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Abstract. We prove an isomorphism for simple perverse sheaves on the affine Grassman-
nian of a connected reductive algebraic group that is a geometric counterpart (in light of
the Finkelberg—Mirkovié¢ conjecture) of the Steinberg tensor product formula for simple
representations of reductive groups over fields of positive characteristic.

1. Introduction

1.1. Overview

The main result of the present paper is a formula expressing Iwahori-equivariant
simple perverse sheaves on the affine Grassmannian of a connected reductive
algebraic group in terms of convolution of simple perverse sheaves associated with
“restricted” elements of the affine Weyl group and simple perverse sheaves in
the Satake category. In view of the Finkelberg—Mirkovié¢ conjecture, this can be
viewed as a geometric counterpart of the Steinberg tensor product theorem for
simple representations of reductive groups. One of our motivations for studying
this question is that it allows us (using ideas from [ABBGM]) to define and study
a conjectural geometric model for blocks of representations of the Frobenius kernel
of this reductive group; see [AR2].

1.2. The Finkelberg—Mirkovié conjecture

Before stating this result, let us recall the Finkelberg—Mirkovié¢ conjecture.
Consider a connected reductive algebraic group G over an algebraically closed
field F of characteristic p # 0, with a choice of Borel subgroup B C G and maximal
torus T' C B, and set Y = X, (T). Let LG be the loop group of G, let LG be its
arc group, and consider the affine Grassmannian Gr = LG/L1G. Next, let k be
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either a finite field of characteristic £ # p, or an algebraic closure of such a field.
Then we can consider the category Perv,+g(Gr,k) of LT G-equivariant (étale) k-
perverse sheaves of Gr, which admits a natural structure of monoidal category
with monoidal product "G, Recall that the geometric Satake equivalence [MV]
provides an equivalence of monoidal categories

Sat: (Perv£+G(Gr,k) £t G) = (Rep(GY), ®),

where Gy is a split connected reductive algebraic group over k, with a canonical
maximal torus 7} whose lattice of characters is Y and such that the root datum of
(GY,T}) is dual to that of (G, T), and Rep(G))) is its category of finite-dimensional
algebraic representations. We will also denote by BY C G,/ the Borel subgroup
whose roots are the negative coroots of (G,T) (with respect to our choice of B,
considered as a negative Borel subgroup in G). We have a canonical autoequiva-
lence
sw: Perv+q(Gr, k) = Perv +q(Gr, k)

induced by the automorphism of LG given by g + g~ 1.

Let us denote by W the Weyl group of (G, T) and by RY C Y the coroot system
of (G, T), and consider the affine Weyl group Wog := W x ZR" and the “extended”
version Weyt := W X Y. The group Wyg is known to admit a canonical generating
subset S.g (depending on the choice of B) such that (W,g, Sag) is a Coxeter
system, and Weyy is a semidirect product of Wog by an abelian group 2 acting by
Coxeter group automorphisms, and is naturally endowed with a length function.
Let I, be the preimage of the unipotent radical of B under the canonical morphism
LTG — G; then the I,-orbits on Gr are in a canonical bijection with the subset
W&, C Wext of elements w which have minimal length in the coset wW . Consider
also a connected reductive algebraic group G over k whose Frobenius twist G
is GY, and denote by T c B C G the maximal torus and Borel subgroup such
that T(l) = T, and B® = BY. The Frobenius morphism of G (or of any of its
subgroups) will simply be denoted as Fr.

We identify the character lattice of T with Y in such a way that the pullback
under the Frobenius morphism Fr: T — T} is given by A — ¢\. Let Yy C Y
be the set of dominant weights for G (or dominant coweights for G) with respect
to the choice of positive roots that makes B the negative Borel subgroup. For
A € Y., we denote by L(\) the simple G-module of highest weight A.

The group Weg is the affine Weyl group of G in the sense of [Ja]. We will
denote the “dot action” of Wag and Wext on Y by +. If £ > h, where h is the
Coxeter number of G we can consider the extended principal block Rep[o](G)

in the category Rep(G) of finite-dimensional algebraic G—modules, namely the
Serre subcategory generated by the simple G-modules of the form L(w=t-,0) with
€ Wik
The following statement is known as the Finkelberg—Mirkovié¢ conjecture. Here
we consider the category Pervy (Gr,k) of I,-equivariant k-perverse sheaves on
Gr, with the natural convolution action (again denoted as *L+G) of the category
Perv,+g(Gr, k). The simple I, equivariant perverse sheaf supported on the closure
of the I,-orbit labeled by w € W3, is denoted by L,
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Conjecture 1.1 (Finkelberg—Mirkovi¢ conjecture, [FM]). Assume that ¢ > h,
and that Y /ZRY has no £-torsion. There exists an equivalence of categories

FM: Perv;, (Gr,k) = Repy (G)
which identifies the natural highest weight structures on both sides, and satisfies
FM(Ly) = L(w™* -, 0) for any w € W5,.

Moreover, for F in Pervy (Gr,k) and G in Pervo+o(Gr, k), there exists a bifuncto-
rial isomorphism

FM(F "€ G) = FM(F) @ Fr*(Sat(sw*G)).

Remark 1.2.

(1) The combinatorics involved in Conjecture 1.1 takes a more natural form
if we work with the “opposite” affine Grassmannian Gr® = LTG\LG (with its
action of LT G and I, induced by right multiplication on £G). It is, however, much
more common to work with Gr rather than Gr°P, and for this reason we will work
with the conjecture as formulated in Conjecture 1.1.

(2) If £ > h, the group Y /ZR" can have (-torsion only if G has a component on
type Ap. This can create troubles with Conjecture 1.1; e.g., the extended principal
block of SL, in characteristic ¢ has its simple objects in a natural bijection with
W&, N Wag, which does not match the combinatorics of the category Pervy, (Gr, k)
for G = PGL,.

(3) A proof of Conjecture 1.1 seems within reach (maybe under stronger as-
sumptions), but is not available as of now.

1.3. The geometric Steinberg formula

From now on, we assume for simplicity that the center of G is a torus. (Most
questions we are interested in can be reduced to this case.) The main results of the
paper are statements which correspond under Conjecture 1.1 (and some “singular”
analogues) to the following two classical results in representation theory. (Here,
LA (A) denotes the simple G™-module of highest weight ), and G denotes the
Frobenius kernel of G.)

(1) (Steinberg’s tensor product formula, [Ja, Prop.II1.3.16]) For any A € Y,
restricted and any ¢ € Y, we have

LA+ £) =2 L(\) @ Fr* (LD ().

(2) ([Ja, Props.11.3.10, IL.3.15]) For A€ Y, restricted, we have Endg (L(A) =k.

More precisely, instead of (2) we will prove an analogue of the following equivalent
statement.

(3) For any A € Y restricted, the functor
Rep(GY) — Rep(G)

defined by V — L(\) ® Fr* (V) is fully faithful.
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The geometric counterpart of L() (1) (for i € Y ) is provided by the geometric
Satake equivalence: it is a classical fact that the simple objects in Perv,+q(Gr, k)
are in canonical bijection with Y, and that if we denote by ZC" the simple object
attached to p € Y, then we have Sat(ZC") = L) (y) for any u € Y. Using the
geometry of alcoves, one can naturally define a subset Wiep C Wy of “restricted
elements” which provides a replacement for the restricted dominant weights for
GY; see §2.4 for details. This subset is contained in Wz, .

We can now state the main result of the paper, which provides a geometric
counterpart to the properties (1)—(3) above. In this statement, w, denotes the
longest element of W and t) := e X A denotes the element of Wy corresponding

to a weight A € Y.

Theorem 1.3. For any w € Wi, the functor

Luy 4" (=) Pervzr(Gr. k) — Pervy, (Cr, k)

1s fully faithful, and satisfies Ly, *£TC IOk Lwt,, ., for any p €Y.

(We remark that W5, is stable under multiplication on the right by ty for A
antidominant, so that wt,,, (,) is a valid label of an I,-orbit.)

Our proof of Theorem 1.3 follows arguments found in [ABBGM], where the
authors prove the isomorphism L, K£1G Tor =~ Luwt,, (., When k is an algebraic
closure of Qy. As presented there, the proof uses some special features of the
characteristic-0 setting (e.g., the decomposition theorem); however, a closer analy-
sis of their arguments reveals that they prove the full faithfulness statement in
Theorem 1.3 in the case of positive-characteristic coefficients too. (Note that when
k has characteristic 0 the Satake category is semisimple, so that this full faithfulness
statement is an immediate consequence of the isomorphism of simple perverse
sheaves.) It is then not difficult to deduce the isomorphism for simple objects.

Remark 1.4.

(1) Let us emphasize that there is no assumption on ¢ in Theorem 1.3. Such an
assumption is needed only to (conjecturally) relate this statement to representation
theory.

(2) In the body of the paper, we will also prove a “Whittaker” variant of
Theorem 1.3 for any choice of a subset A C S,z generating a finite subgroup.
(The case stated above corresponds to A = @.) This is motivated by a “singular”
variant of Conjecture 1.1, which postulates the existence of a similar equivalence
relating a singular block of Rep(G) (with “singularity” determined by A) with a
category of perverse sheaves on Gr satisfying a Whittaker condition relative to a
group attached to A.

