k € {F,0’, K’ ,K}). For
k € {F, K, K}, it is well known that Z ée"i(x ) isa Levi factor of Z;(x ), ; in other words the restric-
tion to this subgroup of the quotient morphism Zg(x;), — Zg(x; )Ed is an isomorphism (see, e.g.
[37, Proposition 3.2.2]).

Lemma 6.2. The O-group scheme Z(L;eVi(x ;) is smooth.

Proof. Consider the semidirect product Z(x;) X G, where G, acts on Z(x ;) by conjugation via
;. Then the centralizer in Zg(x j) X G, of the subgroup {1} X G, is smooth by [22, Example 11,
Corollary 5.3]. On the other hand, it is easy to check that this centralizer coincides with Zée"i(x j) X
Gp,- Hence the latter group scheme is smooth. Using [45, Tag 02K5], we deduce that Zée"i(x ) is
smooth. O
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For k € {F, K}, the projection Z;(x e~ Zg(x j)ﬁd induces a bijection between the groups of
connected components of Z;(x;), and Zg(x j)fd. Hence the same is true for the embedding
Z ée"i(x il = Zg(x})y. Inview of Theorem 3.3, it follows that the groups of connected components
of ZEV1(x;)r and ZLeV(x ;)i have the same cardinality, which we will denote by m.

The decomposition of Z(L}eVi(x )i into connected components defines a decomposition of the
coordinate ring

o ZéeVi(xj)K) = @ O(Zéevi(x R
i=1

where (¢, ... ,€,,) are mutually orthogonal idempotents. Let [, C K be a finite extension of K
such that all of these elements belong to K, ®q O(Zée"i(x 1)) From now on we will assume that
I’ contains KK, and let as above O’ be the integral closure of O in K'.

Denote by Zée"i(x i) the base change of Zée"i(x ) to O'. The arguments in [25, Section 3.3]
show that each ¢; belongs to O(Zée"i(x j )or)- Then it is not difficult to check that the ©’-submodule
@ﬁl 0 C O(Zée"i(x j)@/) is a Hopf subalgebra, and that it defines a constant finite O’-group
gelzw
morphism to F, resp. K, identifies with the projection from ZCL;eVi(x i)F> Iesp. ZCL;e"i(x )i toits group
of connected components. (See [25, Section 3.4] for details.)

scheme A}, endowed with a morphism @; : Z;(x;) ;"' = A;. Moreover, the base change of this

Lemma 6.3. The kernel Zée"i(x j)a, of w is a reductive group scheme over O', and the morphism w
identifies A; with the quotient Z™ (x Vo /ZE2 (X)), -

Proof. First we note that O(Zée"i(x j)a,) is a direct summand of (D(ZCL;EVi(x )or) as an 0’-module,
and hence is flat over Q’. Thus our group scheme is flat.

Let now A; be the finite group associated with A;. Then the arguments in the proof of [8,
Lemma 4.2] show that the morphism ZCL;eVi(x i )or(@) = A j defined by w is surjective. We choose a
sectionA; — Zée"i(x g )or (0") of this morphism, and denote by ¢ : A i~ Zée"i(x j)@/ the associated
scheme morphism.

The same arguments as in [8, Lemma 4.3] show that the natural morphism of O’-schemes
A;x Zée"i(x Do = Zée"i(x o is an isomorphism. It follows that Zée"i(x )¢, isasmooth ©’-group
scheme whose base changes to F and K are connected reductive algebraic groups; in other words
Z ée"i(x i )6, is a reductive group scheme over Q’.

The final claim in the statement is also clear from these arguments. O

6.5 | Proof of Proposition 6.1

We consider the setting of Section 6.4, and define K as in Section 6.4. We will prove that if K’
contains K, then Properties (1)-(4) hold.

Property (1) is in fact true for any K’ (regardless of whether it contains K, or not): arguing as
in [41, Section 3.6], this property simply follows from the fact that any simple Z;(x );--modules
admits a K’-form, which follows from Proposition 5.2. (This property can also be deduced from
the general results of [8] under the assumption that K’ contains KK; see [8, Section 4.5].)
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In order to prove (2)-(4), we consider the Grothendieck groups K(Z ée"i(x j)K/) and K(Zée"i(x j)IF)
of the categories of finite-dimensional algebraic Zée"i(x )k -modules and ZéeVi(x j)r-modules
respectively. Since these subgroups are Levi factors in Z;(x )i, and Z(x )y respectively, pullback
induces isomorphisms

KZE(x ) = KZa(e ), KEZE(x))p) = K(Za(x)p). (6.6)

Moreover, since ZCL;eVi(x )or 1s smooth (see Lemma 6.2), we have a corresponding decomposition
map dLevi ()or? and going back to the definition of this map we see that the diagram
G J

evn( Xy

K(Zg (x ) —> K(Zg (x)))

l/(e 6) l/(6 6)

/(, xj)gr

K(Zg(xj)k) ———————— K(Z5(xj))

commutes.

Now the results of [8, Section 4] can be applied to the O'-group scheme ZCL;e"i(x )or thanks
to Lemma 6.3. With this in mind, Property (2) is an application of [8, Theorem 4.4], and
Properties (3)-(4) follow from [8, Lemma 4.7].

6.6 | Statement

Having explained the construction of Equation (6.1), we can at last state the main result of this
paper.

Theorem 6.4. The following diagram commutes, where the diagonal arrows are the Lusztig-Vogan
bijections for G- and G

X+
VN
i Sa,.

(6.5)

Recall that the construction of Equation (6.5) involves the choice of a set (x jtJ€EJ ) of balanced
nilpotent sections. Theorem 6.4 evidently implies that Equation (6.5) is in fact independent of
these choices.

With respect to these choices, Theorem 6.4 is equivalent to the assertion that for any 1 € X*
we have
(1) 6f = BC(O,;

(2) if j € Jis such that 0; = G - x; s (or equivalently such that O}¢ = Gy - x; 52, then the simple
Zs(x j)[F-module L§ corresponds to the simple Z;(x j Jic-module Lgf under the bijection (6.2).
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Concerning (1), we note that by definition we have
supp(L}“(F) = 0}

On the other hand, in Proposition 5.2 we have proved that

supp(WE(F)) = BC(OY).