(3) In this paper, we work with perverse sheaves for the étale topology because
we want to cover also the “Whittaker” categories, which have no counterpart at
this point in the “classical” setting of perverse sheaves for the analytic topology.
However, in case A = &, our category is just the category of I,-equivariant perverse
sheaves on Gr, which also makes sense in the classical setting; in this special case,
our proof of Theorem 1.3 applies in both settings.
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1.4. Contents

In Section 2, we prove a number of preliminary results of a combinatorial nature
regarding the extended affine Weyl group Weyt. In Section 3, we define our catego-
ries of perverse sheaves Perv(ya x,) (Gr,k) (and their analogues for sheaves on the
affine flag variety F1) and the “averaging” functors relating them. All the results
from these sections are known in some form, but we found it convenient to state
them and give (sketches of) proofs. Finally, in Section 4, we prove Theorem 1.3.

2. Combinatorics of the affine Weyl group

2.1. The extended affine Weyl group

Let F, G, B, T, Y, W be as in §1.2. We will denote by X := X*(T') the character
lattice of T, by & C X the root system of (G,T), and by &Y C Y the coroot
system; the natural bijection from %R to RY will be denoted as o — oV as usual.
We will denote by 2R, C R the system of positive roots consisting of the T-weights
in Lie(G)/Lie(B), and by s the associated basis of 2. The corresponding sets of
dominant coweights and strictly dominant coweights will be denoted as Y and
Y, respectively. If we denote by S C W the subset consisting of the reflections
sqv for a € R, then it is well known that (W, S) is a Coxeter system. The longest
element in this group will be denoted as w,. We will assume that X/Z9R has no
torsion. This condition ensures that there exists ¢ € Y such that (o, ) =1 for all
a € Rg; we fix such an element once and for all.
The affine Weyl group associated with G is the semidirect product

Wag = W x ZRY,

where ZRY C Y is the lattice generated by SRY. For A € ZRY, we will write £,
for the corresponding element of Wyg. It is a standard fact that if we denote by
Sag C Wag the subset consisting of S together with the elements tgvsgv, where
BY € RY is a maximal short coroot, then the pair (Wag, Sag) is a Coxeter system.
Moreover, classical results of Iwahori-Matsumoto [IM] show that the associated
length function on W,g can be described by the following formula for w € W and

A € ZRV:
oty = 3 el S [t (a)l (21)
aERy aERy
w(o) ER 4 w(a)e—Ry

The formula on the right-hand side of (2.1) makes sense more generally for
A €Y, which allows us to extend the function ¢ to the larger group

Wext =W xY.
The subgroup Wag C Weys is normal, and if we set
Q= {w € Wyt | £(w) = 0}

then Q is a finitely generated abelian group acting on Weg (via conjugation) by
Coxeter group automorphisms, and multiplication induces a group isomorphism

Q x Waff — Wext;
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moreover, {(ww) = l(ww) = L(w) for any w € Wex and w € Q. We can also
extend the Bruhat order < on W,g to Wey by declaring that for w,w’ € Q and
w,w' € Wag we have ww < w'w’ iff w = w’ and w < w’. (The same rule will then
also apply when switching the order of w and w.)

The following property holds for general Coxeter groups, and can be checked
using the characterization of the Bruhat order in terms of reduced expressions and
the exchange condition.

Lemma 2.1. Let x,y,w € Wy, and assume that £(xy) = £(z)+L(y) and £(zw) =
L(z) + Ll(w). Then y < w if and only if vy < zw.

2.2. Coset representatives

If A C S.g is a subset, we will denote by W4 the subgroup of W.g generated by A;
if this subgroup is finite, we will say that A is finitary, and we will denote by w4
the longest element in W 4. In this case, the theory of Coxeter systems guarantees
that for any w € Weyt the cosets Waw and wW 4 each admit a unique minimal
element (and a unique maximal element) with respect to the Bruhat order. If w is
minimal in Waw, resp. in wW 4, then for any € W4 we have {(zw) = {(x)+{(w),
resp. {(wzx) = £(w) + £(x). In fact, it is easily seen that

w is minimal in Waw iff f(waw) = l(wa) + L(w). (2.2)

The following claim is well known (e.g., see the discussion in [So, p. 86]).

Lemma 2.2. Let w € Weyt be an element which is minimal in wWy. If s € Sug
and sw is not minimal in swW 4, then sw = wr for some r € A; in particular, if
s € Sagr satisfies sw < w, then sw is minimal in swWy.

Below we will consider the restriction of the Bruhat order to the subset of
elements w in Wey which are minimal in wW4 (resp. in Waw). If y, w € Wy are
minimal in their respective cosets yWy, and wWy, and if ¢/, w’ are the maximal
elements in these cosets, it is a standard fact (see [Do, Lem. 2.2]) that the following
conditions are equivalent:

(1) y <w;
(2) ¥ <w's
(3) there exist y’ € yW, and w” € wWy such that y"” < w”.

Of course, a similar property holds for cosets in W4\ Wext.

Remark 2.3. One can similarly consider minimal and maximal elements in double
cosets of the form W wW 4 where A, A’ C S.g are finitary subsets. The analogues
of (1)—(3) are also equivalent in this setting, as proved in [Do, Lem. 2.2].

In particular, we will consider these notions in the case A = S, so that W, = W.
(In this case, we have already introduced the notation w, for the longest element in
W, so that the notation wg will not be used.) The maximal and minimal elements
in cosets can be described explicitly in this case, as follows. First one notices that
the quotients Weyt/W and W\Wey are in canonical bijection with Y, so that
every right coset is of the form Wty, and likewise for left cosets. For any A € Y,

the minimal element in Wty, resp. t\W, will be denoted as w¥, resp. wf; we will
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also denote by dom(\) the unique dominant W-translate of A. By [MR, Lem. 2.4]
we have

WY = vatx = tdom(x)Vr, (2.3)

where vy € W is the element of minimal length such that vy(A\) = dom(X). We
moreover have

C(wy) = €(tx) = €vx) = Ltgom(x)) = L(vr)-

We clearly have
wy = (wky) 7, (2.4)

and the maximal element in Wty, resp. in t\W, is wow¥, resp. witw,.

We will denote by W25, C Wex the subset of elements w which are minimal in
their coset wW; we therefore have WS, = {wl : A € Y}.

In the following lemma we characterize the elements in Wz, which satisfy a
certain minimality property with respect to left multiplication by elements of Wy.
(This statement makes sense, and holds true with identical proof, for any choice

of a Coxeter system and a pair of finitary subsets of the simple reflections.)

Lemma 2.4. Let A C Sag be a finitary subset. For w € Wey, the following
conditions are equivalent:

(1) weWs

(2) wews

(3) w is minimal in Waw and vw € W5, for any v € Wa;
(4) w is minimal in Waw and waw € WS ;
(5

) b(wawwe) = L(wa) + L(w) + L(w,).

We will denote by AW5, C W2, the subset of elements which satisfy the
conditions of Lemma 2.4.

. and wv is minimal in Wawv for any v € W;
. and ww, s minimal in Waww,;

Proof. Of course (1) implies (2), and (2) implies (1) by (the right-coset analogue
of) Lemma 2.2. It is clear that (2) implies (5). If (5) holds, then by (2.2) ww, is
minimal in Wiww,. We also deduce that

Lww,) > L(waww,) — Lwa) = b(w) + L(w,),
hence £(ww,) = £(w) + £(w,), which implies that w belongs to W

S by (2.2). The
equivalence with (3)—(4) is obtained similarly, switching the roles of A and S. O

As explained in Remark 2.3, there is a general theory of minimal elements in
double cosets in Coxeter groups. If w € AW25,, then w is minimal in W wW;

ext’

however, not every element which is minimal in its double coset belongs to AW,

Specifically, one can show that the minimal element of a double coset W wW lies
in AWS, if and only if the set WawW NW, has cardinality equal to that of Wy.
In the special case where A = S, the following lemma gives another description of

this set.

Lemma 2.5. Let A € Y. We have w{ € "W

i f A€ Y. Moreover in this
case, we have w¥ = tyws.
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Proof. We will use the characterization of W2, given by condition (2) in Lem-
ma 2.4. Using (2.3) and (2.4), we see that

WNWo = (V-x) "M _dom(—2)Wo = (V_x)""Wol_yy dom(—x) = (V1) Wotdom(n),

since dom(—A) = —w,dom(\). Now w{;om(/\) = tdom(r) DY (2.3), so that witw, is
minimal in Wwltws iff (v_)) " w, = e, i.e., iff v_\ = w,. This is clearly equivalent
to the condition that —A € =Y, ie,that A\ e Y, . O

2.3. Alcoves

Consider the vector space V := Y ®7 R, and the action of Wy given by (t w)-v =
w(v) + A for w € W and A € Y, where W acts on V via its natural action on Y.
In V we have the affine hyperplanes defined by

Hg,:={veV]{B,v)=n}

for § € R and n € Z, which are permuted by the action of Wey. The connected
components of the complement of the union of these hyperplanes are called alcoves;
if we set

Wtund :={v €V | VB € Ry, 0 < (B,v) < 1},

then 2gnq is an alcove (called the fundamental alcove), and moreover if we denote
by &/ the set of alcoves, then the assignment w +— w(Aging) induces a bijection

Wext/Q = o,
where 2 is as in §2.1. If
C={veV|VBeR,, (B,v) >0},
then it is a standard fact that
Wi = {w € Wex | 0™ (Uguna) € C} (2.5)

2.4. Restricted elements

For 4 €Y, we set
H# = {’UGV|VOZ€%S, <Oéa/u‘>71 < <Oé,”U> < <aau>}a

our assumption on X/ZMR ensures that each alcove is contained in a subset of
this form. Recall the element ¢ defined in §2.1. We define the subset of restricted
elements in Wy by setting

Wéﬁi = {w € Wext | wil(mfund) C H§}~

(Of course, this subset does not depend on the choice of ¢.) The relation between
Wres and W23, is as follows. If w € Wy, there exists u € Y such that w ™ (gunq) C

ext ext
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I,; then w € W2, if and only if u € Y. With this notation, we have the

inclusion tc_,w ™ (Uguna) C I, i.e., wt,— € WIS, and of course

w = (wty—¢)te_p-
Here p € Y, iff ¢ — u € =Y. In conclusion, we have shown that
Wo,={aty e WS A€ -Y,}. (2.6)

(In case G is semisimple, each element of W5, can be written uniquely as a product
xty with z € WIS and A € =Y, but in general this expression is not unique.)
We will see in Lemma 2.7 below that lengths always add in such an expression.
These considerations also show that for any fixed w € Weyy, there exists A € Y
such that wty € W ¥; in fact the elements that satisfy this property form a torsor

ext?

for the lattice of elements in Y orthogonal to all roots.