Now we have a surjection ch([F) > EEC([F) (see Equation (5.2)), so using Lemma 5.4 we deduce
that

6 C BC(6X). (6.7)

Hence all that remains to be proved to obtain (1) is the opposite containment.

6.7 | Simple modules for centralizers
In this subsection again we fix some j € J, and set
. K —
X}T ={leX" |0 = GR'xj,K}-

Then the Lusztig-Vogan bijection for Gi induces a bijection between X;L and the set of

isomorphism classes of simple modules for the centralizer Z;(x;);, sending 4 to L?.

Proposition 6.5. Assume that forany 1 € X;r we have @E = Gg - x; . Then the assignment 1 — LE

induces a bijection between X' and the set of isomorphism classes of simple modules for Z(x -
Moreover the following commutes:

Xt
IR
JoIF P
K >
Irr(Zg(xj)g) (6—;)> Irr(Zg(x)p)-

Proof. Under our assumption, each LE is indeed a simple Z;(x;);-module, and our assignment is
injective because it is obtained by restricting the Lusztig-Vogan bijection for G. What remains to
be proved is surjectivity (and the commutativity of the diagram).

Let us choose a finite extension K’ of K as in Proposition 6.1. If we denote by M, the

lcodim(@K) Fy\#A9PC s . . .
Z(x)p-module H2 2 ((lj) w; (F)), then Proposition 5.2 implies that the image under the
decomposition map ch(xj)@/ of the class of the simple Z;(x;),/-module corresponding to L§

under the bijection of Proposition 6.1(1) is [M ]. Using Proposition 6.1(2)~(3), we deduce that the
classes ([M;] : 1 € X;r) form a Z-basis of K(Z5(x j)[F), and moreover that forany 4 € X]+ the class

[M} ] coincides with the class of the standard Z;(x; )fFed—module whose top is the image of Lf under
Equation (6.2).
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On the other hand, the isomorphism classes of simple Z;(x;);-modules also form a basis of
K(Z5(x)r), and the classes ( [LE] e X;r) form a subfamily of this basis. Moreover, since ch([F)
isa quotient of AEC([F) (see Equation (5.2)), the composition factors of the kernel K of the surjection
WIS(F) » £5°(F) are of the form £} (F) with u < A (see Property (4) in Section 2.3). The support
of these composition factors is contained in @_E (by Proposition 5.2 and our assumption), so that

1)
H3 codim(®; Hl((fjf)*]c) = 0. Hence we have an exact sequence

1 codim(0% "
H3 <o im( A)((l;F_) K)— M; - L[}FL - 0.

In particular, [M,] has coefficient 1on [L} ] and, for u € X;T \ {1}, if the coefficient of [M,;] on [Li]
is nonzero, then u < A.

Ifnow VisaZg(x j)[F-module, there exist coefficients (a; : 1 € X]f) in Z (almost all zero) such
that

Vi= ) a;-[M;l.

Aext
J

If 1 is maximal among the elements such that a; # 0, then the remarks above show that the coeffi-
cientof [V] on [LE] (in the basis consisting of classes of simples modules) is a,, and thus nonzero.
If we assume that V is simple, this implies that V' = LE, which concludes the proof of surjectivity.

Finally, since LE isa composition factor of M, the remarks above show that it is smaller than the
image of Lﬁf under Equation (6.2) (with respect to the order < j). Then a straightforward induction
argument (with respect to this order) implies that these modules are in fact isomorphic. O

6.8 | Proofof Theorem 6.4

In view of Proposition 6.5, all that remains to be proved is that the inclusion (6.7) is an equal-

ity. First we observe that if @/”f is the zero orbit, then BC(@/”?) is also the zero orbit, so that the

inclusion (6.7) must be an equality. _
Let now 0 C N be an orbit, and assume the claim is known for any x4 € X* such that @ff C

5\ 0. Then if 1 € X* is such that @5 = O and if the embedding supp(ﬁgc(ﬂ:)) C supp(WfC([F))

is strict, then there exists some orbit 6’ C 6 \ 6 such that @E = BC(0'). If j €J is such that
Xk € 0’, then LE is a simple Z;(x;)r-module, which cannot be isomorphic to any LE with
uE X;r (because the Lusztig-Vogan bijection is a bijection). But there exists no such module by
Proposition 6.5 applied to this choice of j. (This proposition is applicable thanks to our induction
hypothesis.)

6.9 | Complement: identification of M

Letl € X;r and recall the Z;(x;)r-module M, introduced in the proof of Proposition 6.5. In the

course of this proof we observed that the class of M, is the class of a standard Z(x; )fFed-module,
which can now be identified with A(LE) thanks to Theorem 6.4.
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In this subsection we note that one can say more about this module.

Proposition 6.6. Forany j € Jand 1 € X;r there exists an isomorphism of Z;(x ;)g-modules
A(Lfl) — M,.

Remark 6.7. Recall that the module M, in Proposition 6.6 was defined in terms of the perverse-
coherent sheaf ch([F). If one starts with yfc(ﬂ:) instead, the reasoning below can be used to show
that the resulting Z;(x j)[F-module is isomorphic to V(LE).

Proof. To fix notation, we set O = @le .

As seen in the course of the proof of Proposition 6.5, there exists a surjection M; - LE. Our first
observation is that in fact L”; is the top of M;.

For this, let j : St(0) < N be the inclusion, and recall from [12, Section 4] that there is a fully
faithful functor j, : PCoh(St(6)) — PCoh(N) whose image is the full subcategory consisting of
objects with no nontrivial subobject or quotient supported on Ny \ St(0). Leti, : 6 < St(O) be
the embedding of 0 as a reduced closed subscheme of St(®). For any vector bundle V on 0, we
have IC(0,V) = j,is. V.

Since £7°(F) is the top of W} (F), it is clear that W}*(F) has no nonzero quotient supported
on Mg \ St(0). Let F be the unique maximal subobject of ch([F) supported on N \ St(0). Then
the cokernel of F < ch([F) must lie in the essential image of j,,; in fact, it is identified with
JiOW}S(Flsy))- According to Remark 5.6(1), W, (F)lsys) is supported scheme-theoretically on
0. We therefore have a short exact sequence

0—F - WX(F) - IC(6,M;) — 0,

where M, is the vector bundle on O corresponding to M. Now, let V' be the top of M, and let V
be the corresponding vector bundle. The quotient map M, — V gives rise to map ZC(O, M;) —
IC(0,V).Here, IC(0,V) is a semisimple perverse-coherent sheaf. The map is nonzero on every
summand, so it is surjective. Composing with WEC([F) — IC(0, M,), we find that IC(0,V) is a
semisimple quotient of W;C([F). But since the latter has a simple top, we must have 7C(0, V) =
EEC([F), hence V = LE.