Lemma 2.6. Let w € W, A € Y. Then wty € Wii if and only if for all o € Ry
we have
(@, \) = 0 Z:f w(e) € Ry;
-1 ifw(a) e —R;.

In particular, if wty € Wi then A € =Y.

ext

Proof. For N > 0 we have (1/N)s € 2gna; hence wty belongs to W if and only
if (t_yw™!)-((1/N)s) € Il.. Now we have

(toaw™) (%) = A+ 1w (),
so that for a € R, we have

<a, (t_Awfl)(%g» =—(a,\) + %(w(a),g).

On the right-hand side, we have (w(a),s) > 0 if w(a) € R4, and (w(a),s) < 0 if
w(a) € =M. This implies that the left-hand side lies between 0 and 1 iff («, \) is
0 in the first case, and —1 in the second case. [

Lemma 2.7. For any w € W3, and pn € =Y we have {(wt,) = ((t,) + {(w).

X

Proof. By (2.6) we can write w = zt, with x € W& and v € =Y ;. Write z = yty
with A € Y and y € W. By (2.1), for any n € =Y we have

Uaty) = Lytar) = Y, N d+n)l+ DY [T+ (A +n).
acRy aERy
y(e)ERY y(e)E—NRy
By Lemma 2.6, on the right-hand side we have (o, \) < 0 for any a € Ry,
and if moreover y(a) € —9R4, then at least one simple root v appearing in the
decomposition of « as a sum of simple roots must satisfy y(y) € —9R; we therefore
have (o, A\) < —1 in this case. Letting p denote one-half the sum of the positive
roots, we see that
U(xty) = —(2p, A + 1) — L(y).

Comparing these formulas for = v and = v 4+ u, and using the fact that
£(t,) = —(2p, i), we deduce the desired formula. O
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2.5. More on coset representatives

We fix a finitary subset A C S,g, and consider the interaction between restricted
elements and elements satisfying the conditions in Lemma 2.4.

Lemma 2.8. Lety € Wi and A € —Y . Theny € W5, iff yty € AWS

ext*

Proof. Assume that y € 4W5,, i.e., that y is minimal in Way and way € W5,.
Then

Cwayty) = Lway) + L(tx) = Lwa) + L(y) + £(tx) = Lwa) + Lytr),

where the first and last equalities use Lemma 2.7. Hence yt, is minimal in Wayty

by (2.2). On the other hand, wayty = (way)ts belongs to W, since W, is stable

under right multiplication by elements of —Y ; hence yt) € AW5,.
Assume now that yty € AW5S,. We have

ext*

Lwaywoly, (x)) = L waytsws) = L(wa) + L(ytx) + L(w,)
— twa) + €y) + L) + Lwo).

On the other hand, we have
Lwaywoty,(x)) < Lwayws) + L(tw,x)) < Lwa) +£(y) + L(wo) + £(tw, (x))s

and £(tx) = L(ty,(n)). Thus, these inequalities must be equalities, showing in
particular that £(wayw,) = £(wa) + £(y) + £(w,), and hence that y € AWS5,.
[l

If we set AW .= AW, N WIS, then by (2.6) and Lemma 2.8 we have

ext * T ext

AWS, ={wty :w € WS e Y, }. (2.7)
3. Whittaker-type perverse sheaves on affine Grassmannians and
affine flag varieties

3.1. Affine Grassmannian and affine flag variety

We now denote by z an indeterminate, and consider the functor £G, resp. LTG,
from F-algebras to groups, which sends R to G(R((z))), resp. G(R[[2]]). It is well
known (e.g., see [Ra]) that LG is represented by a group ind-scheme over F, and
that £*G is represented by a group scheme over F. Moreover, the fppf quotient
(LG/LTG)gppt s represented by an ind-projective ind-scheme, which is denoted as
Gr and called the affine Grassmannian of G.

There is an obvious morphism of group schemes £+G — G induced by the
assignment z + 0. Let I C LTG and I,, C I be the preimages under this map of
the Borel subgroup B C G and its unipotent radical U C B, respectively. These
are both subgroup schemes of L*G. The group I is known as an Twahori subgroup,
and I, as its pro-unipotent radical.

We will consider also the affine flag variety Fl of G, defined as the fppf quotient
(LG/I)gppt- Again Fl is represented by an ind-projective ind-scheme, and the
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natural morphism 7: F1 — Gr is a Zariski locally trivial fibration with fibers
isomorphic to G/B.

Let Ng(T) be the normalizer of the maximal torus T C G, so that Ng(T)/T =
W. For each w € W, choose a representative w € Ng(T). More generally, if
W € Wext, say w = vty with v € W and A € Y, we set

w=10z" € LG(F).

For w € Wy we will denote by Fl,, the I-orbit of the image of w in F1; then it
is well known that Fl,, is also the I,,-orbit of the image of w, that it is isomorphic
to an affine space of dimension ¢(w), and that we have

Flieq = |_| Fl, and (mCFTy & wgy).
WEWext

Similarly, for w € W5, we will denote by Gr,, the I-orbit of the image of
in Gr. It is well known that Gr,, is also the I -orbit of the image of w, that it is
isomorphic to an affine space of dimension £(w), and that we have

Gryeq = |_| Gr, and 7w~ er |_| Flye.
WE Wt veWw

The closure inclusion partial order on the set of I-orbits on Gr is governed by the
restriction of the Bruhat order to W5, (see §2.2), i.e., for w,y € W2, we have

Gry, CGry <<= w<y.

Remark 3.1. Tt is common to label I-orbits on Gr by elements of Y; compared
with the labelling chosen here, the orbit usually associated with A is er§. where
we use the notation of §2.2.

3.2. Categories of I,-equivariant sheaves

We now consider a prime number ¢ which is invertible in F. We will consider fields
k which fall into one of the following two classes:

(1) k is either a finite extension or an algebraic closure of Qy;
(2) k is either a finite extension or an algebraic closure of Fy.

(When we need to distinguish these two cases, we will loosely say that k has
characteristic 0 or k has positive characteristic.) In these settings, we can consider
the Iy-equivariant derived categories DY (Gr,k) and D} (F1 k) of étale k-sheaves
on Gr and F1, respectively. (More specifically, the case when k is a finite extension
of Q¢ or Fy is classical, see [BBDG], and the case of algebraic closures is deduced
using a colimit construction. Since I, is not of finite type and Gr, F1 are ind-schemes
rather than schemes, the definition of these categories requires a little bit of care,
but is standard; we will not review these details here. Similar comments apply to
various other equivariant derived categories considered below.) These categories
have natural perverse t-structures, whose hearts will be denoted as Pervy (Gr, k)
and Pervy (F1, k), respectively.
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For any w € Wey, we have a “standard perverse sheaf” 2, in Pervy (F1 k),
defined as the !-pushforward of the complex kg [((w)] under the embedding
Fl, — Fl, and a “costandard perverse sheaf” .4;, in Perv;, (Fl, k), defined as the
*-pushforward of the complex kg [¢(w)] under the embedding F1,, — F1. (These
complexes are indeed perverse sheaves since this embedding is affine.) The image
of the unique (up to scalar) nonzero morphism %,, — 4, is simple, and will
be denoted as .%Z,,; it is the intersection cohomology complex associated with the
constant local system on Fl,,. Then the objects (%, : w € Wext) are representatives
for the isomorphism classes of simple objects in the abelian category Pervy, (F1, k).

Similarly, for w € W23, we have a “standard perverse sheaf” A, in Perv;, (Gr, k),
defined as the !-pushforward of the complex kg, [¢(w)] under the embedding
Gr, — Gr, and a “costandard perverse sheaf” V,, in Pervy, (Gr, k), defined as the
*-pushforward of the complex kg, [((w)] under the embedding Gr,, — Gr. (Once
again, these complexes are indeed perverse sheaves.) The image of the unique (up
to scalar) nonzero morphism A,, — V,, is simple, and will be denoted as L,; it
is the intersection cohomology complex associated with the constant local system
on Gr,,. Then the objects (L, : w € WZ,) are representatives for the isomorphism
classes of simple objects in the abelian category Pervy, (Gr,k).

Since the morphism 7: F1 — Gr is smooth with connected fibers, by [BBDG,
Prop.4.2.5] the functor

1= 7*[dim(G/B)] = «'[- dim(G/B)]: D} (Gr,k) — D} (FLk)

is t-exact for the perverse t-structures, its restriction to perverse sheaves is fully
faithful, and it sends simple perverse sheaves to simple perverse sheaves; more
explicitly, in this case we have

t L, = Zuwo (31)

for any w € W5,.

The results of [BGS, §3.3] show that the category Pervy, (Fl,k) admits a natural
structure of a highest weight category (in the sense of [Ri, §7]) with weight poset
(Wext, <), standard objects the standard perverse sheaves (2, : w € Weyt), and
costandard objects the costandard perverse sheaves (A, : w € Weyt). Similar
comments apply to the category Pervy (Gr,k) (where the weight poset is now
W5, equipped with the restriction of the Bruhat order, and %, .4, are replaced
by Ay, V).

We will also occasionally consider the I-equivariant derived categories D'}(Fl, k)
and D?(Gr, k). We have forgetful functors

For} : DY(FLk) — D} (FLk), Forj : D¥(Gr,k) — D} (Gr,k),

and the objects %,,, 4, and A, V,, naturally “lift” to objects of D?(Fl, k) and
DY(Gr, k) respectively (which will be denoted by the same symbol). We also have
“convolution” bifunctors

DY(F1,k) x D?(Fl,k) — D®(Fl,k), DP(Fl,k) x D?(Gr,k) — D?(Gr, k),
D} (FLk) x DY(FLk) — D} (FLk), D} (FLk)x D}(Gr,k) — D} (Gr,k),

which will all be denoted as +!, and are compatible in all the expected ways.
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3.3. Relation with the Satake category

Below we will also consider the £TG-equivariant derived category D2+ o(Gr, k).
Once again, this category has a natural perverse t-structure, whose heart will be
denoted as Perv,:(Gr,k). For A € Y we will denote by Ly the image of 2* in
Gr, and by Gr” its £t G-orbit; then we have

Gr = |_| er}? and Grpeq = I_l Gr.

HEW(X) NEY 4

The closure partial order on the set of £*G-orbits on Gr is determined by the
restriction of the Bruhat order to the set of elements w € Wy that are minimal
in WwW; see Remark 2.3. More explicitly, for A € Y, the maximal element in
Wit \W is woty, so that for A, p € Y we have

Gr* c G =  woty < Woty,.

(It is a standard fact that this condition is also equivalent to the property that
p— A is a sum of positive coroots.)

The simple objects in the category Perv,.+q(Gr, k) are in natural bijection with
Y, via the operation sending A to the intersection cohomology complex Ich
associated with the constant local system on Gr*. The forgetful functor

Forf:G: D2+G(Gr,k) — D?H(Gr,]k)
is t-exact, restricts to a fully faithful functor on perverse sheaves, and satisfies

LYG (7oA
Fory “(ZC%) = Lt s
for any A € Y.

To each v € Y one can also associate the “standard” and “costandard” objects
defined respectively by

Il = Pr20(jl' ke [(20, W)]),  TE = Pr=0 (it ke (20, 1)),
where j* : Gr* < Gr is the inclusion and P20 Pr=<0 are the perverse truncation
functors. With this notation there exists (up to scalar) a unique nonzero morphism
I} — TV, and its image is ZC". Once again the category Perv.ig(Gr, k) has a
highest weight structure with standard objects the perverse sheaves (Z{' : p € Y )
and costandard objects the perverse sheaves (Z!' : u € Y ); see [BaR, Prop. 1.12.4].
(Contrary to the case of I -equivariant perverse sheaves, the proof of this claim
relies on some subtle results on the geometry of £+ G-orbits on Gr due to Mirkovié—
Vilonen.)
As in the I-equivariant setting (see §3.2), we have a convolution product

#£1G. Db, L (Gr,k) x D2, (Gr,k) — D%, (Gr, k) (3.2)
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which equips DE+G(Gr, k) with the structure of a monoidal category. In this
case, it is known that this product is t-exact (i.e., a product of perverse sheaves
is perverse), and hence induces a monoidal structure on the abelian category
Perv,+o(Gr,k); see [BaR, §1.6.3] for details. The geometric Satake equivalence
describes the monoidal category (Perv,.+g(Gr, ]k),*£+G) in representation-theo-
retic terms: more explicitly, in [MV] the authors construct a canonical affine
k-group scheme G}/ equipped with a split maximal torus 7}/ whose group of
characters is Y and a canonical equivalence of monoidal categories

Sat : (Perv£+G(Gr,k),*L+G) = (Rep(GY ), ®).

They also show that G is a split connected reductive group over k, and that
the root datum of (GY,T}’) is dual to that of (G,T'). Under this equivalence Z",
resp. Z.', corresponds to the Weyl, resp. induced, module of highest weight .

3.4. Root subgroups and unipotent subgroups

Recall (e.g., see [Ja, §1.1.3]) that for each root o € R, there is a homomorphism
Yo 5Ly = G

such that for t € T, x € F and y € F* we have

toa(§1)t =0a(E207), toa( L)t =0a(apy-1a1): @alf,’)=0a"().

The image of the map G, — G given by & — ¢, ((1) ’f) is often denoted as U,, and
called the root subgroup of G associated with «.

We will now explain how to define certain (positive, simple) root subgroups of
LG, attached to elements s € S,g. (For a discussion of more general root subgroups
of LG, see [Fa, §3].) First, if s € S, let as € Ry be the corresponding simple root,
and let
U = image of U,, under the natural map G — LG.

S

On the other hand, if s € S,g \. 5, then recall that s = tgvsgv for a maximal short
coroot 3 € RV, corresponding to a maximal (long) root 8 € R, . In this case,
define
U} := image of the map G, — LG given by x QO,g(Z}lx (1))

The construction above gives us an isomorphism G, = U for each s € Sag. (This
isomorphism is not canonical, but is fixed once and for all.)

A direct calculation (cf. [Fa, §3]) shows that for any s € Sug, the group §1,571N
I, is normal in §I,$~ 1, and that multiplication induces an isomorphism

UF x (81,5 N1 = 80,5

S
This identification gives rise to a quotient map

Vs 1 81,57 = UF =2 G,.
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More generally, consider a finitary subset A C S,g. Then there is a parahoric
group scheme P4 C LG such that

U 1®wIr

weW 4

If we set I;f‘ = u')AIuwgl, the intersection I{:‘ N I, is the pro-unipotent radical of
P4, and the quotient Pa/IZ' NI, is a reductive algebraic group M4 over F whose
Weyl group is Wa. If we set U} := I2/I2 N1, C Ma, then U} is the unipotent
radical of a (positive) Borel subgroup of M 4. There is a canonical isomorphism

Ui/l vzl =11 v,
s€eA

which we use to define the map 14 : IZ* — G, as the composition

I pinl,=vf - g /uf ufl= [[ v = ] Ga > Ga.
sEA sEA

An important special case of this construction is when A = S (so that Wg = W).
In this case, we have Ps = LG, I? is the preimage of the unipotent radical U+
of the Borel subgroup of G opposite to B (with respect to T') under the evaluation
morphism £¥G — G, and the intersection If N I is the kernel of this morphism.

3.5. Whittaker categories

We assume from now on that F has characteristic p > 0, and that k contains a
nontrivial p-th root of unity. This allows us to choose a nontrivial homomorphism
Z/pZ — k*, which in turn determines an Artin—Schreier local system on G,,
denoted by AS.

Let A C Sag be a finitary subset. We set X4 := 1% AS. Using the techniques
spelled out e.g., in [AR1, Appendix A] one can define the (I}, X'4)-equivariant
derived categories

Dia x,)(FLK) and  Dppa y,)(Gr,k)
of k-sheaves on Fl and Gr, respectively. These categories admit natural perverse
t-structures, whose hearts will be denoted as respectively Perv(;a x ) (FLk) and

Perv(ra x,)(Gr,k).
For w € Wy we will denote by Flf,} the I“;‘—orbit of the image of w in FI; then

Flea = | | FIj.
wWEWext

By definition, we have Flﬁ = w4 - Fly ,; it follows that for y, w € Wey we have

@C@ <= wWAw < WAY.
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Below we will mainly consider these orbits in the case where w and y are minimal
in Waw and Wuy, respectively; in this case, in view of the discussion in §2.2 we
have the simpler characterization

ﬂc@ <= w < y.

It is a standard fact that the orbit Flﬁ supports a nonzero (I, X4)-equivariant
local system if and only if w has minimal length in the coset W wj; in this case
there exists a unique such local system of rank 1, and the corresponding standard,
resp. costandard, perverse sheaf (obtained by taking the !-pushforward, resp. x-
pushforward, of the shift by dim(F12) = ¢(ww) of this local system under the
embedding F1? — F1) will be denoted as 2, resp. 4. Once again there exists a
unique (up to scalar) nonzero morphism 22 — 4, whose image will be denoted
as Z2, and the objects

w

(.,Z”A : W € Wext minimal in Waw)

w

are representatives for the isomorphism classes of simple objects in the abelian
category Perv(ra x,)(FL k).