Let € be the Serre subcategory of the category of finite-dimensional algebraic Z,(x j)fFed—
modules generated by the simple objects which are smaller than LE (with respect to <;). Since
M;] = [A(LE)], every composition factor of M, satisfies this condition, so in view of Remark 5.6(2)
we have M; € €. On the other hand, by the general theory of highest-weight categories, the stan-
dard object A(LE) also belongs to €, and is the projective cover of LE in this subcategory. Therefore,
there exists a map A(LE) — M, whose composition with the surjection M, - LE is surjective. It
follows that this map is surjective. Since M, and A(LE) have the same number of composition
factors (because they have the same class in K-theory), it must be an isomorphism. O

APPENDIX A: EXCEPTIONAL SEQUENCES WITH COEFFICIENTS IN A COMPLETE
LOCAL PRINCIPAL IDEAL DOMAIN

Let E be a complete local principal ideal domain (i.e., either a field or a complete discrete valuation
ring), and let @ be a generator of its unique maximal ideal. Let 7 be an E-linear triangulated
category. Throughout this section, we impose the following assumptions on 7:
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* T isequipped with a Tate twist, that is, an autoequivalence of triangulated categories (1) : 7 —
T.
* T is graded Hom-finite, that is, for any two objects X,Y € 7, the E-module

@ Hom(X, Y(k))

kez

is a finitely generated E-module.

Note that the second assumption implies that no nonzero power of (1) is the identity functor, and
that no nonzero object is isomorphic to a Tate twist of itself.

In the case when E is a field, there exists a well-known theory of (graded) exceptional sequences
in such triangulated categories, exposed, for example, in refs. [14, 16] building in particular on
constructions of Bondal-Kapranov [19]. One important feature of this construction is that it allows
the construction of a t-structure on 7 using the recollement formalism of [13]. Our aim in this
appendix is to extend this theory to the setting when E is a general ring as above. This extension
does not require new ideas, but only some care in dealing with new technical difficulties.

A.1 | Noetherian t-structures and recollement

We begin by studying triangulated categories generated by a single object. For field coefficients,
the following statement can be found in [14, Corollary 1]. Recall that an abelian category is said
to be noetherian if every object in it is noetherian, that is, if every object satisfies the ascending
chain condition on subobjects.

Proposition A.1. Let T be a E-linear triangulated category equipped with a Tate twist (1) : T —
T. Assume that T is graded Hom-finite, and that there exists an object N € T with the following
properties:

(1) T is generated (as a triangulated category) by objects of the form N (k).
(2) We have
0 ifn<0,orifn=0andk # 0,
Hom(N, N[n](k)) =3 E ifn=k=0, (A1)
a free E-module ifn =1 (foranyk € 7).

Define an object N as follows:

N =

id
S cone(N 25N ) ifEis nota field,
0 otherwise.

Finally, let of C T bethe smallest full subcategory that is closed under extensions (in particular, under
finite direct sums) and contains the objects

0, N(k), N(k) foralkez (A2)

Then o is the heart of a bounded t-structure (TS0 7>YonT, given by

o _ the subcategory generated under extensions by objects of the form

N[nKk)withn > 0andk € Z,

bl
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B the subcategory generated under extensions by objects of the form
" N[nl(k) and N[n](k) withn < 0 and k € Z. '

=20

Moreover, o/ is a noetherian category. If E is a field, it is also artinian.

Proof. We will prove this in the case where E is not a field. The field case is considerably easier;
the appropriate modifications are left to the reader.

We will make extensive use of the “x” operation from [13, Section 1.3.9]. Recall that this oper-
ation is associative, see [13, Lemme 1.3.10]. Let &/! be the full subcategory of 7~ consisting of the

objects listed in Equation (A.2). We also set

dF =gl w o x gl
| —
k factors

By definition, we have o = |J;5, #/*.

Step 1. The cone of any nonzero morphism N — N lies in /. Any such morphism is a scalar mul-
tiple of the identity by assumption. After composing with an automorphism of N (multiplication
by a suitable unit in E), we may assume that the morphism is multiplication by w* for some k > 0.
We will now prove the claim by induction on k. For k = 0, it is trivial. For k > 1, we claim more
precisely that

cone(w’) e N # -« N C o. (A3)
N—_——— —_—

k factors
For k = 1, this holds by definition. For k > 2, factor the map as

whk=1 @
N— N — N.

The octahedral axiom shows that cone(w*) € cone(w*~!) * cone(w), and then Equation (A.3)
follows by induction.

Step 2. Calculations of Hom-groups among objects of o/*. We will compute various Hom-spaces
involving the objects in Equation (A.2). Note that Hom(N, N(k)) has been described in the
assumptions of the proposition.

We begin with Hom(N, N(k)). We have an exact sequence

.. = Hom(N, N(k)) — Hom(N, N(k)) — Hom(N, N(k))
— Hom(N, N[1](k}) — Hom(N, N[1](k)) = --- .

Since Hom(N, N[1]{k)) is a free E-module, the map between the fourth and fifth terms is injective.
It follows that

E/w ifk=0,

A4
0 ifk #0. (A.4)

Hom(N, N{k)) = {
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Next, we determine Hom(N, N[n](k)) for n € {0, 1}. We have an exact sequence

.. = Hom(N, N[n — 1](k)) — Hom(N, N[n — 1](k))
— Hom(N, N[n](k)) — Hom(N, N[n](k)) — Hom(N, N[n](k})) = --. (A.5)

When n =0, the first two terms vanish by assumption, so Hom(N,N(k)) is the kernel of
multiplication by @ on Hom(N, N(k)). We conclude that

Hom(N,N({k)) =0 forallk € Z. (A.6)

On the other hand, when n =1, both maps labeled @ in Equation (A.5) are injective, so
Hom(N, N[1](k)) is the cokernel of the first such map. We conclude that

_ _ JE/w ifk=0,
Hom(N, N[1[(k)) = {0 itk 0. (A7)

Finally, let us compute Hom(N, N(k)). Consider the sequence
-« - Hom(N, N(k)) — Hom(N, N(k))
— Hom(N, N[1](k)) — Hom(N, N[1](k)) = ---.

Using Equations (A.6) and (A.7), we see that the first term always vanishes, and that the map on
the second line is zero. Therefore, Hom(N, N(k)) = Hom(N, N[1]{(k)), so

Hom(N, N(k)) = {i/ @ i?; ; 3’ (A8)

Step 3. We have o/ x (#/'[1])  («/[1]) * of. An object C belongs to &' * («/1[1]) if and only
ifit occurs in a distinguished triangle X - C - Y[1] » withX,Y € & 1 In other words, C is the
cone of some map f : Y — X in &/'. Let us consider all the possibilities for X and Y, and show
that in each case, C lies in ('[1]) * &/:

(1) If f =0,then C = X @ Y[1], so the claim is clear. In particular, this applies if either X or Y is
0.

(2) SupposeX = N(m)andY = N(k).If m # k, then f = 0, and we are done. If m = k, the claim
follows from Step 1.

(3) Suppose X = N(m) and Y = N(k). If m # k, then by Equation (A.4) we have f = 0, and we
are done. Suppose now that m = k. In this case, Hom(Y, X) =~ E/w isafield, soif f is nonzero,
then it must be the composition of the canonical map N{m) — N({m) with an automorphism
of N{(m). By the definition of N, the cone of the canonical map N(m) — N{m) is N[1]{(m).

(4) Suppose X = N(m)and Y = N(k). By (A.6), f = 0.

(5) Suppose X = N(m) and Y = N(k). If m # k, then by Equation (A.8) we have f = 0, and we
are done. Suppose now that m = k. Since Hom(Y, X) = E/w is a field, any nonzero morphism
Y — X is an isomorphism. The claim follows.
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Step 4. We have of % (/'[1]) € (#[1]) * o/. It is enough to show that &/* % (/'[1]) C
(/'[1]) *  for all k > 1. We proceed by induction on k. The case where k = 1 has been done
in Step 3. For k > 1, we have

d* s (A1) = o« (5 % (A1) (P = (A1) x o

CA' ) x o « o C(A1]) * .

Here the first inclusion uses the induction hypothesis, and the second one the result of Step 3.
Step 5. We have of * (A[1]) C (¢/[1]) * o/. Again, it is enough to show that of * (/¥[1]) C
(o/*[1]) * o for all k > 1. For k = 1, this has been done in Step 4. For k > 1, we have

o % (A¥[1]) = (o * (A1) * 1] € (L*H1]) * (o * (A[1]))

c 1] % (A1) % o = (J¥[1]) = o,

as desired.

Step 6. The category o is the heart of a bounded t-structure on T as claimed in the statement of
the proposition. In [13, Section 1.2.3], the authors define the notion of admissible morphisms with
respect to a full subcategory. The precise definition of this notion will not be important for us, since
according to [13, Section 1.3.11(ii)] the statement proved in Step 5 is equivalent to the assertion that
every morphism in & is admissible (with respect to &/). According to [13, Proposition 1.2.4], this
implies that o/ is an admissible abelian subcategory of 7 in the sense of [13, Définition 1.2.5].
Finally, since N generates 7, applying [13, Proposition 1.3.13] we obtain that & is the heart of a
(unique) ¢-structure on 7.

An explicit description of this t-structure appears in the paragraph preceding [13, Proposi-
tion 1.3.13]: 7<% and 7>° are the categories generated under extensions by «/[n] with n > 0 and
n < 0, respectively. Of course, we may replace f by &/!. For 729, the resulting description is as in
the statement of the present proposition. For 7<°, we may further omit N from the description,
since N € N * N[1].

Step 7. Every object M € o admits a filtration0 = M, C M, C -+« C M,, = M such that each sub-
quotient M; /M;_, is isomorphic to either N{k) or N(k) for some k € Z. This is just a restatement
of the fact that < is generated under extensions by the objects N(k) and N(k), translated into the
language of abelian categories.

Step 8. Let M be a nonzero subobject of N. Then M contains a subobject isomorphic to N. Choose
a filtration of M as in Step 7. The first step in this filtration, M, is a subobject of M and of N that
is isomorphic to some N{k) or N(k). But by Equations (A.1) and (A.6), we must have M; =~ N.

Step 9. The category & is noetherian. In view of Step 7, it is enough to prove that the objects N
and N are noetherian. We actually claim that N is a simple object. To prove this, it is enough to
show that any nonzero map Y — N in & is surjective. Suppose first that Y = N(k) or Y = N(k).
If k # 0, there is no nonzero map Y — N; if k = 0, we saw in Step 3 that the cone of any nonzero
map Y — N lies in &/[1], so the map is surjective. For general Y € o, the claim then follows by
induction on the length of the filtration from Step 7.

It remains to show that N is noetherian. Suppose we have an ascending chain of subobjects
M, C M, C ---in N. By Step 8, M, contains a subobject Q thatisisomorphic to N. The composition
of the inclusion maps Q < M, < N may be identified with @* : N — N for some k > 0. To show
that our ascending chain is eventually constant, it is enough to show that the chain of subobjects
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M,/QCcM,/QC --in cok(wk : N — N)iseventually constant. The cokernel of w* : N — N is
described in Equation (A.3): it is a finite extension of simple objects, so it is noetherian. O

Remark A.2. In the setting of Proposition A.l, suppose we assume in addition that
Hom(N, N[1](k)) = 0 and that Hom(N, N[2](k)) is a free E-module (for all k € Z). One can then
show that N is a projective object in &/, and that the functor

@Hom(N(—k),—) : of — E-gmod
kez

is an equivalence of categories, where E-gmod is the category of finitely generated graded
E-modules.

The following fact is probably well-known, but we could not find a reference, so we include a
proof.

Lemma A.3. Let T, 7, and Ty; be triangulated categories, and suppose we have a recollement
diagram

lR HR

K~
.~ 37 u3 T,
F‘,\? %iU

Suppose T and T; are equipped with t-structures, and let oy, and &fy; be their hearts, respectively.
Let of be the heart of the t-structure on T obtained by recollement. If o/, and gfy; are noetherian
categories, then o is as well.