In this setting the abelian category Perv(I:x’XA)(FLk) also has a natural struc-
ture of a highest-weight category, with weight poset

{w € Wext | w minimal in Wyw}

(equipped with the restriction of the Bruhat order). A basic example of an element
minimal in its coset in Wa\Wey is the identity element e. Since this element
is minimal for the Bruhat order, the canonical morphism 224 — 4 is an

isomorphism, and we have
98 = L4 = A (3.3)

These considerations have analogues for sheaves on Gr, as follows. For w € Wz,
we will denote by Gr?} the I2-orbit of the image of @ in Gr. Then

GI‘red = |_| Grﬁa

wWEW S,

and for w,y € W3, we have Griy C Gr; if and only if the maximal element in

wawW is smaller than the maximal element in wayW (for the Bruhat order). In
the special case where w,y € AWz, this condition is also equivalent to w < y.

It is a standard fact that the orbit Grﬁ supports a nonzero (I, X)-equiva-
riant local system if and only if w € AW2, (see [ACR, Appendix A] for similar
considerations). In this case, there exists a unique such local system of rank 1, and
the corresponding standard, resp. costandard, perverse sheaf (obtained by taking
the !-pushforward, resp. -pushforward, of the shift by dim(Gr’}) = f(waw) of this
local system under the embedding Gr2 — Gr) will be denoted as A2, resp. VA,

Once again there exists a unique (up to scalar) nonzero morphism A4 — V4
whose image will be denoted as L#, and the objects

(L w e AWEy)
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are representatives for the isomorphism classes of simple objects in the abelian
category Perv(sa x ) (Gr, k). The standard and costandard objects defined above
also endow Perv(ra x,) (Gr, k) with a natural structure of a highest-weight category

with weight poset AW, (with respect to the restriction of the Bruhat order).

ext
In this setting, we again have a t-exact functor

s DUra s,y (GrK) = Dipa x, (FLK),
which restricts to a fully faithful functor on perverse sheaves and satisfies

(L) = 2

WWo

(3.4)

if w € AWS,. We also have natural functors

s T2 Dipa x,)(FLK) = Dira y,)(Gr, k).

3.6. Averaging functors

Of course I7' contains I N I, and by construction the restriction of X4 to this
subgroup is trivial. We therefore have a canonical forgetful functor

For : D{ra s,y (FLK) = Dany (FLEK),

where the right-hand side is the (I2* N1, )-equivariant derived category of k-sheaves
on Fl. This functor is fully faithful, and the techniques of [AR1, Appendix A] show
that it admits left and right adjoints, denoted by

avfpl,!, avf/l* : DlI)(}qu (FLk) — DF]f,XA)(FLk);

respectively; we have

avi | (F) = (acta) (X4 R F)[2dim(US)], avi,(F) = (acta). (X4 K F)
where act 4: [ x &N F1 — Fl is the action morphism and X4 X F is the unique
complex whose pullback to I x Flis X4 X F. Similarly we have a forgetful functor

For'y : D} (FLk) = Daq, (FLK),
which admits left and right adjoints denoted by
avi',avy : D}ar, (F1k) — D} (FLk),

and defined by formulas similar to those above (involving the constant local system
instead of X4).

We will set
AV{,}’! = avﬁ’! o For'y[— dim(U )], Avﬁ’* = avﬁ’* o For/y[dim(U})],
Avit := av{! o Fors[— dim(U )], Av? = av2 o For 4 [dim(U})];

then we have adjoint pairs (AV;?J_’!, Av2) and (Av{, AV;?,_’*).

Similar considerations apply to sheaves on Gr; we will use the same notation for
the corresponding functors relating the categories D}C‘D(Gr, k) and D](OI A x4 (Gr, k).
The base change theorem guarantees that we have canonical isomorphisms

Ava? ont = 7to Avﬁ,r_,, Aviont =zt o Avt for 7 =1or *. (3.5)
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3.7. Study of Whittaker averaging functors
The following claim is standard (e.g., see [BBM], [BY], [ABBGM]).

Lemma 3.2. For sheaves on Fl and Gr, there exists a canonical isomorphism of
functors
Avﬁ’! — Avi*,

and these functors are t-exact.

Proof sketch. To fix notation, we consider sheaves on F1; the case of Gr is similar.
The natural morphism of functors (act4)r — (acta). induces a morphism of

functors
avi),[— dim(U})] — av, , [dim(U})],

from which we obtain a morphism AV;E,! — Ava*. Since the category D‘;u (F1,k)
is generated (as a triangulated category) by the essential image of the forgetful
functor Forfu (see §3.2), to show that this morphism is an isomorphism, it suffices
to do so for its composition with this functor. Now from the definitions we see that
the compositions Avéﬂ o Forfu and AVQ,* o For%u can be described as convolution
on the left with the objects _@g‘ and %A, respectively. Since these objects are
canonically isomorphic (see (3.3)), we deduce the desired isomorphism.

Since the functor AV;Z",, resp. AV;ZX,*7 is defined in terms of a !-pushforward,
resp. *-pushforward, along an affine morphism, it is left t-exact, resp. right t-exact,
by [BBDG, Théoréme 4.1.1, Corollaire 4.1.2]. Since these functors are isomorphic,
they are therefore t-exact. [

In view of Lemma 3.2, the functors Avﬁ’! and Av;?,y* will be identified below, and

denoted simply by Avﬁ. This lemma implies in particular that we have canonical
isomorphisms
Av$ om, Xm0 Avﬁ, AV$ om Xmo Av{?. (3.6)

The behavior of AV$ on our “special” perverse sheaves is described as follows.

Lemma 3.3.
(1) If w € Wexy is minimal in Waw, then for y € Wa we have

AVA (D) 2 T2, AVE(Sg) = AL

(2) If w € Wyt is minimal in Waw, then for y € Wa the object Avl‘z(.ﬂyw) is
isomorphic to L4 if y = e, and vanishes otherwise.
(3) Let w € W2, and write w = yx with y € Wa and x minimal in Wazx.

ext’
Then z € WS, and we have

ext’

- 0 otherwise.

A? fo € %Wcit; , AVA(vw) ~ v? fo € AWcit;
0 otherwise

AV;? (Ay) = {

(4) Let w € W5, The object Avﬁ(Lw) is isomorphic to L if w € AWS, | and

vanishes otherwise.
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Proof. For (1)—(2), the proof can be adapted from those of [BY, Lems. 4.4.6 & 4.4.8].

(3) The fact that 2 € W3, follows from Lemma 2.2. For the description of
Avﬁ (A,) and Avfb‘(vw), the same arguments as for (1) reduce the proof to the
case y = e, i.e., w is minimal in W wW . In this case, we observe that

(3.6) €]
AV;‘(Aw) = Avfﬁ(m.@w) = mAvﬁ(@w) ~ mPa.

Now m P2 is isomorphic to A2 if w € AWz, , and 0 otherwise; see [ACR, Lem-

ma A.1] for a proof in the similar setting of Kac-Moody flag varieties. This proves
the claim for Avﬁ(Aw); the case of Avﬁ(Vw) is similar.
(4) We have

(3.1)
T (AVE (Lw) =2 Avi(ri(Ly)) = AVE(Luw,)-

By (2), the right-most expression vanishes unless ww, is minimal in Waww,,

which by definition is equivalent to w € AWS,. In case w belongs to AWz, the

rightmost term is isomorphic to £, . We have a simple perverse sheaf L% on Gr,
and comparing the formula above with (3.4) we see that 7' (AV;Z‘(LM)) =~ rf(LA).
The desired claim follows, by full faithfulness of 77 on perverse sheaves. [

3.8. Study of Iwahori averaging functors

We finish this section with some properties of the averaging functors AV!A and
AvA,

Lemma 3.4.

(1) The functors Av{* and Av? are t-ezact.
(2) There exists an isomorphism of functors

Avito Avﬁ o Forﬁu =~ AvH (22 + (—)

which identifies the morphism Av{* o Av;;1 o Forfu — Forgu induced by ad-
junction with the morphism induced by a surjection Avi{*(22) — Z,.
Proof. (1) The functor Av4 is the right adjoint of the exact functor Avﬁ, so it is
left exact. On the other hand, this functor is defined in terms of *-pushforward
along an affine morphism, so it is right exact by [BBDG, Théoréme 4.1.1]. It is
therefore exact. Dual arguments apply to Avf4.
(2) As explained in the course of the proof of Lemma 3.2, the functor AvﬁoForfu
identifies with 2 «! (—). The desired claims follow. [

4. The geometric Steinberg formula

4.1. Statement

If A C Sa.g is a finitary subset, the same constructions as for (3.2) provide a
convolution bifunctor

K£7C Dby ) (Gr k) x DR (Gr k) = DPya ) (Gr,K).
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It is known that this bifunctor is again t-exact, in the sense that for objects F in
Perv(ra x,)(Gr, k) and G in Perv +g(Gr, k) the convolution F+£1G G s perverse;
see [BGMRR, Lem. 2.3] for details and references.

Recall the subsets AW, and AW of W, introduced in §2.2 and §2.5 respecti-
vely. The following statement is the first main result of this paper, which gives a
geometric counterpart of the Steinberg tensor product theorem for representations
of reductive groups over fields of positive characteristic (or of quantum groups at

a root of unity).