Proof. As explained in [13, Section 1.4.17.1], the functor ¢ identifies o/, with a Serre subcategory of
g . In particular, any object of &/ that is in the image of &/ is noetherian.

Let X € of. We will show that X is noetherian. By [13, Proposition 1.4.17(ii)], we have a right
exact sequence

HITMI(X)) —» X —» H(W (X)) — 0.

As explained above, the last object is noetherian, so it is enough to prove that H(TT*TI(X)) is
noetherian. Apply [13, Proposition 1.4.17(ii)] again to obtain a left exact sequence

0 - H(uRH(II'1(X))) » HO(ITMI(X)) —» HO(TIRIH(ITHTI(X))).
Here, the first term is noetherian. Since II is t-exact, and II o II* = id, the last term can be
identified with HO(ITRTI(X)). We have reduced the problem to showing that the image of
HO(TTMI(X)) — HO(TIRTI(X)) is noetherian. More generally, we will show that for any Y € &/,
the image of the natural map

HOT'Y) - H(IIRY)

is noetherian. Following [13, Définition 1.4.22], we denote this image by IT,,(Y).
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LetZ, C Z, C --- be an ascending chain of subobjects of IT,.(Y). Then I1(Z,) C I1(Z,) C ---isan
ascending chain of subobjects of Y € ;. Since Y is noetherian, this chain is eventually constant:
there is a subobject Y’ C Y such that I[1(Z,) = Y’ for all k > 0. By discarding finitely many terms
from the beginning of our sequence, we may assume that I1(Z,) = Y’ forall k > 1.

By adjunction, for each k, we have a map

HO(IT'Y) - Z,. (A9)

According to [13, Proposition 1.4.17(i)], the image of this map has no nonzero quotient in /.
On the other hand, Z;, as a subobject of IT,,(Y), has no nonzero subobject in </, and hence
neither does the image of Equation (A.9). By [13, Corollary 1.4.25], we conclude that the image of
Equation (A.9) is canonically identified with IT,, (Y”).

Let Z, = Z; /T, (Y"). To prove that Z; C Z, C - is eventually constant, it is enough to show
that

Zy CZh - CIL(Y)/H,(Y")

is eventually constant. By construction, we have II(Z;) = Y'/Y’ = 0, so each Z, lies in (the
essential image of) ¢/. By adjunction, the inclusion map Zl/{ - I1,,(Y)/1,,.(Y") factors through
HO(uR(11,,(Y)/10,,(Y"))). Denote the latter object by Y”, and rewrite the chain of subobjects as

! ! 1
Z,CZ,C-CY".
Since Y € o, it is noetherian, and this chain of subobjects is eventually constant. O

A2 | Exceptional sequences and their duals

The following notion is the main focus of this appendix. We continue to assume that 7 is E-linear,
equipped with a Tate twist, and that it is graded Hom-finite.

Definition A.4. Let (I,<) be an ordered set that is isomorphic to a subset of (Z,,<). An E-
linear graded exceptional sequence in 7 is a collection of objects {V,};<; such that the following
conditions hold:

@) Ifi < j, then Hom(V;,, Vj[n](k)) =0foralln,k € 7.
(2) We have Hom(V;, V;[n](k)) = O unless n = k = 0, and End(V;) = E.
(3) The collection of objects {V;(k)};c; ke generates 7 as a triangulated category.

There is an ungraded variant of this notion as well (applicable to categories without a Tate
twist), obtained by simply omitting all mentions of (k) from the three axioms. All the results in
this section are stated in the graded case, but the corresponding statements in the ungraded case
also hold (with the same proofs).

Given a graded exceptional sequence {V;};c; in 7 and an element i € I, we let

T resp. T

denote the full triangulated subcategory of 7 generated by the objects of the form V ;(k) with
ke Zand j<i,resp. j<i.Let

I 0 Ty = T4/ T



46 | ACHAR ET AL.

be the Verdier quotient functor. It is clear that the quotient category 7;/7_; is generated by the
objects of the form IT;(V; (k).

Definition A.5. Let {V,};c; be a graded exceptional sequence in 7, and let {A;};; be another
collection of objects indexed by I. The set {A;};c; is said to be a dual sequence to {V,},; if for each
i €I, we have

(1) Ifi < j, then Hom(A;, V;[n[(k)) = O forall n,k € Z.
(2) Foreachi €I, we have A; € T; and IT;(4;) = IT,(V)).

The exceptional sequence {V};<; is said to be dualizable if there exists some dual sequence to it.
(It is easily seen using Lemma A.6 below that a dual sequence is unique if it exists, which justifies
the terminology.)

Lemma A.6. Let{V;};c; be a graded exceptional sequence, and let {A;};; be a dual sequence.

Q) IfX € T_; then Hom(X, V,[n](k)) = 0 and Hom(A;[n](k),X) = 0 foralln,k € Z.
(2) ForallX € T, the natural maps

Hom(X, V;[n[(k)) = Hom(IT;(X), IT;(V,)[n](k)),

Hom(A;[n](k),X) = Hom(IT;(A)[n](k), IT;(X))

are isomorphisms for all n, k € Z.
(3) Ifi # j, we have Hom(4A,;, Vj[n](k)) =0foralln,k € Z
(4) Foralli € Z, there are natural isomorphisms

Hom(V,, V,[n](k)) & Hom(A;, A[n](k)) = Hom(A,, V;[n](k))

E ifn=k=0,
0 otherwise.

&~ Hom(IT,(V,), IT;(V)[n](k)) = {

Proof.

(1) It is enough to check this when X belongs to some class of objects that generate 7_;. For
instance, it is enough to prove it in the case where X = V ;(m) for some j < i. In this case, the
claim holds by definition.

(2) This follows from part (1) by [46, Proposition 2.3.3(a), parts (iii) and (v)].

(3) Ifi > j, this holds by definition. If i < j, then A; € T_j, so this follows from part (1).

(4) Identify IT;(A;) with IT;(V;). Part (2) tells us that each of the first three Hom-spaces is naturally
isomorphic to the fourth one. The space Hom(V,, V;[n](k)) is as described by definition. []

Remark A.7. In this appendix we assume throughout that the category 7 is graded Hom-finite.
However, if we are given a sequence {V,};c; of objects in a triangulated category 7 (assumed
only E-linear and equipped with a Tate twist) satisfying the properties in Definition A.4 and
a sequence {A;};; of objects satisfying the conditions of Definition A.5, then 7 automatically
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satisfies a stronger finiteness property; namely, for any objects X, Y the E-module

@D Hom, X, Y (m)[n])

nmez

is finitely generated. In fact, Lemma A.6(3)-(4) (whose proof does not involve the “graded
Hom-finite” condition) shows that this condition holds when X = A; and Y =V i the gen-
eral case follows since the collections {V;(k)};c; kez and {A;(k)};c; kez both generate 7 as a
triangulated category.

Note that the proof of the first isomorphism in Lemma A.6(2) does not involve the dual sequence
in any way; it holds even if the exceptional sequence is not assumed to be dualizable.

Lemma A.8. Let{V;};c; be a graded exceptional sequence in T, and let {A;};c; be another sequence
of objects in T . This sequence is a dual sequence to {V;};c; if and only if we have

Hom(,, ¥, [n](k)) = {[E vi=Jandn= k=0

0 otherwise.
Proof. If {A;};c; is a dual sequence, the Hom-groups are as described by parts (3) and (4) of
Lemma A.6.

For the opposite implication, the first condition in Definition A.5 holds by assumption; we need
only prove the second condition. For each i € I, there exists some j such that A; € 7;. Assume
that j is minimal with respect to this property, that is, that A; & 7_;. If j <1, our assumptions
would imply that Hom(4A;, X) = 0 for all X € 7;, which is absurd. We therefore have j > i. Since
A; & T_;, wemusthave IT;(A;) # 0. Since the quotient category 7 /7 ; is generated by the objects
I1;(V)(k), we must have

Hom(l—[j(A[-), Hj(Vj)[n]<k>) #0

for some integers n, k € Z. As noted above, we may use the first isomorphism in Lemma A.6(2)
even without the assumption that {V},c; is dualizable. That isomorphism tells us that

Hom(4;, V;[n](k)) # 0.

We therefore have j = i, thatis, A; € Tgi.
Next, chooseamapc : A; — V,; corresponding to a generator of the free E-module Hom(4;, V,).
Let K be the cone of this map, and consider the long exact sequence

-~ > Hom(V,, V,;[n — 1Kk)) - Hom(4,, V,[n — 1](k)) -

Hom(K, V,[n](k)) - Hom(V,, V,[n](k)) - Hom(A,, V;[n](k)) = --.

Ifk # 0,orifn # 0, 1, then the first, second, fourth, and fifth terms vanish, so Hom(X, V;[n](k)) =
Oaswell. Ifk = 0and n = 0, the first two terms vanish, and the last two terms are isomorphic (the
map between them sends id € Hom(V,, V;) to the generator c € Hom(4;, V;)), so Hom(X, V;) =
0.If k = 0 and n = 1, similar reasoning with the first two terms yields Hom(X, V;[1]) = 0.
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We have shown that Hom(K, V;[n](k)) = 0 for all n,k € Z. By construction, K € 7;. Apply
Lemma A.6(2) again to conclude that Hom(IT;(K), IT;(V;)[n]{k)) = 0 for all n,k € Z. It follows
that IT;(K) = 0, and hence thatc : A; — V; becomes an isomorphism in 7; /7_;, as desired. []

Remark A.9. Lemma A.8 implies that the property of being dualizable, and the dual sequence, do
not depend on the order on I; that is, if a collection of objects parametrized by a set I is exceptional
for two different orders < and < on I, then it is dualizable as a sequence parametrized by (I, <) iff
it is dualizable as a sequence parametrized by (I, <), and in this case the dual sequences agree.

A3 | The t-structure associated with an exceptional collection

Proposition A.10. Let {V;};c; be a dualizable graded exceptional sequence in T. For each i € I,
the quotient functor I1; : T; — T;/T; and the inclusion functory; . T_; — T; both admit left and
right adjoints. Together, these functors give a recollement diagram

i I
k— kK
Ta = T =Wy T4/ .
~— K —
li‘ H;‘

[Ith
1

Proof. For brevity, in the proof we will omit the subscript from the names of the various
functors in the diagram above.
Step 1. The functor IT admits a right adjoint TIR . Let Tiv C T, be the full triangulated subcategory

generated by the objects of the form V;(k) with k € Z. We claim that the functor

leiv : Tiv = Ta/T4
is an equivalence of categories. Indeed, Lemma A.6(2) implies that this functor is fully faithful,
and since 7; /7T_; is generated by the objects IT(V;)(k), it is also essentially surjective.
Let ITR denote the composition

ol o)1
( lTiV) y inclusion

i <it

Tsi/ 7V<i
Lemma A.6(2) again implies that forany X € 7; and Y € 7;V, the map
Hom(X,Y) - Hom(II(X), II(Y)) (A.10)

is an isomorphism. Now let Y’ = II(Y). Then Equation (A.10) can be rewritten as a natural
isomorphism

Hom(X, ITR(Y")) = Hom(II(X), Y"),
so TIR is right adjoint to 1.

Step 2. The functor I1 admits a left adjoint TI". This is very similar to Step 1. Let 7’1.A C Tg; be the
full subcategory generated by objects of the form A;(k) with k € Z, and then define IT" to be the



INTEGRAL EXOTIC SHEAVES AND THE MODULAR LUSZTIG-VOGAN BIJECTION 49

composition

-1
( lTiA) A inclusion

Tsi/T<i

We omit further details.

Step 3. For X € T_;/T.;, the adjunction maps TI(TII* (X)) - X and X — II(IT*(X)) are isomor-
phisms. This is immediate from the construction of ITR and I1".

Step 4. The functor t admits a right adjoint (}. Moreover, for any X € T<i» there is a functorial
distinguished triangle

1
uR(X) - X - IIRII(X) ﬂ),

where the first two maps are adjunction maps. Complete the adjunction map X — IIRII(X) to a
distinguished triangle X’ — X — TIRTI(X) —, and then apply IT:

(X" - IX) —» DARIIX))) o )

Step 3 implies that IT(X) — II(ITR(I1(X))) is an isomorphism, so II(X’) = 0. We conclude that X’
lies in 7_;. We may rewrite it as X’ = «(X’). By adjunction, we have

Hom(«(X"), IR TI(X)[-1]) = 0.