Theorem 4.1. Let y € AW, Then for any pn € Y4 we have

ext *

LT =y,

oxt» 50 it does
indeed label a simple object in Perv(ra y,) (Gr,k); in fact, this equality shows that
any label for a simple object of Perv(;a x,)(Gr, k) has the form yt,,, () for y and p
as in Theorem 4.1. In other words, this theorem describes all the simple objects in
Perv(ra x,)(Gr,k) in terms of those whose label belongs to AWres and the simple
objects in the Satake category Perv +qg(Gr, k).

Remark 4.2. Note that by (2.7) the element yt,, () belongs to AW&,

In the course of the proof of this theorem, we will also establish the following
result, which is the second main result of the paper.

Theorem 4.3. For any y € AW, the functor

ext’
D, 4= L;‘ KLre (=): Perve+g(Gr,k) — Perviza x,)(Gr, k)

1s fully faithful.
4.2. Preliminaries

Our goal in this subsection is to prove the technical Lemma 4.7, which will be
used crucially in the proofs of Theorems 4.1 and 4.3. This result will follow
from some claims (essentially taken from [ABBGM]) on dimensions of certain
subschemes of Gr. The starting point for these proofs is a lemma from [FGV]
which is closely related to the “geometric Casselman—Shalika formula” proved
independently in [FGV] and [NP].

For the general theory of ind-schemes we refer to [Ra]. For any p € 'Y we have
the “semi-infinite orbits”

Su, T, CGr,

where we follow the conventions of [MV] or [BaR]. (These are ind-schemes, endowed
with natural morphisms S, — Gr, T, — Gr which are representable by locally
closed immersions.) Recall that U, resp. U™, is the unipotent radical of B, resp. the
Borel subgroup opposite to B with respect to T'; we have the loop group LU
associated with U, resp. the loop group LU associated with U™, and

T.(F) = LU(F) - L,, Su(F)=LUT(F)-L,.

"

A crucial feature of these sub-ind-schemes is the fact that if A € Y, and p €Y,
then the intersection T, N Gr”, resp. Su N Gr?, is empty unless A\ — dom(y) is a
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sum of positive coroots, and that in this case this intersection is a scheme of finite
type such that

dim(Gr* N'S,) = (p, A+ ), resp. dim(Gr*N'T,) = (p, A — p);

see [MV, Thm.3.2] for the original reference and [BR, Thm.1.5.2] for a more
detailed treatment and further references.

Let us fix, for any o € —fRg, an isomorphism U, = G,, where U, C U is the
root subgroup associated with « (i.e., the image of the subgroup of lower-triangular
unipotent matrices under the morphism ¢_,, from §3.4). Then we obtain a group
homomorphism

x:U=U/UU) & ] Va2 J] Ga> G
a€E—NRg aE—NRg
We will also denote by xT: Ut — G, the composition of x¥ with the isomorphism
Ut =5 U given by g + .gi; !, and denote by x 217, resp. Xy +, the composition

+ «
LU 2% £G, =% G,, resp. LUT 255 £G, =5 G,

where the first morphism is the morphism of loop groups induced by ¥, resp. x ™,
and the second one is the “residue” morphism sending a Laurent series to the
coefficient of 2! (e.g., see [BGMRR, §3.4]). Then for any u € Y there exist unique
morphisms x¥: Ty, = G, and X3 : S, = G, such that x} (u- L,) = xcv (2 #uz")
for any u € LU and XE(U L) = xcu+(z7Huzt) for any u € LUT.

The starting point for our proofs is the following claim, taken from [FGV,
Lem.7.1.7].

Lemma 4.4. Let p €'Y and A € Y be such that pu # wo(X\). Then the restriction
of XE to any irreducible component of S, N Gr* is dominant.

We deduce the following.

Lemma 4.5. For any pn € Y, the intersection S, N'Ty := S, Xar To s a scheme
of finite type, empty unless p is a sum of positive coroots, and of dimension at
most (p,u). If u # 0, then we have

dim (S, N (xg) ™ (0)) < (p, 1)
Proof. The fact that S, N'Ty is a scheme of finite type is noted in [BFGM, proof
of Prop. 6.4]. For any A € Y, multiplication by z*3 ! induces an isomorphism
SM NTy = T)Hrwo(#) NSy.

Now by [BFGM, Prop.6.4], if A is sufficiently far in the antidominant cone the
right-hand side is contained in Gr**™+*# and hence in Gr**™*# NS, which as
explained above is empty unless the coweight wo(A) + p — wo(A) = p is a sum of
positive coroots and has dimension

(P, wo(N) + p+ A) = (p, 1)

in this case. Through this identification, the map x& becomes the restriction of X§~
By Lemma 4.4, if 1 # 0 this map is nonconstant on any irreducible component of
GreWF# 0 Sy which implies that dim(S, N (xd)~1(0)) < (p, ), as desired. [
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Corollary 4.6. Lety c WS, , une Y, andv €Y, and write y = wty withw € W
and X € Y. The intersection (wS,) NGry is empty unless wo(A) —dom(v) is a sum
of positive coroots, and in this case we have

dim((@S,) N Gry) < (p,v — A).
Moreover, if y € WIS and v # A, this inequality is strict.

Proof. Note that the coweight A is necessarily antidominant here, by Lemma 2.6
and (2.6). We have

wS,) N Gr, = (wS,) N (I-wLy) = - (S, N (w  IwLy)) C - (S, NGree™M).
Yy

The usual properties of intersections of spherical orbits with semi-infinite orbits
recalled at the beginning of the subsection show that the right-hand side is empty
unless w,(A) — dom(v) is a sum of positive coroots, and has dimension (p, wo(A) +
v) = (p,v — A) in this case. Our first claim follows.

Recall that for any 5 € R and n € Z we have a “root subgroup” Ug, C LG
defined as in [BGMRR, Proof of Lem. 3.10]. If we set

(AB)—1 .
1. 0 ifw(B) e —Ry;
J = Ug; Cu 'l h =
H H b woAw where g {1 otherwise,

Be—Ry i=ng
and where the first product is ordered in any fixed arbitrary way, then since A is
antidominant, the composition of the product morphism with the map g — ¢g- L
induces an isomorphism J = w~'Gry; in other words, if we set

-1
J = H H Ug.i
BE—R4 i=ng—(\,0)
then the composition of the product morphism with the map g — ¢ - Ly induces
an isomorphism
J = zwaflGry.

This shows in particular that z=*i~1Gr, C Ty.

Now, assume that y € WIS, If § € —R,, then by Lemma 2.6 we have (), ) =
ng. Hence in J' there is no factor corresponding to the opposite of a simple root,
which implies that z=*%~'Gr, C (xd)~*(0). Since

(WS,) N Gry = wz* - (Sy_x N (27 M~ - Gry)),
Lemma 4.5 then implies our second claim. [
Consider the “twisted product”
Gr X Gr:= LG x*'¢ Gr

and the (proper) morphism m: Gr x Gr — Gr induced by multiplication in £G.
Given locally closed subschemes X,Y C Gr, we can consider the locally closed
subscheme X X Y C Gr x Gr defined as X’ x£ ¢ Y where X' is the preimage of
X in LG. In particular, for y € W5, and u € Y, we have the twisted product

Gr, x Gr* C Gr x Gr; we will denote by
My . Gy x Gr* — Gr

the morphism induced by m.
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Lemma 4.7. Let y € W5

ext’

weYy andn €Y. Then we have

dim (my;, (9Ly)) < (p,pu + ).

Moreover, this inequality is strict if y € WES and n # wo(p).

Proof. Let us write y = wty with w € W and A € Y; then \ is antidominant (see
Lemma 2.6 and (2.6)). We note that we have a decomposition into locally closed
pieces

Gry x Gr* = | | ((@Sy) NGry) x Gr*,

veEY

with only finitely many nonempty terms in the right-hand side; to compute the
dimension in this statement, it therefore suffices to consider the intersections

m;i(g)Ln) N (((@wS,) N Gry) x Gr*) = m;’}i(u}L)\Jrn) N (((@Sy) N Gry) x Gr*)
forallveY.

Let us consider some v € Y such that (@S,) N Gry # @, and choose g € LUt
such that wg - L, € (wS,) N Gry. Then if my ], (wLx1y) N (((@S,) N Gry) X Gr*)
is nonempty, there exists a € Gr* such that wgz" - @ = WwLx4,; in particular, we
have Gr" N Sxjy—, # @, which implies that

(pu+A+n—v)=0, (4.1)

this inequality being strict unless A +n — v = wo (), i.e., v = A+ 1 — wo(p).
We claim that if my (i Lxgy) N (((@S,) N Gry) X Gr*) is nonempty, then the
natural morphism

mo L (WL ) N (((@S,) N Gry) X Gr*) — (@S,) N Gr,

Y,

is a locally closed immersion. Indeed, if we denote by X, , the image of Giry x Gr#*
under the proper morphism m (a closed subscheme of Gr), then the canonical
morphism -

Gry x Grt — Gry x Xy,

is a closed immersion. If we denote by Y, C Gr, x Gr* the preimage of
Gry x {wLx4y} under this map, then the natural morphism

n
Yw‘ — Gry

is a closed immersion, and hence so is its restriction
Y, N (((@S,) N Gry) x Gr*) — (¥S,) N Gry

to the preimage of (@S, )N Gr,. Our claim follows, since m;}t(wL)\+n) N (((WSy)N

Gry) x Gr*) is the intersection of the domain of the latter morphism with the open
subscheme ((@S,) N Gr,) x Gr*.
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This claim implies that whenever m, ! (wLx1y) N (((@S,) N Gry) x Gr*) is
nonempty we have

dim(my_,h(y'Ln) N (((@S,) N Gry) x Gr*)) < dim((@S,) N Gry).