Then [13, Proposition 1.1.9] (see also [13, Corollary 1.1.10]) implies that the triangle (X’) - X —

. o . .
MRTI(X) — isfunctorial in X. In particular, thereisa functor (* : 7_; — 7_; such thatX’ = (R (X).
Now let Y €7_;, and apply Hom(:Y,—) to our distinguished triangle u®(X)— X —
IIRTI(X) —. We obtain the long exact sequence

-+ > Hom(tY, IIRTI(X)[-1]) — Hom(:Y, u®(X)) - Hom(tY,X)

— Hom(tY, ITRII(X)) — ---.

The first and last terms vanish, so the middle two are naturally isomorphic. This shows that (X is
right adjoint to ¢.

Step 5. The functor 1 admits a right adjoint (“. Moreover, for any X € Ti» there is a functorial
distinguished triangle

1
I'IX) - X — uM(X) ﬂ),

where the first two maps are adjunction maps. This is very similar to Step 4 and is left to the reader.
Step 6. For X € T_;, the adjunction maps X — (}i(X) and (“«(X) — X are isomorphisms. For the
first claim, it is enough to prove that ((X) — uRi(X) is an isomorphism. Since the composition
((X) = uRi(X) - 1(X) is the identity map, we may instead show that «R(X) — «(X) is an isomor-
phism. For this, we apply the distinguished triangle from Step 4 and use the observation that
ITi(X) = 0. The proof of the second claim is similar.
‘We have now checked all the conditions in [13, Section 1.4.3], so the proof is complete. O
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Theorem A.11. Let T be an E-linear triangulated category with a Tate twist. Assume that T is
graded Hom-finite, and that it is equipped with a dualizable graded exceptional sequence {V;};c;.
Foreachi €1, let

.id
v, = J cone(V; = V) ifEisnota field,
' 0 if E is a field.

Then the categories (T<°, T>°) given by

the subcategory generated under extensions by objects of the form
Aj[nl(k) with j €I, n > 0,and k € Z,

<0 _

the subcategory generated under extensions by objects of the form
V,;[nl(k) and V [n](k) with j € I, n > 0 and k € Z.

20 _

orm a t-structure on T. The heart of = TS N T2V of this t-structure is noetherian. is a field,
t-struct T. The heart o = T<0 N 729 of this t-structure i therian. If E is a field
then & is both noetherian and artinian.

Proof. Giveniel,letT 50 and T j.o be defined as above, but allowing only A i Vi, and V j with
J<i

We will first show that (7 5.0, T 50) is a t-structure on 7; whose heart is noetherian. We proceed
by induction on i. If i is the minimal element of I, the claim holds by Proposition A.1. Suppose
now that i is not minimal. The claim holds for (7_ SO, T j.o) by induction. We can also equip the
quotient category 7; /7_; with a t-structure by Proposition A1, using N = II;(A;) = IT;(V;). That
proposition tells us that the heart is noetherian; if E is a field, it is also artinian.

By recollement, the following categories give a t-structure on 7;:

TS0 = {X € T | (X)) € TS and TI(X) € (T;/T-)<%,

T2 =X € T | R(X) € 720 and TI(X) € (7, /T ).

By Lemma A.3, the heart of (/7. fio,’ T <>i0) is noetherian (and artinian if E is a field). It remains to
prove that’ Tf.o =75%and'72° = 72°. 1f X € '75°, consider the distinguished triangle
<i <i <i <i <i

LX) - X - IFIX) —

The first term clearly lies in Tfl.o. The explicit construction of I'[l.L in Proposition A.10 shows that the
last term does as well. We conclude that’ Tfl.o cT. fio. For the opposite containment, it is enough to
check thatA; € ! T <O for all j < i. This is clear if j < i, and it again follows from the construction

>0 _

in Proposition A. 10 for j = i. The proof that ’ T
By construction, we have

=T <>i0 is similar and will be omitted.

°=J75" and =72

iel iel
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Since every object of 7 belongs to some 7, it is easy to see that (77 <0, 729 is indeed a t-structure.
Its heart is a union of noetherian abelian categories, so it is noetherian (and, similarly, also artinian
if E is a field). O

Remark A.12.

(1) For the applications in the present paper, the t-structures arising from Theorem A.11 have the
following important additional property: the A; and V; lie in the heart. In the case where E is
a field, it is well known that this implies that the heart is a highest weight category.

(2) Itisclear from construction that the t-structure considered in Theorem A.11 does not depend
on the order < on I.

A.4 | Special objects in the heart

By adjunction, the isomorphism IT;(A;) = IT;(V,) gives rise to a canonical map A; — V;. Let
L; = im(H°(4;) = H°(V))). (A11)

In the case where E is a field, [13, Proposition 1.4.26] tells us that up to Tate twist, the L, are
precisely the simple objects of &/ .

In the case where E is a complete discrete valuation ring, recall that an object X in an E-linear
abelian category is said to be torsion if w" - idy = 0 for some n > 1, and torsion-free if w - idy is
injective. Note that if X is torsion-free, then for any other object Y, Hom(Y, X) is a torsion-free
E-module.

Lemma A.13. Assume that E is a field. Then H°(A;) has a simple head, and H°(V,) has a simple
socle (both isomorphic to L;).

This is a standard fact in the theory of recollement. For a proof, see [30, Proposition 2.28].

Lemma A.14. Assume that E is a complete discrete valuation ring. Foreach i € I, the objects H'(V;)
and L; are torsion-free.

Proof. Both V; and V, lie in 7>°, so the long exact sequence in cohomology associated with the tri-

- n
angle V; iR V.-V, ﬂ» shows that w - id : H°(V;) — H°(V,) is injective. Since L, is a subobject
of a torsion-free object, it is torsion-free as well. O

Lemma A.15. Assume that E is a complete discrete valuation ring. For each i, there is a unique
maximal subobject L C H(V,) that contains L;, and such that L* /L, is torsion. Moreover, L and
HO(V,;)/L;} are both torsion-free.

Proof. Since & is noetherian, the existence of Li+ is a consequence of the following observation: if
M, M’ c H°(V,) are two subobjects that both contain L; and such that M /L; and M’ /L; are both
torsion, then (M + M')/L; is again torsion.

Since L;r is a subobject of a torsion-free object, it is torsion-free. If H(V;) /L;r were not torsion-
free, it would have a nonzero torsion subobject M. The preimage of M in H°(V;) would enjoy the
defining properties of Li+, contradicting the maximality of Ll.+. O
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A.5 | Change of scalars

Let O be a complete discrete valuation ring, with fraction field K and residue field F. Assume that
we are given the following:

(1) a graded Hom-finite O-linear triangulated category 7 with a graded exceptional sequence
{V?}ic; and with a dual sequence {A”};cy;

(2) a graded Hom-finite K-linear triangulated category 7y, and a triangulated functor K(-) :
To — T which induces an isomorphism

K ®o Hom(X,Y) = Hom(K(X), K(Y))

forall X,Y € T,;
(3) agraded Hom-finite F-linear triangulated category 7, and a triangulated functor F(—) : T —
Tr such that for all X, Y € T, there is a natural short exact sequence

F ®; Hom(X,Y) & Hom(F(X), F(Y)) » Tor?([F, Hom(X, Y[1])) (A.12)

where the first map induced by the functor F(—).
To this, we add the following assumption:
(4) For k € {K, [}, the sequence {[I«(V?)}iel is a graded exceptional sequence in 7.

Lemma A.16. Fork € {K,F}, let
VEi=k(VY)  and  Af i=Kk(AD).
Then {A¥}ie; is a dual sequence to {V}.

Proof. The fact that A¥ € 7, ; and that Hom(A, V”;[n](k)) =0 for i > j follow from the corre-
sponding facts over O. Next, note that k(—) induces a functor of quotient categories 7g ; /7o <; —
Ty <i/ Ty <i- We then deduce the fact that IT,(A¥) = IT,(V}) from the commutativity of the following
diagram:

T@,si H T@,Si/T@,<i

1 1

Tk,ﬁi ) n«,si /T[k,<i ]

Thanks to Lemma A.16, each of 7y, 7y, and 7 is equipped with a t-structure provided by
Theorem A.11. Denote their hearts by o/, &, and <, respectively.

Lemma A.17.

Q) ThefunctorK(—) : Tg — Ty ist-exact. ForX € o, we have K(X) = 0ifand only if X is torsion.
(2) The functor F(=) : Tg — Ty is right t-exact. For X € o, we have H(F(X)) = 0 for all i < —2.
Moreover, F(X) € o if and only if X is torsion-free.
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Proof. The t-exactness properties of K(—) and F(—) follow immediately from their behavior on
the exceptional sequence and its dual, combined with the description of the t-structures from
Theorem A.11.

Next, let X € o/, and consider the map O - id — End(X). If X is torsion, then after we tensor
with K, we get the zeromap K - id - K ® End(X) = End(K(X)). That is, the identity map of K(X)
is zero, so K(X) = 0. Conversely, if X is not torsion, the map O - id — End(X) is injective, and
hence sois K - id — End(K(X)). Since End(K(X)) # 0, we have K(X) # 0.

To show that H{(F(X)) = 0 for i < —2, or equivalently that F(X) € 7>~1, it is enough to
show that Hom(AE.F[n](k), F(X)) =0 for n > 2. This follows from (A.12) and the fact that
Hom(AP[n](k),X) = 0 forn > 1.

Finally, if X is torsion-free, then Hom(A(k),X) = Hom(H°(A?)(k),X) is a torsion-free
0-module, so Tor'(F, Hom(AP[1](k),X[1])) = 0. We see from Equation (A.12) then that
Hom(Ai.F[l](k), F(X)) =0, so F(X) € o. Conversely, if X is not torsion-free, then it has
a nonzero torsion subobject X’ C X. Moreover, Hom(X’,X) is a torsion O-module, so
Tor?([F, Hom(X'[1],X[1])) # 0. In this case, Equation (A.12) shows that Hom(F(X")[1], F(X)) # 0,
which implies that H~1(F(X)) # 0. O

To distinguish the various versions of Equation (A.11), we now include the coefficient ring in
the notation, as follows:

Li(K) € oy, Li(0),L(0) € g, Li(F) € .

Lemma A.18.

(1) Foralli € I, we have
K(L;(0)) = K(L(0)) = Li(K).

(2) The objects F(L;(0)) and [F(Lf(@)) lie in ofy. Moreover, F(L;(0)) has a simple head, and
[F(Ll.+(®)) has a simple socle, both isomorphic to L;(F).

Proof.

(1) Since K(—) is t-exact, it commutes with H, and it takes the image of a morphism in &/, to the
image of the corresponding morphism in <. It follows immediately that K(L;(0)) = L;(K).
Next, we have a short exact sequence 0 — L;(0) — Ll.+(®) — T — 0, where T is a torsion
object. Since K(T') = 0 by Lemma A.17(1), we conclude that K(L;(0)) = IK(L;r(@)).

(2) The first assertion follows from the fact that L;(O) and Ll.+ (0) are both torsion-free (see Lem-
mas A.14 and A.15) and Lemma A.17(2). By definition, L;(0) is a quotient of H' O(A‘l.U’). Since
F(—) is right t-exact, we have an induced surjective map

HO(F(H (AT))) — F(L,(0)).
The right t-exactness of F(—) also implies that H(F(H’(A?))) = H(F(A?)) = H(A]). That

is, F(L;(0)) is a quotient of H O(Af). Since the latter has a simple head (isomorphic to L;(F)),
so does the former.
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Next, we claim that F(H 0(V?)) is a subobject of H'(V]). (Note that this lies in .o/ because
H 0(V?) is torsion-free by Lemma A.14, see Lemma A.17(2).) Indeed, consider the truncation
distinguished triangle H(V?) - V¥ — 21V? —. Apply F(-) to obtain the triangle

FH(VD) = Vi > F@'VY) - .

Lemma A.17(2) implies that the third term lies in T;O. Therefore, the long exact sequence in
cohomology shows that we have an injective map F(H O(V?)) — HO(VY).
Finally, consider the short exact sequence

0 — L7 (0) » H(V?) - HY(V)/L}(0) - 0.

We have seen in Lemma A.15 that all three terms are torsion-free, so applying F yields a short
exact sequence in &. In particular, [F(Li+ (0)) is a subobject of F(H O(V?)), and hence (by the
previous paragraph) of H O(V;F). Since the latter has a simple socle (isomorphic to L;(F)), so
does F(L;"(0)). O
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