By Corollary 4.6, the right-hand side is at most (p,v — A); combining this obser-
vation with (4.1) we deduce that

dim (my,, (9Ly) N (((@S,) N Gry) x Gr*)) < {p, p+1),

which implies our first claim and moreover that this inequality is strict unless
v=A+1n—wo(n)

If we furthermore assume that y € W and n # wo (1), then A+n—wo (1) # A.
The second claim in Corollary 4.6 shows that

dim (WS sty —w.(u)) N Gry) < (o1 —wo(p)) = {p, 1+ 1),

which shows our second claim. [

We finish this subsection with a reminder on some aspects of the geometric
Satake equivalence (see §3.3) that will be used in our proofs below. Recall the LT G-
equivariant derived category D2+G(Gr, k), its subcategory of perverse sheaves
Perv.+(Gr,k), and the (exact) convolution product *£" ¢ introduced in §3.3.
Below we will use the fact that the monoidal category

(PerV£+G (GI‘, k) ’ *L+G)

is rigid: every object F has a left and right dual FV. (This fact can either be
checked directly or deduced from the geometric Satake equivalence.) We will not
need an explicit description of this operation, but only that for 1 € Y we have

(I!u)v o L:wo(u)7 (If:)v o I!fwo(u)’ (IC/L)\/ & 7o~ wo (1) (4.2)

Our proof will also make use of the following result.

Proposition 4.8. For any \,u € Y the object I)‘ cra I admits a filtration
with subquotzents of the form I} withv € Y ;. Dually, for any A\, € Y4 the object

I} £ra T admits a filtration with subquotients of the form TV, withv € Y.

This result is a geometric version of a theorem on tensor products of modules
with good filtrations (for reductive algebraic groups over fields of positive characte-
ristic) first due to Mathieu [Ma] in full generality. It can be deduced from this
result using the geometric Satake equivalence; a direct geometric proof can also be
obtained from [BGMRR, Thm. 4.16] (see [JMW] for some details).

4.3. Proofs in case A = @

We can now come to the proofs of the special case A = @ of Theorems 4.1 and 4.3.
The following result is a consequence of Lemma 4.7 that will be required below.
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Lemma 4.9. Lety € Wi, let p €Yy, and let n € =Y. We have

ext’

+
HomD]I)u(Gr’]k) (Ay *‘C G Z'!“7 Vytn [1]) = 0)

and moreover .
Hompy (ar ) (Ay *CTE NV, ) =0
if 1 # wo(p). In case n = wo(p), we have
.
Hompy (G (By # T Ve ) #0.
Proof. Let @ = (Pr=71(j{'kq.«[(2p, 1)]))[1], so that we have a distinguished tri-

angle
ke (20, )] = I = Q — .

Note that Q@ € PD%, ,(Gr,k)=72. By the t-exactness of #£7C and the fact that
A, and V,; —are perverse, we see that
Hom (A, +*"¢ Q, V) = Hom (A, "¢ Q,V,, [1]) = 0.
Thus, to prove the lemma it is enough to show that the space
ta . .
Hom (Ay +°" (j{'kaum[(20, 1)), Vi, [i])

vanishes if i = 1 or if i = 0 and 7 # w, (), and is nonzero if i = 0 and 7 = w, ().
Using the notation introduced in §4.2, from the definition we see that

+G
Ay *E (e [(20, 1)]) = (my,0) K[0(y) + (2, 1)];
by the base change theorem we deduce that

Hom(8y x“" (jt ko |29, 1)), Vi, 1)
== Hom ((my ) k[l(y) + (20, )] Ka,,, [E(yty) +1])
where mgtﬂ is the restriction of m, , to the preimage of Gry, . Now, Gry, is
isomorphic to an affine space, and by equivariance the cohomology sheaves of
(mgfﬁ)gk are constant sheaves. The Hom-group above may therefore be computed
after passing to stalks at yL, € Gry, . We deduce that
Hom (A, +7C (jl'%kgu [(20, 1)]), Vs, [i]) = HE)+ ot =Ewt) =3 (=1 (51, ) k).
Here by Lemma 2.7 we have {(yt,) = ¢(y) — (2p,n), so that
+ . 1\~ —q 1. *

Hom (Ay +° (j'kau[(20, 1)]), Vi, [i]) 2 HEP#0 7 (my L (GLy ) k)" (4.3)
By Lemma 4.7, if ) # wo (1) we have dim(m, |, (§Ly)) < (p, u+n), so the right-hand
side of (4.3) vanishes for ¢ = 0 and ¢ = 1. If n = w,(p), then we have

dim (m,,, (§Ly,)) < {p,p+n) =0
(again by Lemma 4.7) and m, },(§L,) # @ (since [§ : L,] € my},(§Ly)); the right-

hand side of (4.3) therefore still vanishes for ¢ = 1, and is nonzero for i = 0.
U

n

We are now ready to prove Theorem 4.3 in the special case A = &.
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Proof of Theorem 4.3 when A = &. The proof will consist of five steps.

Step 1. If F,G € Pervo+q(Gr, k) and if F has a standard filtration and G has a
costandard filtration, then

Hom (A, +°7¢ F, v, «£ "¢ G[1]) =0

Of course we can assume that G = 77 for some v € Y. In the case where
v = 0, this claim follows from Lemma 4.9. The general case reduces to this case
using the isomorphism

Hom(A, 5" F, v, +£ ¢ G[1]) = Hom(A, £ ¢ F+£7¢ g v, 1)),

since F +£7C GV has a standard filtration by (4.2) and Proposition 4.8.

Step 2. Let ¢ : Ay — V, be the canonical map. If F € Pervo+g(Gr,k) has a
standard ﬁltmtzon and G € Pervp+g(Gr,k) has a costandard filtration, then the
map

Hom(F,G) — Hom (A, «£7C Vy xL£TC G) given by ¢ cxETC )

is an isomorphism.

First we assume that G = Z?; in this case we will prove the claim by induction
on the length of a standard filtration of F. If F = Z* for some p € Y, then
both sides vanish if u # 0 by Lemma 4.9, and the map is clearly an isomorphism
if 4 = 0. Now suppose F has a standard filtration of length > 1, and choose some
short exact sequence 0 — F' — F — II" — 0 where F’ has a standard filtration
and p € Y. We have a commutative diagram

Hom(Z}',Z{) —— Hom(F,Z{) —— Hom(F',Z{) —— Hom(Z}", Z{[1])

I | I L

Hom(Ay+Z}", Vy) ¢ Hom(Ay*F,Vy) + Hom(AyxF', Vy) + Hom(A, I, Vy[1]),

where we write * for +£* ¢ and all vertical arrows are as in the claim. The first and
third vertical arrows are isomorphisms by induction, and the fourth vertical arrow
is an isomorphism because both terms vanish (by Step 1). By the five lemma, the
second vertical arrow is also an isomorphism, finishing the proof in this case. Once
this case is established, we deduce the general case by adjunction, as in Step 1.

Step 3. If F,G € Pervy+g(Gr, k) and if F has a standard filtration and G has a
costandard filtration, then the map

Hom(F,G) — Hom(L, % ¢ F L, £ ¢ g)

is an isomorphism.
This follows from the observation that the map from Step 2 is the composition
of the map above with the natural map

Hom(L, %" ¢ F,L, "¢ G) — Hom(A, 5" ¢ F, v, %~ € G),
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which is injective by t-exactness of Wi

Step 4. If F € Pervy+q(Gr, k) has a standard filtration, and G € Perv,+q(Gr, k)
is arbitrary, then the map

Hom(F,G) — Hom(L, "¢ F,L, 79 G)

is an isomorphism.

Let Z C Gr be the support of G; this is a closed union of finitely many £+G-
orbits. By results of [MV] (see [BaR, §1.12.1]), the category Perv,+s(Z,k) admits a
projective generator which admits a standard filtration. By duality, it therefore also
admits an injective generator which admits a costandard filtration; in particular
there exists a copresentation

0G>T —-T

where Z,7’ € Perv,+o(Gr, k) have costandard filtrations. We then have a commu-
tative diagram

0 — Hom(F,§) —— Hom(F,Z) —— Hom(F,T')

2 b b
0 — Hom(L, x F,L, *G) — Hom(L, x F,L, *Z) — Hom(L, x F,L, xZ'),

where we again write x for *£1G The last two vertical maps are isomorphisms by
Step 3, so by the five lemma the first is as well.

Step 5. Proof of full faithfulness of L, KL£rG (=) in general.
This is very similar to Step 4, using a presentation of F by perverse sheaves
with standard filtrations. [

Using the special case of Theorem 4.3 proved above, we can now deduce the
corresponding special case of Theorem 4.1.

Proof of Theorem 4.1 when A = @. First we claim that L, K£1G o s simple.
Indeed, otherwise there exists a surjective and noninjective morphism L, KLra
IC* — F for some simple object F in Pervy, (Gr,k). Now convolution commutes
with Verdier duality, so L, *£7G 7CH is self-dual. Since the simple object F is also
self-dual, we can apply Verdier duality to obtain an injective and nonsurjective
morphism F < L, &' ¢ ZC*. Composing these two maps, we obtain a nonzero

endomorphism of L, «£7G TCH which is not a multiple of the identity, proving that
dim Hom py (i (Ly LG Ter L, TG Ter) > 2,

and therefore contradicting (the known special case of) Theorem 4.3.

On the other hand, we claim that the perverse sheaf Ly*£+GIC“ admits Ly, .
as a composition factor. (This claim will complete the proof.) Indeed, we have a
surjection

Ay +ETGTCH - L, #ETCG Tem, (4.4)
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Since Vi, ., has Ly, ,, as socle, the fact that Hom(A, e ICcH, Vytwo(“)) #*

0 (see Lemma 4.9) implies that A, *£7C 7CH admits Lyt,, ., s a composition
factor. For dimension reasons, the support of the kernel of (4.4) does not intersect
Gryt,, (., so this kernel does not admit Ly, as a composition factor, which
implies the desired claim. [

o(m)

Remark 4.10. The reasoning at the end of the preceding proof can be used to make
Lemma 4.9 a little bit more precise: in the notation of this statement we have

. +
dim (HomD},u(Gr’k)(Ay x££ G T Vitwoion)) = 1.

Indeed, this follows from the observation that the support of the kernel of (4.4)

does not meet Gry; .
wo (k)

4.4. Proofs for general A
We now prove Theorems 4.1 and 4.3 for a general finitary subset A C S,g.

Proof of Theorem 4.1. Recall the functor Avﬁ studied in §3.7. It is clear that
this functor commutes with convolution on the right by £ G-equivariant objects.
Applying Avﬁ to the isomorphism L, K£1G Tor =~ Lyt,, (., from the case A =2
and using Lemma 3.3(4), we deduce the desired isomorphism. O

Proof of Theorem 4.3. Since the case A = @ is now known, it is enough to show
that for F,G € Perv .+ (Gr, k) the map

Hom (L, «*7¢ F,L, +£"¢ G) — Hom (L} x5 C FLAKETCG) (4.5)

induced by Avjz is an isomorphism. Since the functor (—)+£" ¢ F is left adjoint to

(=) #£7C¢ FV, we may (and will) assume without loss of generality that F = ZC°.
First, we claim that the map

Hom (A, L, «“ ¢ G) — Hom (A2, LA +£7C G) (4.6)

Yoy
induced by Avﬁ is an isomorphism. Indeed, by adjunction we have
Hom (A;, L; e g) =~ Hom (Avﬁ(Ay)7 Avﬁ(Ly KLra Q))
= Hom (Av{*(AvH(A,)), L, +£ € G).
Thus, (4.6) can be identified with the map
Hom (A, L, #7¢ G) — Hom (Avi'(AvA(A,)), L, x5 G) (4.7)

induced by the adjunction morphism f: Avf‘(Avﬁ(Ay)) — A,. By Lemma 3.4(2)
we have Avf‘(Avﬁ(Ay)) = Avi{ (22! A,, and our map is induced by a surjection
Avi{(22) — Z.. Tt follows from [BR, Lem. 10.1] that the kernel of this surjection
admits a filtration with subquotients of the form 2, for v € W4 \ {e}, each
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appearing once. Since y is minimal in Wyy, we have ¢(vy) = £(v) + £(y) for any
such v, from which one deduces that 2, ! A, = A, by standard arguments; we
deduce that f is surjective, and that its kernel I has a standard filtration with
subquotients of the form A,, with v € W ~\ {e}. Thus (4.7) is injective, and to

prove that it is surjective it suffices to show that Hom(K, L, *£7¢ G) = 0, which
will follow if we prove that

Hom (A, L, ¢ G) =0

when v € W4\ {e}. This holds because the unique simple quotient of A,,;, namely

VY
Ly, does not occur as a composition factor of L, «Lra G, since these composition
factors are of the form L, (,) for some v € Y, by Theorem 4.1, and thus in

particular have their label in W3, . (Note that vy does not belong to AW,
it is not minimal in the coset Wyvy = Way.)

Next, we consider the commutative diagram

. since

Hom(L,,L, *£TEg) — Hom(A,, L, *£7G g)

(4.5)] 1(4.6)
Hom(L{, L2 %476 G) —— Hom(AZ, LA 476 G).

Here, the right-hand vertical arrow is an isomorphism as proved above, and both
horizontal maps are injective, because they are induced by the surjective mor-
phisms A, — L, and A} — L:!, respectively. The upper arrow is in fact even
an isomorphism, since the kernel of the surjection A, — L, has its composition
factors of the form L, with £(z) < ¢(y), while all composition factors of L, #£7G G
are of the form L, with v € =Y by Theorem 4.1, and hence have their label
of length at least ¢(y) by Lemma 2.7. We deduce that all four maps above are
isomorphisms, which finishes the proof. [

4.5. A conjecture on the image of ®, 4

A special case of the functor in Theorem 4.3 has already appeared in the literature:
it is the case when A = S (so that W4 = W) and y = t.w,. For these choices, it
is shown in [BGMRR] that this functor is in fact an equivalence of categories. For
general A and y, this functor cannot be an equivalence, simply because not every
simple object of Perv(lf,XA)(Gr,k) belongs to its essential image. But one might
still expect that in some cases it satisfies a property stronger than full faithfulness.
Namely, denote by C, 4 C Perv(za x,)(Gr k) the Serre subcategory generated
by the simple objects of the form L;jtA with A € =Y. Then by exactness and
Theorem 4.1, the functor ®, 4 factors through a (fully faithful and exact) functor
Perv,+g(Gr, k) — C, 4, which will still be denoted as @, 4.

Conjecture 4.11. Assume that y € AW is minimal in AW5

ext o for the Bruhat
order. Then the functor

(I)y,AI PerV£+G(GI'7 ]1{) — Cy7A
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s an equivalence of categories.

We see Conjecture 4.11 as giving “partially Whittaker models” for the Satake
category, in the spirit of [BGMRR]. As an evidence for this conjecture, let us note
that it holds at least in the following cases:

(1) when A =@ and y = ¢;

(2) when A =S and y = tcwo;

(3) when k has characteristic 0.
In fact, in case (1) this claim is equivalent to the standard result—due to Mirkovié—
Vilonen [MV]—that the forgetful functor from Perv +5(Gr, k) to the category of
perverse sheaves constructible with respect to the stratification by £¥G-orbits is
an equivalence; see [MV, Prop.2.1]. In case (2), the functor ®;_,, g is the main
object of study of [BGMRR]; in this setting, we have C; ., 5 = Perv(ss x4 (Gr, k)
by Lemma 2.5, t.w, is minimal for the Bruhat order because it has minimal length
in W2, (by the same statement and Lemma 2.7), and the main result of BGMRR]
states that this functor is an equivalence of categories. (Note that revisiting the
arguments in [BGMRR, §4.3] involving parity complexes, one can prove directly
that ®; ., s is essentially surjective once we know that it is fully faithful.) Finally,
in case (3), parity considerations imply that the category C, 4 is semisimple, which
of course implies the statement.

4.6. An example
One can check that, given y € AW minimal in AWz, for the Bruhat order,

ext
Conjecture 4.11 is equivalent to the statement that

Extpe,, (Gr.k) (AZ‘;x *E+GI!“, V‘;) =0 forany pe Y. (4.8)

(18, x 1)
Let us denote by
mﬁuz Gr;/4 x Gr'" — Gr

the morphism induced by m. As in the proof of Lemma 4.9, we have an embedding

EXt%’erv (Gr,k) (AI; *£+G I'ﬂﬂ VI;) — Hézp’lwil ((mAu)il(yLO); f)* (49)

(g, x4) Y,

where F is the restriction to (m?‘i#)*l(yLo) of the pullback of the rank one

, X4)-equivariant local system on Gr;,". Since Gr; = w4 -Gry, ,, left multiplica-
I X ivariant local syst Gr;). Since Gr;} = ti4- Gy, y, left multipli
tion by w;l induces an isomorphism

(m;,p,)_l(yLO) — mt_u,lqy,p,(wzly[’o)'
The right-hand side is of the form studied in Lemma 4.7; if wy is restricted then

dim ((m;',) " (9Lo)) < (p, 1)

provided p # 0, which allows one to deduce (4.8) in this case. Unfortunately, this
condition is not always satisfied, and it can happen that dim((m2 ,)~'(yLo)) =

Y,
(s ).
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Indeed, consider the case G = GLa(F), with the standard choice of maximal
torus and (negative) Borel subgroup, and A = S. Here we have a canonical
identification Y = Z?, such that Y4 = {(a,b) € Z* | a > b}, and we can take
¢ = (1,0). If s is the unique element in S, then y = t.s is restricted and minimal
in SWZ, (in fact £(y) = 0), but sy = t(g,1) is not restricted. One can check that in
this case we have

(mf(l,o)s,u,—n)_1(L(170)) = {[((Z) :f) : ((1) ﬂf_l )G(F[[Z]])] cx e FX };

in particular, this scheme has dimension 1 = (p, (1, —1)). Here F is the restriction
of the Artin—Schreier local system, so that the right-hand side in (4.9) has dimen-
sion 1.

This example illustrates why our proof of Theorem 4.3 has to be different in
case A # @. (Note that in any case Conjecture 4.11 is known in the special case
considered here, as explained in §4.5.)
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